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ON A TWO LAG DIFFERENTIAL DELAY EQUATION
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Abstract

The non-linear differential difference equation of the form
rIN
^ (l - BN(, -T,)- CN(t - 7 i ) )

is investigated. This equation, with constant coefficients, is used to model the population
level, N, of a single species, and incorporates two constant time lags T2 > 7", > 0; for
example, regeneration and reproductive lags. The linear equation is investigated analyti-
cally, and some linear stability regions are described. The special case in which the two
delay terms are equally important in self damping, B = C, is investigated in detail.
Numerical solutions for this case show stable limit cycles, with multiple loops appearing
when 7*2/7", is large. These may correspond to splitting of major peaks in population
density observations.

1. Introduction and preliminary results

Many deterministic mathematical models have been developed in attempts to
describe variations in population levels of a single biological species which is
isolated from environmental factors and from interaction with other species (see,
for example, the books by May [14], Maynard Smith [15] and Pielou [19]). Time
lags or delay terms are used to model biological features such as regeneration time
and natality lag; or incubation time and infectious period in an epidemic model.
Hutchinson [9] suggests a model with a single time lag T:

^±p (1.1)
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[21 A two lag differential delay equation 293

where R, K, T are positive constants, to describe the population level N(t) at time
/. Here R is the intrinsic rate of increase, and K is the carrying capacity. This is a
generalised logistic model in which the self-regulatory term has been modified by
the inclusion of the delay term. Hutchinson's model has been extensively studied
(see, for example, Wright [25], Hale [6], Nussbaum [16] and Kaplan and Yorke
[12]) and many of the properties of its solutions are now understood.

However, it is often biologically unrealistic to assume that the self-regulatory
term should depend on just one point in past time. Recently, attention has turned
to models which incorporate two time delays in the self-regulating process; for
example, Cooke and Yorke [4], Hale [7, 8], Nussbaum [17, 18], Silkowski [21], and
Stech [22, 23]. One such model is an obvious extension of Hutchinson's to the
form

^ - = ^ ( , ) ( i _ BN{t - Tx) - CN(t - T2)), (1.2)

where there are two constant time lags, T2^ Tt > 0, in the self regulating
mechanism, and the constants B and C specify the relative importance of the
simple intrinsic growth term and the two time delay terms. Observe that (1.2)
contains (1.1) as a special case for any of the three conditions Tx = T2, B = 0 or
C = 0. The unique non-trivial equilibrium population N* = (B + C)"1 is as-
sumed positive and can be interpreted as a carrying capacity. Kitching [13] has
indicated that the life cycle of the Australian blowfly Lucilia cuprina, has three
time delay features which need to be considered in modelling its population
dynamics. Unfortunately we are unable to analyse such complicated models at
this stage, but the inclusion of extra delay terms is an attempt to add realism.

Setting N(t) = N*(l + TJ(/)), and nondimensionalising time using the smaller
time lag T, (setting / = T,T and denoting d-q/dr = ij) equation (1.2), reduces to
the form

ij(r) = - ( l + T , ( T ) ) [ / T , ( T - 1) + gv(r - 8)], (1.3)

where 0 = T2/Tt > 1,/ = BRTtN* and g = CRT^N*, so that/ + g = RT\ > 0.
Equation (1.3) is a differential delay equation and the values of TJ(T) for

-6 < T ̂  0 must be given as initial data before we can attempt to integrate it. We
will usually consider TJ(T) = TJ(O), a constant, for -6 =£ T < 0, as interest lies in the
steady state behaviour of the solutions rather than in the transient response to
pathological initial data. Following Wright [25, page 67], assume TJ(O) =£ - 1 , then
provided that i\(s) ¥= - 1 , for 0 < s =£ T, (1.3) can be integrated to give

1 +T»(T) = (1 +v(0))exp[-ff~\(s)ds-gf'%(*)&}. (1.4)
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This equation defines a step by step procedure by which a finite unique value
of TJ(T) is obtained. The following results are now readily proved:

THEOREM 1.

(a) Corresponding to every bounded integrable set of values TJ(T) for -6 «£ T < 0,
there is a unique solution of (1.3) for T > 0.

(fa) For f -t- g =£ 0, as T -> oo, the only possible constant limits of TJ(T) are 0 and
- 1 . For f 4- g = 0, the limit is not determined by this method.

(c) For a/ /T > 0, TJ(T) = - 1 , according as TJ(O) = - 1 .

(d) For 7j(0) < - 1 , and iff > 0, g > 0, f/iew TJ(T) -» oo, monotonically as T -» oo.
(e) For TJ(O) > —1, ami j/?/ie number of zeros O/TJ(T) is bounded, then TJ(T) -> 0

as T -> oo.
(f) For T)(0) > - l , / > 0, g > 0 ana" i/r/ie number of zeros O/TJ(T) W unbounded,

then

-1 < 7 , ( T ) < e " < ' + s > - 1.

(g) For Tj(O) > - 1 , / > 0, g > 0 am/ / + g > 1, then the zeros of TJ(T) are
unbounded.

(h) For f > 0, arttf1 g > 0, IJ(T) -> 0 as T >̂ oo, provided that 0 < a < 1, vv/iere

The proof of Theorem 1 is given in Appendix A. The above results are
extensions to two time delay equations of similar results obtained by Wright [25]
for a one time delay equation, i.e. Hutchinson's equation. In (h) above, the range
of values of a is not limiting. At the expense of great detail, Wright [25] extends
the range of values of a for which IJ(T) -» 0 as T -» oo, to 0 < a < 1.5, and
conjectures that the upper limit is a < w/2 «* 1.5708. This conjecture is supported
by numerical calculations of the solutions of (1.1) (Jones [10], Braddock and van
den Driessche [2]). Again, a similar conjecture can be made regarding the limiting
behaviour of the solutions of (1.3), with the definition a = 0(f+ q), and is
supported by numerical results.

The linearised differential-difference equation associated with (1.3) is

r,(r) = -Mr-l)-gv(r-0), (1.5)

which, on seeking solutions of the form TJ(T) OC exp(Xr), yields the eigenvalue
equation

A = -fe'x - ge-xe. (1.6)

By standard theory the equilibrium point N* of the nonlinear equation is
locally stable to small perturbations if the solutions to (1.5) exhibit either
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exponential or damped oscillatory decay: equivalently, all of the complex eigen-
values of (1.6) have negative real parts. Note that the complex roots of the
quasi-polynomial equation (1.6) occur as conjugate pairs; thus we restrict atten-
tion to solutions A = a + if} with fl > 0. Recently, interest has been focused on
the bifurcation of solutions as the eigenvalue A passes into the right half plane;
see Hale [6, 7, 8], Nussbaum [16, 17, 18], Stech [22, 23].

A special case of (1.3), w i t h / = -g, has been considered by Cooke and Yorke
[4] in the mathematical modelling of sexually transmitted diseases. Their work
describes the various stability properties of (1.3) for / + g = 0, and they also
obtain some limit cycle solutions. The condition / + g > 0 has greater biological
significance with respect to the above model and, in fact, we will show that their
line ( / + g = 0) separates two completely different forms of eigenvalues of (1.6),
in the (/, g) plane. Stech [22, 23] considers the special case/ + g = 1, 6 = 3, and
derives conditions for linear stability and also discusses the stable and unstable
bifurcations of the solutions. Nussbaum [17, 18] considers (1.6) for 1 < 6 < 2 and
for the special case 9 = 3, and derives conditions for the linear stability of a more
general model equation. His work on the eigen-equation (1.6) is relevant to this
discussion.

The remainder of this paper considers in detail the properties of the eigenvalues
of (1.6). These properties govern the linear stability properties of (1.3) and also
the existence of the limit cycle solutions. The special case / = g is discussed in
detail.

2. The real and pure imaginary roots and the linear stability region for/ = g

Consider (1.3) with/ = g, so that

V(r) = -/(I + TJ(T))(I,(T - 1) + v(r ~ 6)). (2.1)

The linearised form of this equation is

I»(T) = - / ( I J ( T - 1 ) + I , ( T - 0 ) ) , (2.2)

with eigenvalue equation

\ = -fH(\,y,e), WhereH(\,y,6) = e-x + ye-xe, (2.3)

and 7 = 1 . The general function //(A, y, 0) is defined at this point although only
the particular parameter value y = 1 is required here: the more general form will
be used at a later stage. Let A = a(f, 0) + //?(/, 0) be the complex eigenvalues
satisfying (2.3), with fi > 0. The region of linear stability is the set of all (/ , 0),
with $ > 1, such that a < 0 for all solutions of (2.3). Before describing this region,
we discuss the purely real roots a = r, /? = 0; and the purely imaginary roots
a = 0, /} = d, of (2.3).
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Figure 1. Graph of / /(r, 1,2) defined in (3.3) showing the single positive intersection for/ < 0,
the double root for f = fK ,and the two negative roots for 0 < / < fK.

The real roots, which yield exponential solutions of (2.2), satisfy

The function H(r,\,6) is positive for all r and 6, and is a monotonically
decreasing function of r when the parameter 6 > 1. Figure 1 illustrates the
behaviour of H(r, 1, 6) for 6 = 2, and the same quantitative behaviour holds for
all 6> 1. The intersections of H(r,l,8) with the straight line -r/f, give the
purely real eigenvalues a = r; these solutions may be summarized as follows:

THEOREM 2.

(a) / / / < 0, then the straight line -r/f has a positive gradient and there is a single
real positive root of (2.3). Equation (2.1) is then unstable to small oscillations.

(b) / / / = 0, then (2.3) is trivially satisfied by r = 0.
(c) / / / > 0, then the gradient of the straight line is negative, and there are three

possibilities:
(i) There is a double real negative root rK corresponding to the critical values

f = fK-Atf — fK, the straight line is tangent to the function H(r, 1, 0) (see below).
(u)IfO<f<fK, then there are two distinct real negative roots r} and r2 such

that r2 < rK < ri < 0.
(iii) If f > ft-, then there are no purely real roots.
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REMARKS. The proof of Theorem 2 is essentially graphical and obvious from
Figure 1. Case (c) proves the existence of the critical value fK such that there is a
double negative root rK. At this point, the straight line (which passes through the
origin) is tangent to H(r,l,6), so that

f ( r , M ) k = M ^ (2.4)
and hence

e-"(l+rK) + e-'«e(l+9rK) = 0. (2.5)

Further

-VfK = %(r,hO)\rK, (2-6)

since the gradient of the straight line is - 1 / / . Note that for 6 = 1, then rK = -1
and 2fK = e'\ which is in agreement with Wright's [25] results for the generalised
logistic equation. For large 6, fK^c8'\ rK»* -fK — 0~\ where cec+l = 1.
Numerical values of rK and fK for various 6 are readily obtained by applying
Newton's method to (2.5), and the results are contained in Table 1.

TABLE 1. Values of critical/(/K) corresponding

to a double negative real root r(rK) for various values of 8.

6

1.2
1.4
1.6
1.8
2.0
3.0
4.0
5.0
6.0
7.0

-0.902
-0.812
-0.732
-0.665
-0.607
-0.418
-0.316
-0.254
-0.212
-0.182

SK

0.167
0.151
0.138
0.127
0.117
0.083
0.064
0.052
0.044
0.038

The purely imaginary roots of (2.3) yield neutral solutions of (2.2), which are
not exponential but purely oscillatory in character. Setting \ = id, d > 0, and
extracting real and imaginary parts from (2.3), gives

O = cos</ + cosrf0 = 2 c o s | ( 0 - l ) c o s | ( 0 + 1), (2.7)

d = /(sin d+ sin dO). (2.8)

Equation (2.7) is satisfied by

dn(6)=ir(2n+ \)/(6+ \), nGJ, and
dm(6)=ir(2m+

https://doi.org/10.1017/S0334270000002939 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000002939


298 R. D. Braddock and P. van den Driessche [ 7 ]

where J is the set of non-negative integers. (The roots dm{6) cannot satisfy (2.8)
but they are required in the stability proof.) The roots dn{6) satisfy (2.8) provided
that/ = /„(#), n £ J, where

fn(6) = dn(e)/2sindn(6).

Since the equation is unstable for/ < 0, those roots dn{6) for which sin dn(6) < 0
are not required in the following discussion.

Now dc{6) = do(6) is the smallest positive neutral root and dc(0) = n/(6 + 1)
< TT/2 for 6 > 1. The corresponding value of/is

/c(0) = * / ( 2 ( 0 + l ) s i n ( V (*+! ) ) ) • (2-9)
Since the function F(y) = j /(2sin y) is monotonically increasing for 0 *^y <

7r/2, F(j>) is bounded by 1/2 < F(y) < TT/4; obviously 1/2 =£/c(0) < w/4, for
0 > 1. Further, for dn($)> ir/2, \fn(0)\>$\ dn(6)\>ir/4. It then follows that
fci.O) = fo(6) is the smallest positive value of / for which a neutral root exists.
These purely imaginary roots are also characterized in a qualitative way by
Claeyssen [3].

Before considering the stability of the equation, we obtain a result regarding
the distribution of the roots. For a complex eigenvalue X = a + / /? , /?> 0, the
real and imaginary parts of (2.3) give

= -fcospH(a,y,8), (2.10)

(2.11)

where H(a, y, 9) is defined in (2.3) and y = cos/?0/cos/?. If a > 0 and / > 0,
then the right-hand side of (2.11) is bounded by f(e~" + e'"e), and thus for
6 > 1, /? < If. Similarly it can be shown that a < 2 / if a > 0. Thus the unstable
eigenvalues (a s» 0) are bounded by the box 0 < a < 2/, 0 < /? < 2/for all 0 > 1
and / > 0.

The critical value fc(0), defined by (2.9), delineates the linear stability region;
the results are summarised as follows:

THEOREM 3.

(a) IfO<f<fc(6), then all eigenvalues \ = a + i@ have a < 0.
(b) Iff^fc(O), then there is at least one eigenvalue with a > 0.

The proof of this theorem involves tedious enumeration of the imaginary roots
and is given in Appendix B. This theorem indicates that one of the eigenvalues
bifurcates, passes from the left-half plane into the right-half plane, as the
parameter / increases in value through/c(0). The critical value is defined in this
way, i.e. see (2.9), purely for convenience; obviously a bifurcation is achieved by
varying either/or 6, or both together, so as to cross the critical line/c(0) in the

https://doi.org/10.1017/S0334270000002939 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000002939


[ 8 ] A two lag differential delay equation 299

(0, / ) plane. As indicated in the proof (see Appendix B), other eigenvalues
bifurcate as / increases in value past / , , f2, These may be termed secondary
bifurcations.

3. The limit cycle solutions for/ = g

The above results are similar in many respects to the properties of Hutchinson's
equation [9],

rl{t) = -ar1(t-\)(l+v(t)), (3.1)

(for 0 < a < ac = IT/2) which has attracted considerable attention (see, for
example, Wright [25], Jones [10] and Hale [6]). Note that for 0 = 1 , (2.1) reduces
to the above form with a = 2f. However, the discussion of the linear stability
region for (2.1) has been complicated because of the presence of the second time
lag term for 0 > 1.

In discussing the properties of the solutions of (2.1) for f^fc(O), it is ap-
propriate first to consider the properties of the solutions of (3.1) for a s= ac = ir/2.
It is well known that

(a) for a = ac = m/2, the linear equation corresponding to (3.1), has pure
imaginary eigenvalues Xo = ±/w/2, and that the solution of (3.1) has period of
four units (Jones [10]).

(b) As a increases through ir/2, the real part of the dominant eigenvalue Xo,
changes sign from negative to positive, and the solution bifurcates.

Wright [25] shows that for a > IT/2, the solutions of (3.1) are oscillatory; Jones
[10] mathematically proves the existence of these solutions and determines the
period as being greater than 4 units. Further, Kaplan and Yorke [12] prove a
stability result for the limit cycle solutions for a general class of delay equations
which includes (3.1).

The limit cycle solutions of (3.1) have been studied by Jones [10] and Braddock
and van den Driessche [2], over a large range of parameter values. As a increases,
both the period and amplitude of the oscillatory solutions increase rapidly,
although the solutions are restricted by i)(/) > -1 (compare with Theorem 1, part
(f)). Biological reasons restrict the parameter range for d to 0 < d < 2.5, although
Jones [10] and Braddock and van den Driessche [2] have obtained solutions for
d =£ 4.5. Braddock and van den Driessche [2] discuss the numerical difficulties
associated with the solution of (3.1) using large values of a. They also show that
the change of variable

f(T) = l n ( l + r , ( r ) ) , (3.2)

transforms (3.1) to the form

(3.3)
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and that solutions can be obtained for an extended range of values of d. Using
(3.3), the authors have recently calculated numerical solutions for d near 5w/2 «
7.854. At a = 5ir/2, a second eigen pair cross the imaginary axis into the
right-hand half plane but there is no discernible change in the nature of the
numerical solutions. Such a process will be called a secondary bifurcation and will
be shown to have a dramatic effect in the two time lag model.

A „„!,.:,,„ »u« ,.u~—~~ ~t ..~_;..ui~ ti i \ »~ »u_ . . : i i-i f\ i\ ..:_i J_
/ ijjpijriiig tuv vnuugv v/x nuiauii, \J-*-J IU me iwu nine lag lliuuci y£. I) ^icius

t (T) = 2/-/{exp[«T - 1)] + exp[f(r - « ) ] } , (3.4)

which is readily solved numerically using the techniques described by Braddock
and van den Driessche [2]. Numerical solutions were obtained for 6 — 1.5, 2.5, 3.5
and for all integer values 6 = 2,3,4,..., 11, as well as for a wide range of values
of the parameter/. The tested values of /were not uniformly distributed since the
behaviour of the solutions near/, = fn(6), is of particular interest.

The numerical results reinforce the stability analysis in that:
(a) for 0 <f^fK(O), the solutions exhibit exponential decay, with some more

rapidly decaying oscillations also present, these being due to other subdominant
eigenvalues;

(b) for fK{6) <f< fc{0), the solutions exhibit oscillatory decay;
(c) at / = /.(#), the solutions persist in the form of a neutral oscillation with a

period of 2-n/d^B) = 2(0+1) (see above).
The rate of decay of the solutions for 0 < / < / . ( 6 ) , depends heavily on the

value of 6; and, as 0 increases, the decay rate decreases. This agrees quantitatively
with the figures in Table 1, in which the magnitude of the double exponential
root, | aK | , decreases as 6 increases. (Note that aK is not a measure of the decay
rate for other values of / ^ fK, but it gives a quantitative explanation.)

The behaviour of the solutions for />/ c (#) is much more exciting, for they
appear to bifurcate to produce stable limit cycles, and then exhibit a further
strange behaviour which we called secondary bifurcation. The behaviour of the
limit cycles for / > fc{6) is well illustrated by considering the case 6 - 10. The
neutral roots are then dn = ir(2n + 1)/11, and the corresponding critical values
of / are fc=f0 = 0.506, /, = 0.567, /2 = 0.721, /3 = 1.097. Due to the previously
described numerical difficulties, the solution could not be extended to the value
/3. For /o < / < /i , the limit cycle (in the phase plane), see Figure 2, is very similar
to those obtained by Jones [10] for Hutchinson's equation. However, a cusp is
apparent just after the maximum value of TJ(T) is attained; the cusp becomes
more marked as / increases toward /,. As the value of / increases through /,, the
cusp develops into a loop as shown in Figure 3; a much smaller loop also
develops near the minimum value of I?(T). This picture remains until/increases in
value to approximately f2 = 0.721 where a second cusp develops inside the loop
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Figure 2. Limit cycle in the phase plane for (3.1), with 8 = 10,/= g = 0.54.

Figure 3. Limit cycle in the phase plane for (3.1), with 8 = 10,/= g = 0.60.
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Figure 4. Limit cycle in the phase plane for (3.1), with 6 = 10,/ = g = 0.74.

Figure 5. Population curve i) = I ( T ) , showing the limit cycle for (3.1),
with0= 10, /= g = 0.54.
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Figured. Population curve TJ = I ) (T) , showing the limit cycle for (3.1),
withe = 10,/= g = 0.60.

Figure 7. Population curve i) = r\ ( T ), showing the limit cycle for (3.1),
withd = 10,/= g = 0.74.

(which has increased in size). F o r / > / 2 , a second major loop develops for TJ(T)
near its maximum together with another secondary loop near the minimum (see
Figure 4). The corresponding population graphs i.e. graphs of TJ as a function of
T, show that the major peak splits into two and then into three, and that small
peaks develop in the troughs (see Figures 5, 6 and 7).
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In determining the time taken to transverse the different sections of the limit
cycle, consider the maximum and minimum points a,, a2, bx, b2, c,, c2, etc. as
defined in the T, TJ plane in Figure 7. Let re = time at point e, then it is found that

Ta2 ~
 Ta, = 9-00 ± 0.01, rh - rbi = 9.00 ± 0.01,

TCI - TC| = 9.00 ± 0.01, rei - rei = 9.31 ± 0.01.

The last value differs from the value 0 — 1 = 9 presumably since ihe small peak
e2 is not yet fully developed. Further, it is also found that the time from peak to
peak (or trough to trough), i.e. r — ia , etc. is between 4.0 and 4.6.

Similar results to the above are found for all tested 0 s* 4. For 0 < 4, / , > 1.0
and the numerical solution could not be extended far enough with sufficient
accuracy to determine if additional loops form inside the limit cycle. For 0 3= 4,
additional loops form as the value of/passes through the values/,, n > 1, and in
each case, the time difference between the corresponding large and small peaks is
approximately 0—1 units.

Near its bifurcation point, i.e.,f^fc(0), the numerical solutions to (3.1) show a
period near 2(0 + 1), and for large values of 0, this period is much greater than 4.
For 0=1, this gives a period of 4 units, corresponding to the period of the
bifurcating solution for Hutchinson's model. After the solution passes its first
major peak (see Figure 2), TJ(T) falls rapidly. Now (2.1) contains two similar
expressions, i.e.,f(\ + TJ(T))TJ(T — 0) and/(I + TJ(T))TJ(T — 1). Because the peaks
in TJ(T) are relatively narrow compared to the time lag 0, the delay term in the
expression/(I + TJ(T))TJ(T — 0) cannot 'feel' the influence of the peak. However
the delay expression/(I + T)(T))IJ(T — 1) (which, near bifurcation, has a period of
4) acts to produce the second major peak. If 0 is large enough, this term will act to
produce further peaks. However, the larger delay term finally encounters the first
major peak and T;(T) becomes small. The secondary peaks, at a time lag of 0 — 1
behind the corresponding major peaks, are produced by this large time lag,
although the nonlinear nature of equation (2.1) greatly reduces the amplitude.

4. Some results for general / and g

We return to the general two time lag problem equation (1.3) for unrestricted
values of the parameters / and g, and the problem of determining the eigenvalues
M/> 8' 0) a n d the zeros of the real and imaginary parts. It is convenient first to
consider the purely real roots a = r and /? = 0 of (1.6), and on substituting we
have, forf¥= 0,

-r/f=H(r,y,0), (4.1)

https://doi.org/10.1017/S0334270000002939 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000002939


114] A two lag differential delay equation 305

where y = g/f, and H(r, y, 0) is defined in (2.3). The roots of (4.1) are described
by the intersections of the straight line r/f and the function H(r, y,8) (see
Theorem 2), but here the situation is complicated by the behaviour of H(r, y, 8).
The values of limr__00//(r, y, 8), and H(0, y, 0) are such that several tangency
conditions must be considered (see (2.4)). The root properties are discussed in
detail in Appendix C, together with the use of the tangency conditions in
calculating the corresponding curves in the (/, g) plane (see Figure 8).

Figure 8. The real roots of equation (1.5). The location of the double real positive roots (fT, gT),
and the double real negative roots (fs, gs) and (fK, gK) are shown for 6 = 2. Broken horizontal lines,
solid horizontal lines, broken vertical lines, and solid vertical lines indicate regions with one negative,
two negative, one positive and two positive roots, respectively.

The implications of the discussion in Appendix C are that positive real
eigenvalues exist in large areas of the (/, g) plane, and (1.3) is linearly unstable
on these areas. These results are summarised as Theorem 4.

THEOREM 4. Equation (1.3) is linearly unstable for the following parameter values:
(a) / < 0, g < 0, all 8 (see Appendix C. 1, part (a)),
(b)/ < 0, g > 0, / + g < 0, all 8 (see Appendix C.2, part (b)).
(c) /+ g = 0 , /< -(8 - I)"1 (see Appendix C.3,part (b)(iii)).
(d)/ > 0, g < 0, / + g < 0, all 8 (see Appendix C.4, part (a)),
(e) The region bounded by f + g = 0, and the curve (fT, gr) (see Appendix C.4

part (b), and the remarks in (C.5)).
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The proof of each part of the theorem is contained in the appropriate part of 
Appendix C noted above. The curve (fT, gT) is obtained by applying the Newton 
technique to the appropriate tangency condition (see equation (C.l)) . A corollary 
to the above theorem is that the remainder of the ( / , g ) plane contains only 
negative real roots for all 6 > 1. 

We now consider the purely imaginary eigenvalues a — 0, /? = d > 0, of (1.6), 
which correspond to neutral oscillations of (1.3). Such eigenvalues must satisfy 
both equations 

/ c o s d + gcos d6 = 0, (4.2) 

and 

d = fsind + gsindd. (4.3) 

Here we are interested in the curves in the ( / , g ) plane which correspond to 
neutral roots; it is preferable to regard d as an independent variable and seek 
/ = f(d,0) and g — g{d,6), treating 6 as a parameter. Solving (4.2) and (4.3), 
provided sin d(6 — 1 ) ^ 0 , yields 

d cos dO 
f = - ——77^ r , provided cos do ¥^ 0, 
3 sin d(6 - 1) 

S = • d j ^ d i \ > provided cos d ^ 0. (4.4) 
sin d{0 — 1) 

Note that both / and g are even functions of d, and that \imd_0g — bmd^0f = 
(0 - l ) " 1 , the limit of the stable region of the line / + g = 0, as described by 
Cooke and Yorke [4]. 

We turn briefly to the special cases which are excluded in the derivation of 
(4.4). We consider only the details of the case of cos d = 0, since the other case 
is very similar. If cos d = 0, then from (4.2) we have the trivial case g = 0, 
or we must also have cos d$ — 0. The case g = 0 gives d = ir(2n + l ) / 2 , / = 
( - l)"7r(2« + l ) / 2 , n G / ; as expected from Wright's results. However, if both 
co&d = 0 and cosdO = 0, then these two conditions imply that 6 — 2n + 1, 
n G J. (4.3) yields families of straight lines with gradients ± 1 , and / in te rcep t s 
±7T(2H + l ) / 2 , n G J. A final special case arises if the linear system (4.2) and 
(4.3), for / and g as unknowns, is singular, i.e., if sin d(0 — 1) = 0. This implies 
that d = nir/(6 — 1), n G / , and then (4.2) implies that / ± g = 0. Thus the cases 
/ + g = 0 (see Cooke and Yorke [4]) and / — g = 0 are singular examples of the 
general two time lag equations. This linear dependence between the two equations 
greatly simplifies the identification of the neutral roots and the pursuance of the 
stability proof (see Appendix B). 

Stech [22, 23] and also Hale [8] consider a special form of (1.3) with 9 = 3, 
f > 0 and g = 1 — / . Hale shows stability for this case, for g between zero and a 
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number "just larger than j " . In the above case, the system (4.4) reduces to

dcos(3d) dcos(d) . .
1 ; sin(2rf) ' ^ j

in which we seek solutions for both/and d. Eliminating/leads to the equation

sin2rf = d(cos d — cos3d), or d= (2s\nd)~\ (4.6)

Graphically it is obvious that there are an infinite number of solutions to the
equation sin(d) = (2d)~x, and that these solutions are approximated by:

and

for large p. Further, the corresponding values of / are all negative. The first
positive root of (4.6) is readily seen to be near w/4 = 0.785 radians. Direct
iteration applied to (4.6) yields the root d* = 0.740 841 radians (correct to 6
significant figures); the corresponding value of / is /* = 0.736 359. We thus
conjecture that the equation considered by Stech [22, 23] and also Hale [8], is
linearly stable for 0 < g = 1 — / < 0.263 641, and that the solution bifurcates as g
passes through this upper limit.

In general, the results of our numerical solutions of (1.3) for selected values of
/ , g and 0, suggest that there is a zone of linear stability for small/and g, and that
the curves (4.4) play a major part in delimiting this region. Unfortunately we have
been unable to order the eigenvalues for the general case or to develop a full
stability analysis.

However, we have obtained some preliminary results for the linear stability of
(1.3), albeit under rather restrictive conditions. First, we return to the general
eigen equation (1.6) and set X = a + //?, to obtain

a = -fe-"cos(P) - ge-a"cos(00), (4.7)

P =/e-asin(i8) + ge-'sin(0/8), (4.8)

on extracting real and imaginary parts. For /} > 0, (4.8) yields

1 =fe-°(s\np/fi) + 6ge-ae(sm(p6)/p0),

the right-hand side of which is bounded above by | / | +6 \ g \ , for all a > 0 and
/8 > 0. Thus it is not possible to find complex eigenvalues with a > 0, provided
that

l, (4.9)
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this condition defines a rhombus with vertices (±1,0) and (0, ±S~l) in the (/, g)
plane. When this is combined with the results of Theorem 4, we have the result:

THEOREM 5. All the zeros of (1.6) have negative real parts, and hence (1.3) is
linearly stable, provided that f, g, and 8 > 1 satisfy (4.9) and f+ g > 0.

Notice ihat the rhombus, for / < 0, intersects / + g = 0, at the point
(0 + l)- '(-l, 1) that (0 + I)"1 < (0 - I)"1, and hence the point (0 - l)-'(-l, 1)
lies outside of the rhombus (see Theorem 4, part (c)).

The derivation of (4.9) depends on only one of the eigen equations, i.e. (4.8),
and hence provides only a first approximation to the actual stability region. A
more detailed investigation would need to consider the bifurcation of the solu-
tions as the eigenvalues cross into the right-hand half plane. Finally, note that for
a 3* 0, (4.7) and (4.8) provide bounds of the form

« < | / | + | S | , j B < | / | + | g | . (4.10)

All roots with /? > | / | + | g | correspond to a < 0. Thus in checking for stability,
the region to be considered is bounded by (4.10).

5. Discussion

The particular two time lag equation (1.3) with f+g = 0, studied by Cooke
and Yorke [4] and Hale [7], is one of the few two lag equations considered in the
literature (see also Hale [8], Stech [22, 23], Nussbaum [17, 18]). This investigation
of (1.3) for general/and g, reveals many fascinating properties of the solutions
and suggests that many interesting problems on differential-difference models
await further study. In particular, the results in Section 4 and especially Figure 8
for the associated linear equation, show that / + g = 0 is truly a very special line
in the (/, g) plane. It bounds an unstable region on one s ide /+ g < 0, and the
other side contains regions of stability, neutral stability, and instability, and also
regions which have not yet been fully investigated. Certain regions of stability are
defined in Section 4, in particular the rhombus condition, although more precise
estimates are possible for more limited regions. In addition, when / + g — 0, the
nonlinear equation admits 7J(T) equal to any constant as a solution. Finally, the
point (0 — 1)~'(-1,1) is of particular interest, being the limit point of the neutral
curve, the curve on which there is a double negative real root, and the curve on
which there is a double positive real root.

The particular case / — g — 0, considered in Sections 2 and 3, is also of special
interest in the two time lag problems. On this line the stability question is
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completely answered, although there remains some doubt regarding the outer
limits of the stability region on either side of this line. As described in Section 4,
both/ ± g — 0 are neutral curves when 6 is an odd integer.

Considerations of the general two time lag problem answers some questions
regarding the stability (or instability) of equation (1.3), but does not set precise
limits on the stable region. The neutral curves are readily delineated, but the
interpretation of their role as regards stability, is difficult. Numerical studies
indicate stability within the neutral curves, and limit cycle behaviour outside. The
Hopf theory regarding the existence of periodic solutions (or limit cycles) depends
on a knowledge of the neutral curves for its application to this problem. Such
analytic approaches are nonconstructive in that they only prove existence (and
sometimes stability) of the limit cycles, but provide few accurate estimates of the
period or amplitude.

For / = g, the numerical calculations of the limit cycles show some very
fascinating properties of these stable solutions. At X = ±id0, the real part of the
first eigenvalue passes from negative to positive, and the solution bifurcates. At
the higher neutral roots further eigenvalues pass into the right-hand side of the
complex eigenplane, and, for 6 large enough, the limit cycle forms a loop; actually
intersecting and crossing over itself. This behaviour corresponds to a splitting of
the major peak of the curve TJ = TJ(T). This behaviour is relevant to population
dynamics for frequently the population density curves show some splitting of the
peaks, see, for example, Pielou [20].

A more general differential-difference equation to model a single species can be
formulated as

- e , ) , i = el<e2< •••<$„, ( 5 . 1 )
1 = 1

with/, 0, constant. This model has n different time lags, where the smallest lag
has been normalised to 1. Such an equation can be regarded as a more accurate
approximation to a self-regulatory process in the population model (see Section
1). Qualitatively (5.1) has the same general properties as outlined earlier for the
two time lag models (1.3). In fact the results (a)-(g) in Theorem 1 can be carried
across for (5.1), with 6 replaced by 8n; f+g replaced by 2"=,/; and the
conditions / > 0, g > 0 replaced by / > 0 for all / = \,...,n. Note that from
Theorem l(f), the upper bound on TJ depends on the largest time lag; and from
Theorem 2(g), the condition for the zeros to be unbounded depends on the
smallest time lag.

The eigenvalue equation associated with (5.1) is

A = - £ f,e'xe'. (5.2)
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For purely real roots, X = r, and/, ^ 0, this can be written as

J ^ = Hx(r, /„ *,), (5.3)
1 = 1

where / / , is a generalisation of the H function defined in (2.3). Thus if / < 0 for
all / = 1,... ,n, then (5.3) admits a real positive root, and so (5.1) is unstable to
small perturbations. This result is independent of the time lags, and can also be
obtained by Liapunov function techniques, see Bailey and Williams [1], see also
Silkowski [21]. If/. > 0, for all /, then Hx > 0 for all r and limr^ _«,.//,(>•, / , 0,) =
+oo, where the 0n term dominates. Thus there is a critical surface, depending on
6n, on which there is a double real negative root. Equation (5.3) can also be
written as

-r= (5.4)

where F(0, / , $,)•= 2?=, /-, l imM MF(r, / , 0,) = 0. So, considering (5.4) as the
intersection of the straightline -r and the continuous function, F, we find a purely
real positive root if the value of F(0, / , 0,) is negative. Thus if 2"=1 / < 0, then
(5.3) admits a real positive root, and so (5.1) is unstable to small perturbations;
this result is stronger than the one given above by consideration of Hx.

Purely imaginary roots of (5.2) in the case/ = f, 6, = i, for all /' = 1,...,«, can
be calculated exactly, and show that the period of neutral oscillations, 2(« + 1), is
determined by the largest time lag; see also Kaplan and Yorke [11].

Complex solutions of (5.2) occur as conjugate pairs, with unstable eigenvalues
having both real and (positive) imaginary parts bounded above by 2"=1 \f, \ (see
Section 4). The imaginary part of (5.2) yields a generalisation of the rhombus
condition namely if 2"= ] | / 1 6, < 1 then there are no complex eigenvalues with
positive real part.

Some of the results in Theorem 1 also carry over when a term without lag,
-/OTJ(T), is included in the summation of (5.1). The search for purely real
eigenvalues in this model leads to the equation

-r-fo = F(r,f,,e,), (5.5)

where F is defined as in (5.4). Thus if 2,"=i f,<0, then there is a purely real
eigenvalue, and the model is unstable to small perturbations. This result is
conjectured in the paper by Bailey and Williams [1], but their Liapunov functions
prove it only for n = 1. They also show that if/0 > 0 and 2"=1 \ft |</o, then the
solution is stable. This model with n = 1 has been studied in the ecological
literature, Maynard Smith [15], and is discussed in Braddock and van den
Driessche [2]. Gallucci (1980, personal communication) has indicated that this
model n — 2 is applicable in fisheries management, with reproduction and food
regeneration lags.
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Appendix

A. Proof of Theorem 1. The proofs of parts (a), (c), (d) and (e) of Theorem 1
follows the methods outlined by Wright and the details are not repeated here. In
considering (b), assume that TJ(T) -* L which is a constant, as T -> oo, then
IJ(T) -* 0 as T -» oo and -L(f + g)(l + L) = 0, from (1.3). Thus 0 and -1 are the
only possible finite limits as T -» oo, provided that / + g ^ 0 . If / + g = 0, the
limit is not determined by this method; in fact, for constant initial data TJ(T) =
7j(0), -6 < T <0, the solution is TJ(T) = TJ(O) for all T. This discussion illustrates
the singular nature of the case considered by Cooke and Yorke [4].

In proving (f), observe that the zeros divide the T axis into intervals on which
T)(T) is either positive or negative. If, for example, TJ(T) > 0 on such an interval, it
attains its maximum at r = r*, and TJ(T*) = 0. Then, by (1.3),

Mr* ~ 1) + gV(r* - 6) = 0,

since ij(T) ¥= -\. If / > 0 and g > 0, then TJ(T) changes sign for some T, such that

T* - 0 < T , < T * - 1.

Dividing (1.3) by 1 + TJ(T), and integrating from T, to T*, we have

ds - r~9gv(s) ds
, JT,-e

<8(f+g), (A.I)

since T)(T) > - 1 , and 1 < T* — T, < 6. Hence

7j(T*)<e*'+«>-l, (A.2)

and this result holds for all maxima, so that for r > rQ where T0 is the smallest
value of T such that T)(T) = 0, then TJ(T) is bounded below and above as stated in

(0-
To prove (g), take T)(0) > - 1 , / > 0, g > 0, and f + g> 1, and assume that the

zeros of TJ(T) are bounded. Then, by (c) and (e), there exists r2 such that
( / + g)0 + v(r))> U an£l T?(T) is °f constant sign whenever T > T2. Suppose the
sign of ij is positive; then, for T > T2 + 0, equation (1.3) gives

V(r) < " ( 7 ^ ) (Z^7 - 0 + S^ ~ B)) < 0.

So, by integrating from T2 + 26 to r2 + 28 + 1,

29+1)- I,(T2 + 20) < -T-TT^ /T2+2" /u(*) * + p+e+lgV(s) ds
U + 8 ) J 2 6 \ J
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which implies that TJ(T2 + 20 + 1) < 0, and gives a contradiction. A similar
contradiction is reached if TJ is negative. The zeros of 7j are, therefore, unbounded,
so (g) is true.

In considering (h), we wish to determine if T ) ( T ) ^ 0 as T -> 00, and to
determine the range of values of the parameters/ < 0, g < 0 and 0 for which this
result holds. If the zeros of TJ(T) are bounded, the result is obvious since T;(T) -» 0
monotonically for sufficiently large T (see Wright [25]).

Assume that the zeros are unbounded and let

u = lim IJ(T), v = - lim TJ(T).
T-»OO T-»OO

Let e > 0 be any positive number such that

-u — e < »)(T) < u + e,

for all T sufficiently large. If T* is a maximum or minimum, then from (A. 1),

whence

e-a(u + e) _ ! < ,j(T*) < ^(o + e) _ ^ (A . 3 )

where a = # ( / + g). With this definition of a, (A.3) is identical with equation
(3.3) of Wright [25]. The rest of Wright's work can be carried across and TJ(T) -> 0
as T -» 00, for 0 < a < 1. Thus the proof of Theorem 1 is complete.

B. Proof of Theorem 3. In part (a) of Theorem 3, the values of / are restricted to
the interval (0, fc(0)), and the bounds on /? imply that if a < 0, then 0 < /? =£ 2/c

= dc(0)/sin dc(6) < IT/2, since dc(6) < <n/2. Thus all eigenvalues for which
/? > 2/c(0) have a negative real part; those for which a > 0 must have 0 < (I <
dc(0)/sin dc{9). In this range, cos/? > 0 so that we can consider (2.10) in the
form -a/(/cos/?) = H(a,y,6) (compare the discussion of the purely real roots).
Now, fora > 0 a n d y ^ -l,H(a, y, 0) > 0 for all0. If y < -\, thenH(a, y, 0) ^ 0
for 0 < a < a0 where a0 = ln(-y)/(5 - 1), and //(a, y, 0) > 0 for a > a0. For
y > - 1 , the straight line -a/(/cos/?), intersects H(a,y,0) at points for which
a < 0; so the eigenvalues have negative real parts. The condition y > -1 gives
cos/?0 + cos/? > 0, and equality occurs when /? G {*/„(#), dm(0); m, n G / } .
Obviously y 5= -1 forO*^/$<dc(0), and we need to consider the sign changes of
y + 1 for dc(0) < /? =£ </c(0)/sin i/c(^). Note that this phase of the proof does not
depend on whether/= fc, so that wherever cos ft > 0, y > - 1 , all the eigenvalues

have negative real parts.
On those intervals of the fi axis (dc(0) *£ ft < Jc(0)/sin d£0)) for which

y < - 1 , equation (2.10) permits a root a 3* 0. We now show that equation (2.11)
cannot have a root with a > 0, for y < - 1 , and that the condition 0 < / < / c is

https://doi.org/10.1017/S0334270000002939 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000002939


[22 ] A two lag differential delay equation 313

necessary for the proof. To do this, we turn briefly to the positive roots dn(0) and
dm{0) defined in Section 2, and note that dn(8) - dn_x(0) = 2-n/{8 + 1), dm(0)
- dm~\0) = 2w/(0 + 1), so that the difference in length of these intervals is
4TT/(0 - \)(8 + 1). Now the first p roots of each class will alternate (or inter-
leave) provided thatp4v/(6 + 1)(0 - 1) < 2v/(0 + 1), where 2m/(8 + 1) is the
shorter interval between members of the same class. This requires that p <
[(0 - l)/2] + 1 = p*, where p is an integer. For p >/>*, dp(0) 3= IT/2 and
dp(6) > TT/2. Hence for dc < 0 < dc/sin dc, the roots interleave, giving a finite
set S = {(dn(0), dn(0)), n £ / } of intervals on which y < - 1 .

Now consider (2.11) in the form

G(a,0,0,f)= 0- f(e-a sin 0 + <?-«• sin 06).

Since sin(0dn(0)) = sin dn{0), then for a > 0,

G(a, dn, 0,f) = dn- (e-« + e-"e)fsin(dn),

>4,0-///J. (B.I)
Thus G(a, dn, (? , / )> 0 if 0 <f<fc(0), as f£6) <fn(0) for all n, and equality
occurs only when f = fc and n = 0; /.e. at the first neutral root. The condition
Y < -1 implies that -cos08 > cos/? > 0 for dc < 0 < 2/c, and

For a > 0, and since / < / c < w/4, dG/d0 > 0 whenever y < - 1 . Thus G is a
monotonic increasing function of 0 on those intervals of the 0 axis for which
y < - 1 , and hence G > 0 on those intervals. Therefore, there can be no eigenval-
ues with a > 0 for y < -1 and so part (a) of the stability proof is complete.

In discussing the instability for f^fc(0), in (b), we consider where and how the
above proof of (a) fails. The breakdown in the proof near fc comes from the sign
of G(a, dn, 0, / ) for a > 0 in (B.I). For n e / and n ^ 0, we have fc=f0</„.
Let / = /0 + e, where e > 0 and small enough so that f0 = fc < / < /,. Then
G(0, d0, 0,f)<O while G(a, dn, 0,f)>O for a 3= 0 and n G / with « ^ 0.
From (2.3) the eigenvalues \ = X(f,0) depend continuously on the parameters/
and 0. At e = 0, X = X(f0, 0) = id0 is an eigenvalue. For e > 0 and small,
continuity requires that the corresponding eigenvalue X = A(/o + e, 0) = a, + i0i

will be near X(/o, 0). The above discussion on the behaviour of (2.10) and (2.11)
indicates that there is such an eigenvalue with a, > 0 and /?, > d0. This completes
the proof of (b) and indicates that the nonlinear equation (3.1) is unstable for
/ >/c(#)> a nd that there is a neutral root of the linear equation (3.2) for/ = fc(8).

The above argument can be extended to consider the behaviour of certain of
the eigenvalues as the value of the parameter passes through the higher neutral
values/,,/2>..., in turn. A t / = /„(#), we know that there is a pure imaginary
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eigenvalue A.(/n, 0) = idn. As the sign of / — /„ goes from negative to positive, the
sign of G(0, dn, 8, / ) reverses from positive to negative and there is an eigenvalue
M/» #) — «„ + 'A, such that an > 0 and /?„ > dn. Thus another conjugate pair of
eigenvalues pass through the imaginary axis and into the right-hand half plane as
the value of the parameter / takes values in the set {/„}.

C. Properties of the real roots for general / and g. The roots of (4.1) are obtained
from the interactions of a straight line r/f, and the function H(r, y, 8). The
parameter 8 plays little part in the following discussion. However, the structure of
the discussion pivots on the values taken by y and / , so that the details are given
in 4 parts.

C.I. y 3= 0. For this range of y, H(r, y, 8) s= 0, and is monotonically decreasing
for all values of r. The behaviour of H{r, y,0) is quantitatively the same as that
of H(r, y = 1, 6), see Figure 1. Arguing as in Section 2, we thus have the
following results for (4.1).

(a) If / < 0, then g s* 0, the gradient of the straight line is positive and there is a
single real positive root r+ such that r+ -» +oo as / -» +oo. Equation (1.3) is
unstable to small oscillations.

(b) If / > 0, then g =£ 0, and there can be one, two, or no negative roots
according as to whether the straight line -r/f is tangent to H, cuts H, or does not
intersect it. The conclusions given in Theorem 2(c) again apply with the critical
root r = rK and corresponding/ = fK determined through the tangency equations

drK I ' * rK fK

Note that when g = 0,fK = e~l, the single time lag results.
C.2. -1 < y < 0. In this second case, and in fact for all y < 0,

l i m ^ H{r, y, 8) = -oo. Further, H(0, y, 8) = 1 + y > 0 for y > - 1 , and
H(r,y,8)^0 for r > 0. The function H{r,y,8) has its zero at r = rz =
(8 — l)"'ln(-7), so that rz < 0 for - l < y < 0 . The function H attains its
maximum at r = rmax = (0 — I)"1 \n(-8y) so that rmax = 0 according to y8 = - 1 .

The point of inflection of H is at r = rinl = (0 - I)"1 ln(-02y), and rinf = 0
according to 82y = - 1 . Figure 9 indicates the behaviour of H(r, y, 8) for 8 = 2
and various representative values of y, particularly y = -1/2, for which rz = -In 2,
rmax ~ 0, and rinf = In 2. Considering the intersection of H{r, y,8) the straight
line -r/f, gives the following results:

(a) If / > 0, then g < 0, and there is a single real negative root r_ such that
rz < /•_< 0. Further, r_-> r, as/-> +oo, and r_̂ > 0" as/-» 0.
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(b) If / < 0, then g > 0, and there are two roots r, > 0 and r2 < rz < 0. Here,
r, -» oo and r2 -» r, as/-> -oo; and r, -» 0, and r2 -> -oo as/-> 0~. Thus there is
always a positive real root for (4.1), and equation (1.3) is unstable to small
perturbations.

Figure?. Graphs of H(r, y; 2) for y = 1/2,-1,-2;
together with the tangent lines given the roots rs, rT.

C.3. y = -\. The case introduces certain complications since rz — 0, and r = 0
is always a root of (4.1), although other roots can occur (see Figure 9). Further,
dH(0,-\, O)/dr = 6—1, and we have the following results for the intersections
of -r/f and H(r,-\, 6):

(a) I f /> 0, there are no other roots.
(b) If / < 0, then there is the possibility of either an additional positive or

negative root.
(i) I f / = -(0 - I)"1, then -r/f is tangent to H(r,-l,6) at r = 0, and it is

readily shown that this is the only root.
(ii) If -(6 - I)"1 < / < 0, then there is a single root r_< 0 such that /•_-» 0 as

/-> -{6 — I)"1 from above, and r_-> -oo as/-> 0".
(iii) If / < -{0 — 1)"', then there is a single positive root r+ such that

r+ -* +oo, Sisf-> -oo, and r+->0+asf-> 0". The existence of this root implies
that (1.3) is unstable to small perturbations.

The above results are for the line / + g = 0, and they are identical with those
obtained by Cooke and Yorke [4].
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C.4. y < - 1 . In this final case H(0, y, 6) < 0, and in fact, the zero crossing

rz > 0. The quali tat ive behaviour of H{r, y,6) is shown in Figure 9, for y = - 2 ,

6 = 2; all 8 > 1 and y < - 1 lead to a similar diagram. On considering the

intersections of - r / / a n d H(r, y, 6), we then have the following results:

(a) I f / > 0, then there is a single positive root r+ such that 0 < r+ < rz, and
(1.3) is unstable to small oscillations.

(b) I f / < 0. there can be none, one or two positive or negative roots* depending
on the magnitude of / . There is a critical value r = rs < 0, and a corresponding
f = fs, at which the straight line -r/fs is tangent to H(r,y,6) at r = rs; the
critical values rs andfs being determined by the tangency conditions (C.I). This
critical case is obtained for | / | small, but for | / | large, there is the possibility of a
positive critical point r = rT such that rz< rT< rmax, and f — fT. Then the line
-/•//is tangent to H(r, y, 8) at r = rT, and the critical values are determined from
(C.I), the tangency condition. Since H(r, y,6)is strictly increasing for -oo < r <
rmax, the tangency condition implies that/r < /5.

C.5. Comments. The equation (C.I) is readily solved using Newton's method to
obtain the critical roots, rK, rs and rT, and corresponding values fK,fs and fT, as
functions of 6 and y. For eachfK, fs, fT, calculated for a given value of y, we can
define gK = yfK, gs = yfs, and gT = yfT, and these curves are shown in Figure 8
for 6=2. Observe that the curve (fs, gs) originates from the point (6 — 1)"'(-1,1)
and meets the g-axis at the point (0, e'x8'x) passing smoothly across the axis and
linking with the (fK, gK) curve. The (fK, gK) curve ends on the/-axis at the point
(e~',0) as expected from Wright's results. The (fT, gT) curve also starts from
(8 - l)- '(-l , 1) but as y -* -oo,fT^0- and gT -> +oo.
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