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Abstract

It is shown that if an interval graph possesses a maximal-clique partition then its clique covering
and clique partition numbers are equal, and equal to the maximal-clique partition number.
Moreover an interval graph has such a partition if and only if all its maximal cliques are
edge-disjoint .
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1. Interval graphs and clique-matrices

Throughout this paper graphs are finite, undirected, loopless and without mul-
tiple edges. A clique is a complete subgraph, and a mazimal clique is a clique
which is not a proper subgraph of any other clique.

A graph G is called an interval graph if its vertices can be put into one-to-one
correspondence with a set of intervals 7 of the real line, such that two vertices
are connected by an edge of G if and only if the corresponding intervals have
nonempty intersection. Clearly any induced subgraph of an interval graph is an
interval graph.

The earliest characterization of interval graphs was obtained by Lekkerkerker
and Boland [3], as follows.
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LEMMA 1. An undirected graph G i3 an interval graph if and only if the
follounng two conditions are satisfied:

I1. G i3 a triangulated graph (that is, every 4-cycle in G contains a chord);

12. Any triple of vertices of G can be ordered in such a way that every path

from the first vertex to the third vertex passes through a neighbor of the second
vertez.

Three vertices which fail to satisfy condition 12 are called an asteroidal triple.
For example, the graph G; in Figure 1 has an asteriodal triple {a,c, e}, whence
G is not interval graph. But the graph G2 in Figure 1 is an interval graph.

FIGURE 1

Thus G is an interval graph if and only if G is a triangulated graph which contains
no asteroidal triple. So it follows from [3] that an interval graph G = (V, E) has
at most |V| maximal cliques with equality if and only if G has no edges, and
those maximal cliques can be found in O(|V| + |E|) time.
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Suppose the graph G has maximal cliques C;,Cs,.... The clique matriz
M = (myj) of G is a (0, 1)-matrix in which m;; = 1 and only if C; contains the
Jth vertex, v; say, of G. A (0,1)-matrix M is said to have the consecutive ones
property for columns if its rows can be permuted in such a way that the 1s in
each column appear consecutively. For example, suppose M; and M, are the
clique-matrices of the graphs G; and G, of Figure 1; they are shown in Figure 2.
The permutation (123) of the rows of M, produces a matrix M} of the required
form, so M, has the consecutive ones property; but M; does not.

LEMMA 2 [2]. An undirected graph G i3 an interval graph if and only if its
clique matrix M has the consecutive ones property for columns. Equivalently,
the mazimal cliqgues of G can be linearly ordered such that, for every vertex v of
G, the maztmal cliques containing v occur consecutively.

REMARK. Lemma 2 clearly suggests a recognition algorithm for interval
graphs G = (V, E) by a two-step process. First one checks whether G is tri-
angulated and if so, enumerates its maximal cliques. This can be executed in
O(|V| + |E]|) time and will produce at most |V | maximal cliques. Second, one
tests whether or not the clique-matrix of G has the consecutive ones property
for columns, the data structure needed to solve the consecutive ones problem
most efficiently is the PQ-tree; PQ-trees were invented by Booth and Leuker [1]
expressly for this purpose.

2. Maximal clique partitions of interval graphs

A clique covering of a graph G is a family C of cliques of G such that every
edge of G lies in some member of C. If the clique covering C has cardinality |C|
and |CX'| > |C| for all clique coverings C' of G, then C is called a minimal clique
covering and the clique covering number of G, cc(G), is defined to equal |C|. A
clique covering whose members are disjoint is called a clique partition; the clique
partition number ¢p(G) is defined to be the smallest possible cardinality of clique
partitions of G. If G has no edges, we define cp(G) = cc(G) = 0. A mazrimal-
clique partition is a clique partition into maximal cliques; many graphs have no
such partition—for example, if n > 4 the graph derived from K, by deleting
one edge has no maximal clique partition. But, if a graph G has a maximal-
clique partition, its maximal-clique partition number mcp(G) is defined to be the
minimum of the cardinalities of maximal-clique partitions. For convenience we
write mep(G) = 0 if G has no edges. Clearly whenever mep(G) is defined we have
ce(G) < ep(G) < mep(G), with equality, for example, when G is triangle-free.
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Suppose H is a subgraph of G with the property that, for any clique K of G,
either every edge of K or no edge of K lies in H. Then we say that “H separates
the cliques of G”. We say that G is clique-separable if there exists some proper,
non-empty subgraph H of G which separates the cliques of G; otherwise G is
cliqgue-inseparable. If the subgraph B of G separates the cliques of G but no
proper non-empty subgraph of B does so, we call B a clique-block of G. Note
that such a graph B is itself clique-inseparable.

LEMMA 3 [5, LEMMA 2.7]. The clique-blocks of a graph G partition the
edge-set of G.

LEMMA 4 [6, LEMMA 2.1]. G has a mazimal-cliqgue partition if and only
if each of tts clique-blocks has a mazimal-clique partition. In that case

mep(G) = Y_ mep(B)

where the sum 13 taken over all clique-blocks B of G.

For further discussion of maximal-clique partitions, clique-inseparability and
clique-blocks, the reader is referred to [6].

LEMMA 5. If G i3 an interval graph, then any clique-block B of G is an
tnduced subgraph of G.

PROOF. If B is not an induced subgraph of G, then there exist two vertices
u, v in B such that (u,v) is an edge of G but not of B. Because B is a connected
subgraph of G, there exists a path between u and v in B. Moreover, since G is
an interval graph (and so it contains no cordless 4-cycle), there exists a shortest
path P between u and v in B, whose length is exactly 2. Thus the path P and
edge (u,v) form a triangle. But P € B, (u,v) ¢ B. This contradicts the clique-
block property of B so the edge (u,v) must belong to B and B is a (vertex)
induced subgraph of G.

COROLLARY. If G is an interval graph and B 13 any clique-block of G, then
B 1is an interval graph.

PROOF. It suffices to observe that any induced subgraph of an interval graph
is again an interval graph.

But suppose G is an interval graph and B is any induced subgraph. The
incidence matrix of G has the consecutive ones property, by Lemma 2. Suppose
the rows have been ordered in such a way that the ones in each column appear
consecutively; assume the columns to have been reordered in the same way. Then
we still have the incidence matrix of G, after vertices have been reordered. The
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passage to an induced subgraph involves deletion of certain rows and columns,
and this does not disturb the consecutive ones property. So B is also an interval
graph, from Lemma 2.

LEMMA 6. If G is an interval graph, then G has a mazimal-clique partition
if and only if its clique-blocks are all cliques.

PROOF. If G is an interval graph and has a maximal-clique partition, then its
clique-blocks are also interval graphs. From Lemma 4 each clique-block also has
a maximal-clique partition. Suppose some clique-block B is not itself a clique.
Then B has a maximal-clique partition, say C; UCs U---UCk. If C is disjoint
from CoUC3U- - -UCk then CoUC3U- - - UCK separates the cliques of B; since B
is itself clique-inseparable, this is impossible. So C; has a vertex in common with
some other clique. Say C; and Cz meet in ;. (They cannot meet in more than
one point, since C; U C3 can contain no edge.) Similarly, we can find vertices
Y2,¥3,---,Yn sSuch that yo =CoNC3,y3 =C3NCy,...,and yp = CLNCy1. We
do not care whether h = k or h < k. However it is important to observe that
h > 3: the case h = 2 is clearly impossible and if A = 1 is the only possibility,
meaning that B consists of two cliques with a common vertex, we again see that
B is clique-separable. So the clique-matrix of B contains a submatrix

Vi Y2 .- Yn
Ci (1 0 1
Cy| 1 1 0
C31 0 1 0
Cph\0 O 1

which means the matrix does not have the consecutive ones property. This
contradicts Lemma 2.
Conversely, if each clique-block is a clique, then obviously every clique-block
is a maximal-clique partition. So by Lemma 4 G has a maximal-clique partition.
We are now ready to prove the main results.

THEOREM 1. Let G be an interval graph which possesses a mazimal-clique
partition. Then
(1) cc(G) = ep(G) = mep(G)
and every mazimal clique lies in the mazimal-clique partition.

PROOF. From Lemma 6, the clique-blocks of G are all cliques. From the

definition of clique-blocks they are all maximal cliques, and from Lemma 3 they
partition the edges of G. So they form a clique covering, a clique partition
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and a maximal-clique partition. To prove equation (1), it suffices to observe
that this clique covering is minimum. But every clique lies entirely within some
clique-block, so the number of cliques required to cover G must at least equal
the number of clique-blocks.

Since every clique lies in some clique-block, any maximal clique C must lie
entirely within some clique-block B. As B is a clique, C = B, so C lies in the
maximal-clique partition.

THEOREM 2. Let G be an interval graph. G has a mazimal-clique partition
if and only if it has no two mazimal cliques whose intersection contains two or
more vertices.

PROOF. The “if” part is obvious.

Suppose maximal cliques C; and C; of a graph G have common edge e. Then
the clique-block which contains e is not a clique, so by Lemma 6, G is not an
interval graph.

To see that this theorem is not true for general graphs, observe the graph C;
of Figure 1: the maximal cliques C3 and C4 have a common edge, yet G; has a
maximal-clique partition C; U Cs U Cs.
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