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Representing N —semigroups

John C. Higgins

An N-semigroup is a commutative, cancellative, archimedean
semigroup with no idempotent element. This paper obtains a
representation of finitely generated N-semigroups as the
subdirect product of an abelian group and a subsemigroup of the

additive positive integers.

1. Introduction

The term N-semigroup was first used by Petrich in [3] to name a

commutative, cancellative, nonpotent, archimedean semigroup. T. Tamura [5]
characterized ~N-semigroups as the direct product of the nonnegative

integers and an abelian group G , with the operation:
my,g). (my h)=Mm+m+Ilg, h) , gh),

where % , m are nonnegative integers and g , h € G . I(g, h) is a
non-negative integer-valued function, (called an index function), defined on

G x G and satisfying the following four conditions for all g , h , Kk € G
(1) I(g , ) =I(h, g) ,
(ii) I(g , h) + I(gh , k) = I(g , hk) + I(h , k) ,
(iii) for any g € G there is a positive integer m , depending on
g , such that I(gm s g) >0,
(iv) I(e , e) =1 , where e is the identity of G .

In [3] Petrich obtained a characterization of N-semigroups with two
generators in terms of pairs of non-negative integers with a certain

operation.
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In this paper, a representation of finitely generated WN-semigroups
in terms of a subdirect product of a finite abelian group and a subsemigroup
of the additive positive integers is given. This representation is
essentially different from that obtained by Tamura in [5]. A mapping is
introduced from a finitely generated N-semigroup S into the additive

positive integers, called an I function, which mapping is a homomorphism.

I have been informed that Mr Sasaki has obtained an as yet unpublished
result which extends my main representation theorem to power joined
N-semigroup. The results of this paper constitute a portion of my
dissertation for the Ph.D. degree in mathematics from the University of
California at Davis under the direction of Professor T. Tamura. I would
also like to express my most sincere appreciation to the referee of this

paper for his many valuable suggestions.

2. Preliminaries

In what follows § will stand for an W~N-semigroup. For a &S we

define a relation on S , called Ny by:

. . n m

if », y& S then .’r:’\aay iff z=ay or y=ax or y=x,
{(m , n are positive integers).

(Note: it is convenient to define =z = aox where we use the convention
that q° is the empty symbol.) It is shown in [5] that ﬂh is a congruence
on S and that S*a , the homomorphic image of S under the homomorphism
implied by N& , is an abelian group. S*a is called the structure group of
S with respect to a . We may also use aq to obtain a partial ordering of
S , called <a , and defined by:

for ©x, y€ S, x <,y iff y= d% , (n a positive integer).

It is also shown in [5] that <a on S satisfies the ascending chain
condition and that every congruence class of S under “b contains one
and only one element maximal with respect to the <a ordering. This

allows us to associate in a rather natural way the elements of S*a with
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the elements of S which are maximal in the <a ordering. Elements
maximal in the <a ordering, hereafter called <a—maximal elements, are
said to be prime to a ; a 1is called the standard element for determining
s* .

a

We denote by (x) the congruence class of S under 'ba which has =x

as its maximal element. We then define:

I((x) , (y})) =n, where xy = a% and z is prime to a .

It is shown in [5] that the function I((x) , (y)) +thus defined on the

a-maximal elements of § , and thus by extension on the elements of S*a s

satisfies properties (i) through (iv) of the Introduction and is an index
function. Thus, we may represent S as outlined in the Introduction,

where the group G is S*a and the index function is I((z) , (y)) .

The following Lemma is essential.

LEMMA 2.1 If an N-semigroup S <is finitely generated then every

structure group of S , S*a s has finite order.

Proof, Let b; , ... , b. be a generating set for S . For any

n

a &€ S we have:

In [3] p. 149 it is shown that for any pair of elements of a finitely
generated WN-semigroup, say * , y € S there are positive integers m , p
such that " = yp . (Note: a semigroup satisfying such property is called
power joined.) Thus for any bi we have m; and p; such that

m, p; J1 J

at=b . Thus, e = b, bnn could be prime to a only if

'ji < p; for ¢ =1,2,...,n . Clearly the number of such ¢ is finite.
Using Lemma 2.1 we may now define a mapping I from S to the
positive integers by:

for a€S, Ila) = |S*a| s
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where lS*a| denotes the order of the group S*a . We then obtain:

LEMMA 2.2 Let a finitely generated S be represented by some

structure group S"(Z and its assoctated I-function. Then, for x €8 ,
where x = (n , g) 1in terms of this representation,

I(x) =n [S*al + I (00, g))

Proof. If y = (m,h) in terms of this representation and m < n then
y 1is prime to =z since y = (n,g)*(m,h') = (m +m' + I(g,h'), gh') dut
I(g , W') 20 and n+m' + I(g,h') <m is clearly impossibie for

n,m

v

0 and m < n . There are n !S*al elements of this type. If

1

y=(nm, h) then y=(n, g)+ (m' , g') 1if and only if
]

n+m +Ilg,g')=n,which implies m' =1I(g, g') =0 , and gg' = h
Thus y = (n , h) 1is prime to « if and o‘nly if I(g , g_lh) > 0 . But,

if I(g, g%h) >0 then (0, h) 4 (0, ),

(0, g-lh) = (I(g , g_lh) » B) and (0, h) is prime to (0, g) . This
shows that the number of y = (n , h) prime to a2 is at least as great as
I((0 , g)) . But if (0 , h) 1is not prime to (0 , g) then y = (n, h)

is not prime to x and the number of such y is exactly I((0 , g))

For finitely generated S, x € § 1is called a normal standard element

if I(x) is minimal.

3. Subsemigroups of the additive positive integers

In this section J represents the additive positive integers. Clearly
J 1is an N-semigroup. Portions of the following may be found in [4] and

£71.
LEMMA 3.1 Let L be the subsemigroup of J generated by the

integere {ay , @y 5 +.v , aj} s §>1. Ifall the a; have no common

divisor then L contains all integers greater than some fixed positive

integer k .

Proof. (I am indebted to the referee for the following proof.) Let

k = 2a1ap ... aj . Since {ay; , ap, ... , a.} has no common divisor, for

b > k we may find integers xj , %3 5 ««. xj such that
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xriay + ... F xjaj =b . We may now find integers q; and Pi such that

c = g, e . . cee . . <r. e . . e .
z, =4, a; 7 Aag a'7 tr, where 0 r. fa a;_ 1947 a‘7
(2 =2, 3, ve.y J) . Nowoput y, =z + (g, +...+qj) axa3e. Ay Yy =Ty o
(2 =2, 3, o5 j) . We now have b = y1a; + yods + ... +yjaj. We

have chosen y, > 0 for 1=2,3, «e. s J . But since

Ao F vve F YA, = P3A5 + ooe +P.a, < A1Qy +0. A < b clearly ry >0 .
Yaaz yJJ 2a2 %5 = W92 g s early I

COROLLARY 3.1.1 Every subsemigroup of J <is finitely generated.

Proof. Let [ be a subsemigroup of J . If all of L has no common
divisor then L contains all integers greater than some integer k . Then

LN{1, 2, ..., 2k} generates [ ; since for m > 2k we have m =gk + »r ,

but ¢ > 2, and m ='\(q-l)k + (k+r) but k, k+re{r {1,2,...,8k}} .

The case where all [ have a common divisor is easily reduced to the case

above.

It is clear from the proof of Corollary 2.1.1 that there are two types
of subsemigroups of J . Those which contain all integers greater than

some fixed integer will be designated relatively prime semigroups.
Let X , L be subsemigroups of J . We then have:

THEOREM 3.2 4 homomorphism of K into L <s an isomorphism of the
type: a € K is mapped onto r * a €L where r is a fized rational
number which depends on K and L .

Proof. From Corollary 2.1.1 both K and L are finitely generated.
Let {ay , ap 5 vvo aj} be the generators of X . Let

by s by sy ven bj} be the images of the a, in L under the homomorphism.

If we apply the homomorphism to a;a = aqa; we have aibl = albi and

b, = (by/ay)a; .
Clearly, given a generating set {a1 , a2 5 «.. , aj} s not any

rational number r = q/p defines a homomorphism on the {ai} . Indeed,

(aiq)/p must be an integer and since p , ¢ may be chosen relatively prime

p must divide a; . But a mapping of this type is just a mapping:
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where bi is a generating element of a relatively prime subsemigroup of
J . Thus, we have obtained:

THEOREM 3.3 For K , L , subsemigroups of J , if L 1is a
homomorphic image of K then both X and L are integral multiples of

some subsemigroup K' of J , where X' <is a relatively prime subsemigroup.

THEOREM 3.4 In a subsemigroup of J the congruence v, as defined

in 2, i8 just the congruence modulo (a) as usually defined for integers.

Proof. By definition & Y iff y = d's or x = any . But for

subsemigroups of J this is just the condition x = y(mod a)

COROLLARY 3.4.1 In a subsemigroup of K , eay L , there is a unique
normal standard element. This element is the least integer in the

subsemigroup.
Proof. If L is a relatively prime subsemigroup, the order of L*n

is the number of congruence classes of L modulo (n), but I contains all

integers greater than some fixed integer k and thus |L*n| =n. If [

is not relatively prime, factor out the greatest common divisor of the
elements of L , say J , and proceed as above. Clearly, the elements
0, 1, 2, ..., n-1 are prime to n and also 0, j, 2Js ..., (n-1)j and

only these are prime to nj .

4. The I-function homomorphism

As defined in Section 2 the I-function is a mapping from any finitely

generated MN-semigroup into the additive positive integers. We now show:

THEOREM 4.1 Let S be a finitely generated N-semigroup. Then the
I-function on S is a homomorphism from S <into the additive positive

integers.

Proof. Take a representation for S in terms of some structure group

S*a and its associated J-function. Let (m , g) and (n, h) Dbe two

elements of S thus represented. From the definition of the I-function

we have:
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(1) I(m, g)n, W) =L(m+n+I(g, h) ,gh)=
(m+n+ I(g, h) |s*a| + I((0 , gh))

From property (ii) of I-functions and summing over S*a we have:

(g , k) + YI(gh , i) = }I(g , ki) + YI(h , i) ,
as 1 ranges over S*a

Since S*a is a finite group, hZ ranges over all S*a as 1 does;
using this fact and Lemma 2.3 we may write the above as

I(g 5 k) |S*,| + I(0, gh) = I((0 , g)) + L((0 , K)) .

Substituting the above in (1) we have:
I(m, g)ln , ) =m+n+ I((0, g)) + L((0 , h)) .
We then use Lemma 2.2 to obtain:
I((m, g)(n , W) = L((m, g)) + I((n , k) .

We next define what is meant by a semigroup having a greatest
homomorphic image of type I' . Let T be a set of implications. Let T
be the class of all semigroups satisfying all implications in Z . Then a

semigroup T has a greatest homomorphic image of type T if:
(i) there is a homomorphism o from 7T onto T0 er,
(i1) if B8 1is a homomorphism from 7 onto T €T .

then there is a y from To to T; such that B =ay . The following is
found in [6].

THEOREM 4.2 Every semigroup, T , has a greatest homomorphic image
of type T .

A semigroup, T , is said to be power cancellative if for any
a, be T, vwhen a? =" then we have a =b . The following is found in
£2] .

THEOREM 4.3 Any power joined, power cancellative N-semigroup
containing at least two elements can be embedded in the additive positive

rationals.
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We now obtain

THEOREM 4.4 Let S be a finitely generated N-semigroup. Then,

there 18 a unique subsemigroup of the additive positive integers, K S such

that K, <8 a relatively prime subsemigroup and X o i8 a homomorphic image

of 8. K 18 isomorphic to the I-function homomorphic image of S .

Proof. The condition "power cancellative" is given by the set of

implications:

m) {a,bes, at=>bpt+a=0b}.

Thus, by Theorem 4.2, S has a greatest power cancellative homomorphic
image. It has been previously noted that all S are power joined and this
condition is clearly preserved by homomorphisms. The property of being
finitely generated is also preserved by homomorphisms. Thus S has a
greatest power joined, power cancellative homomorphic image, T . This
image is clearly finitely generated. From Theorem 4.3 T 1is isomorphic
to a finitely generated subsemigroup of the additive positive rationals if
T contains two or more elements. The I-function provides a power joined,

power cancellative homomorphic image of S , say K'S by Theorem L4.1.
Thus, K's is a homomorphic image of I . But K's contains an infinite

number of elements and thus 7T is a finitely generated subsemigroup of the
additive positive rationals. Clearly any such semigroup is isomorphic to a
subsemigroup of the positive integers under addition. From Theorem 3.3 we

thus conclude that T and K's are isomorphic. Also from Theorem 3.3 we
may find K‘3 isomorphic to 7T and K'8 such that Ks is a relatively
prime subsemigroup. The uniqueness of Ks is guaranteed by Theorem 3.2
and 3.3.

LEMMA 4.5 Let S be a finitely generated N-semigroup. Let G be
a group homomorphic image of S , under the mapping o . Then G is the
homorphic image of some structure group, S*a s of 5.

Proof. Let the set Se be the pre-image of the identity of (¢ wunder
o . Since Se is not empty select g € Se . Consider the relation ’\'a as

defined in the introduction, and the associated structure group S*a . Since
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n .
a éSe , if for x, y €85 we have x'\lay then either :c=any or

y = d"x and (x)a = (y)o . Thus, if for (x) € S*a , where x is prime

to a , we define ((x))a* = (x)o , the mapping a* is clearly a

homomorphism from S*a onto G .

5. Subdirect products

We now use the results of the previous sections to obtain a new

representation for finitely generated #N semigroups.

DEFINITION 5.1 Let R and T be semigroups. A semigroup S 1is a
subdirect product of R x T if and only if there exist homomorphisms a , B
from S5 onto R and T respectively such that the pre-image of r €FR ,
in S , under o ; and the pre-image of ¢t &€ T , in S , under B ;

intersect in at most one element.

THEOREM 5.2 Every finitely generated N-semigroup, S , 1s the
subdirect product of a finite abelian group and a subsemigroup of the

additive positive integers and conversely.

Proof. As a homomorphism from S to the additive positive integers
use the I-mapping. Let @ be the mapping from S5 to S*a , some structure
group of S , induced by the relation Nh which defines S*a .
Schematically, this may be represented as:
S_.Q_)S*a
|z

K'Cck
We associate with I the congruence N which I induces on S . Let us
use S*a and its associated J-function to represent S . If, under this

representation, (m , g) and (n , h) are two elements of S and if

(m, g) and (n , h) are in the same class under Vo we have:

m |s* | + Z((0, g)) =n [S* | + L((0 , R)) .

If (m, g) and (n, h) are in the same class under N, e have, from

definition of S*a :g=h . Tus m=n and (m, g) = (n, h)

https://doi.org/10.1017/50004972700041320 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700041320

124 John C. Higgins

Clearly any subdirect product of G x X where (G 1is an abelian group

and K a subsemigroup of the additive positive integers is an N-semigroup.

The following example shows that in some instances the representation

outlined in Theorem 5.2 is properly a subdirect product. Let S*a be the

cyclic group of order three with the following I-function:

e g g2
11 1
g |1 0 ¢
g2l1 4 5

This N-semigroup is generated by (0 , e¢) and (0, g) , (i.e.,

(0, g% =(0,g)(0, g)=0+0+1I(g,g),g>=(0+0+0, a2)) .
L((g , e)) =3, I((0, a)) = & and the image of this N-semigroup under
the I-mapping is the sub-semigroup of the additive positive integers
generated by 3 and &5 . The intersection of the pre-image of 3 and

pre-image of &5 1is empty. We then obtain:

THEOREM 5.3 4 finitely generated N-semigroup S <is the direct
product of a subsemigroup of the positive integers and a structure group

S*é if, using the representation for S given by S*a and its I-function,
every element of the form (0 , g) <8 a normal standard element.

Proof. Consider the pre-image of any JI-class, say all (m , g) such

that I((m, g)) =n . For I-mappings we have:

I((m, g)) =m |S* | + Z((0, g))

But I((0, g)) is the same for all g e.S*a . This I-class intersects
the pre-image of any h &€ S*a in the element (m , h) . Thus,

= %
s Ks x S a

The question of which other classes of N-semigroups may be represented
as the direct product of an abelian group and a subsemigroup of the additive

integers remains open.
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