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Representing N-semigroups

John C. Higgins

An ^-semigroup is a commutative, cancellative, archimedean

semigroup with no idempotent element. This paper obtains a

representation of finitely generated W-semigroups as the

subdirect product of an abelian group and a subsemigroup of the

additive positive integers.

1. Introduction

The term ff-semigroup was first used by Petrich in [3] to name a

commutative, cancellative, nonpotent, archimedean semigroup. T. Tamura [5]

characterized ff-semigroups as the direct product of the nonnegative

integers and an abelian group G , with the operation:

(n , g) . (m , h) = (n + m + Kg , h) , gh) >

where n , m are nonnegative integers and g , h €. G . Kg } h) is a

non-negative integer-valued function, (called an index function), defined on

G x G and satisfying the following four conditions for all g , h , k € G :

(i) Kg , h) = I(h 3 g) ,

(ii) Kg , h) + Kgh , k) = Kg , hk) + Kh , k) ,

(iii) for any g e G there is a positive integer m , depending on

g , such that Kg™ , g) > 0 ,

(iv) J(e , e) = 1 , where e is the identity of G .

In [3] Petrich obtained a characterization of ^-semigroups with two

generators in terms of pairs of non-negative integers with a certain

operation.
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I 16 John C. Higgins

In this paper, a representation of finitely generated ^-semigroups

in terms of a subdirect product of a finite abelian group and a subsemigroup

of the additive positive integers is given. This representation is

essentially different from that obtained by Tamura in [5]. A mapping is

introduced from a finitely generated ^-semigroup S into the additive

positive integers, called an J function, which mapping is a homomorphism.

I have been informed that Mr Sasaki has obtained an as yet unpublished

result which extends my main representation theorem to power joined

tf-semigroup. The results of this paper constitute a portion of my

dissertation for the Ph.D. degree in mathematics from the University of

California at Davis under the direction of Professor T. Tamura. I would

also like to express my most sincere appreciation to the referee of this

paper for his many valuable suggestions.

2. Preliminaries

In what follows S will stand for an iV-semigroup. For a G S we

define a relation on 5 , called ^ , by:

if x , y € 5 then x i> y iff x = any or y = amx or y = x ,

(m , n are positive integers).

(Note: it is convenient to define x •= a x where we use the convention

that a 0 is the empty symbol.) It is shown in [5] that ^ is a congruence

on S and that S* , the homomorphic image of S under the homomorphism

implied by ^ , is an abelian group. S* is called the structure group of

S with respect to a . We may also use a to obtain a partial ordering of

5 , called < , and defined by:

for x , yeS, x < y iff y = a x , (w a positive integer).

It is also shown in [5] that < on 5 satisfies the ascending chain

condition and that every congruence class of S under 'v. contains one

and only one element maximal with respect to the < ordering. This

allows us to associate in a rather natural way the elements of S* with
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the elements of S which are maximal in the < ordering. Elements

maximal in the < ordering, hereafter called < -maximal elements, are

said to be prime to a ; a is called the standard element for determining

S* .
a

We denote by (x) the congruence class of S under "v< which has x

as its maximal element. We then define:

K(x) , (y)) = n , where xy = a z and z is prime to a .

It is shown in [5] that the function I((x) , (y)) thus defined on the

a-maximal elements of S , and thus by extension on the elements of S* ,

satisfies properties (i) through (iv) of the Introduction and is an index

function. Thus, we may represent S as outlined in the Introduction,

where the group G is S* and the index function is I((x) , (y)) .

The following Lemma is essential.

LEMMA 2.1 If an N-semigroup S is finitely generated then every

structure group of S , S* , has finite order.

Proof. Let b\ , ... , b be a generating set for 5 . For any

a & S we have:

In [3] p. ll+9 it is shown that for any pair of elements of a finitely

generated iV-semigroup, say x , y € S there are positive integers m 3 p

such that x = if . (Note: a semigroup satisfying such property is called

power joined.) Thus for any b. we have m. and p. such that

mi Pi J l in
a = b . Thus, o = b\ ... b could be prime to a only if

j. < p. for i = 1,2,...,n . Clearly the number of such a is finite.

Using Lemma 2.1 we may now define a mapping J, from S to the

positive integers by:

for a e S , Ija) = \s*a\ ,
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where \S* | denotes the order of the group S* . We then obtain:

LEMMA 2.2 Let a finitely generated S be represented by some

structure group S* and its associated I>function. Then, for x £ 5 .,

where x = (n , g) in terms of this representation,

Kx) = n \s*a\ + I ((0 , g)) .

Proof. If y = (m,h) in terms of this representation and m < n then

y is prime to x since y = (n,g)' (m,h') = (n + m' + I(g3h')3 gh'} but

Kg , h') > 0 and n + m' + I(g,h') < m is clearly impossible for

n , m' > 0 and m < n . There are n \S* \ elements of this type. If

y = (n j h) then y = (n , g) • (V j g') if and only if

n + m' + Kg , g') = n , which implies m' = Kg 3 g') = 0 , and gg' - h .

Thus y = (n , h) is prime to x if and only if Kg , g~ h) > 0 . But,

if Kg , g~2h) > 0 then (0 , h) + (0 , g) ,

(0 , g~2h) = (Kg , g~2h) , h) and (0 , h) is prime to (0 , g) . This

shows that the number of y = (n , h) prime to a; is at least as great as

K(0 , g)) . But if (0 , h) is not prime to (0 , g) then y = (n , h)

is not prime to x and the number of such y is exactly K(0 , g)) •

For finitely generated S , x G. S is called a normal standard element

if Kx) is minimal.

3. Subsemigroups of the additive positive integers

In this section J represents the additive positive integers. Clearly

J is an /I/-semigroup. Portions of the following may be found in 141 and

C7].

LEMMA 3.1 Let L be the subsemigroup of J generated by the

integers {a\ , a-i j ... , a-} 3 j > 1 • If all the a- have no common
3 *•

divisor then L contains all integers greater than some fixed positive

•integer k .

Proof. (I am indebted to the referee for the following proof.) Let

k — 2aia2 ... a- . Since {aj , ai , ... , a •} has no common divisor, for
J 3

b > k we may find integers x\ 3 X2 > ••• , x . such that
3
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x\a.\ + ... + x -a • = b . We may now find integers q . and r . such that
3 3 % i,

*i = q#l ••• \_2 ai+1 ... a. + r. where 0 < ^ < fll ... a ^ a ^ ...a.

(i = 2, 3, ..., j) . Now put y\ = xi + (q2 +...+q.) a2a3...aj, yi = ri ,

(i = 2, 3, ..., 3) . We now have b = y\ax + y2a2 + ... + y-a • . We

3 o
have chosen y • > 0 for i = 2 , 3 , ... 3 3 . But since

y2a2 + ... + y -a . = r2a2 + ... + r.a. < a^a2 ... a. < b , clearly rl > 0 .
3 3 3 3 ~ 3

COROLLARY 3.1.1 Every subsemigrowp of J is finitely generated.

Proof. Let I be a subsemigroup of J . If all of L has no common

divisor then L contains all integers greater than some integer k . Then

L C\ {1, 2, ..., 2k} generates L , since for m > 2k we have m = qk + r ,

but q > 2 , and m =N(q-l)k + (k+r) but k , k + r e {L {1,2, . ..,2k}} .

The case where all L have a common divisor is easily reduced to the case

above.

It is clear from the proof of Corollary 2.1.1 that there are two types

of subsemigroups of J . Those which contain all integers greater than

some fixed integer will be designated relatively prime semigroups.

Let K , L be subsemigroups of J . We then have:

THEOREM 3.2 A homomorphism of K into L is an isomorphism of the

type: a 6. K is mapped onto r • a G L where r is a fixed rational

number which depends on K and L .

Proof. From Corollary 2.1.1 both K and L are finitely generated.

Let {a\ , a2 , ... , a •} be the generators of K . Let
3

{b\ , b2 , ... , b •} be the images of the a- in L under the homomorphism.
3

If we apply the homomorphism to a -a\ = a\a- we have a-b\ = a{b. and

bi = (bl/ax)ai .

Clearly, given a generating set {<X\ 3 a2 , ... , a-} , not any
3

rational number r = q/p defines a homomorphism on the fov) • Indeed,

(a-q)/p must be an integer and since p , q may be chosen relatively prime

p must divide a. . But a mapping of this type is just a mapping:
Is
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b • •*• n b . .

where b • is a generating element of a relatively prime subsemigroup of

J . Thus, we have obtained:

THEOREM 3.3 For K , L , subsemigroups of J , if L is a

homomorphia image of K then both K and L are integral multiples of

some subsemigroup K' of J , where K' is a relatively prime subsemigroup.

THEOREM 3.4 In a subsemigroup of J the congruence ^ as defined

in 2, is just the congruence modulo (a) as usually defined for integers.

Proof. By definition x ^ y iff y = amx or x = any . But for

subsemigroups of J this is just the condition x = y(mod a) .

COROLLARY 3.4.1 In a subsemigroup of K 3 say L 3 there is a unique

normal standard element. This element is the least integer in the

subsemigroup.

Proof. If I is a relatively prime subsemigroup, the order of L*

is the number of congruence classes of L modulo (n), but L contains all

integers greater than some fixed integer k and thus \L* \ = n . If L

is not relatively prime, factor out the greatest common divisor of the

elements of L , say j , and proceed as above. Clearly, the elements

0j 1, 2j ...j n-1 are prime to n and also 0, j, 2j, ..., (n-l)j and

only these are prime to nj .

4. The J-function homomorphism

As defined in Section 2 the J-function is a mapping from any finitely

generated il/-semigroup into the additive positive integers. We now show:

THEOREM 4.1 Let S be a finitely generated N-semigroup. Then the

Irfunction on S is a homomorphism from S into the additive positive

integers.

Proof. Take a representation for S in terms of some structure group

5* and its associated J-function. Let (m 3 g) and (n , h) be two

elements of 5 thus represented. From the definition of the J-function

we have:
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(1) l((m , g)(n , h) ) = K(m + n + Kg , h) , gh)) =

(m + n + Kg , h)) \S*J + K(0 , gh)) .

From property (ii) of 1-functions and summing over S* we have:

, h) + iKgh , i) = ll(g , hi) + iKh , i) ,

as i ranges over 5*

Since S* is a finite group, hi ranges over all S* as i does;

using this fact and Lemma 2.3 we may write the a"bove as

Kg „ h) \S*J + 1(0 , gh) = K(0 , g)) + K(0 , h)) .

Substituting the above in (l) we have:

K.(m , g)(n , h)) = m + n + K(0 , g)) + K(0 , h)) .

We then use Lemma 2.2 to obtain:

l((m , g)(n , h)) = K(m , g)) + K(n , h)) .

We next define what is meant by a semigroup having a greatest

homomorphic image of type V . Let H be a set of implications. Let T

be the class of all semigroups satisfying all implications in H . Then a

semigroup T has a greatest homomorphic image of type F if:

(i) there is a homomorphism a from T onto T 6 V ,

(ii) if g is a homomorphism from T onto T\ € V .

then there is a y from T to T\ such that 3 = ay • The following is

found in [6].

THEOREM 4.2 Every semigroup, T , has a greatest homomorphia image

of type r .

A semigroup, T , is said to be power aancellative if for any

b

[2] •

a , b £ T , when an = bn then we have a = b . The following is found in

THEOREM 4.3 Any power joined, power aanoellative N-eemigroup

containing at least two elements can be embedded in the additive positive

rationals.
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We now obtain

THEOREM 4.4 Let S be a finitely generated N-semigroup. Then,
there is a unique aubsemigroup of the additive positive integers, K , such

that K is a relatively prime subsemigroup and Kn is a homomorphia image
8 8

of S . K8 is isomorphic to the L-funation homomorphic image of S .

Proof. The condition "power cancellative" is given by the set of

implications:

(n) {a , b e 5 , an = bn •+ a = b} .

Thus, by Theorem k.2, S has a greatest power cancellative homomorphic

image. It has been previously noted that all S are power joined and this

condition is clearly preserved by homomorphisms. The property of being

finitely generated is also preserved by homomorphisms. Thus S has a

greatest power joined, power cancellative homomorphic image, T . This

image is clearly finitely generated. From Theorem I+.3 T is isomorphic

to a finitely generated subsemigroup of the additive positive rationals if

T contains two or more elements. The J-function provides a power joined,

power cancellative homomorphic image of S , say K' by Theorem k.l.
8

Thus, K' is a homomorphic image of T . But K' contains an infinite
o o

number of elements and thus T is a finitely generated subsemigroup of the

additive positive rationals. Clearly any such semigroup is isomorphic to a

subsemigroup of the positive integers under addition. From Theorem 3.3 we

thus conclude that T and K' are isomorphic. Also from Theorem 3-3 we

may find K isomorphic to T and K' such that K is a relatively

prime subsemigroup. The uniqueness of K is guaranteed by Theorem 3.2

and 3.3-

LEMMA 4.5 Let S be a finitely generated N-semigroup. Let G be

a group homomorphia image of S , under the mapping a . Then G is the

homorphio image of some structure group, S* , of S .

Proof. Let the set S be the pre-image of the identity of G under

<y . Since S is not empty select a € S • Consider the relation <\/ as
e e a

defined in the introduction, and the associated structure group S* • Since
a

https://doi.org/10.1017/S0004972700041320 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700041320


Representing N-semigroups 123

a € S , if for x , y € 5 we have x ^ y then either x = any or
e a

y = a x and (x)a = (y)a. . Thus, if for (x) € S* , where x is prime

to a , we define ((x))a* = (x)a , the mapping a* is clearly a

homomorphism from S* onto (5 .

5. Subdirect products

We now use the results of the previous sections to obtain a new

representation for finitely generated N semigroups.

DEFINITION 5.1 Let R and T be semigroups. A semigroup S is a

subdirect product of R x T if and only if there exist homomorphisms a 3 f?

from S onto R and T respectively s,uch that the pre-image of r €. R s

in 5 , under a ; and the pre-image of t e T , in 5 , under B ;

intersect in at most one element.

THEOREM 5.2 Every finitely generated N-semigroup, S , is the

subdireat product of a finite abelian group and a subsemigroup of the

additive positive integers and conversely.

Proof. As a homomorphism from S to the additive positive integers

use the /-mapping. Let Q be the mapping from S to S*a , some structure

group of S , induced by the relation "Vi which defines S*

Schematically, this may be represented as:

We associate with J the congruence ^j which J induces on S . Let us

use S* and its associated J-function to represent S . If, under this

representation, (m t g) and (n , h) are two elements of 5 and if

(m j g) and (n , h) are in the same class under "*<_ we have:

m \S*J + g((0 , g)) = n |S*J + 1(70 , h)) .

If (m j g) and (n 3 h) are in the same class under 'v we have, from

definition of 5* : g = h . Thus m = n and (m , g) = (n , h) .
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Clearly any subdirect product of G x K where G is an abelian group

and K a subsemigroup of the additive positive integers is an tf-semigroup.

The following example shows that in some instances the representation

outlined in Theorem 5-2 is properly a subdirect product. Let S* be the

cyclic group of order three with the following I-function:

e

g

g2

e

1

1

1

g

1

0

4

g2

i

4

5

This ^-semigroup is generated by (0 , e) and (0 , g) , (i.e.,

(0 , g2) = (0 , g)(0 , g) = 0 + 0 + Kg , g) , g* = (0 + 0 + 0 , a2)) .

IJ(Q , e)) = 3 , IJ(0 , a)) = 5 and the image of this ^-semigroup under

the J-mapping is the sub-semigroup of the additive positive integers

generated by 3 and 5 . The intersection of the pre-image of 3 and

pre-image of 5 is empty. We then obtain:

THEOREM 5.3 A finitely generated N-semigroup S is the direct

product of a subsemigroup of the positive integers and a structure group

S* ' if, using the representation for S given by S* and its I-funotion,

every element of the form (0 , g) is a normal standard element.

Proof. Consider the pre-image of any J-class, say all (m > g) such

that I_((m j g)) = n . For J-mappings we have:

l((m , g)) =m |S*J + l<(0 , g)) .

But IJ(0 , g)) is the same for all g e S* . This J-class intersects

the pre-image of any h & S* in the element (m , h) . Thus,

S = K x S* .s a

The question of which other classes of ^-semigroups may be represented

as the direct product of an abelian group and a subsemigroup of the additive

integers remains open.
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