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Production and inter-component redistribution of turbulence in adverse pressure gradient
(APG) turbulent boundary layers (TBLs) with small and large velocity defects are
investigated, along with the structures playing a role in these energy transfer mechanisms.
We examine the wall-normal and spectral distributions of energy, production and
pressure-strain in APG TBLs, and compare these distributions with those in canonical
flows. It is found that the spectral distributions of production and pressure-strain are not
affected profoundly by an increase of the velocity defect, although the energy spectra
change drastically in the inner layer of the large-defect APG TBL. In the latter, the
signature of the inner-layer streaks is absent from the energy spectra. In the outer layer,
energetic, production and pressure-strain structures appear to change from wall-attached to
wall-detached structures with increasing velocity defect. Despite this, the two-dimensional
spectral distributions have similar shapes and wavelength aspect ratios of the peaks in all
these flows. Therefore, the conclusion is that the mechanisms responsible for turbulence
production and inter-component energy transfer may remain the same within each layer in
all these flows. It is the intensity of these mechanisms within one layer that changes with
velocity defect, because of the local mean shear variation.
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1. Introduction

When a turbulent boundary layer (TBL) is subjected to a sufficiently strong or prolonged
adverse pressure gradient (APG), its mean momentum defect increases. This growing

1 Email address for correspondence: ayse.gungor @itu.edu.tr

© The Author(s), 2022. Published by Cambridge University Press. This is an Open Access article,

distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.
org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium,

provided the original work is properly cited. 948 A5-1


mailto:ayse.gungor@itu.edu.tr
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/jfm.2022.679

https://doi.org/10.1017/jfm.2022.679 Published online by Cambridge University Press

T.R. Gungor, Y. Maciel and A.G. Gungor

defect changes the nature of the flow progressively, hence APG TBLs become different
from canonical wall-bounded flows such as zero pressure gradient (ZPG) TBLs or channel
flows.

Indeed, the change in the mean velocity profile leads to a different distribution of
the mean shear in the wall-normal direction, which in turn affects the turbulent energy
distribution in the boundary layer. With less mean shear, the turbulent activity in the inner
layer decreases (Skare & Krogstad 1994; Elsberry et al. 2000), and the inner maximum of
Reynolds stresses vanishes in the case of large velocity defect TBLs (Maciel, Rossignol
& Lemay 2006b; Gungor et al. 2016; Maciel et al. 2018). The outer-layer turbulence, on
the other hand, becomes dominant when the velocity defect is important, and a turbulence
production peak emerges in the outer layer (Skare & Krogstad 1994; Gungor et al. 2016).

In the inner layer, the impact of the pressure gradient on the coherent structures also
depends on the extent of the mean velocity defect. The spanwise and streamwise sizes of
the most energetic (u?)-carrying structures do not change significantly when the defect
is small (Harun er al. 2013; Lee 2017). As in canonical flows, the inner peak of the

energy spectra of (u?) is at inner-scaled spanwise wavelength (/lj) approximately 120
(Lee 2017; Tanarro, Vinuesa & Schlatter 2020) and inner-scaled streamwise wavelength
(A7) approximately 1000 (Harun et al. 2013; Sanmiguel Vila er al. 2020a). Furthermore,

the shape of the (u?) spectra is similar in ZPG and small-defect APG TBLs (Harun et al.
2013; Tanarro et al. 2020). When the defect is large, spatial organization and spectral
features of the energetic structures change in the inner layer. The near-wall streaks are
weakened (Skote & Henningson 2002; Lee & Sung 2009). They also become more
irregular, disorganized and less streaky (Lee & Sung 2009; Maciel, Gungor & Simens
2017a), and even vanish at separation (Rahgozar & Maciel 2012). Moreover, the inner
peak in the (1?) spectra, which is connected to the streaks, vanishes in the large-defect
case (Kitsios et al. 2017; Lee 2017). Apart from the changes in the streaks, Maciel et al.
(2017a) and Maciel, Simens & Gungor (2017b) reported that sweeps and ejections are
weaker in the inner layer than in the outer layer in large-defect TBLs, and their number is
fewer than in ZPG TBLs.

The elevated outer-layer turbulence activity in APG TBLs was reported numerous times
regardless of the velocity defect (Harun et al. 2013; Lee 2017; Tanarro et al. 2020). The
(u”) spectra show that the energetic outer layer structures are longer and wider than
their counterparts in the inner layer in APG TBLs (Harun ef al. 2013; Kitsios et al.
2017). The outer peak of the spectra is at A,/ ~ 3 (Harun et al. 2013; Sanmiguel Vila
et al. 2020a) and A,/6 ~ 1 (Bobke et al. 2017; Lee 2017), where § is the boundary
layer thickness. Elevated outer-layer activity is also reported for high-Reynolds-number
canonical flows (Hutchins & Marusic 2007b; Marusic, Mathis & Hutchins 2010a) with
an outer peak in the (1) spectra due to elongated, meandering structures (Marusic et al.
2010a), which are called superstructures in external flows (Hutchins & Marusic 2007a) and
very-large-scale motions (VLSMs) in internal flows (Kim & Adrian 1999). The streamwise

wavelength of the outer peak in the energy spectra of («?), which is associated with these
structures, is of the order of 6§ in boundary layers (Smits, McKeon & Marusic 2011).
There is also another type of structure, called large-scale motions (LSMs), associated
with smaller wavelengths A,/§ ~ 2-3 (Smits er al. 2011). The energetic outer-layer
structures in APG TBLs are more similar to LSMs than superstructures/VLSMs in terms
of dimensions. However, Sanmiguel Vila et al. (2020a) investigated the effects of APG
and high Reynolds number for small-defect APG TBLs and found two outer peaks (one
similar to that of ZPG superstructures, and the typical APG one) in the (u?) spectra at
sufficiently high Reynolds number. Regarding the magnitude of the typical APG outer
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peak, several studies have reported its increase with increasing velocity defect (Lee 2017;
Sanmiguel Vila et al. 2020b) when the levels are normalized with friction-viscous scales.
However, such a conclusion could be an artefact of using the friction-viscous scales
because they are not proper scales for energy levels for APG TBLs (Gungor et al. 2016),
especially for large-defect ones (Maciel et al. 2018).

The turbulence regeneration mechanisms, or in other words, self-sustaining
mechanisms, have been studied extensively in canonical flows. However, studies
concerning APG TBLs are rather scarce. One of the mechanisms that has been suggested
for APG TBLs is the instability of streaks (Marquillie, Ehrenstein & Laval 2011), which
was already considered as a regeneration mechanism for canonical wall-bounded flows
(Hall & Horseman 1991). Another mechanism proposed for the outer region of large-defect
APG TBLs is an inflectional instability associated with the outermost inflection point of
the mean velocity profile, which is inviscidly unstable. Elsberry et al. (2000) suggested
that such an instability affects the flow field in their large-defect APG TBL. The location
of the inflection point was close to that of the maxima of the Reynolds normal stresses
and turbulent kinetic energy production. The presence of an inflection point at the same
wall-normal location as the peak of the Reynolds stresses was reported by other researchers
as well (Gungor et al. 2016; Kitsios et al. 2017). Furthermore, Schatzman & Thomas (2017)
suggested that an embedded shear layer, which is centred around the aforementioned
inflection point in the outer layer, exists in APG TBLs. They proposed scaling parameters
based on this idea of an embedded shear layer and obtained self-similar mean velocity and
Reynolds stress profiles in their large-defect APG TBL, as well as in other large-defect
cases. Balantrapu et al. (2021) also obtained self-similar profiles with the same scaling in
their highly decelerated axisymmetric turbulent boundary layer. However, Maciel et al.
(2017a) noted that they could not find any roller-like structures that are the sign of a
Kelvin—Helmholtz type instability. In addition, it is important to note that moderate-defect
APG TBLs have an outer maximum of the Reynolds stresses without the presence of an
inviscidly unstable inflection point in the mean velocity profile (Maciel et al. 2018). It
is still not known whether an inflection point instability exists, and furthermore if it is
directly responsible for turbulent regeneration in large-defect APG TBLs, but it is possible
that the presence of Reynolds stress peaks and an inflection point in the outer layer is
simply correlated without any causality (Balantrapu et al. 2021).

From a different perspective that does not necessarily involve an inflectional instability,
several researchers have reported that APG TBLs with large velocity defect might behave
like free shear flows due to the change in the mean velocity (Gungor et al. 2016; Kitsios
et al. 2017). Gungor, Maciel & Gungor (2020) demonstrated that the Reynolds shear stress
carrying structures in large-defect APG TBLs and homogeneous shear turbulence flow,
which has no inflection point, have similar shapes and are mostly dependent on the local
mean shear. These studies suggest that self-sustaining mechanisms might be similar in the
outer layer of large-defect APG TBLs and free shear flows, and highlight the causal role
played by mean shear.

The task of identifying the self-sustaining mechanisms present in APG TBLs is a
formidable one. A first step along that route is to better understand the energy transfers
resulting directly from the self-sustaining processes, namely turbulence production
and energy transfer between Reynolds stress components (the pressure-strain term in
the Reynolds stress transport equations). Examining the wall-normal distributions of
production and pressure-strain does not suffice for that purpose. A more complete
picture can be obtained by also investigating the spectral distributions, among scales and
position, of these energy transfers. The idea of studying the spectra of the terms in the
Reynolds stress transport equations was introduced first by Lumley (1964), and it has
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gained attention recently. The spectra of the turbulent kinetic energy or Reynolds stress
transport equations have been utilized to examine spatial transport, energy cascade or scale
separation in channel flows (Mizuno 2016; Cho, Hwang & Choi 2018; Lee & Moser 2019),
Couette flows (Kawata & Alfredsson 2018), ZPG TBLs (Chan, Schlatter & Chin 2021) or
separating and reattaching flows (Gatti er al. 2020). As mentioned above, in the present
work we focus on the spectral features of production and pressure-strain with the aim of
better understanding the self-sustaining mechanisms present in APG TBLs.

More precisely, the goal of this study is to examine the spectral distributions of energy,
production and pressure-strain in inner and outer layers of APG TBLs, and compare
them with the ones in canonical wall-bounded flows to better understand the mechanisms
involved. We consider both small and large velocity defect cases to analyse the effect of
velocity defect on these energy transfer mechanisms.

2. Databases

We utilized three types of flows in this paper: APG TBLs, ZPG TBLs and channel flows.
A new direct numerical simulations (DNS) database is generated for APG TBLs. This
new database is an extension of the database that was introduced by Gungor et al. (2017)
and analysed by Maciel et al. (2018), which was referred to as DNS2017. The main
difference between the new database and DNS2017 is that the new database has a wider
spanwise width and a slightly different pressure gradient distribution. Both flow cases are
nonetheless almost identical in terms of mean velocity and Reynolds stress distributions,
and two-point correlations. Since they are almost identical, here we will use only the most
recent one. The details of the databases employed in this paper are given in the following
subsections.

2.1. The current APG TBL database

The current database is a DNS database of a non-equilibrium APG TBL with a Reynolds
number based on momentum thickness (Rey) reaching up to 8000. The code used to
perform the DNS solves the three-dimensional incompressible Navier—Stokes equations.
It provides the time evolution of three-dimensional velocity and pressure fields for a
given flow configuration. The DNS code employs a hybrid MPI/OpenMP approach for
parallelization. Further details on the code can be found in Simens er al. (2009) and
Borrell, Sillero & Jiménez (2013).

The DNS computational set-up consists of two simulation domains, the auxiliary
and main domains, running concurrently as described in Sillero, Jiménez & Moser
(2013) and Gungor et al. (2016). The auxiliary ZPG TBL DNS, with a coarser
resolution, are intended to provide the realistic turbulent inflow data for the main
APG TBL DNS. The goal of using two domains is to provide inflow conditions
for the main DNS with lower computational cost. Regarding the other boundary
conditions, the bottom surface is a flat plate with a no-slip boundary condition.
The side boundary conditions are periodic. The far-field boundary condition is
adjusted in the form of suction and blowing to apply adverse/favourable pressure
gradients. The outflow condition is a Neumann boundary condition. The computational
domain of the main APG TBL simulation, a rectangular volume with streamwise,
wall-normal and spanwise lengths (Ly, Ly, L;) /84, = (25.3,4.8,7.1), is discretized with
Ny x Ny x N; = 4609 x 736 x 1920 grid points. Here, the average boundary layer
thickness (84,) is calculated within the useful range (or so-called domain of interest),
which is the zone between the vertical dashed lines in figure 1.
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Figure 1. Streamwise development of the main parameters of the APG TBL. (@) The suction/blowing
boundary condition Vi, and edge velocity Ue. (b) Pressure gradient parameters Bzs and Bgc. (¢) Shape factor
H and skin friction coefficient Cy. (d) Parameters §, §* and 6 normalized with their values at inlet. (e) Reynolds
numbers Rey and Re,. The vertical dashed lines are the boundaries of useful range. The open circles denote
the three streamwise positions that are used in the paper.

Figure 1 shows the spatial development of main parameters of the APG TBL. As stated
before, the pressure gradient in the APG TBL is generated by imposing a suction/blowing
boundary condition for the wall-normal component of the velocity at the top boundary
(Viop). Figure 1(a) shows the spatial development of V,, along with the edge velocity U,.
The definition of U, is not straightforward in flows with inviscid velocity that varies in
the wall-normal direction, such as the current flow. Although it is not the most generally
applicable definition (see, for instance, Griffin, Fu & Moin 2021), we utilize the maximum
streamwise component of the mean velocity in the wall-normal direction as U, for this
study, to be consistent with most of the literature (Gungor et al. 2016; Maciel et al. 2018)
and because it works for the flow cases studied here.
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At the beginning of the domain, the suction velocity increases sharply within a short
distance to impose the desired pressure gradient distribution. Downstream of this region,
the suction velocity is adjusted to obtain a regularly increasing shape factor H (figure 1¢).
The change in V,, near the end of the computational domain is to increase the numerical
stability of the simulation by accelerating the flow so that the Neumann boundary
condition still holds. The suction boundary condition decelerates the flow, which is seen
from the development of the edge velocity U, in figure 1(a).

Figure 1(b) shows two pressure gradient parameters that characterize the effect of the
pressure gradient on the outer layer: Bgc, the Rotta—Clauser pressure gradient parameter,
and Bzs, the pressure gradient parameter based on the Zagarola—Smits velocity, defined as

5* dP, 5 dpP,

) 9 ZS == .
pu? dx pUs, dx

(2.1a,b)

Here, §* is the displacement thickness, p is the density, u; is the friction velocity, P, is the
pressure at the edge of the boundary layer, and Uzg is the Zagarola—Smits velocity (Uzs =
U,56%/8) (Zagarola & Smits 1998). The traditionally used pressure gradient parameter,
Brc, increases progressively until Src is above 350, and then sharply decreases. However,
as Maciel ef al. (2018) demonstrated, it is not a valid pressure gradient parameter for
TBLs with large velocity defect. Parameter 8zs, which represents the local impact of the
pressure gradient on the boundary layer regardless of velocity defect (Maciel et al. 2018),
increases near the flow entrance up to 0.35, and then decreases to approximately 0.05 and
remains mostly the same in the last part of the domain. The rapid increase of fzg at the
beginning of the domain causes the increase in momentum loss in the boundary layer (H
increases; figure 1c). The subsequent decrease of Bzs over most of the domain should lead
theoretically to momentum gain in the boundary layer (H decreases). However, because
the boundary layer responds with a delay to the pressure force evolution, the momentum
gain occurs only at the end of the domain.

The effect of the pressure gradient on the flow is also seen in the development of the
skin friction coefficient Cy, as shown in figure 1(c); Cr decreases steadily until around
x/8qv A 20, and becomes very close to zero. The behaviour of Cr and H reflects the strong
non-equilibrium nature of the current APG TBL flow.

Figure 1(d) shows the spatial development of §, §* and momentum () thicknesses.
They all increase until close to the end of the domain. Figure 1(e) shows the distributions
of the most commonly used Reynolds numbers for TBLs, Rey and Re;; Rey increases
approximately from 2000 to 8000. The Reynolds number based on u;, Re;, develops
irregularly in the streamwise direction. However, it is not valid because u; is not a valid
scale for APG TBLs with large velocity defect. The irregularity of Re; stems from utilizing
u; as a velocity scale.

2.2. Existing databases
Because we focus on spectral analysis in the current paper, we have two criteria for
selecting existing databases of ZPG TBLs and channel flows: sufficiently high Reynolds
number and availability of spectral distributions of Reynolds stresses, production and
pressure-strain. The DNS database of Lee & Moser (2015) with Re; = 2000 is employed
for channel flows. This database is chosen because some one-dimensional (1-D) and
two-dimensional (2-D) spectra are available as functions of streamwise and spanwise
wavenumbers (ky, k;) and y. The DNS database of Sillero et al. (2013) with Rey = 6500
and the experimental database of Baidya et al. (2021) with Rey = 6191 are chosen for
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Name Type Database  Rey Re; H Cr x 1073 Bzs  Brc  Colours & symbols

APGl1 APG TBL DNS 3005 646 1.65 2.1719 030 45 —
APG2 APG TBL DNS 4395 593 2.00 1.0674 017 13.6 -
APG3 APG TBL DNS 5787 460  2.63 0.3599 0.08 40.1 S
ZPGa ZPG TBL DNS 6500 1990 1.35 2.7063 ~0 ~0 —
ZPGb  ZPG TBL Exp. 6191 2493 1.35 2.7602 ~0 ~0 o

CH Channel DNS NA 1995 NA 3.3605 NA NA —

Table 1. Information about the databases used in the paper: ZPGa, ZPGb, and CH indicate the databases of
Sillero et al. (2013), Baidya et al. (2021) and Lee & Moser (2019), respectively.

ZPG TBLs. We chose these two databases for ZPG TBLs because the Reynolds numbers
are similar and the 1-D spectral distributions of Reynolds stress and production are
available as functions of k, and y for the database of Sillero er al. (2013), and k, and
y for the database of Baidya et al. (2021). They complement each other for the spectral
analysis without introducing any significant Reynolds number effect.

2.3. Flow description

We aim to investigate a wide range of velocity defect cases in this study. Three streamwise
positions from the APG TBL are employed. These streamwise positions, as shown in
figure 1, represent three velocity defect cases, and their corresponding shape factors are
1.65, 2.00 and 2.63. The shape factor is 1.35 for both ZPG TBL cases since they are
at similar Reynolds numbers. The velocity defect is smaller in the ZPG TBL than the
small-defect case of the APG TBL. As for the channel flow, the velocity defect, which is
with respect to the centreline velocity, is smaller than values for the ZPG TBLs as it is
well-known. These five flow cases, details of which are provided in table 1, cover a wide
range of velocity defect situations, from a channel flow to a TBL with a large velocity
defect.

Regarding the Reynolds numbers of the cases, the ZPG TBL and the channel flow cases
have similar Re; and are selected at higher Re; and Rey than the APG TBL cases. We could
have chosen different databases for ZPG TBLs, or channel flows with a lower Reynolds
number, instead. However, it is better to analyse canonical flows at high Reynolds number
because of the elevated outer-layer activity in such flows (Hutchins & Marusic 2007a).
In this manner, we can compare the outer peaks of the spectral distributions of canonical
flows and APG TBLs.

Throughout the paper, the streamwise, wall-normal and spanwise directions are referred
to as x, y and z, or 1, 2 and 3 for index notation. The corresponding instantaneous velocity
components are u#, v and w. The brackets (-) denote ensemble averaging. Furthermore,
uppercase and lowercase letters denote the mean value and the fluctuations, respectively.
Thus (#;) = U; and u; = U; 4 u;. The upper index + means the friction-viscous scales,
with the friction velocity u; as the velocity scale, and v/u; as the length scale.

3. Wall-normal distributions of mean flow and Reynolds stress properties

In this section, we will first investigate the wall-normal distributions of the mean flow,
Reynolds stresses and Reynolds stress budgets. For all the figures presented here, profiles
are plotted using a logarithmic axis for y* and a linear one for y/§ to examine inner
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Figure 2. The mean velocity profiles of all databases normalized with (@) outer scales and (b) friction-viscous
units, plus the mean shear profiles of the DNS databases normalized with (c¢) outer scales and
(d) friction-viscous units. Legend as in table 1.

and outer layers in more detail. Furthermore, the parameters in the inner-scaled profiles
are normalized using friction-viscous scales. Although friction-viscous scales are not
appropriate scales for the large-defect case, they are still employed to use only one set
of inner scales for simplicity. The edge velocity (U,) and § are employed to scale the
parameters in the outer region.

3.1. Mean flow

Figures 2(a,b) present the outer- and inner-scaled mean velocities as functions of y for all
the databases. The outer-scaled mean velocity profiles demonstrate the momentum deficit
in the APG TBL cases. As the flow develops under the effect of the APG, the defect in the
mean velocity profile increases. The profile starts to resemble velocity profiles of mixing
layers (Gungor et al. 2016) in the large-defect case, with an inflection point in the middle
of the boundary layer. The inner-scaled mean velocity profiles show that the mean velocity
deviates from the log law in the APG TBL cases. Moreover, this deviation increases with
increasing velocity defect. Furthermore, friction-viscous scales progressively fail to scale
the mean velocity in the inner region as the defect increases (Gungor et al. 2016; Maciel
et al. 2018).

Figures 2(c,d) show the mean shear profiles for the DNS databases. The mean shear
profile for the experimental ZPG TBL case is not given here due to lack of points near the
wall. The mean shear distribution is important because it plays a role directly in turbulence
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Figure 3. Reynolds stress profiles normalized with (a) friction-viscous units and (b) outer scales. Legend as
in table 1.

production and hence turbulence in the flow. The change in the mean velocity profiles
significantly affects the mean shear distribution in the outer layer. As the defect increases,
the mean shear increases in the outer layer. More importantly, the relative magnitude of
mean shear in the outer layer with respect to the inner layer increases with increasing
velocity defect, as can be seen in figure 2(d). Regarding the inner layer, the mean shear
remains fairly similar when it is normalized with friction-viscous scales, as expected,
despite the direct effect of the pressure force near the wall in the APG TBL cases. The
impact of the varying mean shear on turbulence will be discussed further in § 5.

3.2. Reynolds stresses

Figure 3 presents the wall-normal distribution of the components of the Reynolds
stress tensor for all cases. The inner scales scale the Reynolds stresses well for the

canonical flows. The (u?) profiles of the channel flow and ZPGa collapse perfectly with
friction-viscous units, as expected. The (u?) levels are slightly smaller in ZPGb than in
ZPGa in the inner layer, but this is due to the lack of spatial resolution of the probe used
in the experiments (Baidya et al. 2017).

The change in the mean shear in the APG TBL (figures 2¢,d) changes the Reynolds stress

profiles progressively. The (u?) profiles are still fairly similar for APG1 and canonical
wall-bounded flows in the inner layer, even if the scaled amplitude increases. The inner
peak for (u?) still exists in APG1. However, such a similarity is not encountered for the
other components of the Reynolds stress tensor. Moreover, figure 3(b) shows that the
turbulent activity in the inner layer diminishes with respect to that in the outer layer as
the defect increases. The outer layer becomes dominant as the mean shear increases in the
outer layer. In the large-defect cases, APG2 and APG3, all components peak in the middle
of the boundary layer, where the mean shear has a plateau. Regarding the magnitude of
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the Reynolds stresses, the levels increase progressively with increasing velocity defect
when Reynolds stresses are normalized with friction-viscous scales because they are not
appropriate scales for large velocity defect cases (Maciel et al. 2018). It is important to
state that U, is not necessarily an appropriate outer scale either (Maciel, Rossignol &
Lemay 2006a); however, it conserves the order of magnitude of Reynolds stresses in the
range of velocity defects and Reynolds numbers of the cases examined here.

The Reynolds stress profiles of the current APG TBL case are consistent with APG
TBL cases in the literature. In the small-defect case, there is an inner peak for (u?) and
an elevated outer layer activity for all Reynolds stress components. This has been reported
for equilibrium (Skére & Krogstad 1994; Lee 2017) and non-equilibrium (Gungor et al.
2016) cases in small-defect APG TBLs. Moreover, the y-position and energy levels of the
inner peak match well when the velocity defects of the cases are similar (Kitsios et al.
2016; Tanarro et al. 2020). Regarding the large-defect case, other researchers have already
reported the increasing importance of the outer layer as the mean shear increases in the
outer layer (Skare & Krogstad 1994; Gungor et al. 2016; Kitsios et al. 2017).

3.3. Reynolds stress budgets

To understand the energy transfer mechanisms in APG TBLs, the budget of the Reynolds
stress tensor is investigated first through the transport equations for the Reynolds stresses:

0=— ((uil/tk> ?)_fc],: + (ujur) o ) uithe)

0xy Xy
+(2 8”"+8uj Ly S
— — — —_—— —— u
axj ax; b o Uip)ojk 5P )0ik

9 (ujuj)
oxy

(3.1)

du; Ou; 2
—2v \Y% U
<8xk axk> +v <uluj> k

Here, v is viscosity and & is the Kronecker delta function. In order, the terms are
production, turbulent transport, pressure-strain, pressure transport, viscous dissipation,
viscous transport and mean convection.

Figure 4 presents Reynolds stress budgets for canonical flows, and small- and
large-defect APG TBLs. The profiles are plotted with logarithmic and linear axes to
emphasize inner and outer layer, as mentioned before. The Reynolds stress budget
distributions show that energy follows the same main path in both inner and outer layers,
regardless of the flow, as expected. Energy is extracted from the mean flow through (1?)
production. Some of this energy is transferred to (v?) and (w?) through pressure-strain,
which is a sink term for (¥?) and a source term for the other normal components except
in the very near-wall region. Energy is also transported or dissipated in all components.
Furthermore, (v2) production, which is zero for channel flows and negligible for ZPG
TBLs, is a sink term that transfers energy back to the mean flow in the outer region for
APG TBLs. Regarding the Reynolds shear stress, the production and pressure-strain are
almost in balance in all cases except in the near-wall region.

The magnitudes of the budget terms are very similar for CH and ZPGa for the
inner-scaled profiles. However, the levels increase drastically as the defect increases when
normalized with u,, consistently with the trend that we observe in the Reynolds stress
profiles, which again confirms that «; is not a proper inner scale for APG TBLs with large
velocity defect.
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Figure 4. The Reynolds stress budgets. The levels and axes are normalized with (a) the friction-viscous scales
and (b) outer scales. The rows are for (1), (v?), (w?) and (uv) for each panel. Production, dark blue solid
line; dissipation, red solid line; pressure-strain, yellow solid line; viscous diffusion, green solid line; turbulent
transport, purple solid line; mean convection, brown solid line; pressure transport, blue solid line.948 A5-11
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In the inner region, as figure 4(a) shows, the behaviours of the Reynolds stress budgets of
the canonical flows and APG1 are almost the same for all normal components, regardless
of the velocity defect. The shapes of the budget profiles are almost identical, with a minor

shift in y*. For instance, the (#?) production peak is at y* & 11 and 9 in canonical flows
and APGl], respectively. A clear difference between canonical flows and APG1 is that the
turbulent and pressure transport above y* & 10 for (v?) are negligible for APGI.

As the mean shear distribution changes from APG1 to APG3, the overall behaviour
of the source and sink terms (production, pressure-strain and dissipation) in the inner
layer does not change considerably except for the aforementioned difference in magnitude.
Besides the magnitude change, the main difference is that they start to increase with y
above yt = 30 because they all peak in the outer layer, as is discussed later. The change
of relative importance between the inner and outer layers affects turbulent transport, as

well. It becomes a gain term for («%) and (v?) in most of the inner layer due to the elevated
turbulent activity in the outer layer of the large-defect case. This behaviour is also reported
in equilibrium APG TBL cases for («?) (Kitsios ef al. 2017).

The Reynolds stress fluxes due to turbulent transport in the wall-normal direction,
where the flux is 6; = (uju;up), are given for ZPGa, APG1 and APG3 in Appendix A
(figure 17). The (u?) flux towards the wall is below y*© = 11 in ZPGa and APGI. In
contrast, fluxes towards the wall start as high as y/8 = 0.4 (y© ~ 200) in APG3, and for all
Reynolds normal stresses. Strong turbulent transport towards the wall in the lower half of
a near-equilibrium large-defect APG TBL was also reported by Skéare & Krogstad (1994).

Regarding the outer layer, as shown in the outer-scaled profiles in figure 4(b),
production, pressure-strain and dissipation are at high levels between y/5 = 0.1 and 0.3
in APGI, much like the Reynolds stresses themselves, but no peak is present in the
outer layer. Despite the lack of an outer peak in APG1, a plateau between approximately
y/8 = 0.1 and y/6 = 0.3 that is not observed in the channel flow and the ZPG TBL exists
in production and pressure-strain terms. In the large-defect case, an outer peak emerges for
the source and sink terms at around y/§ = 0.5. Such a behaviour has been reported before
for equilibrium (Skare & Krogstad 1994; Kitsios et al. 2017) and non-equilibrium APG
TBLs (Gungor et al. 2016).

4. Spectral analysis

The Reynolds stress and Reynolds stress budget profiles provide information about the
wall-normal distributions of energy and energy transfer, but not, however, about the
coherent structures that carry energy or play a role in these energy transfer mechanisms.
To investigate those coherent structures, the spectral distributions of production and
pressure-strain of the Reynolds stress tensor are analysed using the transport equation for
the two-point velocity correlation tensor, along with the spectral distribution of energy.
The reason for using the two-point correlation equation is that the spectral information is
linked directly to the two-point correlations.

4.1. Methodology

We will first present the transport equation for the two-point correlation tensor. Let x; and
X; be the components of the coordinates of the two points used to compute the correlations,
defined as

Xi=x;+ri 4.1
948 A5-12
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where r; is the separation length between these points in direction i. Further, let the velocity
components at x; and X; be u; and ;. Starting from the Navier—Stokes equations, the
transport equations of the two-point correlation tensor R;; = (u;i;) can be obtained in the
form

L AW L '<~ UL ~)a(}j
Uj— +uj—>) = — i — i — ) | — | (wjug) — + (witng) —
T ot "ot K\ 0xk k 18)?/{ Ik 0xk itk Xk

Ry Ry
)My i G D )
Rl R
[ 2, 927
+ i <zzj 831 gxk> +v <ui = ajsck ﬂ : 4.2)
A,

The terms on the right-hand side of the equation that are labelled as R‘l}‘ FIZI.;~ , R;
F?f.j? and RZ are advection, production, turbulent transport, pressure and viscous terms,
respectively.

The transport equations need to be simplified to perform the spectral decompositions of
the various terms. In this work, the correlations are computed only in the streamwise and
spanwise directions. Therefore, there is no separation in the wall-normal direction (see
(4.3a)). Since all the flows considered here are homogeneous in the spanwise direction,
the derivative of the mean velocity with respect to x3 and the mean velocity in x3 are zero
(see (4.3b)). Finally, u; is independent of X, since u; is the velocity component at another
location, and this is valid for it; and x4, too. Thus their corresponding derivatives are zero

(see (4.3¢)). We have

iz = x23 (43a)
oU;
— =U3=0, (4.3b)
0x3
a . a""
4:ﬁ=0, a=1,2,3. (4.3¢)
0Xy 0Xg

We need to write (4.2) as a function of separation lengths, r; and r3, to obtain the
spectral distributions. Therefore, we need to substitute the independent variables x; and X;.
As is usually done, the second substitution variable (associated with r;) is chosen as the
average position of the two points:

I'y =Gy +2x9)/2, a=1,3. (4.4)
Let @ be any type of two-point correlation in (4.2). We have the relationships

0P

— =0, (4.5q)
ol3
0P

— ~0, (4.5b)
ol
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because the term 09 /013 is zero due to spanwise homogeneity (see (4.5a)), and the
two-point correlations are assumed to vary slowly in the streamwise direction in the case
of the TBLs (see (4.5b)). The latter assumption is strong in the case of the non-equilibrium
APG TBL, but it is necessary to perform the spectral decompositions. Then we perform the
transformation for two-point correlations as shown in (4.6). Note that the transformation
does not apply to the derivatives of mean velocity in (4.2) since these derivatives are
assumed constant in x; and x3:

0D 0d oI, 0D 9 0D
— « L 8T 7 (4.6a)

0Xy 0l 0xy 0rq 0Xy 0Ty

0b 9P 9l | 0P Iry  IP

0%y Oy 0%y Ory 0%y  Ory

(4.6D)

Since we are interested in production and pressure-strain, we will discuss only these two
terms hereafter. The production term in (4.2) can be rewritten by taking advantage of

(4.3a) and (4.3b):

R = (i) 2 ~>8f]" (i) 22— ~>af]" (4.7)
o= —(ujur) — — (wiu1) — — (Ujuz) — — (ujuz) —. .
i U APTS U ax, W G, T M 55,

Furthermore, by assuming that the derivatives of the mean velocity with respect to x; and
x> do not change in x1, i.e.

affk _ Uy
- da (4.8)
aU; _ Uy
X,  9xp’
the production term can be rewritten as
oU; oU; oU; aU;
P ~ ~ ] ~ y J
Ri; = —(iju1) a—m — {wilt) 25— (i) a—xz = {uiiz) 2. (4.9)

In addition, the derivative of the mean velocity in the streamwise direction is zero for
channel flows due to the streamwise homogeneity, and is negligible in the ZPG TBLs.
Therefore, the production term is simplified for the canonical flow cases as

- aU; . 0U;
Rl = —(ijun) — — (ujinn) —2. (4.10)
0xo 0xp
The pressure term in (4.2) is divided into two terms,
Rl = R+ R, 4.11)

where Rl‘.Jl. and Rfj are pressure transport and pressure-strain, respectively. By taking

advantage of the relationships and mathematical manipulations introduced previously, the

pressure-strain term is written for the wall-parallel, R}, ,, and wall-normal, R;z, directions

(0 70'As
948 AS5-14
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as

R3a=—<—p%+ﬁ—>, =13, 4.12)

5= L ((p2u %y (4.13)
2= p8x2+p85c2 . .

There are several ways to perform the decomposition of the pressure term, but we chose
this one for two reasons. First, we want to be consistent within the paper, because the
spectral distributions of the channel flow that we use in the paper are obtained using the
same decomposition as in Lee & Moser (2019). The other reason is that this decomposition
is consistent with many studies in the literature (Mansour, Kim & Moin 1988; Mizuno
2016) and, more importantly, with the Reynolds stress transport equation as written in
(3.1) when ry and r, tend to zero. In other words, by integrating the spectral distributions of
these terms over the wavenumbers, the budget of the Reynolds stresses, which is discussed
in the previous section, is obtained.

The spectral distributions of production and pressure-strain are obtained by performing
the Fourier transform of each term with respect to r, and r;. In the paper, 1-D spectra are
computed as functions of wavenumber component k, or k;, and 2-D spectra as functions of
ky and k,. The derivation above is for the 2-D spectra, but a similar derivation is performed,
albeit not given here, for the 1-D spectra.

We utilize temporal data to obtain the spectra in k,. We invoke Taylor’s frozen
turbulence hypothesis to convert frequency into streamwise wavenumber

_ 2nf

k
X U,

, (4.14)

where f is the sampling frequency, and U, is the convection velocity, which is taken to be
the local mean velocity.

In the paper, the spectra are always plotted as pre-multiplied by the wavenumbers, and
the wavenumber axes are always in logarithmic scale. For 1-D spectra, the wall-normal
axis is plotted in linear scale for the outer layer and logarithmic scale for the inner layer,
so that both layers are examined in a more detailed, clear way.

The premultiplied 1-D spectral distributions of energy (shaded), production (red) and
pressure-strain (purple) as functions of y and wavelength components A, and A, for all
components of the Reynolds stress tensor are presented using friction-viscous scales in
figure 5. In addition, the outer-scaled spectral distributions are given in figure 18 in
Appendix B. The 1-D pressure-strain spectra are available only for the APG TBL cases.

Furthermore, (v?) production is plotted only for the APG TBL cases due to the fact that it
is zero for channel flows and negligible for ZPG TBLs.

4.2. Energy
We start by discussing the energy spectra (shaded contours) of the channel flow and ZPG
TBLs. The spectral distribution of energy shows that energy-carrying structures are found
mainly in the inner layer in the channel flow and ZPG TBLs, with some activity in the outer
layer. A strong peak is located at A7 & 120 and A & 1000 in the inner layer for the (u?)
spectra. It is associated with the well-known streamwise streaks in the near-wall region
of canonical wall-bounded flows. As for the outer layer, the (u?) and (uv) distributions
show an outer peak in the spanwise spectra. The streamwise spectra of CH and ZPGb do
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Figure 5. The premultiplied 1-D energy (shaded contours), production (red contours) and pressure-strain
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not exhibit a clear outer peak because Re; is not high enough. Channel flows and ZPG
TBLs with higher Re; have a distinct outer peak in their streamwise spectra (Hutchins &
Marusic 2007b; Mathis et al. 2009). This increased outer layer activity in canonical flows,
as mentioned before, is attributed to the elongated meandering motions in the outer layer
(Marusic et al. 2010a).

The energy spectra in the small-defect case of the APG TBL, APG1, demonstrate an
intense turbulent activity in both inner and outer layers. The relative importance of the
turbulent activity in the outer layer with respect to the inner layer is higher in APG1 than
in the canonical flows. As streamwise and spanwise spectra show, energetic (1?)-carrying
structures are more streamwise elongated and streaky in the inner layer than in the outer
layer, and the most energetic outer layer structures are slightly longer in the streamwise
direction. The situation is different for the other Reynolds stress components. Even though
there is energy in the inner layer, the inner peak vanishes in the streamwise and spanwise
spectra. In the outer layer, whereas (uv)-carrying structures have streamwise lengths

similar to (uz)—carrying ones, the (v?)- and (wz)—carrying structures are shorter. Similar
findings were reported for channel flows by Jiménez & Hoyas (2008).

The most energetic (12) structures in the inner layer of APG1 are at y© = 15 with /l;' of
120 and A} of approximately 650, as seen from figure 5. The spanwise wavelength and the
wall-normal location are the same as in the channel flow and the ZPG TBL. This indicates
that the wall-normal position and width of the most energetic structures are not affected by
relatively small velocity defects. Similar values for /lgL and y* of the inner peak have been
reported in the literature for non-equilibrium (Tanarro er al. 2020) and near-equilibrium
(Lee 2017; Bobke et al. 2017) APG TBL cases with small velocity defect, with shape
factors varying from 1.42 to 1.74. Despite the similarity of the wall-normal position and
Aj of the inner peak, its streamwise wavelength is smaller in APG1 than in the canonical
cases, where the inner peak is at A} = 800 in CH and approximately at 1000 in ZPGb.
There are conflicting findings about A} of the inner peak in APG TBLs in the literature. A
reduction of A} like in the present APG TBL has been reported by Sanmiguel Vila er al.
(2020a) in their TBL cases, with shape factors varying from 1.31 to 1.51 as the defect
increases. However, no decrease was observed by Harun et al. (2013) in their APG TBL
case, with a shape factor of 1.41 with respect to their ZPG and favourable pressure gradient
TBLs.

In the large-defect case, APG3, figure 5 shows that turbulent activity becomes much
weaker in the inner layer than in the outer layer. The inner peak in the energy spectra of
(u?) vanishes completely. Furthermore, the shape of the spectra of (u?) is different from the
other flow cases. For instance, the energy found in the inner layer is at large wavelengths.
This suggests that the large-scale outer-layer structures might strongly influence the inner
layer in the large-defect case. Although not seen clearly in figures 5 and 18, this near-wall
footprint of the large-scale structures actually appears to increase from ZPG to APG3,
as the line representation of 1-D spectra reveals (not shown here). Harun et al. (2013)
have reported that the near-wall footprint increases as pressure gradient is increased from
favourable to adverse — note that they considered only a small-defect APG case comparable
to APGI. For the other Reynolds stress components, the trend of the inner layer losing its
importance with respect to the outer layer continues as the defect increases from APGI to
APG3.

That the outer-layer large-scale structures become dominant in large-defect APG TBLs
was also reported for equilibrium flows. Lee (2017) showed that the inner peak of the
spanwise energy spectra of (1?) is absent in an equilibrium APG TBL with H = 1.98,
whereas it still exists when the shape factor is 1.76. Moreover, Kitsios et al. (2017) also
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showed that the (1) spectra do not exhibit an inner peak in their near-equilibrium APG
TBL case with a large velocity defect (H = 2.35). These studies suggest that the general
trend of the spectral behaviour of (u?)-carrying structures are similar in large-defect APG
TBLs regardless of the upstream history of flow.

The structures carrying most of the Reynolds stresses are found predominantly in the
outer layer in APG3, in the middle of the boundary layer, as shown in more detail in
figure 18 in Appendix B. The situation is the same for all components. Regarding their
shape, (u?)-carrying structures are more streamwise elongated than those carrying the
other components. In addition, (1?)-carrying structures are the longest structures with a A,
of 26. The most energetic structures have approximately the same A,, namely, 0.758, except

(v?)-carrying ones with A, = 0.258. The prominent distinction between APG3 and APG1
is that energetic structures are located in y/§ = 0.4-0.6 in APG3 and y/§ = 0.15-0.3 in
APG1. Moreover, the shape of the 1-D energy spectra of (u?) is different between the two
defect cases, which happens due to the intense inner-layer activity in APG1.

To give a more complete picture of spectral properties of the energetic structures,
figure 6 presents the outer 2-D spectral distributions of energy for CH, APG1 and APG3 as
functions of A,/§ and A;/§ at several wall-normal locations (2-D spectra are not available
for the ZPG TBL). The (u?)- and (uv)-carrying structures, especially the most energetic
ones, are streaky and streamwise elongated in all flows, but they are more streamwise
elongated in the channel flow than in the APG TBL cases. For instance, the peak for (u?)
spectra is at 4, & 7§ — 9§ in channel flows, but it is at A, ~ 26 in the APG TBL cases.
This difference can be attributed to the presence of very-large-scale structures in channel
flows, which become important in high-Reynolds-number flows (Marusic et al. 20100).
In contrast, (v?)- and (w?)-carrying structures are not streamwise elongated. The highest
contours of the energy spectra for (v?) and (w?) tend to follow the linear relationship
A; ~ Ay in all cases, even though structures are smaller in the APG TBL cases.

The energetic structures do not vary with y in the outer layer as the defect increases. In
the channel flow, the smallest defect case, the shapes of the 2-D spectra remain similar as y
increases, but the sizes of the structures increase with respect to § for all components. The
situation is similar in APG1, but with smaller size variations. In the large-defect case, the
shapes of the 2-D spectra and the sizes of the structures remain almost identical starting
from y/§ = 0.1. This trend happens probably because of increasing outer-layer activity as
the mean shear increases in the outer layer. As the outer-layer large-scale structures start
dominating the flow and the effect of the inner layer decreases, the structures that carry
most of the energy have very similar spectral features in the outer layer.

Regarding the absolute levels of the spectral distributions (not shown in figure 5 since
relative levels are used), they increase when they are normalized with u; and U,. This is
consistent with the change of Reynolds stress profiles levels with increasing velocity defect
as discussed in § 3.2.

4.3. Production
After discussing the energy spectra, we continue with production spectra to understand the
behaviour of turbulence-producing structures. The (u?) and (v?) productions are discussed
separately since the former is a source term and the latter is a sink term that is zero in
channel flows and negligible in ZPG TBLs. The (1) production spectra of figure 5 reflect
the changes that were already observed with the production profiles of figure 4. Production
resides mostly in the inner layer in the case of the canonical flows, in both layers for APG1,
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Figure 6. The premultiplied 2-D energy spectra of CH (first column), APG1 (second column) and APG3 (third
column) as functions of A,/§ and A,/§ for y/§ = [0.1 0.15 0.3 0.4 0.5]. The colour is darker as y increases.
The rows are for (u?), (v2), (w?), and (uv). The contour levels are [0.1 0.5 0.8] of the maxima of spectra at
each wall-normal position. The black solid and dashed lines indicate A, = A; and A, ; = &, respectively; the

red lines indicate A, ~ )15/2.

and mostly in the outer region for APG3. The detailed characteristics of the («?) production
spectra in the inner and outer layers are discussed at length in § 5.

Figure 7 shows the premultiplied 2-D production spectra for the (1?) component as a
function of A,/8 and A;/8 for several wall-normal locations of CH, APG1 and APGS3.
Note that the (uv) spectra (figure 6, bottom row) and the (u?) production spectra have
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Figure 7. The premultiplied 2-D production spectra of (u?) of CH (first column), APG1 (second column) and
APGS3 (third column) as functions of A;/8 and A,/§ for y/§ = [0.1 0.15 0.3 0.4 0.5]. The colour is darker as
y increases. The contour levels are [0.1 0.5 0.9] of the maxima of spectra at each wall-normal position. The
straight and dashed lines indicate A, = A; and A, ; = §, respectively.

similar features because the spectral density function of (xv) is dominant in the production
spectrum. This can be deduced from the two-point-correlation production term of (4.9)
with i =j = 1. The resemblance is especially strong in the case of the channel flow
where production involving dU/dx is zero (4.10). The production structures are streaky
and streamwise elongated in all cases. The shapes of the spectra are similar in all
cases, but with smaller structures for the APG TBLs. Whereas the streamwise—spanwise
characteristics change with y in the channel flow and APG1 to a lesser extent, they remain
the same in the large-defect case, as happens for the energy spectra of figure 6.

Regarding (v?) production, as was seen from the profiles in figure 4, it is zero in
channel flow, negligible in the ZPG TBL cases, and negative in the APG TBL cases.
It is found in the outer layer of both APG TBL cases, and it becomes more important
with increasing velocity defect, as was mentioned previously. The spectral distributions
of figure 5 show that the (v2) production spectra are very similar to the (v?) energy
spectra.

4.4, Inter-component energy transfer

After analysing the turbulence-producing structures, the pressure-strain spectra, as shown
in figure 5 with purple contours, are analysed to understand the characteristics of
structures that are active in inter-component energy transfer. Note that 1-D pressure-strain
spectra are not available for the canonical flows. However, 2-D pressure-strain spectra are
accessible for the channel flow, and are discussed further below. As discussed previously
in § 3, pressure-strain governs the inter-component energy transfer. Since turbulence is
transferred mostly from (u?) to (v2) and (w?), the (4?) component of the pressure-strain
is negative, and the other components are positive throughout the boundary layer,
excluding the very-near-wall region where the (v*) component is negative for both defect
cases.

In the inner layer, as streamwise and spanwise spectra (figure 5) present, most of the
inter-component energy transfer takes place with small-scale structures. In the small-defect
case, (u?) transfers energy from structures wider than those that receive it for (v?) and that
are above those that receive it for (w?). The pressure-strain structures’ lengths are shorter
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than most energetic structures, and the structures are less streaky. The pressure-strain
spectra are qualitatively similar in the small-defect case of the APG TBL and the channel
flow of Lee & Moser (2019). In the large-defect case, there is still some pressure-strain
in the inner layer, as happens with production, even though most of the inter-component
energy transfer takes place in the outer layer.

Indeed, the inter-component energy transfer becomes dominant in the outer layer and
is driven by large-scale structures as the mean shear increases in the outer layer, as can
be seen in figure 5. This is consistent with the behaviour of energetic and production
structures. The energy is transferred from (u?) to (v?) and (w?) at similar wall-normal
positions for all components, unlike what happens in the inner layer. Whereas the spanwise
wavelength of energy transferring outer layer (u?) and (w?) structures are the same, (v?)
structures are slightly narrower. The spanwise wavelengths and wall-normal positions
where most of the energy transfer takes place are like those of (#?) production. Therefore,
the outer turbulent energy is both produced and transferred to other components by
structures of similar spanwise sizes and at similar locations. In the case of the streamwise
length of the dominant pressure-strain structures, it is shorter than that of energetic
structures for (1%) and almost the same for (v?) and (w?).

In the outer region, narrow structures (4, < 0.3§ in the small-defect case, and A, <
0.156 in the large-defect case) transfer energy predominantly from () to (v?). In contrast,
there is no such distinction between (v2) and (w?) for wide structures. Both (v2) and (w?)
receive a similar amount of energy, although the levels are not given in figure 5. That
energy transfer at small scale is from (u?) to (v?) is also consistent with the fact that the

energetic (v?) structures have shorter spanwise wavelengths than the energetic (1?) and
(w?) structures, as discussed before.

Figure 8 presents the 2-D spectral distribution of pressure-strain for channel flow, APG1
and APG3 as a function of A,/§ and A,/8 for several wall-normal positions in the outer
region. The structures’ size notably increases in the channel flow as y increases. It increases
for APGI too, but the increase is much milder. In contrast, the spectra do not vary for
APG3 throughout the outer layer, in agreement with the energy and production spectra.
The shape of the spectra remains qualitatively similar for each component regardless of
the velocity defect. This shows that the spectral features of the pressure-strain structures
are not significantly affected by the velocity defect, but their width and length slightly
decrease with increasing velocity defect.

5. Effects of the velocity defect on inner and outer layer turbulence

To better understand the effects of the velocity defect on energetic, production and
pressure-strain structures, we now investigate the spectral distributions separately in the
inner and outer layers because, as mentioned above, an intense activity in one layer hides
what is happening in the other layer. Therefore, spectral distributions are now plotted
separately for each layer using their respective maxima. Furthermore, we plot spectral
distributions of energy, production and pressure-strain together because we are interested
in relative size and y-positions of structures with respect to each other.

Regarding the definition of the inner and outer layers, there is no commonly accepted
definition for APG TBLs (Maciel et al. 2018). For the current study, we intend to separate
the inner and outer peaks when they exist. For this reason, we focus on the region 0 <
yt < 60 for the inner layer and 0.1 < y/8 < 1 for the outer region. Nevertheless, it is
essential to state that these ranges may be specific to the flows studied here.
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Figure 8. The premultiplied 2-D pressure-strain spectra of CH (first column), APG1 (second column) and
APG3 (third column) as functions of A,/§ and A,/8 for y/§ = [0.1 0.15 0.3 0.4 0.5]. The colour is darker as

y increases. The rows are (1%), (v%) and (w?). The contour levels are [0.1 0.5 0.9] of the maxima of spectra at
each wall-normal position. The straight and dashed lines indicate A, = A, and A, ; = §, respectively.

5.1. Inner layer
First, we investigate the inner layer of the small-defect case and compare it with the
inner layers of the ZPG TBLs and channel flow. Figures 9(a,d) show the inner-scaled
(u?) and (u?) production profiles in the inner layer. The parameters are normalized with

their maximum in the inner layer. The profiles of (u?) collapse perfectly for CH and ZPGa.
There is a minor mismatch for ZPGb due to a decrease in levels, as explained before. The
profile of APG1 is also very similar to the profiles of the canonical flows. The peak is at

y* = 15 in all cases. Regarding the (#?) production profiles (figure 9d), the shape is very
similar in all cases. The CH and ZPGa profiles collapse perfectly again, but as the defect
increases, the wall-normal position of the peak location decreases slightly from y* = 11
in canonical flows to y* = 9 in APGI.

Figures 9(b,c.e,f) present the inner-scaled energy and production spectra of (4?) as a
function of A1 and y™ for the same flows. Like the profiles of (u?) and (u?) production,
the spectra of the three flows are similar in friction-viscous units, the most noticeable

948 A5-22


https://doi.org/10.1017/jfm.2022.679

https://doi.org/10.1017/jfm.2022.679 Published online by Cambridge University Press

Production and inter-component redistribution of turbulence in APG TBL

(@)

102

|

| | |

| | |

| | |
02 04 06 08 1.0 103 102 103
TP /max(IT") Ar At

10° ‘

Figure 9. The (a) (u?) and (d) (u?) production profiles in the inner layer as functions of y. The levels are
normalized with the maximum of each profile. The premultiplied (b,c) energy and (e, f) production spectra of

(u?) as functions of y* and (b,e) A and (c,f) A for APG1, the ZPG TBLs and the channel flow. The contour
levels are [0.5 0.9] of the maxima of spectra. Colours and symbol as in table 1.

difference being shorter streamwise wavelengths for APGI. The difference in streamwise
wavelength is more pronounced for the production spectra (figure 9 f); the production peak
is at A ~ 550 for the channel flow and A} ~ 300 for APGI. For the spanwise spectra
(figures 9b,e), the inner peak and contours scale well for the energy and production spectra,
although the production peak is located slightly below for APG1. The aforementioned
similarities in profiles and spectra suggest that the (u%)-carrying and production structures
are not affected significantly by a small increase in the velocity defect, but they are
definitely shortened.

After discussing the similarities between the canonical flows and the small-defect case,
we compare the small- and large-defect cases of the APG TBL in the inner layer, this time
with the possibility of also comparing the pressure-strain spectra. Figure 10 presents the
energy, production and pressure-strain spectra for all normal components of the Reynolds
stress tensor for APG1 and APG3. It is important to state that the spectra shown in figure 10
are the same ones as in figure 5. However, in figure 10, the outer layer is hidden, and the
spectra are plotted with their maximum in the inner layer to examine the inner layer in
more detail, whereas figure 5 shows the spectra for the whole boundary layer. The most
prominent difference between APG3 and APG1 is that the inner peak in the energy spectra
of (u?) vanishes completely in the large-defect case. This is rather important because the

inner peak of (u?) is partly the signature of the streaks that are an essential part of the
near-wall cycle. In contrast, both production and pressure-strain spectral distributions of
(u?) for APG3 exhibit an inner peak, although the peak is not clear because the spectra are
noisy in the large-defect case. As far as the shape is concerned, the shapes of production

and pressure-strain spectra of (1*) are similar in both APG TBL cases. Moreover, the
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relative positions and dimensions of the production and pressure-strain structures do not
change signiﬁcantly with increasing velocity defect. The main difference between the
defect cases 1s the y*-position and A of the inner peak of production and pressure-strain
spectra of (u 2y In APG3, the structures are closer to the wall, and their Al and /lj are
smaller than in APG1. As mentioned previously, this trend is expected because of the
use of friction-viscous scales (Maciel et al. 2018). Nonetheless, the fact that the spectra
remain similar indicates that the friction-viscous length is still relevant as a length scale
for production and pressure-strain structures, at least for APG TBLs up to H = 2.6, even
if there is no significant energy in the inner layer, as shown before, and structures become
irregular and disorganized (Maciel et al. 2017b). However, the friction-viscous length
cannot be a legitimate length scale in larger-defect APG TBLs considering that the friction
velocity goes to zero at separation.

To complete the picture, figure 11 presents the 2-D spectra of energy, production and
pressure-strain for the channel flow, APG1, and APG3 as a function of /lj and /lj at
y*t & 13, a position close to the peaks of energy and production of (u?). Both energetic

and production structures of (1?) are streamwise elongated, but production structures are
shorter and narrower than most energetic ones for the channel flow and the small-defect

case. In addition, pressure-strain structures of («?) are much shorter and less streamwise
elongated than production and energetic structures. In the large-defect case, as discussed
earlier, the spectra do not show any signs of the existence of streaks that are characteristic
of the near-wall cycle. Whereas the peak of the energy spectrum is at 1" = 700-800 and
A} =120 for channel flow and APG1, it is at approximately ;" = 1000 and A} = 400
for APG3. The increase in size could be due to the fact that the outer-layer large-scale
wide structures dominate the inner layer. This is consistent with the previous discussions
about outer-layer structures’ footprints (figure 5) and the fact that 2-D energy spectra are
much more similar in APG3 in the wall-normal direction (figure 6). On the other hand,
the production and pressure-strain structures of (1?) are shorter in APG3, but they have
similar relative sizes as in CH and APGI. Furthermore, the shapes of the production and
pressure-strain spectra in all cases are alike.

As for the (v?) component, the pressure-strain spectra have a distinctive shape in all
flows. They have a second peak, weaker than the primary peak, although the peak is not
clear in APG3 due to the fact that the spectrum is noisy. This peak is at the same A}
as the primary peak, but ﬂj is considerably higher (/1;|r ~ 300) than in the primary peak
(/lj ~ 50). The secondary peak might indicate that two types of pressure-strain structures

play a role in receiving energy for (v2) in the inner layer. The primary peak’s A decreases
with increasing velocity defect from A7 ~ 300 to A} ~ 150, while its A} increases very
mildly.

The spectra for (w?) are alike for CH and APG1 but are different in APG3. The shapes of
the spectra and the sizes of the structures do not change considerably as the defect increases
from channel flow to APG1. The energetic structures are bigger than the pressure-strain
structures. However, the energy spectrum for (w?) become drastically different for APG3,
as happens for the (1) spectrum. The (w?)-carrying structures are much broader in APG3
than in the others, but their length is similar. The peak of the energy spectra is at 17 ~
150 for the channel flow and APGI1, but at /l;r ~ 350 in APG3. On the other hand, the

pressure-strain structures behave in a similar fashion for (v 2y and (w?). The peak of the
pressure-strain spectrum is at /l+ ~ 100, but A decreases from approximately 200 to 80
from channel flow to APG3. ThlS behaviour is cons1derably different from the behaviour
of the most energetic (w?)-carrying structures.
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Figure 10. The premultiplied energy (shaded), production (red) and pressure-strain (purple) spectra as
functions of (a) ¥ and (b) A, and y* for (u?) (first column), (v?) (second column) and (w?) (third column).
In each panel, the rows are for APG1 (top) and APG3 (bottom), respectively. The contour levels are [0.1 0.3 0.5
0.7 0.9] of the maxima of spectra in the inner layer. The dashed contours indicate negative values. The dashed
lines denote y*© = 10 and A = 100, 1000.

Energy Pres-str. |

As discussed above, the velocity defect does not change significantly the spectral
characteristics of the inner layer’s production and pressure-strain structures. This suggests
that the well-known near-wall cycle of the canonical flows, or a turbulent regeneration
mechanism with similar features to the near-wall cycle, exists in APG TBLs with small and
large velocity defect. Despite the similarity of production and pressure-strain structures,
the signature of inner layer streaks, which is a crucial part of the near-wall cycle, does not
exist in the (u?) spectra of the large-defect case, as shown in figures 10 and 11. The lack of
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Figure 11. The premultiplied 2-D energy (shaded), production (red) and pressure-strain (purple) spectra at
yt & 13. The columns are the channel flow, APG1 and APG3. The rows are («2), (v2), and (w?). The contour
levels are [0.1 0.5 0.9] of the maxima of spectra. The straight and dashed lines indicate A, = A, and 4] = 100,
1000 and A} = 100, 1000, respectively.

this signature might be explained by large-scale outer-layer structures dominating the inner
layer, as mentioned above. It is possible that the footprints of these outer-layer structures
hide the signature of the inner-layer streaks in the energy spectra. A remarkable outcome
emerging from this hypothesis is that the inner-layer streaks might be able to play their part
in the near-wall cycle although the inner layer is dominated by much bigger structures.

5.2. Outer layer

We present now a similar analysis for the outer layer. Figure 12 displays the energy,
production and pressure-strain spectra of all normal components of the Reynolds stress
tensor for the small- and large-defect cases using a linear scale for y to emphasize the
outer region. Moreover, the inner layer (y/§ < 0.1) is masked to focus on the outer layer.
Some spectral characteristics of the outer layer production and pressure-strain structures
remain similar with increasing velocity defect even though the shapes of the spectra are
different. For the (1?) component, the production and pressure-strain structures are at
similar y-locations as the most energetic structures. Whereas production structures have a
similar size as the most energetic structures, pressure-strain structures are slightly narrower
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Figure 12. The premultiplied energy (shaded), production (red) and pressure-strain (purple) spectra as

functions of (a) A,/ and (b) A,/é and y/§ for (u?) (first column), (v2) (second column) and (w?) (third
column). In each panel, the rows are for APG1 (top) and APG3 (bottom), respectively. The contour levels
are [0.1 0.3 0.5 0.7 0.9] of the maxima of spectra in the outer layer. The dashed contours indicate negative
values. The dashed lines denote y/5 = 0.1 and 4/8 = 0.1, 1. The blue lines represent the coherence spectrum
with contour levels [0.05 0.1 0.2 0.3].

and considerably shorter than them in both APG TBL cases. Regarding the other Reynolds
stress components, the pressure-strain structures have a similar size as the most energetic
structures for (v?), and are slightly shorter and narrower for (w?) than the most energetic
ones. Again, these relative sizes between energetic and pressure-strain structures remain
similar in both defect cases.

To examine the wall-attachment of energetic outer-layer structures, we analyse the
linear coherence spectrum, which gives the coherence level between two positions in the
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boundary layer for a given wavelength (Baars, Hutchins & Marusic 2017; Baars & Marusic
2020). Wall-attached structures are defined as structures whose minimum wall-normal
position is in the vicinity of the wall. The coherence spectrum is computed as

[((ys A2) i (s ) 1P
(la(y; 2P (1alyr; 1%
where u(y, A;) is the Fourier transform of the u signal at the wall-normal position y
with respect to k, and y, is the reference location where the coherency is considered,
which is y© = 2 in the current case. The asterisk indicates the complex conjugate, and
|-| denotes the modulus. Figure 12(a) presents the coherence spectrum for (u?). The
coherence spectrum shows that the energetic structures in the lower part of the outer layer
of APGI1 are correlated to some extent with the near-wall region, albeit the correlation
levels are low. The results for APG1 are very similar to the results of Tanarro et al. (2020)
where coherence is also examined for two small-defect cases using the same reference
y*, although the Reynolds numbers and shape factors between their cases and APG1 are
slightly different from each other. In contrast, coherence between the outer peak region
of the energy spectrum and the near-wall region is almost zero in APG3. These findings
regarding the coherence spectrum indicate that the outer-layer energetic structures are less
wall-attached in APG3 than in APGI.

In connection with wall attachment, self-similarity is another important aspect of
outer-layer structures. Townsend (1976) hypothesized that the logarithmic region is
populated with self-similar wall-attached eddies in wall-bounded flows, where self-similar
structures are defined as structures with constant energy density and size that is
proportional to their wall-normal distance. A distinctive feature of self-similar structures
is the y-scaling of 1-D Reynolds shear stress cospectra, which shows that the structures’
size becomes invariant when it is scaled with y (Baidya et al. 2017; Deshpande, Monty
& Marusic 2021). The (u?) and (v?) spectra do not exhibit pure y-scaling because
non-self-similar attached/detached structures contaminate the spectra. We compare the
1-D cospectra of (uv) of the APG TBL cases and the channel flow case of Lee &
Moser (2015) at Re; = 8§ = 543 (not the one referred to as CH throughout the paper) in
figure 13. We choose a channel flow case with a Reynolds number similar to that of APG1
instead of the high-Reynolds-number case that we use throughout the paper to eliminate
the effect of the Reynolds number (this is discussed further in Appendix C). Figure 13
shows the cospectra with wall-scaling and §-scaling for APG1, APG3 and the channel
flow database at several wall-normal positions. For the channel flow and APGI, the range
of the wall-normal locations corresponds to the whole span of the logarithmic layer in the
case of the ZPG TBL. The lower limit is y* = 2.6+4/8+ (Klewicki, Fife & Wei 2009), and
the upper limit is 0.26". In the case of APG3, we use the same wall-normal locations as
APGI1 because the layer structure of the boundary layer is not known for the large-defect
case, and the inner layer would not scale with friction-viscous scales.

Figure 13(a) shows that the spanwise cospectra of the channel flow and APG1 scale well
with y in the logarithmic region. Regarding the streamwise cospectra, §-scaling is better
than y-scaling for these two cases. This can be attributed to the low Reynolds number
of these flows, as demonstrated in Appendix C. Figure 19 clearly shows that at higher
Reynolds numbers, the streamwise cospectra of the channel flow scale with y and not with
8. The fact that the spanwise cospectra scale with y in APG1 suggests that self-similar
structures are present in APG1 as in canonical flows.

In the case of APG3, in contrast to what happens in the channel flow case and
APG1, y does not scale the spanwise cospectra. Moreover, both the spanwise and
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Figure 13. The premultiplied 1-D cospectra of (uv) for the channel flow case of Lee & Moser (2015) at
Re; = 543 (left), APG1 (middle) and APG3 (right) as a function of (a) A;, (b) A, at several y-positions.
The wavelength is normalized with the wall-normal distance (top row in each panel) and § (bottom row in each
panel). The spectra are normalized with local (uv). The colour becomes lighter as y increases.

streamwise cospectra of APG3 scale perfectly with §. In addition, the 2-D spectra of
APG3 (figures 6-8) demonstrate that wall distance does not scale the structures found
in the lower part of the outer layer. The streamwise and spanwise wavelengths of the outer
layer energetic, production and pressure-strain structures are almost the same regardless of
the wall distance in the outer layer. These observations indicate that the structures do not
show any self-similar characteristics, in Townsend’s sense, in the large-defect APG TBL
case as far as 1-D and 2-D spectral distributions are concerned.
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Another indicator of self-similarity is the relationship between A, and A;. Self-similar
structures should have a linear relationship A, ~ A, since this would imply that the ratio
of their streamwise length to spanwise length is constant regardless of their distance to the
wall. For this, we examine the 2-D spectra given in figure 6, but it is important to state that
only the first two y-positions shown in the figure are in the logarithmic region where we
expect to see self-similar behaviour. From the energy spectra of figure 6, it is found that
only the highest energy contours of the (v?) and (w?) spectra follow a linear relationship
of the form A,/A; ~ 1. Similar results were reported in the literature for channel flows
(Jiménez & Hoyas 2008). In contrast, (u?) and (uv) spectra do not exhibit a linear A, ~ A,

relationship. The outer contours of the 2-D spectra for (1?) and (uv) follow A, ~ /l}c/ % in
all cases, which is a failure of self-similarity. The square-root relationship for the outer
contours of the 2-D spectra of (u?) was reported several times for canonical flows or
small-defect APG TBLs (Del Alamo et al. 2004; Chandran et al. 2017; Tanarro et al. 2020).
Chandran et al. (2017) demonstrated that this behaviour occurs when the Reynolds number
is low. They found that the (1?) spectra of the ZPG TBL exhibit the linear relationship
A; ~ A, at sufficiently high Reynolds number.

The findings about coherency and scaling of the spectra suggest that the outer layer of
the large-defect case is populated with detached structures not affected by the wall. The
presence of wall-detached structures in APG TBLs was suggested by Perry & Marusic
(1995) in their attached-eddy model. Moreover, it was demonstrated that the wall-attached
structures are weaker and less numerous in large-defect APG TBLs than in ZPG TBLs
(Maciel et al. 2017a), and the contribution of wall-detached structures to Reynolds stresses
increases in APG TBLs (Maciel et al. 2017a; Yoon et al. 2020). Also, it has been reported
that the wall-detached structures in the outer layer are much more independent of the wall
in channel flows or APG TBLs than the wall-attached ones, and are similar to structures in
homogeneous shear turbulence (Dong et al. 2017; Gungor et al. 2020). Therefore, it can be
concluded that the outer layer of the large-defect case is dominated by structures that are
not affected significantly by the wall, which is not the case in the small-defect case. The
dominance of wall-detached structures also suggests that the outer layers of APG TBLs
could behave like free shear flows (Gungor et al. 2016).

Despite the differences between the outer layers of the small- and large-defect cases
discussed above, many spectral characteristics of production and pressure-strain structures
remain similar regardless of the velocity defect. Figures 14—16 show the 2-D spectra of
energy, production and pressure-strain for the channel flow, APG1 and APG3 at y/§ =
0.15 and 0.50. These two wall-normal positions are the positions with significant energy
and energy transfer in the case of APGI1 (y/§ = 0.15) and APG3 (y/§ = 0.50). The 2-D
spectra of energy, production and pressure-strain have strikingly similar characteristics
in all flow cases at both wall-normal positions. Their shapes, wavelength aspect ratios
and relative sizes do not change significantly with velocity defect. Whereas the size of
structures remains almost unchanged at y/5 = 0.15 in all flow cases, all structures decrease
in size with increasing velocity defect at y/§ = 0.50. This decrease of size in the outer flow
might be due to the decreasing presence of wall-attached structures. Indeed, at that height,
wall-attached structures are big since they scale with y.

Even though the dominant dynamic role in the outer layer may shift from wall-attached
to wall-detached structures as the defect increases, the striking spectral similarities
between all flows shown in figures 14—16 suggest that the production and inter-component
energy transfer mechanisms might still be the same. This is consistent with the observation
by Dong et al. (2017) that the fact that dynamically relevant structures are attached to the
wall in channel flows is not the reason for their dynamic relevance. Wall attachment could
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Figure 14. The premultiplied 2-D energy spectra of CH (green), APG1 (blue) and APG3 (black) at (a)
y/8 = 0.15 and (b) y/8 = 0.5. The columns are (u2), (v2) and (w?). The contour levels are [0.1 0.5 0.8] of
the maxima of spectra.
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Figure 15. The premultiplied 2-D production spectra of (u2) at (@) y/8 = 0.15 and (b) y/8 = 0.5, for CH
(green), APG1 (blue) and APG3 (black). The contour levels are [0.1 0.5 0.8] of the maxima of spectra.

only be a consequence of their size. Therefore, in the outer region of wall-bounded flows,
the energy transfer mechanisms might remain the same no matter if dynamically relevant
structures are attached to or detached from the wall.

The reason for the increase of relative importance of the outer layer with respect to the
inner layer might be the change in the mean shear since the spectral analysis suggests
that the production mechanisms remain similar in all the considered flows. As shown
previously with figures 2(c) and 2(d), with increasing velocity defect, mean shear increases
significantly in the outer layer (normalized with the outer scales), while it remains fairly
constant in the inner layer (normalized with the inner scales) in comparison. Consistently
with this trend, the outer-layer turbulence becomes dominant as the mean shear in the outer
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Figure 16. The premultiplied 2-D pressure-strain spectra of CH (green), APG1 (blue) and APG3 (black) at (a)
y/8 = 0.15 and (b) y/8 = 0.5. The columns are (#2), (v2) and (w?). The contour levels are [0.1 0.5 0.8] of the
maxima of spectra.

layer increases. This trend becomes more apparent as the defect becomes large. Moreover,
the present analysis shows that none of the cases examined here exhibits a peak in the (v?)
spectra with a frequency corresponding to a certain Strouhal number that would signal the
presence of inflection type instabilities, although the existence of such types of instabilities
in APG TBLs was reported (Elsberry er al. 2000). This suggests that these instability
mechanisms do not affect the flow importantly or exist at all. The magnitude of the mean
shear appears to be the main reason for the increase in relative importance of the outer
layer activity in APG TBLs.

6. Conclusions

In the current study, we have examined production and redistribution energy transfer
mechanisms and coherent structures that are active in these mechanisms or carry energy
in APG TBLs, and compared them with those of channel flows and ZPG TBLs. For
this purpose, we have utilized the spectral distributions of energy, production and
pressure-strain of the Reynolds stress tensor components.

The results show that spectral features of Reynolds stresses, production and
pressure-strain are similar in the inner layer of APG TBLs and canonical wall-bounded
flows. The inner-scaled wall-normal location of the well-known inner peak of (u?)
is the same in the small-defect APG TBL case and canonical wall-bounded flows.
Moreover, energetic and production structures in the inner layer have comparable spanwise
wavelengths, although the streamwise length of structures is shorter in the APG TBL case
than in canonical flows. When the outer layer is masked, the shapes of the production
and pressure-strain spectra in the inner layer are very similar in the small- and large-defect

cases, although there is no inner peak for the energy spectra of (1?) in the large-defect case.
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In addition, the 2-D spectra of production and pressure-strain in the inner layer show
similar streamwise—spanwise characteristics in the channel flow and both APG TBL cases.
The near-wall cycle, or another turbulence regeneration mechanism that works in a
similar way to the near-wall cycle, appears to exist in the large-defect case. Interestingly,
it would be present while the characteristic streaks are not the dominant structures
considering their signature is absent in the energy spectra. This can be possible in two
ways. The first is that this regeneration mechanism does not need the streaks, which is
rather unlikely considering the overall similarities between the flow cases. The other is that
the big outer-layer structures dominate the inner layer in the large-defect case in a way that
the spectra do not exhibit the streak-related inner peak, but the streaks would nonetheless
be present. Interestingly, this would mean that the streaks continue playing their role in
turbulence regeneration even if they are amid bigger and more energetic structures.

In the outer region, the wall-normal distributions of energy, production and
pressure-strain spectra are different between canonical flows and APG TBLs with small
and large velocity defects. The reason for this difference is that the relative intensity of
the inner and outer layer turbulent activity changes considerably with increasing velocity
defect, from dominant inner turbulence to dominant outer turbulence. In addition, the
spectra suggest that wall-detached structures may play a more important dynamic role
in large-defect APG TBLs than in small-defect APG TBLs or canonical flows. Due to this,
the outer layer of large-defect APG TBLs is less affected by the wall than in small-defect
flows. As a result, it appears to act more like a free shear layer than a wall-bounded flow.
Despite these differences, the production and inter-component energy transfer mechanisms
might still be similar in all flow cases. The 2-D spectra have strikingly similar features
in the outer regions of all flows, such as shape and wavelength aspect ratios, as well as
relative sizes between energy, production and pressure-strain structures. This suggests that
the distinction between wall-attached structures in small-defect flows and wall-detached
structures in large-defect flows is not important in a dynamical sense.

Strong mean shear in the outer layer seems to be the primary reason for the elevated
outer-layer activity in the APG TBL cases. The change of the wall-normal distribution of
the Reynolds stresses, production and pressure-strain is consistent with the change of the
mean shear with increasing velocity defect. Furthermore, that the spectral analysis does
not show any significant difference between the energetic, production and pressure-strain
structures in channel flows and APG TBLs suggests that inflection-type instabilities such
as the Kelvin—Helmholtz instability either do not exist or are weak compared to other
shear-driven mechanisms. Moreover, the (v?) spectra of the large-defect APG TBL do
not reveal any sign of an inflection-type instability. However, further work is necessary to
confirm the presence or absence of inflection-type or other types of instabilities.

The upstream history of the flow probably affects the coherent structures, but it is
challenging to isolate history effects of the pressure gradient on the coherent structures
from its local effects. However, the comparison of the present APG TBL with equilibrium
APG TBLs found in the literature indicates that the spectral properties of structures with
increasing velocity defect are similar in both equilibrium and non-equilibrium cases.
Nonetheless, more work and other databases are required to understand the history effect
in a more precise manner.

The overall conclusion is that the mechanisms producing turbulence and those
responsible for inter-component energy transfer may remain the same within one layer as
the velocity defect increases. What makes the large-defect boundary layer different from
the small-defect one seems to be mainly that the mechanisms in the inner layer decay
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Figure 17. The Reynolds stress flux in the wall-normal direction as a function of y. The parameters are
normalized with (@) the friction-viscous scales and () the outer scales. The columns are respectively ZPGa,
APG1 and APG3.

significantly in importance with respect to the outer ones with increasing velocity defect.
It remains to be confirmed if this is solely due to the changes in the mean shear in each
region or if other factors are at play.

To reach a more solid conclusion regarding energy transfer in APG TBLs, inter-scale
energy transfer should be investigated in a similar manner to the current study. Moreover,
this study provides a perspective from a statistical and spectral point of view, and further
studies examining dynamic properties of coherent structures in APG TBLs, preferably at
higher Reynolds numbers, would help us to understand energy transfer mechanisms in
APG TBLs in more detail.
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Appendix A. The Reynolds stress flux

Figure 17 shows the the Reynolds stress fuxes due to turbulent transport in the wall-normal
direction 6;; = (u;u;jup) for ZPGa, APG1 and APG3. They are discussed in § 3.3.
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energy, and [0.3 0.7] of the maxima of spectra for production and pressure-strain. The dashed contours indicate
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Appendix B. The premultiplied outer-scaled spectra

Figure 18 shows the spectral distributions of energy, production and pressure-strain as
functions of y/§ and wavelength components A,/§ and A,/§ for all components of the
Reynolds stress tensor. The y-axis is linear to show the outer layer in more detail. Each
spectral distribution is normalized with its respective maximum.

Appendix C. Effect of Re on the scaling of the streamwise cospectra

Figure 19 presents the cospectra for three channel flow cases of Lee & Moser (2015)
at different Re; to examine the effect of the Reynolds number on the scaling of the
streamwise cospectra. Although 6 scales well the cospectra in the low-Re case, it fails

to do so in the high-Re cases. In the latter cases, the cospectra scale approximately with
y for A, > 2y. That cospectra are scaled by y in high-Re cases was also shown by Baidya
et al. (2017).
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