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ACTIONS OF FINITE GROUPS ONR"+^ WITH FIXED 
SETR^ 

IAN HAMBLETON AND IB MADSEN 

In this paper we study the existence problem for topological actions of 
finite groups on euclidean spaces Rn+k which are free outside a fixed point 
set R^ (embedded as a vector subspace). We refer to such an action as a 
semi-free action on (Rn , R ) and note that all our actions will be 
assumed orientation-preserving. 

Suppose the finite group 77 acts semi-freely on {Rn+k, R*), then it acts 
freely on R"+/c - R* = Sn~l X R* + 1. Since this space is homotopy 
equivalent to Sn~ ,ir will have periodic integral cohomology and n will be 
a multiple of the period. In fact the orbit space 

W = (Rn+k - Rk)/7i 

is a finitely-dominated Poincaré complex of formal dimension n — 1 with 
77] W = 77 and W ~ Sn~x as considered by Swan [41]. We call such spaces 
Swan complexes for short and refer to the groups with periodic co­
homology as ^-groups. 

Some ^-groups admit complex representations V such that no element g 
has + 1 as an eigenvalue; then 77 acts semi-freely on (V, 0). Such 
representations will be called ^representations and the actions they 
provide on (V X R*, R^) linear actions. Any semi-free action on 
(R"+/c, R*) which can be smoothed is conjugate to the linear action 
provided by the differential at 0. 

Other examples can be obtained from the solution of the spherical space 
form problem by Madsen, Thomas and Wall [27, 28]. Start with a free 
action of 77 on Sn~ and extend it to a semi-free action on (Rn, 0) by 
regarding R" as Sn~] X R U {0}. This gives many examples of non-linear 
actions. 

Our main results, Theorems A, B and C below, give necessary and 
sufficient conditions for a finite group 77 to have a semi-free action on 
(R"+/c, R*) when n ^ 6. Strangely enough the conditions depend only on n 
and not on k i^ 0. This however does not imply that every such semi-free 
action can be desuspended to an action on (Rw, 0). Indeed we give 
counterexamples to such a statement in Section 3. 

If n is divisible by twice the cohomological period of 77 then it acts 
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782 I. HAMBLETON AND I. MADSEN 

semi-freely on (R"+ / \ Rk) if and only if it acts freely on Sn~l. In contrast 
there are an infinite number of groups 77 which can act semi-freely on 
(Rw, 0) in the period dimension but which cannot act freely on Sn~l and so 
are not obtained by the coning construction above. 

Semi-free actions on (Rw, 0) have been studied by R. J. Milgram in [26] 
by completely different methods. It would be interesting to compare the 
two approaches. 

0. Statement of results. Before giving our results it is useful to 
summarize some facts about the finite groups with periodic cohomology. 
We refer the reader to [27, 28], [43], and [44], [47] for more details. First 
recall that ^-groups are just those whose Sylow/?-subgroup s are cyclic or 
(if p = 2) possibly quaternion. The maximal normal subgroup 0(ir) of odd 
order is metacyclic and the groups 77 are divided into six types depending 
on the structure of 77/0(77): type I groups are metacyclic and this quo­
tient is a cyclic 2-group; type II groups have 77/0(77) a (generalized) 
quaternion 2-group. For the other types we mainly need to know that any 
2-hyperelementary subgroup of a ^-group is of type I or II. 

We shall need the subclassification of 2-hyperelementary type II groups 
given in [24]. Let 

Q2k = (x,y:x2k~2 = y\yxy~x = x~\yA = 1> 

be the quaternion group of order 2 . Let A, B, C and D be odd order cyclic 
groups of coprime orders a, b, c, d and suppose Q2k acts on them such 
that 

x inverts B X C and centralizes A X D 

y inverts A X C and centralizes B X D. 

The corresponding semi-direct product {A X B X C X D) X Q2k is 
denoted Q(2 a, b, c) X Z/d. We normalize the notation so that b ^ c, 
and, when k = 3, a ^ b ^ c by changing the presentation of Q2k if 
necessary. We now introduce the following 2-hyperelementary subtypes: 

type UK if b = 1 

type IIL if b > 1 and k > 3 

type KM if b > 1 and k = 3. 

It will be convenient to call a type IIM group special if c = d = 1 ; in this 
case we write Q(%a, b) instead of Q(%a, b, 1). 

After this summary of relevant group theory we now return to the 
question of semi-free actions. The first invariant of a semi-free action on 
(R'7 + /c, RA) is the homotopy type of 

W = ( R " + A ' - RA) /77. 
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Since this is an (n — l)-dimensional Swan complex for 77, its homotopy 
type is determined by a single element g e #"(77; Z) called the k-invariant 
of the action and 2d(iT)\n where 2̂ (77) is the period of 77. 

THEOREM A. Let ube a @-group and n ^ 6. There is a semi-free action of 
77 on (Rn , R ) w/Y/i k-invariant g if and only if there is a semi-free action 
of IT on (R", 0) wzï/z k-invariant g. 

The proof of Theorem A is based upon work of D. Anderson and E. K. 
Pedersen. They prove in [1] that a semi-free action on (R"+A, RA) is 
equivalent to the vanishing of Xp(f f) in the group 

L(
3~

k\Z<7T) C Z (̂Z[77 X Z*]) 

under a natural map 

Jr:L^(Z77)->L3
(_/c)(Z77). 

The groups L\k^ and Z4 k+l^ are connected by an exact triangle where 
the third term is the Tate cohomology of K_k(Jjn). Since K_k(Z7r) = 0 for 
k > 1 by results from [6], 

Li~l\Z7r) = 4 " / C > ( Z T 7 ) 

for finite 77 and there is an exact sequence 

H0(K_](Z<n) ) -> LP
3(ZTT) ^ L{fk\Zir) -> H](K_](ZTT) ). 

The group H0(K_](ZTT)) ¥= 0 in general, even for 77 = ô(8a, 6) 
but nevertheless we prove in Section 3 that / is injective, and hence 
Theorem A. 

Since the obstruction to a semi-free action on (R", 0) with prescribed 
fc-invariant lies in the projective L-groups (Proposition 2.10), Dress' 
induction theorem [11] together with the induction results for normal 
invariants from [22] show that we can restrict our attention to the 
2-hyperelementary groups. More precisely we get that 77 acts semi-freely. 
on (Rn, 0) with /c-invariant g e Hn(ir\ Z) if and only if each 
2-hyperelementary subgroup p Q IT acts semi-freely on (Rn, 0) with 
/c-invariant Res g e Hn(p; Z). 

Thus to prove a general existence theorem for actions with prescribed 
/c-invariant there are two difficulties to be overcome, namely to 
understand which /^-invariants on subgroups p extend to 77, and to solve 
the 2-hyperelementary case. With the detailed knowledge we have of the 
groups only the second presents any real problem. 

The semi-characteristic argument used by [20] in the case of spherical 
space forms generalizes to the non-compact setting (see Section 1). It 
shows that if 77 acts semi-freely on (Rn, 0) then every subgroup of order 2p 
(p prime) is cyclic, and if n = 4 (mod 8) then 77 has no type IIL subgroups. 
Note that the first condition is equivalent to assuming that every 
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2-hyperelementary type I subgroup of 77 has an ^representation. Since 
the 2-hyperelementary subgroups of 77 are all type I or II, we can ask 
whether 77 has a generator g G Hn{m\ Z) such that 

Res g G Hn(p; Z) 

is the Euler class of an ^representation for every 2-hyperelementary 
subgroup p Q 77. If such a generator exists for 77 we call it a linear 
k-invariant and then 77 will act on (R", 0). It follows from the structure of 
^-groups (see [47, Sections 11, 12] ) that these exist whenever 

n = 0 (mod 4d(iT) ) 

and IT satisfies the 2/?-conditions. The basic obstacle to the existence of 
linear generators is the fact that the 2-hyperelementary type IIL or IIM 
groups have d(Tr) = 2 and no ^representation of dimension 4. From [43], 
the groups of type III or V have no type IIL or IIM subgroups and a type 
IV or VI group with no type IIL subgroup has no type IIM subgroup 
either. It follows that any group satisfying Lee's conditions which is not of 
type IIM has a linear ^-invariant in the period dimension 2^(77). To 
discuss this last case, it is convenient to remark that every type IIM group 
has an almost linear ^-invariant in the following sense. 

Definition 0.1. Let 77 be a ^-group of period 2d(m) and let n = 0 
(mod 2^(77)). A generator g G Hn(m\ Z) is called almost linear if its 
restriction to any 2-hyperelementary type I or type UK subgroup of 77 is 
linear. 

Our next result summarizes the connection between actions of 77 and its 
subgroups. It is proved in Sections 1, 7 following the discussion above. 

THEOREM B. Let IT be a 0>-group of period 2d(rr) and n ^ 6 such that 
n = 0 (mod 2J(77) ). If n == 0 (mod 8) then TT has a semi-free action on 
(Rw, 0) if and only if it satisfies the 2p-conditions. If n = 4 (mod 8), and 
g G Hn(7T\ Z) is an almost linear generator, then 77 has a semi-free action 
on (R'z, 0) with k-invariant g if and only if 

(i) 77 contains no subgroups of type IIL, and 
(ii) each special type IIM subgroup p Q TT acts semi-freely on (R", 0) with 

k-invariant Res g G Hn(p; Z). 

We have left to describe our result about actions of type IIM groups in 
dimensions n = 8/ + 4 (for / a 1). It turns out that the answer involves a 
number theoretic condition on the integers a, b in the order of special type 
IIM subgroups Q(Sa, b) of 77. 

For any integer r, let i)r = Çr + f"1 where $r = elm/r is a primitive r'th 
root of unity. 

Given a, b we consider the domain A = Z[7)a, i)h] and its fraction field 
F = Q[j]a, 7)h]. From F^2\ the elements in F with even valuation at all 
finite primes in A, there are reduction maps r, defined for each prime 
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(in A) which divides ab: for x e F^ write x, as a product of a unit w, 
in ^4, with an (even) power of a uniformizer a t^ , then set rJx) = w, in 
( ^ / / ) x modulo squares. Of course, if x e ^ x c F ( 2 ) then ^(JC) G ( ^ / / ) X 

has no indeterminacy. 

Definition 0.2. Let 

<&A\F{2) •-> ( ^ / ^ ) x / s q u a r e s 

<p^:F(2) -> (^ /4^) x / squares = ,4/2.4 

be the product of the r, for fi\ab and the reduction modulo 4, 
respectively. 

For integers a and « we use the notation a\\a to mean that a is a full 
prime power divisor of a, that is, a = pm for some prime p and a\a but 
p \ (a/a). We define the element vp{ab) ^ Aby 

vp(ab) = I I {2 - va||tfft and (a, p) = 1} 

for each (rational) prime p\a. Next let 

v(a) = {v(ab):p\a} e 2 ® ( ^ / ^ ) x 

^ p\a 

and similarly for v(Z>). We will identify 

e 
(A/aA)x

2) = 2(^4/M)(: 

and 

(A/ab)x = (A/aA)x @(A/bA)x 

so that elements of the left-hand side can be represented by vectors. We 
let 

V(a9 b) = ( - l ) r + 1 (v ( a ) , v(b)) <= (A/ab)x/squares 

where r is the number of rational prime divisors of ab. 

Definition 0.3. We say that the condition C(a, b) is satisfied if V(a, b) is 
in the image of <&A restricted to the kernel of <pA. 

We can now state the main result of the paper as 

THEOREM C. Let IT be a type IIM group and let I = 1. Then TT acts 
semi-freely on (R , 0) with almost linear k-invariant if and only if 
condition C(a, b) is satisfied for each special subgroup Q(8a, b) of TT. 

The condition C(a, b) used here is not easy to check in general. The 
smallest example where it is satisfied is (a, b) = (3, 13). Moreover, if a and 
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b are prime numbers ( ^ 1 mod 16) then a necessary condition for C(a, b) 
to be satisfied is that 

where I - ) is the Legendre symbol and ( - I is the bi-quadratic symbol 

with value -f 1 if a is a fourth power mod b and value — 1 if not. We refer 
the reader to the appendix (Section 10) for a more detailed discussion of 
condition C(a, b) based on the work of Bentzen [3]. 

The Theorems A, B, C together give a complete answer (modulo number 
theory) to the question of existence of semi-free actions on (R"+ , Rk) 
with almost linear ^-invariant. For arbitrary /c-invariants we do not have 
complete information. From [15] we know that the quaternion group 
Q(4p) = Q(4p, 1, 1) can only act freely on £ 8 / + 3 with linear /c-invariant: 
for a non-linear /c-invariant there is a non-zero surgery obstruction in 
L3. In fact, the obstruction maps non-trivially to Lp

3, so Q(4p) cannot act 
semi- freely on (R8 /+4 , 0) with non-linear ^-invariant either. This also 
implies that a type UK can only act with linear ^-invariant. It follows that 
the results above give the correct dimensional bounds in the sense that if IT 
acts semi-freely on (Rn+k, Rk) at all, then it can also act with an almost 
linear /c-invariant. We shall not go further into these questions in the 
present paper, but we point out that for general 2-hyperelementary groups 
of type I (satisfying the 2/7-conditions) it is not known at present precisely 
which ^-invariants can be realized by free or semi-free actions. 

It is in order to compare the case of free actions treated in [21] with the 
semi-free case. We restrict ourselves to almost linear /c-invariants. 

The first difference between the two cases is that Theorem B fails for 
free actions: with quite a lot of work on the finiteness obstruction 
for groups of type I, cf. [47], one can reduce to 2-hyperelementary groups. 
However, it is not true that a type IIM group acts freely on £ 8 / + 3 if 
its special subgroups do. The L -surgery obstruction is detected on the 
special subgroups but the finiteness obstruction is not. In fact, the group 
g(8/7, q) X Z/r with (/?, q, r) = (3, 313, 7) has non-zero finiteness 
obstruction but 

o4(6(24, 313)) = 0. 

Secondly, for a special type IIM group the number theoretic conditions 
for a free action on S are far more restrictive than the condi­
tions C(a, b). There are 4 groups Q(Sp, q) of order less than 16,000 which 
act freely on S 8 / + 3 but 42 which act semi-freely on (R8 /+4 , 0) where p and 
q are (odd) primes. 

We recall the precise condition for a free action on S + from [21]. 
There are reduction maps 
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$:AX -> (A/ab)x -> {A/a)x
2) 0 (A/b)x

2) 

y:Ax -> (A/4A)X -> (^/4^) (2} = ,4/24 

similar to the maps in Definition 0.2. Here the subscript (2) indicates the 
2-primary part. In analogy with Definition 0.3 we have the closely re­
lated condition C(a, b): 

V(a, b) e lmage(01Kernel q>) 
A ys 

where V(a, b) e {A/ab\2\ is defined by the same formula as V(a, b). 
Since in condition C(a, b) we do not divide out squares in the target, this 
is a much more difficult condition to check than condition C(a, b). The 
main result in [21] is the following analogue of Theorem C: 

THEOREM C. The group Q(Sa, b) acts freely on S8 / + 3 , / ^ 1, if and 
only if 

(i) condition C(a, b) is satisfied, and 
(ii) (2, 2) e Image(O), (1, - 1 ) e Image(ê). 

It is instructive to elaborate a little on the similarities and differences 
between Theorems C and C. In both cases one sets up a surgery problem 
(over a Swan complex) and then calculate the surgery obstruction on 1% or 
L3. The actions exist precisely when the relevant obstruction vanishes. The 
actual calculations in fact take place in suitable L^-groups. The groups 1%, 
L3, Lj are calculated using the arithmetic square exact sequences given in 
Section 3. The surgery obstructions are calculated using various Reide-
meister torsion invariants and restriction to subgroups. To make these 
calculations it is useful to extend Wall's splitting of jJ for a 
2-hyperelementary group (indexed by odd divisors of \m\ ) to the other 
L- and AT-groups (see Section 6). 

It is a key fact for this paper (which might have other applications) that 
L^(ZTT) is detected by three invariants a*, x a n d £2

 a s f°H°w s (°f Sec­
tions 4, 5): 

X:Z^(ZT7) -> Lh
3(Z27r) 

O*:LP
3(Z<7T)-*H°(K0(Z7T)) 

8}:ker v n ker or* -> —* v 2 J \ „ 
1 H°(Wh'(Z7r)) + d*H\K0(Z7T)) 

A # A 

where Wh(Q2Tr) + indicates the part of Wh(Q27r) from type 0 summands. 
One consequence is (the map d* is defined in (5.8) ): 

PROPOSITION 5.18. Let IT be a finite group. The natural map 

ip:Lj(Z<7r) -> I%(Im) 

induces an isomorphism 

3 ° H°(Wh'(Z<TT)) + d*Hl(K0(Z<7T)) 
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Given a surgery problem (/, / ) with f:M —» X where X is a Swan 
complex, the //-surgery obstruction is denoted \p(f, J ). As the formal 
dimension « — 1 = 3 (mod 4), o*(\p(f, j) ) is the cohomology class of 
the finiteness obstruction for X and xQ^if* f) c a n >̂e calculated as a 
semi-characteristic, following [20]. If IT = Q(Sa, b) and X has an almost 
linear /c-invariant, the final invariant fij can be calculated (as a difference 
of "weak" Reidemeister torsions given in Section 8) using the fact that the 

y A y A 

relevant part of L3(Z27r) injects into L 3 ( Z 2 T ) for T = Q(4ab). This is 
done in (7.7), (8.16) and Section 9. 

If X is homotopy equivalent to a finite complex then we have the ob­
struction \h(f,f) in l\(Jjn) to a free action of m on S 8 / + 3 . By picking a 
finite cell structure on X, the obstruction can be lifted back to XY(f, f) 
in L3(Z7r). In [21] these obstructions were evaluated in three stages: the 
image of \ y in L7(Z27r) essentially as above and the image of Xy 

in Ly(Z/7r), / odd, by an argument involving a modular Reidemeister tor­
sion. If these two vanish, the ordinary Reidemeister torsion and restriction 
to T determines 

X7 e Im(L0
7(Q77) -> LJ(ZTT) ). 

Many difficulties in the finite case arise from the type Sp factors in 
Q77. In particular they lead to Condition (ii) in Theorem C. One conse­
quence of Proposition 5.18 is that type Sp factors play no role for 
//-obstructions. This is later confirmed by calculating (9.35) that the type 
Sp part of 

Im(L3
y(Z77) -» L3

7(Z277) ) 

lies in the indeterminacy H\K0(Z7T) ). 

1. Necessary conditions for semi-free actions. The main results of this 
section give the part of Theorem B in which certain necessary conditions 
are stated for the existence of a semi-free action on (R"+/c, R^). In order to 
do this, we define proper actions (Definition (1.1) and the following 
paragraph) on (Rn+k, Rk) for any k ^ 0 and observe that R. Lee's 
original semi-characteristic argument for deriving these conditions in the 
spherical case remains valid in this wider context. For the case of main 
interest here (k = 0) we show in (1.6) that any action is proper. Finally in 
(1.5) we begin the reduction of our existence question to surgery theory. 
This is completed in the next section. 

Suppose that a finite group 77 acts semifreely on R"+ with fixed-point 
set R (embedded as the last k co-ordinates, say). Let 

W = (R"+k - Rk)/7r 

and observe that W ~ Xn~\ an (n — l)-dimensional Swan complex for 77 
since 
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Following [33, Section 5] we make 

Definition 1.1. A proper TO?-manifold of type (n, k) consists of (i) an 
open (n + &)-dimensional Top manifold W, (ii) a free ZA + 1-action on W 
such that the orbit space W is compact, and (iii) a homotopy retraction 
r:W -* W of the projection W —> W. 

Under these conditions 

r X c\W -> JT X r* + 1 

is a homotopy equivalence where 

classifies the free Z^ + 1-action and W is a finitely-dominated Poincaré 
complex of formal dimension (n — 1). Furthermore, the normal 
invariant 

t\(r X c) e Im/?f + Im/?f ç [ ^ x r*4"1, G/TOP] 

where/?j, /?2 are projections on the two factors. A semi-free topological 
action of a finite group TT on (R"+ , R ) as above will be called proper if 

W = (R"+/c - Rk)/7r 

is a proper TOP manifold of type (n, k). If J/*^1X(TT) denotes the 
unoriented bordism group of pairs ( W, <j>) where W is a proper TOP mani­
fold of type (n, k) and §\W —» BTT a continuous map, then J/'^I^TT) is a 
subgroup of 

jrn+k{« x z*+l) 

and so is detected by characteristic numbers. 

PROPOSITION 1.2. Suppose TT is a finite group acting properly and 
semi-freely on (R" , R ) preserving the orientation. Then TT is a &-group, 
n = 0 (mod 2 (̂77) ) and all subgroups of order 2p (p any prime) in TT are 
cyclic. In addition if n = 4 (mod 8) then TT has no type IIL subgroups. 

Proof. Since Wis homotopy equivalent to a Swan complex for TT, TT must 
be a ̂ -group and n a multiple of 2d (IT). For the rest observe that the 
semi-characteristic invariant of R. Lee gives a homomorphism: 

(1.3) Jr<zk^)^RCLjit,F) 

for any field F of characteristic 2, defined by the formula 

/ - 1 

(1.4) X1/2W*) = 2 ( - i ) W ^ ; / 0 ] 
/ = 0 

https://doi.org/10.4153/CJM-1986-041-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1986-041-x


790 I. HAMBLETON AND I MADSEN 

where n = 2/ and W is the ^-covering associated to cj>. This invariant has 
the formal properties expressed in [20, 2.4, 2.7, 3.8, 4.10, 4.11] after we 
note that Bredon's result [4, 7.4] applies to our non-compact situation and 
proves again that X\/2 *s well-defined. It then follows as in [20, 4.14] that 
every subgroup of order 2p in TT is cyclic and from [20, 4.15] that TT has no 
type IIL subgroups when n = 4 (mod 8). 

Next we point out that relationship between proper actions of a ^-group 
77- and manifold structures on Swan complexes. 

PROPOSITION 1.5. Let X be an (n — Y)-dimensional Swan complex for TT 

with k-invariant g e HU{TT\ Z). Then TT has a proper semi-free action on 
(Rn+k, Rk) with k-invariant g if and only if 

(i) X is homotopy equivalent to a proper manifold of type (/?, k) 
or equivalently, 
(ii) there exists a closed manifold U of dimension (n + k) and a homotopy 

equivalence 

g:U -> X X Tk + X with 7](g) G Impf + Im/?f. 

Proof If 77 has a proper action on (R"+ , R ) with /c-invariant g then 

W = (Rn+k - Rk)/7T 

is a proper manifold of type («, k) homotopy equivalent to X and 
W ~ X X Tk + l. 

Conversely suppose that 

h 
W^ X 

where W is a proper manifold of type («, k). Then 

w ^ H^xr / c + 1 ^ x x r A + 1 

A 

is a homotopy equivalence and so (i) =̂> (ii). If W denotes the 77-covering 
of W induced by this homotopy equivalence then 

W ~ Sn~x X Tk + \ 

After replacing this by a suitable finite covering we can assume that the 
homotopy equivalence is homotopic to a homeomorphism (note that 
Im pf = 0 since (n — 1) is odd and that every fake (k + 1)-torus is 
finitely covered by T + , [16] ). For k = 0, we easily complete the ar­
gument by compactifying one end of the infinite cyclic covering W to 
get R". For k > 0, if W denotes the if+1-covering, we obtain a free TT 
action on Sn~] X R^ + 1 which is bounded in the R^ + 1-factor since it 
comes from a TT X Z + 1 action. Consider the homomorphism 
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y i H o m e o ^ " 1 X R* + 1) -> H o m e o ^ " 1 * Sk, Sk) 

described by Anderson-Pedersen [1] where the domain denotes homeo-

morphisms bounded in the R^+1-factor and the range homeomorphisms 
on the join which are the identity on S . After applying y, we obtain a 
semi-free IT action on (Sn^k\ Sk) and therefore a semi-free action on 
(Rw , R ) after removing one point. By construction this action is 
proper. 

We will show later (in Section 2) that proper actions are the ones most 
naturally studied by the techniques of surgery theory. It is therefore 
necessary to ask how closely an arbitrary semi- free action on (R"+/c, R*) 
resembles a proper one. 

PROPOSITION 1.6. Any semi-free topological action of TT on (Rw, 0) for 
n = 6 is conjugate to a proper action. 

Proof. We will show that the given free IT action on R" - {0} is 
conjugate to the restriction of a free TT X Z action satisfying the conditions 
of (1.1) by applying the twist-gluing construction of Siebenmann [40] to 

W = (Rn - {0} )/77. 

According to [40, 5.1] we must prove that W is homeomorphic to 
arbitrarily small neighbourhoods of each end c+ or €_ by homeomor­
phisms f±: U± —> W that fix point-wise a smaller neighbourhood of c ± . 
(The "niceness condition" (**) is satisfied in our case since W U {e±} is 
compact and Hausdorff.) To construct such homeomorphisms we use a 
proper map 

g\W-> X X R 

constructed from a proper map W—» R (average the projection Sn~l X 
R —» R over 77) and a homotopy equivalence of W to a suitable 
(n — l)-dimensional Swan complex X for m. Set dim W = n = 21. 
From [12, 4.1] for a fixed t0, g is properly homotopic to a map 
gx'.W —> X X R such that there is a codim. 1 submanifold N c W 
with gjliViAf —> X X t0 satisfying the following: 

(0) the inclusion N c Wis (I — l)-connected, 
(i) Kt(AN, N) = 0 for 1 ^ / and Kt(BN, N) = 0 for i < /, 

(ii) Kf(BN, N) = P is a finitely generated projective Z77-module. 
Here 

AN = g^\x X [/0, 00) ) and BN = g^l(X X ( - 0 0 , /0] ). 

Next we apply [12, 6.2] to find an open subset U of a compact set in BN 
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which is a manifold with boundary TV and has a tame end e whose 
finiteness obstruction a(e) = [P] in K0(Z7T). 

BN \U \*-N AN e + 

We may assume that the end €_ of W is highly-connected in the sense 
of [39] so that BN is expressed as the union of compact highly-
connected cobordisms. By an engulfing argument, it follows that there 
exists a homeomorphism f:W —> W such that f\AN is the identity and 
f(U) = BN. 

Choose now open subset U± of c ± and homeomorphisms 

f±:U±-*W 

constructed as above with [/+ n {/_ = <f> and form 

W = W/{x ~fllf_(x) for x e [/_}. 

From [40, 5.2, 5.5] it follows that W is a compact topological manifold 
whose homeomorphism class depends only on W (and not on the choices 
of (U±9f±)). Also, by the way the U± were constructed, there is an 
induced map 

g\W -> X X Sl 

which is a homotopy equivalence. 
Clearly the infinite cyclic covering of W induced by the composite of g 

with the projection to Sl is a proper TOP manifold of type («, 0) as in 
Definition (1.1). However this infinite cyclic covering is also homeo-
morphic to W since it is the union U {W X {m}; m an integer} under 
identification of U+ X {m} to £/_ X {m + 1} byfZlf+. 

2. Proper surgery theory. In order to study the existence question for 
semi-free proper actions, we need a version of surgery theory which will 
start with reductions of the Spivak normal fibre space to a Swan complex 
X and (in favourable circumstances) produce a homotopy equivalence 
between XX Tk + X and a closed manifold (cf. Proposition 1.5). For k = 0, 
there are two possibilities: surgery on paracompact open manifolds due to 
Maumary [29] and Taylor [42] or the compact version due to Pedersen-
Ranicki [33]. The second approach seems to generalize most easily to 
k > 0 to describe the L^~k^ groups. Most of the properties we need of these 
groups are given in [1]. We have included them here (with slightly different 
proofs) for the reader's convenience. 

On the algebraic side, let Lp
n{ZiT) denote the projective surgery groups 

defined using forms and formations on finitely-generated projective 
Z7r-modules ( [34] ). Next let 
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L< \7m) = coker(£:I> + 1(Zff)->Z£ + 1(Z[ff X Z] ) ) 

where 7is the (split) injection induced by the inclusion IT C <n X Z into the 
first factor. This process may be repeated to produce (for k > 0): 

(2.1) L<-k\Zm) = coker(?:L<^ + 1>(Z^) -> I < ; Î + 1>(Z[* X Z] ) ). 

It is sometimes convenient to set 

L<°>(Z*) = L'(Zw) 

and 

L<l\lm) = L^(ZT7) 

in order to unify the notation. 
One geometric interpretation of these groups can be given as follows. 

For any CW complex K, let Ln
,p(K) denote the bordism group of normal 

maps from compact «-manifolds to finitely-dominated oriented Poincaré 
pairs (Z, Y) with Y finite, equipped with a reference map cc.Z —» K. An 
element 

(2.2) <p:(N, M) -> (Z, 7) 

satisfying the conditions of [33, Section 2] represents zero in this bordism 
group if 

«p X l:(N9 M) X S] -> (Z, Y) X S1 

is normally bordant to a homotopy equivalence (respecting the reference 
map co X \:Z X S] -* K X Sl). 

THEOREM 2.3. [33, 2.1]. If K has a finite 2-skeleton and n ^ 5 then there 
is a natural isomorphism 

Lx/{K)^lfn{TTx{K)). 

Now for k > 0 we define 

(2.4) L}<-k\K) = coker(r:L^7*+,>(tf) -» Lj-{7*+1>(* X S1) ) 

where I is induced by the inclusion K o K X S and as before, 

The groups Lx
n^~~k\K) are just the bordism groups of normal maps 

as in (2.2) with reference map to K X T modulo those from 
L];{k(K X Tk~]) via the k inclusions of subgroups Tk~l c r \ 

Our Definitions (2.1) and (2.4) together with Theorem (2.3) imply: 

PROPOSITION 2.5. IfK has a finite 2 skeleton, k ^ 0 and n ^ 5 //*<?« //z<?re 
is a natural isomorphism 

L);<-k\K)-* Li-k\*,{K))-
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One consequence is that a reduction of the Spivak bundle to a 
Swan complex Xiov TT in dimension (n — 1) gives an element in the group 
L^Z\\ZTT). Indeed, let (/, f):M —> X be the resulting normal map and 
consider the element represented by 

(f / ) X id:M X Tk -> X X Tk in L]
n^

k\Z<ir). 

Later we will see that the vanishing of this element in L^_/(Z7r) is nec­
essary and sufficient for the existence of a proper semi-free action on 
(R'2 + , R*). Another consequence is the following naturality property: 

PROPOSITION 2.6. For any k ~ 0 and any finitely presented group TT, 
(i) there exists a natural transformation 

ik:Li-k\Z^^L^k']>(Z^) 

and a (split) monomorphism 

Ok:L<-kHZm)-> L<;f + 1>(Z[* X Z] ) 

defining a natural transformation of functors, and 

(ii) the diagram 

L<-k\z.) lk >L<^-'>(Z.) 

0, 

• < - * + ! > / 

h 'k + \ 

lk + \ 
• < - * > / L^r ' ; (Zk X Z ] ) _ - L ^ Z ^ X Z]) 

w commutative. 

Proof (i) From (2.4) elements of L{~k)(Z<n) can be represented by 
normal maps (of dimension (n + k) ) 

<p:(7V, M) -» (Z, 7 ) 

together with a reference map œ:Z -> K X Tk where (Z, Y) is a finitely 
dominated Poincaré pair (with Y finite) and AT is a finite complex with 
77] K = 77. Since Z X S has a canonical finite structure extending the 
given one on Y X S , the normal map 

<p X \:(N, M) X S] -> (Z, 7) X S1 

together with 

a> X \:Z X Sl -* (K X Sl) X Tk 

represents an element of 

Z * + A + 1(Z[(w X Z) X Z*]). 
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This correspondence induces a well-defined natural homomorphism 

6k:Li-k\Zv)-*Ll-+\+]\Z[nXZ}) 

where we identify 

Lfn+k(Z[TTX Zk\) 
(2.7) -<-*>, (Z*r) 

si^^xr'Dir1 c z*> 
and similarly in the range (using Lh instead of LP). 

To define ik it is easiest to write 

(2.8) L< k\7m) = 
Lh

n+k + ](Z[TT X Zk + ] } ) 

2 { L * + , + 1(Z[,r X Z*]):Z* c Z* + 1} 

and then let /̂  be the map induced by the "forgetful" homomorphism 

(2.9) y*:Lh
n+k + i(Z[v X Zk + ]])^Ifn+k+i(Z[-n X Z* + 1]). 

After dividing out in domain and range and comparing with (2.7) we 
obtain 

ik:L< k\Z7T)^L[ <-*-!> (Zm). 

From the given definitions of ik and 0^, the commutativity of diagram (ii) 
in general follows from the case k = 0. 

Consider the diagram: 

rLh
n + ]{Z[ir X Z'] ) - - • / . / ; f l(Z[7r X Z ' ] ) ^ 

/^(ZTT). 

L!; + I(Z[T7 x z n 

(2) 

(1) Ls
n + 2(Z[7r X Z' X Z ] ) — ^ L „ + 2(Z[TT X Z' X Z] ) (4) 

(3) 

^Lyi>(Zir) 

fLfn+]{Z[7T X Z] ) 

1 ^Ls
n+1(Z[7r X Z X Z'\ )—^L; i + -,(Z[w X Z X Z'] ) 

Y* 

where the composite jxy*00 = i0, joy*0l = i] in diagram (ii) and T* is 
induced by the interchange of factors Z, Z'. The maps y^ are the natural 
projections from (2.4). All the sub-diagrams (l)-(4) commute so diagram 
(ii) does also for k = 0. 

A similar inductive argument starting with the fact that 00 is split [35] 
by the epimorphism j 0 shows that 0k is a split monomorphism with 
Jk°k = identity. 
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PROPOSITION 2.10. Let Xn be a Swan complex for IT and n è 6. 
(i) There exists a semi-free action of IT on (R77, 0) with 

(Rn - {0} )l<n ~ X 

if and only if there is a normal invariant for X with vanishing obstruction in 
Lp

n-X(lTr). 
(ii) For any k > 0, there exists a proper semi-free action of •n on 

( R " + \ R*) with 

(R"+k - Rk)/<n ^ X 

if and only if there is a normal invariant for X with vanishing obstruction in 

Proof Let Jf(X) denote the set of normal invariants for the Swan 
complex X and 

/ ) * : / ( I ) - ^ / ( I X Tk+]) 

the map induced by the projection 

p:XX Tk+X - > X 

First we claim that there is a commutative diagram (for k ^ 0): 

JVIX) — ^L<-\\lm) 

0 (2.11) r h 
rk+\\ ^ _ jh JT(X X TK^{) '2—^Ln

nJrk(Z[7T X Z ^ 1 ] ) 

where 6 = 0X o 02 o . . . o 0k and )S~ \ \ are the surgery obstruction maps 
(cf. the discussion just before (2.6) for }S~~kS)). This diagram follows easily 
from considering the two (equivalent) descriptions of JV(X): equivalence 
classes of liftings £:X —» BTOP of the Spivak normal fibre space 
vx:X —» BG, or normal bordism classes of normal maps 

{f:M»-i-*X,f:vM^t^vx}. 
The map p* in the first case is the composition 

£op:X X Tk + l -> X-+ BTOP 

and in the second case is just crossing the normal map with r* + 1. Choose 
now a reduction for vx and identify 

JT(X) ~ [X, G/TOP]. 

According to (1.5) if TT has a proper semi-free action on (Rw+/c, R*) then 
there exists a homotopy equivalence 
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g:W -> X X T 

with normal invariant 

<k+\ 

>k+\ 77(g) e Impf+ Im/? | ç [X X T ^ 1 , G/TOP]. 

n*+l Because Im /? | can be eliminated by a finite covering of T , we may 
assume that 

rj(g) e Im/?f. 

Since XA(^T(g) ) = 0 the result follows from (2.11). 

LEMMA 2.12. 

T * f«:( l X t)*(a) = a for all finite cover ing\ 
lmp^ = \maps(\ Xty.XX Tk+i -> X X r * + 1 . J 

Proof. It is enough to consider the case k = 0, and the diagram: 

0 -» [X, G/TOP] • [ * X S \ G/TOP] -> [*+ A 51 , G/TOP] -> 0 

0 -» [Jf, G/TOP] l-+»[X X S1, G/TOP] [*+ A S\ G/TOP] ^ 0 

where /+ is multiplication by the degree of the covering. 

Remark 2.13. This suggests that a structure set S^~k\X) for proper 
actions can be defined as the similar fixed set in S (XX Tk^]). Then we 
have a surgery exact sequence (for each k ^ 0): 

(2.14) L(
n~

k\z<iT) -> S(~k}(X) -> [X, G/TOP] ^:fW 
The various structure sets can be compared. For example, there is a 
diagram of exact sequences when n — 1 = 3 (mod 4): 

[ 2 X+, G/TOP]- •MZm)- +SP(X)-

(2.15) 

-[X, G/TOP] 

[ 2 X+, G/TOP] ^4"'>(Z77) *~S<~~I}(X) **[X, G/TOP] 

which we will use in Section 3 to give an example of a proper action 
on (R" , R ) which cannot be desuspended to (R", 0). In contrast, for 
k S 1 

tn + k and so any proper action on (R" , R ) desuspends to (R'! , R ). 
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3. Arithmetic sequences in K- and L-theory. After (2.10) it is clear that 
the proofs of Theorems A, B and C will rely on detailed knowledge of the 
relevant surgery obstruction groups. The calculation of these groups will 
be based on the arithmetic sequences introduced by Wall (see [46] for a 
more detailed account and complete references). Since it is necessary in 
our method to compare various different versions of L-theory, we give a 
series of braid diagrams which will be used later for this purpose. As a first 
application, we give the proof of Theorem A. 

Let (R, a, u) be an anti-structure consisting of a ring R (with unity) an 
anti-automorphism a of R, and a unit u in R such that 

ua = u~x and xaa = uxu~x for all x e R. 

Wall defines groups Ln(R, a, u) depending functorially on the anti-
structure and an «-invariant subgroup X Q K{(R). We point out that in 
these definitions forms always have even rank, in contrast to the version of 
L-theory given in [34] based on «-invariant subgroups of 

*, (*) = K,(R)/{±\} 

but without the even rank hypothesis. The main cases of interest will be 
A A 

group rings R = ATT where m is a finite group and A = Z, Z, Q or Q. In 
this paper we further assume that the involution a on A77 is induced by the 
map 

x —> x~ for all JC e 77. 

If in addition u = -hi, we will simplify the notation of the L-theory to 
L,f(A77). 

Let 

X(ATT) = SK^Air) and 

Y(ATT) = {±1} e 77/IT' e X(AT7) 

where m' is the commutator subgroup of 77 and 

SKx(Air) = 0 

by definition if A = Q or Q. From now on these particular subgroups of 
K^AIT) will be abbreviated X or Y with A77 understood from the context. 
The L-groups corresponding to the subgroups {0} and KX{R) are written 
L and L respectively. The main exact sequence: 

(3.1) . . . - » l £ + l ( & r ) - > L * ( Z w ) 

-> LX
n(Z-n) © Ls

n(Qw) -» Ls„(fo) - . . . 

is the starting point for Wall's calculations of L*(Z-n). Since X Q Y the 
corresponding L-groups are related by means of a Rothenberg sequence: 
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(3.2) . . . -> Hn + \Y/X) -> L*(ZTT) -> LJ(ZTT) -> Hn(Y/X) -> . . . 

where we have used the abbreviation H*(Y/X) for the Tate cohomology of 
the group Z/2 with coefficients in the Z/2-module 17X Another case 
of the same sequence links LY and LK: 

(3.3) . . . -* / / " + 1(JW(Z77) ) -> L^iZm) 

-> L^(ZT7)* -> Hn(Wh\Z<rr) ) - > . . . 

where 

WZ'(AT7) = X Ï ( A Î T ) / { ± 1 } 0 77/TT' and 

*ï(Air) - ^(A77)/X(A77). 

To obtain the surgery obstruction groups L'n(Zm) and LM(ZTT) when « is 
odd, we must factor out the class of 

* - u i) 
from L and L^ respectively. (When n is even no modification is 
necessary.) Since jJ and LK have better formal properties (such as 
commuting with products) it will be convenient to use them in making 
calculations. 

There is a close connection between (3.1)-(3.3) and the Mayer-Vietoris 
sequence in K-theory arising from the arithmetic square: 

(3.4) 0 -> Wh'(Zm) -> Wh\7m) 0 Wh(Qir) 

-> Wh(Q<ir) -> K0(ZTT) -» 0. 

Let 

W(TT) = ker(Wh(Q<rr) -> ^0(ZTT) ) 

and consider the short exact sequences 

(3.5) 0 -> Wh'(Zm) -* Wh\7M) ® Wh(Qir) -» W(m) -> 0 

and 

(3.6) 0 -> J * » -> Wh(Q<n) -> ^ 0 (ZT7) -* 0. 

The given involution on A77 induces a Z/2-module structure agreeing with 
complex conjugation on the centres of the simple summands of Q77. For 
(3.6) to be an exact sequence of Z/2-modules the involution [P] —> — [P*] 
must be used. This convention (which is different from that of [34] ) will 
be adopted for all AT0-groups occurring in the paper. 
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PROPOSITION 3.7. There is a commutative braid of exact sequences: 

Remarks. 1) The proof follows from the diagrams given in [37, Sec­
tion 6]. Note that the sequences given there all use the version of L-theory 
without the even rank assumption on forms so that some (easy) 
diagram-chasing is required to obtain the given braid. 

2) The braid extends in both directions; the piece given here is the one 
needed later. 

Next let Lp
n(R, a\ u) denote the version of projective L-theory assuming 

the even rank condition. (To get a complete definition in the style of [34, 
p. 112] simply add this condition to the definition of Xn(A ).) These groups 
were introduced by Pardon and are denoted fW* in [32]. The arithmetic 
sequence for computing Ln(Jm) can be derived from [37] and we get 

PROPOSITION 3.8. There is a commutative braid of exact sequences'. 

Remarks. 1) For n even, 

Lp„(7m) = Lp„(7m) 

while for n odd, 

In general it appears that the sequence 

. . . -» H"(K0(R) ) -» LK
n{R) -»• lf„(R) ~> H"-](K0(R) ) - » . . . 

is the most suitable for calculations since each term is invariant under 
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Morita equivalence of anti-structures. On the other hand, the use of 
K0(Z7T) is necessary for geometrical reasons so this forces the use of if in 
the above diagram. 

2) The map labelled a* in (3.8) is geometrically the cohomology class of 
the finiteness obstruction in [33, Section 2]: let (/, b):M —> X represent an 
element of LP^TJTT) as in Section 2, then 

°*tf, b) = {o(X) }. 

3) The map labelled x *n (3-8) is closely related to "semi-
characteristics". This connection will be discussed in Section 4. 

For the proof of Theorem A we need to relate LP and L>~ '. Since 
K_i{Jm) = 0 for i > 1 by [6], the exact sequences of [35] show that 

(3.9) L<-k\7m) = L<-X\lm) 

for all k ^ 1. For calculating K_](Z7T) there is the exact sequence [5]: 

(3.10) 0 -> K0(Zm) 0 K0(QTT) -> £ 0 (QT7) -» K_X{ZTT) -> 0. 

The cohomology sequence arising from this short exact sequence of 
Z/2-modules fits in with the arithmetic sequences for LP and L'~1' as 
above. 

PROPOSITION 3.11. There is a commutative braid of exact sequences'. 

Remarks. 1) For any ring with involution 

L*(R) = L0
n
QRo(R)(R) 

as in [34] but we noted above that Ln(R) ^ L%(R) in general. This is the 
point where the transition is made from L-theory based on subgroups of 
Kx to that based on subgroups of K0. 

2) In the orientable anti-structure the involution induced on the free 
abelian group K0(QTT) is — 1. On K0(Q7r) the involution is — 1 on some 
factors and interchanges others in pairs. Hence 

H°(K0(QTT) ) = 0 

and the map labelled y in the braid is an injection. 
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THEOREM 3.12. The natural map (cf. (2.6) ) 

ix:L
p

3(Z7r)-^ L{~X)(ZTT) 

is injective for any finite group TT. 

Proof First we rewrite (3.10) using the fact that 

is an isomorphism when / j |T7| : 

(3.i3) o -* 2® ̂ ( V ) e K0(QTT) -» 2® £0(Q/O -> x_x(Zn) -> o. 
l\W\ /IFI 

From this it is easy to see that torsion elements in K_x(Z
rn) arise from the 

simple (involution-invariant) factors S in Q77 such that S is non-split but 
S1 = S ® Q/ is split at all finite primes. More precisely, let [S] <E AT0(Q7r) 
be the class of such an algebra and note that [S(] = m([Pf] where 
Pi denotes the simple module over the matrix ring D( and m{ is the local 
Schur index. In fact, to satisfy the conditions S must be type Sp and 
Morita equivalent to a quaternion algebra D over a totally real field F, 
say 

with the standard involution —. Hence ml = 2 for all primes / and [Pt] 
generates an element of order 2 in K_l(Z

t7r). It is also true that all torsion 
elements arise in this way [6]. The image of the torsion element just 
considered under the coboundary 

J:H°(K_](ZTT) ) -> H](K0(ZTT) ® K0(QTT) ) 

is clearly represented by (0, [D] ). We note that the left-hand side is just 
Torsion (K_X{7JTT)). 

LEMMA 3.14. The hermitian form ir:D X D —> D defined by tr(w, v) = uv 
is hyperbolic over (Dh —, 1) if and only if D( is split. 

Assuming this for the moment we can look at the braid (3.11). The class 
of (A tr) in LP

0(QTT) maps to [D] in H\K0(QTT) ) and to zero in L^(QT7). 

Since y is an injection it follows that the image of 

contains the torsion element given by D. 

Proof of ̂ (3.14). The anti-structure induced by the given one on Q77 is 
(Z), —, 1) where " —" denotes the usual involution on 
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D = ( ^ F ) = {Fl + F e > + Ee2 + Re^ = a> e2 = P) 

where e3 = e}e2 and the involution is given by 

ê, = -e, (1 ^ i g 3). 

If ^|/ is a prime in i7 then 2X is split if and only if the equation 
ax 4- fiy = 1 has a solution in R. When a solution exists then an 
explicit isomorphism 

D,= M2(FJ 

can be given by sending 

( ax ay\ , / — By ax \ 

to - « J 3nd e ^ \ fix fly)-
The induced anti-structure is 

(M2(F/i),A->XA'X-\ 1) 

where 

(-ïj) 
and is scale equivalent to 

(M2{F^A^A\ -1 ) . 

The form tr:D X D —> D now becomes the form over M2(Rz) with matrix X 
but this is Morita equivalent to the standard hyperbolic form 

( - Î J ) 
F/k X F/k- H ^ ^ -

It is now possible to summarize the Proof of Theorem A. If 77 has a 
;mi-free acti 

invariant for 
semi-free action on (R"+/c, R*) for k > 0 then from [1] there is a normal 

X~ (R"+/c - Rk)/7r 

with vanishing obstruction in L^ZiiZif). We remark that if the action 
was proper this would follow from (2.10)(ii). From the factorization 

(3.15) [X, G/TOP] % Ifn_x(Jm) ^ L<Z\HZn) ~ L<Z\HZm) 

and the injectivity of ix (Theorem (3.12) ) it follows that the given normal 
invariant has vanishing À^-obstruction also. Hence (2.10)(i) gives the 
action on (Rw, 0). Since the converse is obvious from (3.15) and (2.10) 
the proof is complete. 
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We close this section with an example to show that Theorem A cannot 
be sharpened to say that each (proper) semi- free action on (R"+ / \ R*) 
can be desuspended to (Rw, 0). 

Consider the type IIK group m = Q(Sp). We have 

(3.16) QW = 2 • {Q(Çp)'[x\x2 = 1] 0 Qap)'[x\x2 = - 1 ] }. 

The first factor is split, the second is not, as it becomes quaternion at 
infinite primes. We examine when it is split at all finite primes. At 2, 

Z27r = M4(Z2®Z[Vp}[Z/4]) 

so Q27T splits into matrix rings (cf. [19, Section 3] ), whence Q(Ç )*[x\x = 
— 1] can only be non-split at/?. Recall that a cyclic algebra E^ala" = a] is 
split at a/?-adic prime ft precisely when 

a e Image(A^:£/ -» ^ ) 

where F is the center, F = E°. 

LEMMA 3.17. The algebra Q(L)'[x|x2 = — 1] is split at all finite primes if 
and only if p = 1 (mod 4). 

Proof. It follows from [38, Section 3, Corollary 5] that 

- 1 e I m a g e ^ ^ ) ^ ^ ^ ) ) 

if and only if — 1 is a square in F 

We now use the exact sequence (3.13) 

o -> 2 e £<,(£,*) e £0(QT7) -* 2 0
 KQ&F) -» K^Z*) -> o. 

I\2p l\2p 
~ A — A 

The term K0(Z[7r) maps into a direct summand of ^ ( Q / T T ) , so we get 
from 3.17 

Torsion K_l(Zir) = Z/2 © Z/2 if p = 1 (mod 4) 

- 0 if/? = 3 (mod 4), 

and 

H®(K__x(Z<n)) = Torsion K_X(Z<TT). 

Let F be an ^representation of 77 = Q(%p) of real dimension 8/c -+- 4 
and let X = S(V)/ir be the associated Swan complex. We have the 
diagram (cf. (2,15) ) and from Theorem 3.12, Û K - 1 ' is surjective. It follows 
that 7 is not surjective when p = 1 (mod 4), thus there exist 
non-desuspendable semi-free actions on (R8/c + 5, R1). On the other hand, 
we have already remarked that proper semi-free actions on (Rn+k, Rk) for 
k > 1 desuspend to (Rw + 1, R1). 
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/ / ' (AL ,(Zw) ) = / / ' ( * _ ,(Zir)) 

[ 2 * + , G/TOP] ^LP
0(ZTT) • S/?(X) • [ * , G/TOP] 

I / I / 
II • * II 

[ 2 X+, G/TOP] •L<~ 1 >(ZT7) •S (~1>(X) • [ * , G/TOP] 

r ° 
H\K_X(Z<IT)) = H\K_x{Z<n)) 

t t 
0 0 

4. The 8-invariant. In the proof of Theorem C, it will be necessary to 
calculate a surgery obstruction in L^_l(Zm) for a ^-group IT of type IIM. 
Since the 2-hyperelementary groups in this family have 

d(7r) = 2 and n = 0 (mod 2d(7r) ), 

the obstructions will be in L3{ZTT). We will now apply the techniques of 
Wall [44], [45] to calculate the relevant part of the arithmetic sequence: 

(4.1) L%(ZTT) 0 L%(Q<n) -> LQ(QTT) -> Z|(ZTT) -> I^(Zm) ® L$(Qir). 

The main result (4.15) is that L^{ZTT) is detected by two "a priori" 
invariants, namely the natural map 

(4.2) x:^(Zm) -> Lf(Z2,r) 

and the ô-invariant 

(4.3) Ô:ker X -» H°(Wh(Qn) )/(l£(&r) © L*(Q,r) ) 

induced by the discriminant homomorphism 

(4.4) d0:L*;(Q<iT) - » H°(Wh(Q7T) ). 

The first of these is related to R. Lee's semi-characteristic (see Section 2) 
while the second is related to the Reidemeister torsion invariants of [21] 
(see Section 8). 

The first step is to show that the image of LUZTT) is zero in Lf(Z_7r) for 
p odd and in L3 (QÏÏ). But L3 (Q7r) = 0 for any finite group and: 
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PROPOSITION 4.5. For any finite group IT, and p odd, 

is injective. 

Proof. By Dress induction [10] and the fact that odd-dimensional 
L-groups are 2-torsion groups, it is enough to prove the result for m & 
2-hyperelementary group. Since 

is an isomorphism whenever p O TT is a /?-Sylow subgroup [48], we may 
also assume that p \ \ir\. After Morita equivalence, it is enough to show 
that 

(4.7) Lf(A, a, u) -> Lf(£, a, u) 

is injective when A is the ring of integers in an unramified extension field 
E oi Qp. In this situation, both sides are zero unless a = identity and 
u = 1 [44]. In the remaining case, both 

dx:Lf(A, 1, l)^Hl(Ax) 

and 

H\AX)-+ H\EX) 

are isomorphisms so the result follows. 

We now return to the 5-invariant (4.3) and complete our general 
discussion of the arithmetic sequence (4.1). Let S denote a central simple 
£-algebra in QTT where E is a number field and let (S, a, u) denote the 
anti-structure induced on S by our involution g —> g~l. We note that when 
(S, a, u) is type O, then S is split at all real primes and (S, a, u) ® R does 
not contain any factor Morita equivalent to (C, 1,1). From [45] there is an 
exact sequence 

(4.11) 0 -> Ls
n(S, a, u) -> Ls

n(SA, a, u) -> CLn(S) -> 0 

where SA = S © T with T = S ® R and S is the restricted product 

S = l im(n S/X I I A) 

A A 

where R{ c ^ is a maximal (involution-invariant) order. The limit is 
taken over finite sets 12 of finite primes. 

Now let (S, a, u) have type O. Then L0(T) is a non-trivial direct sum 
of groups 

Z£(R, 1, 1) = 4Z 
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each of which maps surjectively onto CL0(S) = Z/2 in (4.11). It follows 
that 

(4.12) L*(S, a, u) -> LS
0(Sy a, Ù) 

is onto. 

PROPOSITION 4.13. 

ker(d0:Z*(&r) -> tf°(Wft(&r) ) ) Q lm(L^(Q7r) -> Z*(&r) ). 

Proof. Consider first the statement that 

(4.14) ker(4:L^(Q77) -> H^K^QTT) ) ) ç Im(Z*(Qir) -> L^QTT) ). 

Let (S, a, w) be a simple component of QTT as above. If it is type O then 

L ^ ) = 0 when / { |*r| 

so 

ker(4:Z*(S) #°(*i(S) ) ) 

is just 

2 e {£o(S / ) :S , splits}. 

It follows from (4.12) that this is in the image of LQ(S). If (S, a, u) is type 
£/ or Sp then 

k e r ( ^ : L * ( S ) ^ / / ° ( * : , ( S ) ) ) = 0 

and (4.14) is proved. 
Next we observe that LQ(QW) and LQ(QTT) have the same image in 

Ha(±-n/-n') by comparing the two Rothenberg sequences: 

L (*(QT7) 

A;(0) 

HV(±IT/W') 

/ /U(±77/77') 

I4(Q") 

i4iQv) 

using (4.II) for n = 3 and the fact that Zi(7") = 0. Now suppose that 
Y 

x e ker d0, so d0(x) is in the image of 
H\±ir/ir') H\KX{Q<IT)). 

Since 

ker d0 = Im(L0
y(Q77) -» L^QTT) ), 

we may adjust x by a suitable element *' of L0(Q7T) SO that 
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x — x' G Ker d0. 

The result follows from (4.14). 

COROLLARY 4.15. The 8-invariant is injective. The invariants 8 and x 
detect L^{XTT). 

Since the discriminant d0 used in defining the S-invariant (4.4) factors 
through H (KX(QTT) ) we can analyse the range of 8 by using the 
splitting: 

(4.16) K^Qn) = K}(Qir)+ © K1(QTT)_ 0 K^QTT), 

associated to the decomposition of the (orientable) anti-structure on Q77 
into type O, Sp and U anti-structures on simple algebras. The types can be 
easily recognized by computing 

2 Kg2) 
g G 77 

for an irreducible complex character £ associated to the simple algebra: 
type O, Sp, U corresponds to this quantity being > 0, < 0 or = 0 

A 

respectively. The splitting (4.16) induces a similar one for K^Qp) with 
type GL included in KX(QTT)Q and for K^Z^ir) if I \ \IT\. If / is odd and 
l\ M then [44] 

(4.17) H^K^ZJTT) = H°(KX(Z^/R2id)) 

so the decomposition of Z ^ / R a d into anti-structures over finite fields 
induces a splitting for / / ^ ( ^ ( Z / T T ) ). Since the norm homomorphism is 
onto for finite fields it is clear that 

H\KX(ZF\) = 0. 

PROPOSITION 4.18. The splittings above induce an isomorphism 

H°(K}(fr) )/L*(îm) S l£(Q*r) 

where 

T = Im(//°(^1(Q77) + ) 0 //°(K,(Zodd77) + ) © 4(Z277) 

Proof. In the definition of / the map on L0 (Z27r) is the composition 

4(Z277) -> / /V,(Z277) ) -H. / / V , ( < > ) ) -» //°(K,(<>) + ) 

where the last map is the projection given by (4.16). 
In order to see that the image of L^(Q77) 0 LQ(Z7T) is contained in 

the summands 
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(4.19) //0(#,(<k>+) © #°(*i(<k>o) 
we recall from [44][45] that L%(S, a,u) = 0 whenever (S, a, u) is a type S/? 
anti-structure over a central simple ^-algebra and E is a local or finite 
field (of char ^ 2). The remark now follows from the factorization 

dx 

(4.20) Z*(Zir) 0 Z*(Q*) -> Z*(QTT) -â H^K^QTT) ). 
Next we check that the summand H°(K} (QTT)0) is factored out. In fact, 

if (5*, a, u) is a type [/ anti-structure over a global field E then 

7 / ^ i ( S ) ) ^ # ° ( ^ i ( S ) ) 

is an isomorphism by the Hasse Norm theorem and class field theory (cf. 
proof of (7.4) ). Since the discriminant 

(4.21) 4:L%(S,a,u)^H\Kx(S)) 
r\ A is 

is also surjective, we see that H (K^QTT)^ is the image of L0(Q77)0 un­
der the map in (4.20). 

The map d* in (4.21) is surjective also for E finite, local'or global and 
(Sy a, u) type O. Therefore the image of 

4 ( W ) + © £o(Q*)+ 
is the same as that of 

H\Kx{Zoid-n) + ) 0 H\KX(QTT)+). 

PROPOSITION 4.22. The range of the 8-invariant is contained in 
H°(Wh(Q7r) + )/Iwhere 

I = Im{H°(Wh(QiT) + ) © H°(Wh(Zodd7T)+) 0 L*(Z277) 

^H°(Wh(Q<ir) + } . 

Proof. Although Wh(Q7r) does not split as in (4.16) we can define 
Wh(AiT)^ to be the image of K^ATT)^. under the natural projection (for. 
A = Zodd, Q or Q). Since ô factors through the induced map 

(4.23) jiH^Kiifo) ) /L*(ZT7) 0 LftQir) 

-> H°(Wh(fo) )/l£(Zir) 0 z£(Qir), 

we see from (4.18) and the fact that LQ(S, a, it) = 0 for type Sp 
antistructures that the range of S is contained in a quotient of 
H"(Wh(Qn)+). Thus the proof can be completed by checking that 
y(7) = I. But7(7) c / clearly and 

Hl(±7T/7T') - > H\KX(ATT) + ) 
A A 

is injective for A = Zodd , Q or Q so that 

^ ° ( ^ 1 ( A T 7 ) + ) -> H®(Wh(A<n)+) 
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is onto. 

5. The map from Lj to Lp. This section contains the main calculation-
al technique of the paper. First we ask when an element in L3 (LIT) is in 
the image of the natural map 

(5.1) ip:Lj(Z<rr) -> L^ÇLÏÏ) 

P Y 

and then we show how to relate S(i (x)) to its image i2(x) where 

(5.2) IJ:LJ(ZTT) -> LJ(Z2TT). 

The result is stated in (5.18). 
The reason for the importance of this device will be clear in Section 7 

where we prove that 

(5.3) Res:L3
y(Z27r) -> 0{L3

y(Z2p):p ç ^ 

is injective on the image of z2 for the groups IT = Q(&a, b) used in 
computing our L -surgery obstructions (see (7.7) and Section 9) to the 
existence of actions. It will turn out that we know enough about 
the surgery problems to give a formula (8.11) for the obstructions in 
L3 (Z2p) when p Ç 77 so the injectivity of Res and the results of this section 
allow us to determine the obstruction in L^ÇLTT). 

We begin by considering the following diagram of exact sequences: 

H\Wh'(7m)) 

(5.4) LI(ZTT -> Z2TT) ^LJ(ZTT) —*~LJ(Z2TT) 

iK N \ ip 

1 X 
H](K0(ZTT) ) •Lf(Z77) ^Lf(Z77) +H°(K0(Z7T) ) 

Since Hx(Wh\Zir)) = 0 [48] it follows that iK is surjective and so the 
image of ip is just ker a*. For the same reason, 

(5.5) H°(Wh'(Z27T) )/H°(Wh'(Z<TT) ) -» H°(Wh'(Z2Tr)/ Wh'(Zm) ) 

is an isomorphism. From the cohomology sequence associated to 

(5.6) 0 -> Wh'(Z2<n)/Wh'(Z<n) -> Kx(Zm -* Z277) -> K0(ZTT) -> 0 

we obtain a homomorphism 

(5.7) d*:Hl(K0(Zm) ) -> L\{Z2m)/H^{Wh\Zir) ) 

defined by the composition: 

https://doi.org/10.4153/CJM-1986-041-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1986-041-x


ACTIONS OF FINITE GROUPS 811 

H\Wh'(Z2ir)/Wh'(ZTT)) 

(5.8) H(K<{Zm)) 

d* 

H°(Wh'(Z2ir) )/H°(Wh'(Z-n) ) 

Kt& L1(Z2TT)/H"( WhXZir) ) # u ( Wh'{Z2m) )/H\ Wh'{Z<n) ) + Z£(Z2ir) 

ker(L3
y(Z277) -» Lf(Z2ir) )/H°(Wh'(Zv) ) 

n 

PROPOSITION 5.9. 77z£ map z induces an isomorphism: 

.P Im^Z^^Z^Z^)) H°(Wh'(Zn) ) + d*(Hx(K0(Zir) ) ) 

» ker(Lf(Zff) -> H°(K0(ZTT) ) ) 

*" Im(L0
y(Zw •-> Z277) -» Lf(Zw) )' 

Proof. From (5.4) it is clear that ip induces a well defined homomor-
phism i from 

Im(L3
y(Z7r) -* LJ(Z2TT) )/H°(Wh'(ZiT) ) 

onto the right-hand side. It remains to be seen that 

d*H\K0(Zv)) 

is the kernel of this map. If U denotes the subgroup of K^ZJTT) gener­
ated by Y and KX{ZTT), then the Rothenberg sequences give commutative 
ladders (cf. [37] ) 

L£(Z77)-

(5.10) 

and 

(5.11) 

^H](K0(ZTT) ) •Lf(Zir) •Lf(t7r) 

d* (a) 

• Lo(Z2<rr)—*»H°( Wh'{Zyn)/ Wh\Zm) ) — ^ ( Z 2 T T ) — • L f ( Z 2 T T ) -

. -» L([(ZT7 -> Z2TT) -> L3
y(Z77) -» LJ(Z2TT) -» . . . 

(b) 

. . . - > L^U(Z7T - > Z277) - > Lf(Z77) - > L%(Z27T) -

It now follows from (5.5) that the natural maps 
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H{)(Wh\Z27T) )/H{\Wh'(Z<Tr) ) 4- L^(Z277) ^ ker(L3^(Z277) -> Lf(Z2*r) ) 

A • A 

ker(L((Z277) -> L^(Z277) )/H(]{Wk\7M) ) 

are isomorphisms, so the result Im d* = ker f is immediate from (5.8), 
(5.10 (a)) and (5.11 (b) ). 

For use in the remainder of this section, it is convenient to introduce the 
notation 

L%(Zm) = ker(x:L^(Z77) -> L%(Z2TT) ) 

for the domain of the 5-invariant and similarly to let 

L3
7(ZTT) - ker(/f :L%(Zm) -> Lf(Z27r) ). 

Since x * iP = J'f, it is c l e a r t n a t f induces an isomorphism also from the 
subgroup 

Im(L3
7(Z77) -> L3

y(Z277) )IH\WW(7M) ) + d*H\K0(Zm) ) 

to the corresponding subgroup 

ker(Lf(Zir) -> H°(K0(ZTT) ) )/Im(L0
y(Z7r -> Z2TT) - * L%(Zm) ) 

on the right-hand side of (5.9). We will now show that 

Im(Z^(Z7r -> Z277) -> LJ(ZTT) ) = 0 

so that if actually expresses the //"-obstructions (in ker a*) in terms of 
LY. 

Consider the homomorphism: 

(5.12) Sy:L3
y(Z77) -> H0(Wh(Q<?T) )/I^(Im) 0 L%(QTT) 

induced by the additive relation in diagram (3.7): 

L3
y(Z77) -> L3

7(ZT7) 0 L3
F(Q77) 

(5.13) J 

H°(Wh(Z7T) ) 0 H°(Wh(Qir) ) -> H\Wh{Qir) ). 

PROPOSITION 5.14. For JC e ker(L^(Z77) —> Lf (Z2?7) ), //zere w //ze 

Sy(x) = 8(ip(x) ). 

Proof. The argument is a variant of arguments used in [21, Section 2] 
and is based on the algebraic surgery theory of Ranicki [36]. Let (C, \p) be 
a free, based, quadratic Poincaré chain complex representing 
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JC e ker(L3
r(Z7r) -> i f (Z2TT) ). 

Then (C 0 Z, i// ® 1) and (C ® Q, i// ® 1) represent the images of JC in 
L3

y(Z77) and L](Q*r). Since 

ker(L3
y(Z77) -» Lf(Zw) 0 Lf (QTT) ) = ker(Ly(Z77) -> Lf(Z2?7) ) 

from (4.5) and (3.3), it follows that there exist quadratic algebraic 
A rv 

cobordisms D and D (we will suppress mention of the Z/2-hyper-
homology classes [36, Section 3] from now on) such that, 

dD - C ® Z - C, dD° = C®Q - C° 
A Q A 

with C and C acyclic complexes over Z77 and Q77 respectively. Let 
A(C) and A(C°) be their Whitehead torsion invariants in H°(Wh(ZiT)) 
and H (Wh(Qir) ). According to [21, 2.4] the difference of their images in 
H°(Wh(Q7r) ) represents SY(x): 

8Y( [C, +] ) = A(C ®£ Q) - A(C° ®Q Q). 
A A 

On the other hand we can form the union [36, p. 135] of D ®£ Q and 
D° ®Q Q along C ® z Q to get 

D = D ®£ Q U D° ®Q Q 

with 

dD = C ®£Q - C° ®Q Q. 
K A 

This boundary is acyclic so (D, 3D) represents an element in L0(Q7r) 
which maps to ip(x) in LP(ZTT). This follows from the cobordism 
interpretation [37] of the Mayer-Vietoris sequence (3.8) for calculating 
Lp(Zir). Finally, the cobordism interpretation of the Rothenberg sequence 
implies that 

d0:L^(Q7T)^H°(Wh(Q7T)) 

can be calculated from 

d0( [D, dD] ) = A(dD) = A(C ®i Q) - A(C° ®Q Q). 

COROLLARY 5.15. Under the map induced by i , 

lm(I%(7m -> Z277) -» Lp(Zm) ) = 0. 

Proof. From (5.4), 

Im(Z^(Z77 -> Z277) -> L3
y(Z77) ) = ker i\ Q LJ(ZTT) 

so that for any 

JC G Im(L^(Z77 -> Z2TT) -> Ly(Z77) ), 

we have £y(x) = S(ip(x) ). However, if / is an odd prime, 
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H^iWhit^)^) -* L3y(Z/7r) 

and 

H°(Wh(Q7T)_) -> LJ(QTT) 

are both onto (note that Ls —» l 5 is zero for finite fields of odd character-
istic), so that 8 (x) is represented by an element in H (Wh(Q7r)_). But 
from (4.22), the range of the S-in variant is a quotient of H (Wh(Q7r) + ) . 
Therefore 

8(ip(x)) = 0 

and since 8 is injective (4.15), ip(x) = 0 also. 

Remark 5.16. The argument just given also proves that 

8(ip(x) ) = i o 8\(x) 

for all x G Lj(Zw) = ker /f, where 8\ is the composition: 

(5.17) LJ(ZTT) -» L3
y(Z27r) ^ H°(lVh'(Z27T) )/L$(Z2TT) 

-» //°(Pf7I(Q27r)+)/L5:(Z277) 

and 

î:H°(Wh(Q27T)+)/L%(Z27r) -> ^ ° ( ^ / Z ( Q T 7 ) + )// 

maps to the range of the S-invariant (4.22). Since f is not injective, we 
suggested in an earlier version of this paper that the invariant S2 should be 
investigated further. Recently it has been shown that i2 and S2 detect 
LJ(Z2TT) and that 8j is a "semi-torsion" invariant. 

We can now state the main result of this section. 

PROPOSITION 5.18. The map i induces an isomorphism: 

if :ker(Z|(Z<77) -» H°(K0(ZTT) ) ) 

_ Im(L3
y(Z7r) -» LJ(Z2TT) ) 

~~ H°(Wh'(Z>iT)) + ^ ( ^ ( A Q C Z T T ) ) ) " 

Proo/. See (5.9) and (5.15). 

6. Splitting of Mackey functors. From Dress' induction theorem [11] we 
know that the groups Ln(Z7r) are detected by restrictions to the lattice of 
2-hyperelementary subgroups of IT. Since restriction for normal maps is 
just passing to a covering, this way of describing surgery obstructions 
is very natural geometrically. 

The groups Ln(Z7r) have only 2-primary torsion (and their free part is 
described by signature invariants) so there is no harm in replacing Ln(Z7r) 
by its localization at 2, 
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L„(Zff)(2) = L„(Im) ® Z(2). 

In this section we consider the problem of splitting 2-local Mackey 
functors in a functorial fashion. The splittings exist in general for finite 
groups but are particularly valuable to us (and transparent) when TT is 
2-hyperelementary. 

Later in the section we restrict to 2-hyperelementary groups but we 
begin with general finite groups. First recall Dress' definition of a Mackey 
functor: 

Definition 6.1. A 2-local Mackey functor is a bifunctor Jt = (Jt*, Jt*) 
from the category of finite groups with monomorphisms to the category of 
Z(2)-modules such that Jt*(Tr) = Jt*(m) and 

(^Jt^Jt* send inner automorphisms to the identity 
(ii) for any isomorphism/:^ —> IT'\ 

Jt*(f)oJt*(f) = id 

(iii) if p, p' Q TT then 

Jt* Jt* 
J!(p') -> Jt(rr) -> Jt(p) 

is the sum over double cosets {pgpf} Q TT of composites 

Jt* , Co 1 Jt* 

Jt(p>) -> Jt(g l
Pg n pO -4jt(p n gp'g l) Sjt(p) 

where Cg is induced by "conjugation with g". 
If i:p —> TT is a monomorphism, ./#*(/) is denoted /* or Ind£ and-#*(/') is 

denoted i* or Res£. Usually the covariant structure is defined also for 
maps which are not monomorphisms. 

One important example of a Mackey functor is the 2-local Burnside ring 
which we denote by ^(77). It is the Grothendieck ring (tensored with Z(2\) 
of finite 77-sets. This functor is even a so called Green functor: each Q(TT) is 
a commutative ring with 1 and for any inclusion i:p —» TT, 

(6.2) i*(xy) = i*(x)i*(y), xi*(y) = i*(i*(x)y). 

Any Mackey functor Jt is a Green module over £2: let x e Œ be 
represented by the 77-set [TT/p] then 

x • a = I*(I*(a) ) for any a e Jt(m). 

EachJt(7T) is therefore an ÇI(TT) module and the identities: 

Jt*(i)(i*(x)b) = xJt*(i)(b) 

^*(i)(yi*(a) ) = i*(y) • « 

are satisfied for all x e Q,(TT), y e £2(p) and a e Jt{m), b e ^ ( p ) . Any 
natural transformation 0 : ^ - * . ^ o f Mackey functors is a homomorphism 
of Green modules over S2. 
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We now recall some facts (mainly due to Dress) about £2(77). The reader 
is referred to [10] for more details. Given a virtual 77-set X and a conjugacy 
class p c 77, set 

<j>y(X) = #(X<). 

This is an additive and multiplicative operation and defines an injection 
homomorphism 

<?>:fi(77) -> I I Z(2) 

where the product ranges over the set C(TT) of conjugacy classes of 
subgroups. The cokernel of <J> has order 

n { | ^ 2 ( y ) | : y e C(TT) } 

where W2(y) is the Sylow 2-subgroup of the Weyl group N(y)/y. More 
precisely, the image of <J> can be described by the following set of 
congruences, one for each y e C(7r): 

(6.3) 2 fi(T, y)<t>T(X) ss 0 (mod \W2(y) | ). 
T 

The sum ranges over N2(y) conjugacy classes of groups y <3 T with T/ya 
cyclic 2-group. (N2(y) c iV(y) is the pre-image of W^2(Y)-) The integers 
n(r, y) e Z(2) which appear in (6.3) are given by the formula: 

(6.4) *(T, y) = |^2(y):JV(r/y) | | ( r /y ) x | . 

The congruences (6.3) are the 2-local version of the usual congruences; 
they are satisfied by elements in 12(77) by the counting of orbits in 
Xy/ W2(y) in the orthogonality relations and go back to Burnside. 

The prime ideal spectrum for fi(7r) was considered by Dress in [10]. Each 
maximal prime ideal has the form 

q(y, 2) = {x e Q(7r):<f>y(jt) = 0 (mod 2) }. 

Let O(y) denote the smallest normal subgroup of y with y/0(y) a 2-group. 
Then q(y, 2) = q(y\ 2) if and only if 0(y) is conjugate to 0(yf). 

Each connected component in Spec CI(TT) contains precisely one 
maximal ideal, so by a standard fact from commutative algebra ^(77) is 
isomorphic to the product of its localizations at the maximal prime 
ideals 

(6.5) 12(77) ^ E[ Q(ir)r 

We proceed to make this decomposition explicit for 2-hyperelementary 
groups; in fact for the remainder of this section all groups considered will 
be 2-hyperelementary unless otherwise indicated. Such a group can be 
written 77 = Z/« X 3 o with n odd and a a 2-Sylow subgroup of 77. Each 
conjugacy class of subgroups contain one of the form Z/d > < p with 
p c a and 

https://doi.org/10.4153/CJM-1986-041-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1986-041-x


ACTIONS OF FINITE GROUPS 817 

Z / J X p - Z / / X 3 p ' 

if and only if 

d = I and p — p'. 

We denote by O^^if) the set of conjugacy classes of proper subgroups of 
odd index in IT. We notice that 0(TT) = Z/n is the subgroup consist­
ing of all elements of odd order. Then the set ^dC77") *s m o n e t o 

one correspondence with subgroups of 0{IT), or with the divisors of 
n = \0(TT) I, and 

q(Z/d X r, 2) = q(Z/d, 2) 

for all T c a. 
The congruences (6.3) become particularly simple for 2-hyperelementa-

ry groups: for each divisor d\n, 

(6.6) 2 n(Z/d X T, Z/rf X I Y ^ z / W * ) = 0 (mod|7Va(y)/y) | ) 

where y c a and the sum ranges over Na(y) conjugacy classes with r/y 
cyclic. Moreover, 

n(Z/d X I T, Z/rf X 3 y) = /I(T, y) 

as one may easily check from (6.4). 
For d\n let 

<^W ~> II Z(2) 
C(a) 

be the map which to X e 12(?7) associates 

Since the congruences (6.6) for the various divisors d are independent 

(6.7) Q(TT) = n ^(Q(ir) ), 

and since w(Z/rf X I T, Z / J X y) = «(T, y) 

<^(TT) = Œ(a). 

The decomposition (6.7) is (of course) a special case of (6.5). Indeed 

< :̂fi(77) -> I I Z(2) 
C(a) 

factors over the localization Q(?r) where # = q(Z/d, 2) because 

^(12(77) - q(Z/d92)) Q I I Z(* 

and it defines an isomorphism 

(6.8) ^:Q(ff) ^ 0(a) c n Z(2). 
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To see that <j>d localized at q is injective, notice that there exists an element 
/? G Q(*r) - q with <fy(j8) = 0 for / # J; then <f<jcj8) - 0 when ^ ( x ) = 0 
so xfi = 0 in S2(77) and x = 0 in £2(77) . 

The equivalent decompositions (6.5) and (6.7) imply that every 2-local 
Mackey functor ^(77) will also decompose into summands: the orthogonal 
idempotents given by (6.7) split the 12(77)-module Ji{m). For our 
applications below it is necessary to describe these idempotents explicitly 
in terms of the transfer structure (Jtjj\ Jt*{i) ). 

Consider p = T/d X I o e ôddC77*)- The composite 

Q(p) ^ Q(ir) *-* Q(p) 

is multiplication with i*[ir/p\. Indeed /* is surjective (e.g. by (6.6) ) and 
77 XpX = 77/p X X when X is 77-set, so 

/* o U(i*(x) ) = /'*( [77/p] • x) = i*[ir/p] ' i*(x). 

Moreover, we claim that /*( [77/p] ) is invertible in 12(p). To see this it 
suffices to check that 

/*[77/p] e fi(p) — q(y, 2) for each y c p. 

But for each subgroup y of p, 

(77/p)7 * 0 

so that <f> (ir/p) = #(77/p)y is odd, and the claim follows. 
Let 

yP = i*([7r/p])-1. 

Then i*(yp) e £2(77) is an idempotent 

Ed = U(ypy 

It is convenient to use the same letter for the induced projection 
operator, 

Ed:Q(ir) -> £2(77), Ed(x) = U(yp) • x. 

We now determine its character. Let 

y = Z / / > < y2. 

If y is not a subgroup of p, 

<t>y(i*(yP) ) = 0 

and this happens when d \ I. If d|/, 

*Y0'*(^P)) = 4>Y0'%(jP)) = *Y(1) = 1, 

so altogether 
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f O i f ^ 
\ 1 if d\i <Py('*(yp)) = K ! f " | / 

when p = Z/d xi a. We see that Ed corresponds (under <J>) to the 
idempotent 

Ed: n n z(2) -» n n z(2) 
/|« C(o) /|n C(a) 

which projects onto 

n n z(2, 
l\d C(o) 

There is a corresponding family of orthogonal idempotents, which we 
index by 0O^(TT). For p = Z/d X I a define 

(6.9) Ep = EdoT\{(\ ~ £/):/ < 4 /|</} e S2(T7>. 

Then £p£p, = 0 if p * p' in 0odd(7r) (i.e., p <* p') and 2 £p = 1. The 
projection operator Ep corresponds under <j> to projection onto the factor 

n z(2) 
C(o) 

indexed by d = \0(p) |, so we get 

(6.10) EPQ(TT) = ^ (Ofr ) ) = Q(ir),(Z/</>2). 

Definition 6.11. Let~#be a 2-local Mackey functor and J|w, « = |6>(7T) |. 
The d-component of ^#(77) is the subgroup 

^( W ) ( J ) = £ p ^( W ) = In<£(£p - ^ ( p ) ) 

where 

p = Z/d XI a G 0odd(7r). 

Since 

Res£(£p) = £p e Q(p) 

it follows that 

Res£(^(77)(d) ) = Jt(p)(d) where p = Z / J X a. 

Thus it really suffices to consider the top component. It has the following 
alternative description which is often convenient to use: 

(6.12) J((m)(n) = Ker{Res:^(77) -> U {J?(p):p ¥= TT, p e (9odd(ir) } }. 

We summarize the splitting results for 2-hyperelementary groups. 

PROPOSITION 6.13. Let M be a 24ocal Mackey functor. Then 
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(i)Jf(v) = 2 0 {Jt(*)(d)'A \0(v) | } 
(ii) for any p <= ^ ( T T ) , 

Res^(77)(t/) ) = O ifd\ \0(p) |, <wu/ 

(iii) //<i| |0(p) | for some p e Oodd(7r), Res£ is injective on Jt(m)(d) ) and 
has image Jt{p)(d). 

PROPOSITION 6.14. Let Ji be a 2-local Mackey functor and T C 77 be a 
normal subgroup of 2-power index. Then for any d\ \0(jr) \ = \0(r) |: 

(i) Inà"T(Jt(T)(d) ) ç MipXd) 

and 

(ii) Resl(Jr(7r)(d) ) ç Jl{r%d). 

The results above will be applied to K or L-theory in the next sections. 
Since these are actually functors on orders (not just groups and 
monomorphisms), we can obtain a more easily computable description 
(6.22) of the components by using a modification of Frohlich's descrip­
tion [13] of the class group. 

Let S Q Q be a subring and write 

«„ = s 0 m„]. 
We want to consider functors defined on a suitable category tfs containing 
A-orders in semi-simple X-algebras where A is one of the rings SÇn as n 
varies (or Sfin for some l\ n) and Kis its quotient field. Note that such an 
order is invariant (but not fixed) under the action of G&\(K/Q). It will be 
clear from our results exactly what objects are used so we will not need to 
formalize the definition of %>s. 

The most important examples of these A-orders for our purposes are 
S[Z/n x 3 a] and SÇd[o]* where as usual d\n are odd and a is a 2-group 
(acting on SÇn via a homomorphism o —> Gal(Qf,/Q) ). Let 

id:SU°l - SS„[a]' 
denote the inclusion map and 

pr(x):S[Z/n X S] -> # > ] ' 

the projection map induced by a complex character x of Z/n. If we fix a 
generator T of Z/n and denote by \d ^ e character such that Xd(T) = $d 
then we obtain projection maps pr^ = pr(x j ) indexed by d\n. If Jt is a 
functor defined on %>s then there is a pairing 

(6.15) (,):R(Z/n) X Jt(S\Z/n X a] ) - ^ ^ ( S f Ja ] ' ) 

where R(Z/n) denotes the complex character ring. For 

X e # (Z /« ) and ""À <E Jf(S(Z/n X a) ) 

set 
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<X, a) = pr(x)*(fl) 

and extend by linearity to sums of characters. Note that R(Z/n) is also a 
Green module over the Burnside ring fi(Z/«). 

We now show how to identify ^{Sir){n) assuming that Jt is a 2-local 
Mackey functor on %>s. This means: 
(6.16) 

(i) Jt is an additive covariant functor from <#$ to Z(2)-modules 
(ii) There is a contravariant map I*:Jt{â8) —» Jt(sé} defined whenever 

stf Q £6 are in ^s and 96 is ^projective. 
(iii) Jf(Sir) is a Mackey functor on subgroups of IT using (/*, /*) and /* 

is natural with respect to morphisms of Sm induced by group homomor-
p h i s m S 77 —» 77'. 

(iv) For 77 = Z/w X 3 a, JTiir) = .^(Sfja] ' ) is a Mackey functor on 
subgroups p Q IT with p G 0odd(7r) and n\m\n (i.e., when the odd part 
m = \0(p) I has the same prime divisors as n). The projections 

prw :S(Z/*><l a ) - > « > ] ' 

of orders induce a natural transformation of Mackey functors on this 
subcategory. 

PROPOSITION 6.17. Let Jt be a 2-local Mackey functor on tfs with 
\/n G S. Then for 77 = Zln x 3 o the composite 

W.Jt{Sm\n) Q-JH Sir) ( P ^ » _S@ ^ ( S ^ a ^ J ^ ! # ( S y < j ] ' ) 

w <z« isomorphism. 

Proof First we use the projection maps J.ZIn —> Z/d for d|« and 

(* / , - ) .= 1 to split Jt{Sm) into components indexed by subsets of set P of 

prime divisors of n (as in [46, Section 4] ). Let Jt{STr){P) denote the top 
component in the crude splitting and observe that the projection to this 
top component 

2 8 Jt{Sm\m) Q Jt(STr) ^ Jt(S<rr)(P) 
n\m\n 

is an isomorphism. Since \/n e 5 w e can identify 

Jt(S<n) = 2 ® ^ ( « > ] ' ) 
d\n 

using 2 (pi^)* and then Jt(S7r)(P) is just 
d\n 
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2® •* («>] ' ) • 
n\m\m 

On the other hand, by (6.16) (iii) applied to the diagram 

Tin X a. 

U 

Z/rfXa. 

J . Z / J X o 

- • Z / d x 3 a 

for any d\n with (d, n/d) = 1 we see that 

2 0 Jl(Sir){m) Ç n ker(4:^(^7r) -> Jt(S(Z/d X a) ) 
"W" (d,n/d) = \ 

Jt{S*n){?\ 

It follows that this inclusion is an equality and in particular, that for m 
with n\m\n 

(prd)*J?(S7T)(m) = 0 

unless d = n. 
From (6.16) (iv) and (6.13) there is a splitting 

• * ( « > ] ' ) = 2 ® ^(Sf„[a] ' )(J) 

using the Mackey functor structure /*, 7*. 
We now assume n\m\n, n\d\n and apply (6.15) (iii) and (iv) to the 

commutative diagrams: 

J Vvd 
SZ/n •SZ/rf +»S$d 

A 4 A 

SZ/w- *SZ// 
prz ^ 

— — « / 

for/ From these it follows that 

(6.18) (pTd)^(Sv)(m) ç Jt{SSdW) 

if m = I and otherwise 
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(prdU JÏ(STr)(m) = 0. 

(Note that l\m and that the correspondence (d, m) —> (d, /) with / = m is 
bijective.) However, our assumption on S means that 2(pr^)* is an 
isomorphism and so the inequality (6.18) must be an equality. For the top 
component we obtain the isomorphism: 

2 (prd)*:J?(Sir)(n) -> 2 ® ^(«>] ' ) (<0 

which can be followed by the isomorphism 

to give the result. 

For our applications of these results it is important to observe that 
the K and L functors of Q77, Q77r and Z/77 (for / { «) give 2-local 
Mackey functors in the sense of (6.15). 

For the functors K0(_) ® Z2 and ^ ( _ ) ® Z2 this is well-known 
( [13], [2] ) and follows from the arithmetic sequence in K-theory together 
with the description of K\ in terms of reduced norms (recall that K\(s/) is 
the image of K{(s/) in Kx(s# ® K) ), or for K\{%1m) from the results of 
Oliver [30]. Similarly, the functors H*(K0(J) ) and H*(K\(J) ) are 2-local 
Mackey functors where as usual H* denotes Tate cohomology with respect 
to the involution. 

PROPOSITION 6.19. The L-functors Lx, LK, if are 2-local Mackey functors 
on SIT jor S = Q, Qz and Z;(/ { n). Properties (6.15) (i)-(iii) are satis­
fied for S = Z. 

Proof The properties listed in (6.16) become clear when we describe the 
restriction map J* for these functors. Let (R, a, u) and (R', a', u') be two 
rings with anti-structure [49]. A hermitian R-R' bimodule (M, b) is 
bimodule RMR, together with a non-singular hermitian form 

b: M ^ H o m ^ M , R') 

such that b is an isomorphism of R-R' bimodules where the natural R'-R 
structure on Hom#(M, R') is twisted by a, a' to produce a R-R' structure. 
(A/, b) is called based if M is i£-based and is i?'-based for some 
integer k depending on (R, R'). 

If Q(R, «, u) (resp. BQ(R, a, u) ) denotes the category of quadratic 
forms on projective (resp. based free) modules over (R, a, w), then a based 
hermitian R-R' bimodule gives functors: 
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_ ®R(M, b):Q(R, a, Û) -> Q(R\ a\ u) 

_ ®R(M, b):BQk(R, a, w) -» £<)(#', a', K') 

where the subscript /: indicates the cofinal subcategory of quadratic 
modules whose rank is a multiple of k. This bimodule formalism includes 
the usual restriction and induction structure as well as Morita equivalence. 
To check the properties (6.15) we need to consider the special cases: 

(6.20) (i) R = Zp, R' = Z?7 where p Q <n. With 

M = BpuR, and b(x)(y) = xy 

we get I* for the L-groups. With 

M = R>ZmR and b(x)(y) = 2 t\(xyh)h~x 

we get /* on L-groups. 
(6.20) (ii) Let E/F be a finite Galois extension and c:E —» E an 

involution fixing L. If (i?, a) is an (F, c) algebra, set 

(R\ j8) = (i? ® F L, a ®F c) 

and consider 

M = F L £ , 6(*)(j0 = c(x)y 

M = EEF, b(x)(y) = TrF
E(c(x)y) 

to get I* and /* for the L-groups. 
Properties (6.15) (i)-(iii) are now immediate from (6.20) (i). For 

(6.15) (iv) and S = Q, Qz or Z((l\ n), consider the extension of fixed rings 
(SÇn)°/(SÇd)

a when «|d|«. The degree is n/d and 

(6.21) S$n = (SO° ®(sw Xd-

It follows that the induction, restriction maps of (6.20) (ii) induce a 
A 

Mackey functor structure. For S = Zz(/ f n) note that the extension 
(SÇn)

a/(SÇd)
a is unramified and so the trace form is unimodular. One can 

check directly that Res o Ind is a 2-local isomorphism: in fact, it is 
induced by tensoring with the (SÇd)° — (SÇd)° bimodule (SÇn)

a equip­
ped with the trace form: For S = Q, Q ; or Z ;(/ { n) the trace form is 
equivalent to n/d (1). 

Our final goal in this section is a description of the top component of 
KX(SIT) suitable for computation. Following [13], we let Œ = Gal(Qf„/Q) 
and define 

0v:Kx(Sw) -> Hom^tf (Z/«), ^ ( S f J o ] ) ) 

for 77 = Z/n x 3 a by the formula (cf. discussion before (6.15) ): 

0v(a)(jd = pr(x)*(«). 
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On the right-hand side there is a Mackey functor structure given by 
induction and restriction of characters: 

Ind*/W) = / ( Ind *), Res*g(X) = s(Res X) 

where \p e R(Z/m), x G R(Z/n) and / , g are Galois-invariant 
homomorphisms. 

PROPOSITION 6.22. For S Q Q or Qj and m\n the following diagrams 
commute: 

K}(S(Z/n X a ) ) -

/* 

-HomQ(R(Z/n), K^S^o]')) 

Res* /* Ind4 

Kx(S(Z/m X I a) ) - V H o m f i ( / ? ( Z / m ) , K^SÇJof) ) 

P/w/. Note that for G = Gal(Qfw/Qfw) ç fi, 

(6.23) ^ ( « J a ] ' ) 0 = ^ ( S Q a ] ' ) 

so that 

lnd*fW) Q Kx(StM)-

Now the relation 

Res* oOp = 0wol* 

is clear and for the other, we use the formula 

(6.24) I n d * = 2 X
X+i{m/d) 

k-\ 

/ = 0 

where \p e R(Z/m), x G R(Z/n) with Res x = ^ k = n^m a n d 
J = |ker \p\. The commutativity now follows from: 

(6.25) pr(Ind ^(a) = pr(^)(/*(a ) ) 

for any a <E KX(STT\ \p e R(Z/m). 

Remarks, (i) If 1/w G S, ^ is an isomorphism and (6.22) gives a 
computation of the top component (cf. Section 9). If this is combined with 
the isomorphism: 

e:HomQ(R(Z/n), * , « } £ > ] ' ) ) -> 2 ® * , « # > ] ' ) 

given by evaluation of characters e ( / ) = (fixj) X the formula (6.17) 
where 
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e o 0W = 2 (pr^)*, 
d\n 

and the isomorphism 

NrdiK^QUo]') * ( (Q^)°)*, 

the result is an explicit identification: 

^ ( Q ( Z / « x 3 a ) ( « ) * ( ( Q f „ ) T -

(ii) The properties needed for (6.22) can be abstracted as 'Galois 
invariance (6.23), and a compatibility condition (6.25). This is actually a 
Burnside ring invariance property for the pairing (6.15): 

(o) • x, fl> = <x> i*<* ' a> 

where 

X e R(Z/n), <o e 0(Z/w) and « G Jt(S(Z/n X a)) . 

7. Applications of the splitting. The methods and results of the last 
section can be applied to the functors appearing in the K and L-theory 
exact sequences. We first state the general result for L-theory and then list 
some consequences which will be used later. The proofs follow easily from 
(6.17) and (6.19). Another splitting for the special case of L with similar 
properties is due to Wall [46, Section 4]. 

THEOREM 7.1. Let m = Z/n X I o be 2-hyper elementary. There is a 
splitting 

LjiZir) = 2 ® Lj{Z-n){d) 
d\n 

i) Lj{Zir)(d) = L?(Zv)(d)for d > 1. 
such that 

i) Ljç. 
ii) there is an exact sequence 

...^Lf+i(S(d))-»L?(Zm)(d) 

^ 1 1 LfiRfid)) 0 Lf(S(d)) -> . . . 
i\d 

there R(d) = Z ^ a ] ' and S(d) 0 Q. 

THEOREM 7.2. Let m = Z/n X I a b 2-hyperelementary, then Lp splits as 
above so that 

i) LP
x{Z<n)(d) = IfiZmftd) if d > \ 

ii) there is an exact sequence 
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...->Lf+1(^))->Lf(&rXrf) 

-> I I LfiR^d) ) 0 Lf(S(d) ) -* Lf(S(rf) )->. . . 

w/zere i£(<i) w as /« (7.1). 

Proof (i). The result follows from the exact sequence 

0 -> <T> -> l £ + 1 ( Z * ) -> Z&+1(Z*) -» 0 

where 

T = ((-?)* o) 
is in the image of Lp

lk + x(Zo). 
ii) Combine (6.25), (6.27) with the basic exact sequence (3.8). Note 

that 

n Lf{t^)(d) = o. 

COROLLARY 7.3. Let m be a 2-hyperelementary 0>-group of type IIM. 
Then 

Res:L3(Z7r) —> ^{L3(Zp):p Q IT is a special type IIM group) 

is injective. 

Proof. The 2-hyperelementary IIM groups are described in the 
Introduction by Milnor's notation 

7T = g(8a, b, c) X Z/m 

where a ^ b ^ c, while the special IIM groups are of the form 

(a = a, b = p9 c = m = l):p = g(8a, j8). 

The result will follow from (6.20) and the following lemma. 

LEMMA 7.4. Let IT = Q(8a, b, c) X Z/m and either d\m, d > 1 or 
(a, d)(b, d)(c, d) > 1. Then 

L%(Z<7r)(d) = 0. 

Proof The assumptions on J have the effect that each involution-
invariant summand in S(d) or in R2(d)/rad has type U. The sequence 
7.2 (ii) becomes somewhat simpler after (4.5): 

. . . -> L$(S(d) ) -» Lf(Z*X<*) "» 4(*2<<0 ) - » • • • 

Since 

L%(R2(d) ) = zf(i?2(d)/rad) 
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it follows from [49, Section 6] that L%(R2(d) ) = 0. Moreover, 

L*j(S(d) ) S H°(K,(S(d) ) and L$(§(d) ) S H\K^S(d) ) ) 

so to prove that 

4(S(d))^L^(S(d)) 

is surjective it suffices to show that H°(EX/EX) = 0 where E is a center 
field in S(d) (with non-trivial involution). By class field theory 
H°(E%/EX) = Z/2 and HOiES) = g^ • Z/2 maps onto Z/2, (see 
[7, VII]). Since E% = Ex ® £ ^ it follows that H°(ÊX/EX) = 0, 
whence Lp^{Z-n){d) = 0. 

For the next result and later we need to identify the top components of 
certain AT,-groups (see Section 6) for IT = Z/w x i a: By (6.27), 

(7.5) KtfirXn) = * , (#>]') 

for S = Q,Q, and for Ï, if / f n. Similarly, 

L [ ( V ) ( « ) = Lf(Z,f„[a]') 
(7.6) A A 

Lf(Z,,rX«) S Lf(Z^[a] ' ) . 

In Section 5 we described how the group L^(ZIT) is related to LJ(Z2TT). 

Our final calculations will rest on the fact that for 77 = Q(%a, b) the 
relevant part of L3 (Z27r) is detected by restriction to r Q TT where 

r = Z/ab X Z/4 

is the "diagonal" subgroup with Z/4 acting on Z/ab by inversion. This 
group is usually denoted Q(4ab). 

PROPOSITION 7.7. Let IT = Q($a, b) and r = Q(4ab). Then the image in 
L3 (Z27r) of the kernel of 

i*dd:Lj(Zv)(ab) -» L](Zodd*)(ab) 

is mapped injectively by 

Res:L3
r(Z277)(flZ>) -> Lj(Z2r)(ab). 

Proof. This is proved in [21, 4.19] but stated slightly incorrectly there, 
so we give the following outline. Recall that we introduced the ring 
A = Z[i]a, i)h] and its quotient field F in our discussion of condition 
C(a, b). Since 

(7.8) Z2 0 Z U Ô 8 ] ' = M4(A2[Z/2] ) 

it follows from (7.5) and an examination of the Rothenberg sequence [21, 
4.11] that 

(7.9) Lj(Z2ir)(ab) = H0(A2[Z/2]x)/L$(Z27r)(ab) = A/2A © / / ° ( i 2
x ) . 
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In fact the first factor is the first summand of 

H°(Kl(Q27T)^(ab))/LQ(Z27r)(ab) = A/2A 0 H°(F2/A?) 

and the second factor injects into 

/ /Vi(Q2^)-W ) S H°(F?) 
under the map induced by the injection 

H°(K\(Z27T)(ab) ) ~ H\Kx(Q2<iT)(ab) ). 

We also use the calculation at odd primes: 

(7.10) Lj(Zodd7r)(ab) = I T H\Âf) 
l\2ab 

where each factor injects into the corresponding part of 

II H\Kx(Q^)_(ab)) = II H\Ff). 
l\2ab l\2ab 

The image needed will be obtained from [21, 4.14]: 

(7.11) Im(Lj(Z<ïï)(ab) -> Lj(Z<ir)(ab) ) 

= A/2A 0 ker(7^*(2)/Fx2 -> H°( (A/ab)x) ) 

where F*^ ' c F^ denotes the elements with positive valuation at all 
primes (infinite or finite) and the map is induced by 

<&A:F{2) -> (,4/tfZ>)x/squares = H°((A/ab)x) 

defined in the Introduction: note that A x has trivial involution. The image 
of 

il\L]{Z<n)(ab) -> L](Z2<ir)(ab) 

is just the first fsiCtorA/lA together with the image of the second factor in 
(7.11) under the reduction map 

F*(2) / Fx2 _^ H°(A2). 

Similarly, the image of i^dd is the image of the second factor under the 
reduction 

F*(2) /FX2 _> J! H°(A*). 
l\2ab 

The global square theorem now implies that 

(7.12) Im(/2
y|ker/0

y
dd) = AllA. 

In order to see that this subgroup is mapped injectively by Res, we hst the 
calculation of Lj(Z2r)(ab) obtained in [21, 4.18}, [19]: Let B - ZfaflJ 
then 
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(7.13) Lj(Z2r)(ab) = B/2B ® i/0(i?2
x) 

and the map Res on the first summand of (7.10) is just the inclusion 
A/2A c B/2B. 

Our final application of the splitting technique in this section will be a 
"calculation" of the map 

X:Lf(Z77) -> Lf(Z27T) 

used in (4.15). The result is based on the relationship found by Pardon [32] 
between R. Lee's semi-characteristic invariant (cf. 1.3) and 2-local surgery 
obstructions. 

Let 77 = Z/n x 3 a be a 2-hyperelementary group and let RGL^V^I^) ^ e 

R. Lee's (unreduced) Grothendieck group of F2[7r]-modules modulo those 
which admit an "even ^-quadratic form" [20, pp. 191-2]. Let 
^CL,ev(^2^[alr) denote the subgroup of RCL^^IM ) generated by the 
modules belonging to the block 

F 2 f > ] ' £ F 2M. 

Then 

(7.14) *CL>CT(F2M ) = 2 ® *C i > C T(F2*>]') 
' d\n ' 

where the splitting is induced by projection maps. 

PROPOSITION 7.15. [32, 2.23]. Let m = Z/n X 3 o be 2-hyperelementary 
where o acts faithfully on Z/n. Then the difference of semi-characteristics in 
domain and range of a 2-local normal map induces an injection 

Xl/2:Lf(Z(2)W)(n) -> RCLJF2ïn[oD. 

This result can be used to identify ker x- given any IT = Z/n x i o and 
d\n, let 

Trd = Z/d X I o/od 

where od is the kernel of the action of o restricted to Z/d Q Z/n and define 
X as the composite: 

L^)JL ^ 2 ® flCL>CT(F2Ua/aj'). 

f I 
2 0 Lf(Z(2)7r)(^)«^20 Lf(Z(2)7 )̂(</) 
d\n v ' d\n v ' 
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The first map is induced by Z c Z 2̂) and the splitting (6.15). The second is 
induced by restrictions and projections, while the third is the sum of the 
semi-characteristics. 

COROLLARY 7.17. We have 

Ker x = Ker x. 

Proof. Clearly 

ker x = ker(Lf (ZTT) -> i f (Z(2)TT) ), 

and the natural map 

L3 (Z(2)77) —> L 3 (Z277) 

is an injection [32, 2.12], 

COROLLARY 7.18. [20, 31, 32]. Let m be a 0>-group and 

(f b):M^ X4l~] 

a normal map where X is a (4/ — 1)-dimensional Swan complex for TT. Then 
Xp(f b) e ker x if and only if every subgroup p Q TT of order 2p is cyclic 
(p any prime) and, when I is odd, TT has no type IIL subgroups. 

Proof By Dress induction we may assume that TT is 2-hyperelementary. 
The result now follows from Lee's examples [20, 4.14-4.17] and [32, 4.1, 
5.1, 6.1]. 

Remark. Recently J. Davis [9] has given a different expression for the 
map x valid for any finite group IT. He defines a "surgery semi-
characteristic" using homology with twisted coefficients with values in 

r\ —^ A A 

H (K0(Z2TT) )/L{)(Z277) and proves that the map x is J u s t the surgery 
semi-characteristic of a normal map followed by the natural identification 
of the group above with Ûs{%1

en). 

8. The idelic Reidemeister torsion. In this section we show how the 
//-surgery obstruction of certain space-form problems can be calculated 
using Reidemeister torsion invariants. 

Let Xn~x = X(TT) be a Swan complex for a ^-group TT. The homotopy 
type of X is determined by the chain homotopy type of an associated 
periodic projective resolution (i^ 0 ^ i ^ n — 1 are Z77-projectives): 

0 ^ Z ^ P „ _ 1 ^ . . . ^ / > 0 - * Z ^ 0 . 

An orientation for X fixes a base for the homology of the complex P*. 
Moreover by Swan's theorem Z77-projectives are locally free. So after 
choosing bases b for Z, ® P* (for all primes /) we obtain the idelic 
Reidemeister torsion invariant 

(8.1) Â(X, b) e K^QTT) 
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used in [47, Section 9] and [21, Section 6]. If the bases b are changed, the 
torsion is multiplied by an element of K\(ZTT) and the class of H(X, b) is 
then a well-defined invariant of the homotopy type of X in the quotient 
group: 

(8.2) Â(X) e K^Q^/K^ZTT). 

This invariant has the important property that 

3A(X) = o(X) e K0(ZTT) 

where o(X) is the Wall finiteness obstruction for X and the map 3.comes 
from the exact sequence (cf. (3.4) ): 

(8.3) 0 -* Wh(Qw)/Wh'(7m) -> Wh(§7r)/Wh'(Zm) -> K0(ZTT) -» 0. 

In the important special case when P* is actually free over ZTT, the torsion 
is denoted A(X) and 

A(X) e Kx{Qn)IKx{7m). 

Also, in this case the choice of a base b over Zir corresponds to a particular 
finite cell structure on X. If X is a compact smooth or PL manifold, then 
the (smooth) triangulation c^ defines a unique element: 

(8.4) A(*) = A(*, c^) e Wh(Q<ir). 

To define the idelic torsion for more general spaces than Swan 
complexes it is necessary to make more choices. A chain complex C of 
finitely generated projective Z77-modules is based if a base b is chosen for 
C 0 Z. (We will call this a base for C.) The complex C has 6<xsed homology 
if a base h is chosen for H*(C 0 Q). The finiteness obstruction for C is 

o(C) = 2(-l) ' ' [C,.] G j?0(Z7r). 

These definitions are extended to finitely dominated spaces with TT^ = 7T 
by considering the chain complex of its universal cover. Notice that 
H*(C 0 Q/) is still only projective over Qz77 so the bases h referred to 
above are over each simple algebra in Q;77 separately. 

From [21, Section 2] following the original definition of Milnor there is 
an idelic torsion invariant 

(8.5) Â(C, b, h) G K^QTT) 

associated to any based complex C with based homology. We now 
concentrate on the 2-adic component 

Â2(C, b, h) G A:,(Q27r) 

of the idelic torsion and list some of its properties (following [21, 
Section 2] ). It is clear from the definition that A2 is really an invariant of 
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based free Z27r-complexes. In this setting an acyclic based complex has 

Â2(C, b) e r,(Z27r) 
A 

and we call its projection into Wh\Z2
tn) the Whitehead torsion by analogy 

with the usual invariant. Notice that the notation is simplified by omitting 
h. A based quadratic Poincaré complex [36] is called simple if the duality 
map has zero Whitehead torsion. Since 

WbHjbii) -> Wh'(Z27r) 

is an injection, this definition agrees with the ordinary one on free 
Z77-complexes. 

Let (C, i//) be a Poincaré complex of formal dimension n. In [21, 2.17] the 
concept of a PD base for H*(C ® Q) was introduced: if n is odd, h is a PD 
base when the dual base h* for cohomology and h correspond under 
Poincaré duality, and PD bases always exist. If n = 2ra is even, assume in 
addition that the intersection form on Hm(C ® Q) is hyperbolic and h is 
a symplectic base. 

The usefulness of this concept rests on an observation in [21, Section 2]: 
when C is a simple Poincaré complex (dim C = n) with base b and h is 
a PD base, then A(C, b, h) defines an element in Hn + x(Kx(Q<n) ) in­
dependent of the choice of PD base. We denote the cohomology class by 
{A(C, b, h) }. 

The main property of A2 needed for surgery obstructions is the 
following. 

PROPOSITION 8.6. [21, 2.4]. Let (C, \p) be a simple quadratic Poincaré 
complex of free Z277-module'S with formal dimension n. If C is acyclic then 

\2
y(C, *) e LY„(Z2TT) 

is the image of {A2(C, b) } under the map in (3.3): 

H"+\Wh'(Z2TT))-»LÏ(Z2TT). 

The assumption that (C, \p) admits a simple base is sometimes 
unnecessary: for example if C is a free Z77-complex and n is odd. In 
general, if b is a base for C* and h a PD base for its homology take b*, h* 
for the cochain complex C*, then the Whitehead torsion of the duality 
map \p:C* —> C* is given by: 

(8.7) TOM = u + (-1)% u = A(C, b, h). 

This follows immediately from the additivity formula [21, 2.16] for A. 
Given a based exact sequence 0 —» C —» C —> C" —» 0 with based 
homology groups: 

(8.8) A(C, b, h) = A(C, b', hr) + Â(C", br, h") + Âp^h) , 
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where p£f h) is the based acyclic complex of homology groups. Now to 
derive (8.7) we apply (8.8) to the based sequence 

0 -» C* -> C* -> CWO -» 0 

where C^(^) is the mapping cone complex. Since 

T«O = Â(C,«o, [b*/b] ) 

by definition the result follows from the relation 

(8.9) Â(C*, b*, h*) = ( - 1)" + IM, u = Â(C*, b, h). 
A 

In our applications the group ring Q277 will have no type U factors. Then 
the conjugation is trivial on Wh(Q2v) so any odd-dimensional Poincaré 
complex of free Z277-modules is automatically simple. 

PROPOSITION 8.10. Let (D, C) be a Poincaré pair of free Xir-modules with 
dim C = n.Ifn = 2m+ 1 assume that Hm + l(D) = 0. Then there exists a 
simple base for (D, C) and a PD base h for H*(C ® Q). For any such 
bases 

A(C, b, h) e {u + ( - l ) " + 1 w: u €= K^Qrr) } 

where b is the base for C. 

Proof. Consider the diagram of chain complexes: 

( ) - > / ) * - » CM) -> C*_, -> 0 D* -
A (0 -

J 
- 1 

U $ <P 

0 C*(/) £>* c* 0 

where C*(/) is the mapping cone of the inclusion i:C —> D, the lower 
sequence is the dual of the upper and the vertical maps are the PD chain 
equivalences. Let d be a base for D* and choose a base e for C*(/) so 
that 

$:(C*(i), e) -> (Z)*, d) 

is simple. Then 

§:(£>*, d*) -> (C*(/), e) 

is simple also and we choose a base b for C* such that the upper se­
quence is based. 

Now we claim that when n = 2m the homology groups can be based so 
that the torsions of <]>*, 0* and <p* all vanish. Look at the diagram: 
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H"'(D, O-

-#„,+ , ( A C ) 
A 

* 

A m+1 

I 
t 

•5ffm(C). 
\ 

T 

W/"'(C)-

K* 
/ 

If* 

i 

^//m+1(A O 

where 

* m = ker(//mZ> -+ # m ( A C) ), Km+] = ker(//mC -+ HmD) 

and the vertical maps are all isomorphisms. We start with bases for 

O->A:„ #m0>) H0(D, C) -* 0 

so that this acyclic complex has zero torsion, then apply duality to base all 
the other groups except for Hm(C) and Hm{C). Then take the induced 
base hm on H'(C) from 

o - * * , m + l # m ( 0 "* Km 0 

and note that with these choices the horizontal sequences and the vertical 
maps all have zero torsion. Furthermore hm is a symplectic base for Hm(C) 
with respect to the intersection form so h is a PD base for H*(C). 

If n = 2m + l a similar argument works since Hm+X(D) = 0 to give 
simple bases for all the homology groups. Apply the additivity formula 
(8.8) to our diagram above: if r(<p) denotes the Whitehead torsion of <p with 
respect to the given bases then 

T ( $ ) = T ( $ ) — T(<P) 

shows that r(<p) = 0 and (D, C) is a simple pair. Furthermore (suppressing 
the bases) we have: 

A(C*(0) = A(Z>*) - A(C*), 

and 

r(ê) = A(C*(z)) - Â(Z)*). 

Since r($) - 0, 

A(C*) = Â(£>*) - Â(Z)*). 

Now from (8.9) we get 

A(C*, b, h) = u + ( - l ) " + 1w for u - Â(Z>*). 

Remark. In general the image of LQ(QTT) in H°(K}(QÏÏ) ) must be 
divided out to get bordism invariance for the cohomology class of 
A(C b. h) [21. 2.291. 
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PROPOSITION 8.11. Let (D\ C) and (D", C") be based free Poincaré pairs 
over Zm of odd formal dimension. Suppose also that (D'\ C") is simple and 
that a\C —> C" is a simple homotopy equivalence. Then the torsion of 
D = V Ua D" is: 

Â(Z>, b, h) = k(D\ b', V) + Â(D", b ", h") 

e KX(QTT)/{U - ïi'.u e KX(QIT) } 

where h is a PD base, h' depends on the choice ofh, h" and 

0 -> C" -» Z>' 0 D" -» Z> -> 0 

w eased exûcf. 

ZVoo/ By (8.10) there exists a PD base h0 for Z/*C" and 

Â(C", b0, h0) G {u - û:u e ^ ( Q T T ) }. 

We note that this involves a choice of base h" for H*(D"). Since 
D = D' U D" is odd dimensional #*(/>) admits a PD base [21, 2.18], so 
we must choose a base h' for H*(D') such that the based acyclic 
complex 

. . . -> //,-+,(/>) -> ̂ - (C) -> #,-(/>') 0 //,(/)") -> //,.(/)) -> . . . 

has zero torsion. The result then follows from (8.8). 
To do this consider the diagram (dim D = 2m 4- 1): 

. . . -+ Hm + ] ( D ) •//„,+ ,(£, D') *//,„(/>') • " , „ ( # ) ^ • 

t î t t 
. . . -> //'"(£>) •/ / '"(/)") • / / '""H(D, Z>") • / / ' " } ' ( / ) ) -> . . . 

obtained by Poincaré duality and excision. We have already chosen bases 
for H*(D) and H*(D") so (using the dual bases for cohomology) choose a 
base for H*(D, D") such that the lower sequence has zero torsion. This 
gives h' on H*(D') so that the upper sequence has zero torsion since the 
vertical maps are simple isomorphisms. 

With the choices the Mayer-Vietoris sequence above is based exact and 
has zero torsion, and we can apply the additivity (8.8). 

We now introduce another invariant for certain finitely-dominated 
Poincaré complexes. Consider the cohomology sequence of (8.3): 

_^ H°(Wh(Q7T)/Wh'(Z7r) ) 

~* d$Hl(K0(Z7T)) 

J-$ H°(Wh(Q7r)/Wh'(Z<7r) ) -4 H°(K0(ZTT) ) 

and recall that 
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3*{A(X) } = {a(X) ) . 

Definition 8.12. Let Xbe a finitely-dominated odd-dimensional Poincaré 
complex with 

0/P-<nxX = 7T and {a(X) } = 0 e HV(K0(Z7T) ). 

Then 

A0(X) G H°(m(Q7r)/Wh'(Zm))/Im £% 

is defined by the condition 

j*(A0(X) ) = {£(*) }• 
A 

This invariant is closely related to the A2-invariant when X is actually 
finite. As before the answer will be expressed for chain complexes since 
Definition (8.19) can be rephrased in terms of C*(X). 

PROPOSITION 8.13. Let C be an odd-dimensional Poincaré complex of free 
ZIT-modules. If h is a Z77-base for C and b is a PD base for //*(C ® Q) then 
{A2(C, b, h) } and A0(C) have the same image in 

H°(Wh(Q27T))/H°(Whf(Z7T) + d*H](K0(Z7r)) 

where d* is defined in (5.7). 

Proof. The result (including the fact that both invariants end up in the 
given group) follows from the diagrams 

j* 
•H(\Wh{Q7T)/Wh'{Z>n) ) **H()(Wh{Z7T -> QTT) ) 

H1(K0(ZTI-) ) "-+»Hy\Wh{Q1<n)/Wh'{Z'n) ) • / / " ( Wh{Zm -> Q2TT) )—•//"(#<)( ZTT) ) 

7 / ° ( H / / 2 ( Z 2 7 7 ) / H ^ / ( Z T 7 ) ) •//°(H//?(Z77 -> Z277) ) 

(8.14) 

and 

H()(Wh(Qir) )—^H{\Wh(Q7T) )/H°(Wh'(Zir)—+»H\Wh(Qn)/Wh'{Z<n) ) 

H{\Wh(Q27T)-^H°(Wh(Q27T) )/H°(Wh''(Zir)—*»H°(Wh(Qir)/'Wh'(7m) ) 

(8.15) 

https://doi.org/10.4153/CJM-1986-041-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1986-041-x


838 I. HAMBLETON AND I. MADSEN 

The isomorphism in (8.15) follows from 

H\Wh\Z<n)) = 0 

and the upper sequence in (8.14) is just the sequence used in defining A0 

since 

Wh(Z<TT - > Q77) = Wh(Q7T)/ Wh'(Z<7T). 

Now C is a free Z77-complex, so 

A2(C, b, h) = A(C, b, h) e K^QTT). 

Its image in Kx(Qir)/K\(Zm) is A(C) by definition hence the image of 
{A(C, b, h}, in 

H°(Wh(Q7T)/Wh'(Z<iT) )/Im d$ 

must be A0(C). From (8.14) Im d$ and Im J* have the same image in 

H0(Wh(Q27T)/Wh'(Z<ïï)). 

The final result of this section relates A0 to the L surgery obstruction of 
a normal map (/, f):M—>X where M is a closed manifold and 

<**frP(f, / ) ) = {o(X) } = 0 in H°(K0(ZTT) ). 

Recall that a smooth or PL manifold TV has a preferred triangulation and 
hence (if dim N is odd and TT{N = r) we can simply write 

(A(7V)} G H°(Wh(Qr)) 

without ambiguity. This class has image 

{A(iV)} e H°(Wh(Qr)). 

PROPOSITION 8.16. Let X be a (4k — 1)-dimensional Swan complex 
(k > 1 ) for a @-group IT and 

afy.M-»x 
be a normal map with 

°*&p(f, / ) ) = 0. 
Suppose for some T Q TT there exists a closed manifold N and a normal 
cobordism from (/T, fT) to a homotopy equivalence 

(g, g):N -» XT. 

Then for any x G L((Zm) such that ip{x) = Xp(f, f), 

Resl(8l(x)) = Res;(A0(X)) - {A(N) } e H°(Wh(Q2T)+)/I 

where 57' is defined in (5.17) and 
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/ = L £ ( Z 2 T ) + Resl[H°(Wh'(Zir)) + d*H\K0(Zm))]. 

Proof. From the condition 

0*(AP(/, / ) ) = 0 

and [33, Section 3], there exists a finitely-dominated Poincaré pair (Q, P) 
of dimension 4k with TTXP = tir]Q = 77 such that 

a(X) = -o(P) = -(a(Q) + 5(e) ) in £0(ZT7). 

In addition the Spivak fibration is reducible so there exists a normal 
map 

(<ï>, ê): F - > Ô 

whose boundary is 

3(0, ê ) = (v, $):£/-> P. 

We note that P may be constructed so that H2k(Q) = 0. 
Next we use the result of Hodgson [17] or Jones [18] that any finite 

Poincaré complex of dimension ^ 7 has a handle decomposition. We will 
need it only up to 2-handles in which case the result holds for 
finitely-dominated complexes with finite 2-skeleton. 

More precisely, let Z be a finitely-dominated (finite) Poincaré complex 
with dim Z ^ 7 and mXZ = IT. Then there exists a finitely-dominated 
(finite) Poincaré pair (Zr, 9Z') and a compact manifold pair (Z", 8Z") 
such that 

(8.17) (i) all fundamental groups are isomorphic to 77, 
(ii) Z" is homotopy equivalent to a 2-complex, 

(iii) there is a simple homotopy equivalence 

a:8Zr -> 8Z" 
A 

(iv) Z is simple homotopy equivalent (measured in WhiQir) ) to 
Z' Ua Z". 

We will apply this splitting result to X and P above and its obvious 
relative version to Q. The 77 — 77 theorem now implies that the normal 
maps (/, / ), (<p, <p) and (g, g) also can be split: / = f U / " where 

/ " : (M" , a M " ) ^ ( X " , 8X") 

is a simple equivalence of pairs. In fact the explicit construction of (Q, P) 
in [33] allows us to assume that M" = P" = U". Therefore the surgery 
problem ( / ' , / r) rel. boundary gives an element of L^iZir) and similarly 
for the others. Any normal cobordism from (fT,fT) to (g, g) can also be 
split so that (f'r, f) is normally cobordant to (gr, g') relative to the 
boundary. For (<ï>, 0) we have triads: 
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$' 

3,$ ' = 9,0" 

-a 0 <D' t 

•3<p' = = 3 < p " 

a0o" = < P " 

Again using the 77-77 theorem, we assume that (<£", 9o$", 3 !<!>") 
is a simple homotopy equivalence of manifold triads. By construction 
(V, £') = 30($r, 0') is a normal cobordism of both domain and range 
(rel. 3<p' = 33 ]<!>') to the simple homotopy equivalence 3jOr = 3j<I>" 
of manifold pairs. Since the range spaces Q\ d0Q' = P' are just 
finitely-dominated, the conclusion is that 

* V , V') = 0. 
Although X is perhaps not finite, 

o(X) = a(X') = - a ( P ' ) 

and so the union X' U P ' along the boundary has 

o(X' U F) = 0. 

To identify dX', 3P' use the simple homotopy equivalence 

dX' ~ dX" ~ 3P" ~ 3P', 

arising from (8.17). Let X' U P r denote a finite cell structure on 
X U Pf giving a Z-77-base for C*(X' U F) and choose a PP> base h for 
H*(X' U P', Q). Now pick Z27r-bases b', c' for C*(*'), C*(P') such that 

0 -> c*(d)r) -> c*(X) e c*(n -> C^JC u P') -> o 
is based exact. (Each manifold part X", P" has a given Z7r-base from the 
PL structure so C*(dX') is already based.) The bases b', c' then induce 
bases b, c for C*(X) and C*(P) compatible with the PL structures. A 
similar discussion holds for the homology bases. 

It follows that the normal map obtained by union on the boundary 
(composed with a homotopy equivalence): 

(8.18) ty, $) = (/ ' u $', / ' u ip'y.M' u u -» X' u P' — xr u P' 
defines an element À (^, \p) in L3(ZTT). This is the element x in the 
statement: 

ipQ?M, h ) = \p(f, / ) since \ V , # ) = 0. 

We now calculate 

8\ o Res;(Ay(^, £) ) 

following the definition (5.17). 
In the r-covering spaces we have: 
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(i) a finite structure X'T for X'T since 

o(Xr) = Res o(X) = 0, and 

(ii) a finite cell structure Fr for P'T (since a(P) = —o(X) ) such that 

0 £ ) T = £ u p; 
is a simple homotopy equivalence. 

Therefore 

defines an element in L3 (ZT) and 

i 2 V ( v ; »;) ) = A2
r( (»; »;> ® z2) = o G L3

r(z2T) 
A 

because («pij., ^ ) = 9(0^ Ô .) and we can find a simple Z27r-base for the 
pair (Q'T, P'T) extending the Z77-base from the finite structure FT. By 
homological surgery we conclude that (<p'T, <£/) is normally cobordant 
(rel 8) to a Z(2)-homology equivalence with ITX -isomorphism 

(Kh)'.U'+^P'T 

where (£/+, 3l/'+) is a compact manifold pair. This normal cobordism 
together with the one relating (f'T, f'r) to 

A A 

imply that Res(t//, \p) = (\pT, \pT) is normally cobordant to the Z(2)-homolo-
gy equivalence: 

(8.19) (g' U A, g' U Â):W U £/"+ -> (X U />% 

Apply (8.6) to the quadratic mapping cone complex 

C(g' U A) ® Z2: 

this is simple and acyclic (since C(g' U h) is simple and Z(2)-acyclic). 
Therefore 

(8.20) fRes(Â,(X U P')) - k2(N' U U\) } 

e H°(Wh\Z2T))/L^Z2T) 

has image 

/2
y(Res(Ar(^ *) ) ) = Res /2

K(Ar(*, *) ) G L3
K(Z2T). 

Now from (8.13) it follows that 

(8.21) (A-,(X' U F) } = A0(*' U P) 

G //°(H^(Q2-n-))/7/°(W7j'(Z7r)) 

+ d*H'(K0(ZTT) ). 
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But 

0 -> C*(d)C) -> C*(X\ b ) 0 C*(F, c') -> C*(JT U F ) -> 0 

is based exact so we can use (8.10), (8.11) to relate An(X' U F) to A0(X) 
and A0(i

>). The rest of the argument will now take place in K^QTT)^ 

since u = û for these factors. Therefore by (8.7) b, c are simple bases for 
C*(X), C*(P) and the formula of (8.11) is valid without indeterminancy. 
Using (8.11) we get: 

k{X U F) = k(X\ b ) + A(P', c') 

= Â(X, b) + Â(i>, c) G ^ ( Q ^ ) + -

From (8.10) applied to the pair (Q, P), 

{A(P, c) } = 0 in 7/°(^i(Q^)+) 

and so: 

(8.22) An(X' U F ) = A0(X) e H0(Wh(Q^)+)/H(){Wh'{Z'n) ) 

+ d*H\K0(Zm) ). 
A 

Finally, a similar argument for A2(A
/7 U {/+) gives: 

(8.23) {A2(7V' U U+) } = {A(7V) } e # 0 ( W 7 I ' ( Q 2 T ) + ) . 

The formula 

Res;(S2
y(x) ) = Res ; (A 0 W) - (A(iV) } e / / ° ( P ^ 2 ( Q 2 T ) + ) / / 

now follows from (8.20)-(8.23). 

Remark 8.24. This result will be applied in Section 9 for 

77 - g(8û, b) and T - (?(4ÛA). 

It will be shown that LJ(Z2TT) splits into ( ± ) parts (cf. (7.9), (7.10) ) and 
that the composite 

Lj(Z27r)+(ab) S H°(Wh'(Z27r)+(ab) )/L$(Z27r)(ab) 

-> i /°(Mz(Q277)+(^) )/L^(Z27T)(ab) 

is injective. Furthermore we will show that 

Res;:L3
r(Z2 ,7)+(^) -> L3

y(Z2T)+(a6) 

is injective (cf. (7.7) ) and conclude from (5.18) that Proposition 8.16 just 
established actually calculates 

\p(f, / ) e Lf(ZTr) if {a(X) } = 0 G H°(K0(ZTT) ). 

9. Calculation of the surgery obstruction. Throughout this section 
77 = <2(8tf, &) is a special type IIM group and Jfis an (8/ 4- 3)-dimensional 
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Swan complex for TT{1 > 0) with almost-linear A:-invariant and 

T = Q(4ab) c Q(Sa9 b). 

The main conclusion will be that condition C(a, b) is equivalent to the 
vanishing of the top component of the //-surgery obstruction for a 
suitable normal map (/, f):M ~> X. This will establish Theorem C (by 
(6.20) and (7.3) ). 

In order to do this calculation (following (8.16) ) we must first describe 
more precisely the top components in the exact sequence: 

(9.1) 0 -» K\{Z<n){ab) -> Kx{Q7r){ab) 

-> Kx{Q<ir){ab)/K\{Z<rr){ab) -> K0{Zir){ab) -> 0. 

For convenience in this section we will assume (usually without further 
comment) that all ^-groups are localized at 2. 

PROPOSITION 9.1. ( [21, Sections 2, 6] ). 

(i) Kx{Qnr) + {ab) = KX{MA{F)) = Fx and 

Kx{Q*)_{ab) = KX{M2{D)) = F* 

where F = Q[qa, 7]h] and D is a {non-split) division algebra with centre F. 
(F* c F denotes the units which are positive at the infinite primes.) 

(ii) Kx(Q7T)±(ab) is determined by the {split) exact sequences'. 

0 -» D{7r)±{ab) -> Kx{QiT)±{ab)/K\{t<n)±{ab) -> Fx/Ax -* 0 

where A = Z[j]a, r]h] and 

D{7r)±{ab) = {A/ab)x. 

(iii) The exact sequence (9.1) splits into zb parts such at 

0^K\{Z7r)+{ab)^Ax -4 {A/ab)x^K0{Zir) + {ab)^rA-^0 

and 
A 

0 -» K\(Zir)_(ab)-*A* -^ (A/ab)x -> K0(Zir)_(ab) -» TJ -» 0 
A 

where QA is the reduction map {see Introduction) and I^(r^j) denotes the 
class group {strict class group) of A. 

(iv) There is a similar splitting for r = Q{4ab) with F replaced by 
E = Q[T?tf/J and A replaced by B = Z[i)ah]. The restriction map induces the 
inclusion F c E . 

Proof. Since this is given a detailed proof in [21] we make only a few 
A 

remarks. The splitting into dz parts is clear for KX{QIT), Kx{Q7r) and 
Kx{ZpTr) if p ¥= 2. Whenp\ab we write ab = pn • c where/? { c and set 
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R = Z ( f , ) [ Z / / X (Z/2 X Z/2) ]. 

Then 

K\(ZpTT)±(ab) = K\(Zp ® R) 

and there is an exact sequence 

(1 + J)x -> K\(Zp ®R)^ K\(Zp(Çc)[Z/2 X Z/2]') -> 0 

where 

/ = (1 - T J G ÎT has o r d e r / ) . 

After applying reduced rooms we get 

Nrdt(\ + / ) c j y 1 ^ ) for e ach field i^ = C K y ^ ) 

and (since / is topologically nilpotent), 

AW(1 4- J)x 2 £/m'(i<) for some mz g 1. 

Therefore after localizing at 2, 

MY/,(1 + J)x = U\Ft) 

and so 

Kx(Qp^U(ab)/K\{tp7r)±{ab) = Fx/Ax X (A/pA)x. 

For p = 2, the splitting into ± parts is a calculation: 

£i(Z2*r)+(afc) = (1 + 2 i 2 ) x , K\(Z27r)^(ab) = Ax. 

The sequences in (iii) now follow from (ii) and the definition: 

(9.3) 1 -> Fx/Ax -» F x / i x -> T̂  -> 0. 

COROLLARY 9.4. (cf. (7.7), (7.9)). (i) There is a splitting of 
L3 (Z27r)(ab) into ± /wto compatible with the splitting of Fr(K\(Z?r)(ab) ) 
and the restriction to T = Q(4ab) such that 

Lj(Z27r)+(ab) = A/2A, Lj(Z27r)_(ab) = H°(AX). 

(ii) Res:L^(Z27r)+(aZ?) -» Lj(Z2T)+(aè) w injective. 

We are now ready to specify the Swan complex X and the surgery 
problem (/, / ) : M —> X Consider the subgroups 

Z/2aZ> c Q(4ab) c g(8a, 6) 

and let x be a faithful character of Z/2ab. The ^representation with 
character x + X~ extends to Q(4ab) and has /c-invariant 

go = ^2(X + X" ' ) e H4(Q(4ab); Z). 

One can check that there exists a generator 
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g, e H\Q(%a, b)\ Z) 

whose restriction to Q(4ab) is g0 and (hence) whose restriction to the 
2-Sylow subgroup Q% 1S the Chern class of the standard ^representation. 
Now let X = X(g) the (8/ + 3)-dimensional Swan complex for m whose 
^-invariant is 

g = g\ G ti (7T, L). 

By construction g is an almost linear /c-invariant. In fact Res g is a linear 
/c-invariant on every type I or UK subgroup of IT. 

Next, by induction of normal invariants as in [22], there exists a normal 
invariant for X(g) which restricts to the normal invariant of the smooth 
space forms over Q(4ab) and QS. Let 

ifJy.M^x 
be a normal map with this normal invariant. Then in particular, if N de­
notes the space form arising from the ^representation for T = Q(4ab), 

(/T, fT):MT - XT 

is normally cobordant to a homotopy equivalence 

(g, gy.N -> xT. 

Also by (6.20), for this normal map all the components 

Xp(f, f)(d) G LP(Z-n)(d) 

are zero except possibly when d = a/3 where 1 ¥= a\a and 1 ^ fi\b. 
It is therefore enough (by (7.3) ) to calculate the top component 
\p(f, f)(ab). 

Our first goal will be to examine the condition 

°*Qf(f, / ) ) = o 
needed to apply (8.16). Since 

o*(XP(f, / ) ) = {c(X)} = d*{A(X)} e H°(K^Zm)) 

we need to calculate the top component of A(X). This will be done fol­
lowing the method of [21], [2]. 

PROPOSITION 9.5. For IT = Q(8a, b) and p = Z/2ab the restriction 
map 

R e s i À ^ ^ / À ^ Z w ) -> Kx(Qp)/K\(ïp) 

is a 2-local injection in the top component. 

Proof. From (9.2) the restriction map on the top component is 
calculated from the diagram (of split exact sequences): 
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0-*(A/ab\ '(2)- -+»K}(Qir)/K\(Zir)±(ab)-

Res 

• W A A 4 ' 

^ L x / C x 
o -> ( c / ^ } •Js:1(Qp)/jp1(Zp)±(flft)-

where C = Z[Çah] and L = Q[Çab]. Since the restriction map on 

Kx{Q^)±{ab) = Fx 

is just induced by the inclusion 

Qfoa, %] c QIU 
of centres, both 

(A/ab)*2) -> (C/flfc)(2} and 

F X A4 X Lx/Cx 

are injective. 

The basic diagram used to analyse A(X)(ai) is 

J'p A d 

0 -» tf ,(Qp)/tf',(Zp) •^ 1 (Qp) /^ 1 (Zp) • ^ o ( ^ p ) -> 0 

Res 

JTT 

Res Res 

0 -> KX{QTT)/K\(Z<IT)—•^1(QT7)/A:/
1(Z77) • ^ 0 ( Z T 7 ) -> 0 

(9.6) 

Consider the top components in this diagram and use the description 
(6.24) for the middle terms: 

(9.7) Kx(Qp)±(ab) = Homn(R(Z/abl Q [ f J x ) ± 

where 

Q = Gal(Q(ffl6)/Q) 

and R(Z/ab) is the complex character ring. Let xap±\ denote the 
characters of Zllab corresponding to divisors a\a, fi\b with a • fi ^ 1. If 
T G Zllab is a generator then 

(9.8) x^,±i(r) = ±?a/> = ± e M . 
Since the /c-invariant g ^ H + (77; Z) of our Swan complex X satisfies the 
relation 

Resg = [c2(x + X " ' ) ] 2 / + 1 

where x = Xab.-\ *s a faithful character of Zllab, the Reidemeister torsion 
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is given by 

Res Â(*) = [A(L3(x + x " ' ) ] 2 / + 1 . 

From [23] or [2], the torsion of this lens space L3(x + X ') (expressed as a 
homomorphism via (9.7) ) is given by 

f(XaB,±0 = 2 + ^«8 a • B ¥= I 
(9.9) 

/(X,,,) = l / 4 o V , / ( x , , - , ) = 4. 

Let E~ denote the top component idempotents acting on 

UomQ(R{Z/ab), Q t f J X ) ± . 

then from (6.17) 

(9.10) A(L3(X + X"'))±(«) = I I £/(xay8.±i) e QIU* 
i?|a/?|w 

where « = #£. Note that when translating from Kx{Q[$ah] ) to Q[Çah]
X it is 

natural to switch to multiplication, hence the product sign. If 

n = ab = p{ . . . pf 

is the primary decomposition, let nt — n/pi and denote by E~ the idem-
potent on 

UomQ{R(Z(ab), Q t f J * ) 

corresponding to rLlni Q Z/ab. 

LEMMA 9.11. 

r 

(i) E± = n (i - Ef) 
1 = 1 

(ii) For anyf G HomQ(R(Z/ab), Q[Çah]
X) and any \ e R(Z/ab), 

\E±fMV = lNl(fiXn ifP,K"l/d) 
,/d). 

Here «,- e fl = (Z/ab)x has image pt "' G (Z/n,-) , J = |ker xl a«^ 

is the norm map. 

Proof, (i) This is clear from (6.9). 
(ii) From (6.22) and (6.24) and set m = n/d, mt = nt/d\ 

[Eff(x)V- = IndVCt) =f(Pl2 X/m' + ')-
v /=o ' 
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When p^rri;, then 

Gal(Qfm/Qfm) -> ( Z / m ) x -* (Z /m / )
x -> 0 

is just represented by {lmi + 1:0 ^ / = pt— 1} so the formula follows. 
If pt | mz then for some /, pl\lmi + 1 and co/ is represented by 
\lpl G (Z/m z)X . 

These formulas allow us to calculate (9.10). The answer can be most 
neatly expressed when we note that elements in 

k e r ^ : ^ -> B/2B) 

B when working in Kx(Qp)(ab). We can also neglect squares from 
(A/ab)x when calculating in (C/ab)x. 

7]r - 2 G Bx n C x 2 , 

will not matter in our applications. Therefore we can neglect elements of 
x when working in K^Qp^ab). We can < 
i/ab)x when calculating in (C/ab)x. 

LEMMA 9.12. (i) If r\ab is not a prime power, 

Vr ~ 2 e i 

(ii) For tf«y r|#è, 

i\r + 2 G £ x 2 . 

1 - r 
Proof. Let & = then 

i», ± 2 = (tf ± fr-*)2. 

Although T]r + 2 G i? x always, î]r — 2 G Z?X only when r is 
composite. 

An easy calculation gives: 

LEMMA 9.13. Let N:Q(tm) —> Q(fw) ^ ^ e «orm ma/? a«J m = pak with 
(/?, /c) = 1 and a i^ 0. Then for a = 0, 

^ 2 ± v ) = „2_T \ 
' (2 ± r^f» 

cop e Gal(Q(^) /Q) = ( Z / £ ) x 

is represented by r, rp ~ 1 (mod k). For a > 0, 

JV(2 ± ^ J = 2 ± ^ 

Proof If A = 0 then Gal(Q(fM) /Q(^) ) is represented by 

{JC G (Z/pk)x:x = 1 (mod A:) }. 

Let /0 be defined by the equations l0k + 1 = rp, 0 = l0 = p — 1 then 
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tf(i - W 

Therefore 

as required. The argument is similar for 2 -f i\ k. When a > 0, 
Ga l (Q(^J /Q( f w ) ) is represented by {At + 1:0 ^ / ^ /> - 1} so that 

A (̂I - spj = n (i - ^ + i ) = u ? J -1)-
1=0 

In order to state the next result we recall some notation: F = Q[if)a, rfh] 
and a\\n means that a is a full prime power divisor of n. Refer to (9.6) for 
the maps j v andyp. 

In the statement below, the element 

(V±(A), v±(b)) e (A/ab)x Q (C/ab)x 

has values at the primes p\a given by 

I I{2 + 7ia:a\\ab and (a, p) = 1} 

and similarly for p\b. For any integer n, n denotes the product of the 
distinct primes dividing n. 

PROPOSITION 9.14. (i) There exist elements w+ G F and w_ e F* such 
that the image of 

A(L3(X + x _ l ) ) ± ( ^ ) V p ( R e s w ± ) 

in the top component oj Kl(Qp)/K\(Zp) lies in the subgroup 

D(p)±(ab) = (C/ab)x. 

Modulo squares from {A fab) its image is {v±(â), v±(b)). 
(ii) Let r be the number of distinct primes dividing ab. Then both 

( - 1 / + 1 • A(L3(X + x~]))+(ab) -./p(Res w+) 

and 

n o - D 1*L 
pk 

P~\ 

n (rr1 
pk 

1=0 

Sk' ( l - # + 1 ) 

# ) 

> - l 

= f* 
ttk -1) 
(i - Q ' 

^ 
(2 - Vkf 
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A(L3(x + X_ 1) )-(**) VP(Resiv_) 

lie in Bx n C x 2 . 

Proof. Let 

n = ab = p{ . . . p; 

as above, denote the set of distinct primes dividing n by P and identify it 
with ( 1 , . . . , r). Write 

p = p> u P" where 

/>' = [p. e p: / . = 1} and P" = {pt e P:/z > 1}. 

If S = { / l 5 . . . , / J c P t h e n 

Na = N: O N: O . . . O N: SiTld * 
^ z l l2 ls 

Ea = E: O E: O . . . O £.• 
<3 M 2 5 

(the =b will be suppressed here). For a homomorphism 

/ e H o m ^ ( Z / ^ ) , Q£*), 

/ s denotes/(x!f,'Li) where 

l|5|| = U{Pl e 5 } . 

Similarly 

<o(S) = IKw,-:^. G S'} and % = T ^ H . 

Notice that 

Xflft — Xab/\\S\\ 

from (9.8). Finally, 

%A = rin/\\§\\ w h e r e ||S|| = Ilip^Pt e S} . 

By |S| we mean the cardinality of S and when S = 0, note £ s , A^, ^(5) are 
the identity and t]s = 7]n. 

Using these notations and (9.11) (i) we see that the first aim must be to 
calculate 

Ef(Xah^) = UEsf(xab^lf'
lf]' 

s 

To begin we assume that n = ab is square-free and concentrate on the 
( + ) component. Then (9.11) (ii) gives 

(9.15) £ 5 / (xJ I S" = IT {NS<JSJ*S*:SX U S2 = 5} 
(S„S2) 
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by induction. Here the product is over ordered pairs (S\, S2) of disjoint 
subsets of S. Next by (9.13) for S = Sx U S2, 

(9.i6) NS](2 - % 2 ) = n (2 - vsr
{T){~~])m 

TQS{ 

provided that S ¥= P. Putting these together we obtain (for S ¥= P): 

n NSi(fsy*s>> = (2 - nsr 

where 

« = 2 2 «(r u s2)(-\)
m = i 

(5,,S2) r e s , 

so the result is 

(9.17) £ / 0 u , + 1) = I I { (2 - r,s)
(-1) IS t: |5| =i |P| - 2} -^(Res W+)"' 

S 

where 

(9.18) w+(^) = n II {Ns^fs/^-.s, u s2 = syK 
\S\^\P\-\ (5„52) 

Notice that 

^ , ( 4 ) e Q ( % ) ç Qfta, 7,,) = F 

whenever |5| = \P\ — 1. By the same calculation 

(9.19) ^ / ( ^ , - i ) - 7 p ( R e s w _ ( ^ ) ) 

= Il{(2 + ns){~lfl'.\s\^\P\ - 2 } 

with w_(ab) given by (9.18) also. 
Now we consider the general case where P = P' U P". Let 

S' = S n />', 5" = S n P" and then 

(9.20) £5/0u,±1) = I I {Ns^s^ifs^iS, U S2 = S'}. 

Using the same method as above we get: 

(9.21) Efixat^) = I l {Ns„(2 + % 0 ( ~ 1 ) I S I : ^ U S" = S}. 

From this it follows by (9.13) that 

(9.22) EfiXat+0 = I T (2 + % ) ( " 1 ) l 5 ' 
s 

Note that since P" ¥> 0, n/\\S\\ is never a prime power so 
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ris + 2 e Bx n C x 2 

by (9.12) for any S Q P. Therefore 

Ef(Xab,±ù ^BX n C x 2 

(the number of terms in the product is 2r). Similarly the number of terms 
in the product of (9.17) is 2r — r — 1 so that (when ab is squarefree): 

( - l ) r + , £ / C u . + i ) - 7 p ( R e s W + ( a f t ) ) e 5 X n C x 2 . 

Part (ii) now follows from the formula 

(9.23) A(L3(x + x " ' ) ) ± ( « ) = IT £/"(XaA±i) 
«|a/?|/7 

when we define w ± = w±(ab) as in (9.18). 
To obtain part (i) we must calculate the effect of the reduction maps 

'A :Z[UX^(Z[U//>,)X 

for each ^1/?; on the right-hand side of (9.17) or (9.22). For this write 
S = {/} U SQ when i e S Q P. For each/,|/?z: 

n T A ( 2 + ^ { f t ' * S 

A ^ 2 + ^ 0 u{ t} ' G $• 
From this we obtain (for ab squarefree): 

%&f(Xab,±\) VP(Res w±(aZ>)) = I t (2 + y ) e G4/flfc)x. 

When P" ^ 0 (06 not squarefree): 

rfif<EfiXab,±\)) = I T (2 - T,S o U { r ,)
(- , ) I S ' 

\s\ 
( 2 ~ ^u ( / A ) ) v l) x U(2~vSu{r})

(~V)m = i. 

Therefore from (9.23) we obtain 

rA(A(L3(X + X " ' ) ) ± ( " ) VP(Res w ± ) ) = (v±(5), v±(ft) ). 
A 

To obtain A(X)(ab) from this calculation we need one further result 
about A = Z[TJÛ9 ^ ] . 

LEMMA 9.24. [2, 3.2]. T/zere ex/sta a unit vah e y l x such that for each 

AP> 

/ V ^ - \ ( _ 1 ) . v ^ ( ^ ) ^ 

w/zer£ 
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vp(ab) = I I {{2-i)aY(a,p) = 1}. 
a\\ab 

Remark. In the notation of the Introduction (see the discussion of 
condition C(a, b)) and recall r = # primes dividing ab): 

^ ( ( - l ) r + 1 -vaJb) = 0 , - ! ) • V(a,b) e (A/ab)x. 

PROPOSITION 9.25. (i) The top component L(X)±(ab) lies in 

D(ir)±(ab) = (A/ab)^ Q Kx(QTr)(ab)/K\(Z<n)(ab). 

(ii) k{X)+{ab) = (1, -1 ) • *A(uaJ/jJw+) 

modulo squares in (A/ab) where uah = v-^from (9.24). 

(iii) i(X)-(ab) = (4, 4) • ®A(u'aJ>)/UW_) 

modulo squares in (A/ab)x where 

4,6 = n { (2 + va):a\\âb}. 

Proof. From (9.14) and the fact that 

ResA(X) = [A(L3(x + x " ' ) ] 2 / + l 

we get the relation 

Rcs(A(X) + (ab) •jJw+VQAUajJ) = 0 . - 1 ) 

modulo squares from (A/ab)^ and the assertions now follow from 
(9.5). The argument is similar for A(X)_(ab). 

Now that K(X)(ab) has been calculated in H°((A/ab)x), we can 
proceed to the first step in determining XP(f f) for the normal map 
(/, f):M —» X described above. This is the cohomology finiteness 
obstruction: 

o*(\P(f, / ) ) = {o(X)} = 9*{Â(*)} e H°(K0(Zir)) 

where the map 3 is from (9.6). 

PROPOSITION 9.26. (i) The cohomology finiteness obstruction {o(X) } is 
zero if and only if there exists an element U+ e F^ ' such that 

*A(U+) = (1, - 1 ) e H\(A/ab)x). 

(ii) 77ie condition in (i) /s satisfied precisely when either a or b is divisible 
only by primes p = 1(4). 

Proof It is convenient to divide the exact sequences of (9.2) (iii) into 
short exact sequences by setting 
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(9.27) D(<rr) + (ab) = cokei(èA:A~ -» (A/ab)^) 

and similarly 

D{-n)_(ab) = c o k e r ^ : ^ * -* (A/ab)fy. 

From diagram (9.6) and (9.25), it follows that 

**(AP(/, / ) )±(ab) 

is represented by the class of (1, — 1) or (4, 4) in 

lm(H°(D(7T)±(ab) ) -> H°(K0(Z7r)±(ab) ). 

Since (4, 4) is a square in D(ir)_(ab), 

°*(W, f))-(ab) = 0 
and it remains to evaluate the (-h)-component. 

Consider the following diagram of exact sequences: 

(9.28) 

arising from the cohomology sequences of (9.2) (iii) and (9.3). We fix a 
splitting of (9.2) (ii) (which appears in the middle of our diagram) and 
note that the coboundary 

d*:Hl(TA) -> H°(FX/Ax) 

is injective and has image F^FX2AX. By a diagram chase, it can now be 
checked that 

(1, - 1 ) e Im(Hl(TA)^>H0(D(ir) + (ab)) 

if and only if 

(1, - 1 ) e I m ( ^ : F ( 2 ) -> H°((A/ab)x)). 
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For part (ii), we notice that the condition (i) is clearly satisfied when either 
a or b is only divisible byp = 1(4) since then (1, — 1) or (— 1, l ) i s a square 
in (A/ab)x. Conversely, if there exist p\a, q\b with/? ~ q = 3(4) then 
restrict to Q(Sp, q) Q (8a, b) and consider the norms: 

(2) -{7S- Vp)X X (Z[%]/q)x 
Q(V V •(Zfy 

N 
<*>z 

N 

^ ( 2 ) • F * X F * 

Since F^x X F * c (A/pq)x is the diagonal inclusion, (1, - 1 ) e Im $A if 
and only if (1, - 1 ) e $ z . But Q(2) = Z x so clearly (1, - 1 ) £ $ z . 

The preceeding results amount to a calculation of the top component of 
the surgery obstruction Xp(f, f)(ab). Recall from (8.16) that it is neces­
sary to calculate 

Res;(A0(X) ) - {A(A0 } where r = Q(4ab) 

Clearly 

and N is the orbit space (under T) of the ^representation x + X '• 

Res?(A(JV)) = (A(L3(x + X _ 1 ) ) 2 / + 1 

determines A(JV). 

PROPOSITION 9.29. Suppose that 

o*(\P(f, / ) )(«£) = 0 

and that U+ e F ( 2 ) w c/wsew w/r/î $4(1/+) = (1, - 1 ) . Tften 

Res^AoW+(a*)) - {à(N)+(ab) } 

= R e s ; { ( - l / + , - l / + - « a , 6 } 
0 A 

/'« / / (^1(Q2r)+(a/?) ) / / where r = # primes dividing ab and 
I = Resl[H°(Wh'(Z<7T)) + d*Hl(K0(Z7r))] + Z*(Z2r). 

Proof. We begin by calculating the top component of / . Since 

H°(Wh'(Z<7T) + (ab)) = ker(<!>A:Ax/Ax2 -> H°( (A/ab)x) ) 

by (9.2) (iii), the remaining part is Im d*. For this recall that from (8.14), 
Im d* = Im JQ m H (Wh(Q2ir)) where JQ *S t n e coboundary in the 
cohomology sequence of (8.3) used in defining A0. On the top-component 
this sequence (8.3) localized at 2 becomes: 

(9.30) 0 -> F^/K\(Z<n)+{ab) -* F X / J A X (,4/fl£)x 

-> K0(Z7T)+(ab) -> 0 
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from which it is clear that 

(9.31) Im d$ = k e r ( ^ : F ( 2 ) / F x 2 -* H°( (A/ab)x) ). 

The calculation of the proposition will therefore take place in 

lm(<pB:E(2)/Ex2 • ker QA -> (B/2B)/ker QA). 

Compare (7.9) to see that yB is the map induced by the inclusion 

Kx(Qr) -> ^ ( Q 2 T ) . 

Since the indeterminacy in A(iV) lies in Bx Pi C x 2 Q ker yB it can be 
neglected. The result now follows directly from (9.14) (ii) and (9.25) (ii). 

The proof of Theorem C is now complete: from (8.16) and the formula 
just established we have (set f/+ = (— l ) r + 1 • £/+ for short) 

(9.32) Res;(S2
y(x)) = R e s ^ • uaJ>) e H°(Wh(Q2T)+)/I 

y 
where x e L3 (ZTT) is an element so that 

ip(x) = XP(f, f) in LP(Zir). 

But both sides of (9.32) lie in the image of 

H\Wh\Z27T)^)/L^(Z27T) 

on which Res^ is injective by (9.4), therefore 

(9.33) 82
7(x) = {£/+• uaJb) e H0(Wh\Z27T)^/L^(Z27r) 

+ H°(Wh'(Zm)) + d*H\K0(Z<rr)). 

Now the identification \p of 

ker(Lf (Z77) -» H0(K0(ZTT) ) ) 

with a subquotient of L3(Z27T) given in (5.18) shows that 

AP(/, / )+ (**) - 0 if and only if {U+ ua£ = 0 

in the indicated range of (9.33). By our calculations above (cf. (9.4) and 
(9.31) ) this range is (A/2A)/ker $A and the element U+ • uah e F(2) is 
mapped in by yA. Since ker <bA is just the indeterminacy in the choice of 
£/+, it follows that 

Xp(f, f) + (ab) = 0 

if and only if 

(9.34) ( - 1 ) ' + 1 • (1, - 1 ) - 9A(uaJ>) e Im(<frjker ^ ) . 

When ab is squarefree, 

( - l ) r + , - ( l , - 1) •* , («„ ,* )= K(û,ft) 

and (9.34) is just the condition C(#, Z?) in Definition (0.3). In general (9.34) 
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says that 

\"(f, f)+(ab) = 0 
if and only if condition C(Â, b) is satisfied. But the norm map 

is a 2-local isomorphism so that condition C(a, b) is satisfied if and only if 
condition C(a, b) is satisfied. 

Remark. In (9.31) we have given the (-f)-part of the indeterminacy 
Im d* = Im do. A similar calculation shows 

(9.35) (Im d*)_ - ker (F*{2)/Fx2 -» #° ( ( y l / ^ ) x ) ). 

By comparing with (7.11) we see that this is just the ( —)-part of 

lm(Lj(Z<ir)(ab) -> Lj(Z<ir)(ab) ). 

This checks the result of (5.16)-(5.18) that the type Sp factors of QTT do not 
contribute to the L -obstruction. 

10. Appendix: The condition C(a, b). Although the arithmetic condition 
C(a, b) seems difficult to check in general, it is possible to derive some 
easier conditions when a = p and b = q are both primes. The first of these 
was obtained by R. J. Milgram in his work on the space-form problem 
[25, 26]. 

PROPOSITION 10.1. (Milgram). A necessary condition for the condition 

C(, . , ) ,o * s«lsfie4 ,s * , , * . Us^re symbo,s U) - • W 

( ? ) - ' • 

\p/ 
Proof. See [26, Theorem B] (or [21, 7.8] ). Note that the result must be 

symmetric in p and q since 

Q(Sp,q) = Q(Sq,p). 

On the other hand, let Ord (/?) denote the order of p in F x . 

PROPOSITION 10.2. The condition C(p9 q) is satisfied if Ordp(q) and 
Ord (p) are both odd. 

Proof. See [21, 7.9]. The point is that 

V(p, q) = (Vq - 2, Vp - 2) 

is a square in (A/pq)x under the given conditions. 

Unfortunately these are not equivalent in general (e.g. p = 5, q = 19). 
A more detailed study of condition C(p, q) has been made in [3]: when 
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(^) = +UCt ty* = +1 liP G F^and (if)' = _1 °ther" 
wise. 

PROPOSITION 10.3. (Bentzen). (i) If condition C(p, q) is satisfied then 

provided p ^ 1 (mod 16) and q ^ 1 (mod 16). 
(ii) Ifp = 3(4), then condition C(p, q) is satisfied if and only if q as 1(4) 

and Ord (p) is odd. 
(iii) Ifp = q == 5(8) //ze/t condition C(p, q) is equivalent to the conditions 

in (i). 
(iv) 7/*/? = 5(8) and q = 1(8) tfftd condition C(p, q) is satisfied then 

Ordp(q) is odd and 4 \ Oxdq(p). 
(v) If p = 1(8) tffld g = 1(8) ûrtt/ condition C(p, q) is satisfied then 

( - ) 4 = - 1 -> 4 |Ord„te) flnrf ( ^ ) 4 = - 1 -» 4 |Ord,(/>). 

From Dirichlet's theorem on primes in an arithmetic progression we 
then get 

COROLLARY 10.4. There are an infinite number of primes (/?, q) with 
p = 3(4) and q == 1(4) such that condition C(p, q) is satisfied. 

Using the criteria of (10.3) Bentzen has examined the ratio of prime 
pairs (/?, q) which satisfy condition C(p, q). For the approximately 18,200 
pairs in the range pq < 100,000 between 11.2% and 12.4% satisfy the 
condition and the corresponding groups Q(Sp, q) act semi-freely on 
(R8 / + 4 , 0). 

In the range pq < 2,000 Bentzen has found all groups (2(8/?, q) which 
act semi-freely on (R + , 0). There are 42 groups corresponding to the 
pairs: 

p = 3, q = 13, 109, 181, 229, 277, 313, 421, 433, 541, 601 

p = 5, q = 11, 29, 31, 71, 101, 131, 151, 181, 191, 211, 229, 
251, 271, 311, 331, 349 

p = 7, q = 29, 37, 109 

p = 13, q = 53, 61, 79, 101, 107, 131, 139 

(/>, q) = (11, 157), (17, 103), (19, 101), (23, 29), (29, 59), 
(37, 47). 

(10.5) 
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In the same range pq < 2,000 Bentzen also studies which groups 
g(8/?, q) can act freely on S 8 / + 3 (cf. Theorem C of Section 0). He proves 
that there are only 4 such groups, namely the ones corresponding to the 
prime pairs: 

(10.6) (p, q) = (3, 313), (3, 433), (3, 601) and (17, 103). 

In these casesp = 3(4) and q = 1(8), but there are also groups Q($p, q) 
with p = q = 5(8) which act freely on S8 / + 3 , for example in the case 
(P> <l) = (5, 461). The smallest group Q(Sp, q) where the results from [3] 
do not decide if it can act freely is (/?, q) = (5, 401). 

Note that the actions given in the 38 cases from (10.5) which are not in 
(10.6) are topologically interesting since they do not arise from "coning" a 
free action on S 8 / + 3 and hence have no invariant S 8 / + 3 c R8 / + 4 - {0}. 
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