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Abstract

In this paper we characterize the ideals of the centralizer near-ring N = M R(Rz) ,where R isa
commutative principle ideal ring. The characterization is used to determine the radicals J, (N}
and the quotient structures N/J (N}, v =0,1, 2.

1991 Mathematics subject classification (Amer. Math. Soc.): 16 A 76.

1. Introduction

Let R be a ring with identity and let G be a unitary (right) R-module.
Then M (G) = {f: G — G| f(ar) = f(a)-r, a € G, r € R} is a near-
ring under function addition and composition, called the centralizer near-ring
determined by the pair (R, G). When G is the free R-module on a finite
number of (say n) generators, then MR(R”) contains the ring 4 (R) of
n x n matrices over R, and in this case the known structure of .#,(R) can
be used to obtain structural results for M_(R"). An investigation of these
relationships was initiated in [5). (As in [5] we restrict our attention to the
case n = 2, which shows all the salient features, for ease of exposition.)
When R is an integral domain, it was shown in [5] that MR(RZ) is a
simple near-ring. Moreover, when R is a principal ideal domain, there is
a lattice isomorphism between the ideals of R and the lattice of two-sided

© 1992 Australian Mathematical Society 0263-6115/92 $A2.00 + 0.00
368

https://doi.org/10.1017/51446788700035096 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700035096

[2] The lattice of ideals 369

invariant subgroups of M R(Rz) . In this work we turn to the case in which
R is a commutative principal ideal ring and investigate the lattice of ideals
of M R(R?') . Here the situation is quite different from that of the principal
ideal domain.

Let R be a commutative principal ideal ring with identity. It is well-
known ([1], [8]) that R is the direct sum of principal ideal domains (PID)
and special principal ideal rings {PIR). A special PIR is a principal ideal ring
which has a unique prime ideal and this ideal is nilpotent. Thus a special PIR
is a local ring with nilpotent radical J = () (the principal ideal generated
by 6). If m is the index of nilpotency of (), then every non-zero element
in a special PIR, R, can be written in the form a6’ where a is a unit in
R, 0< !/ < m, ! is unique and a is unique modulo 6™ . Furthermore
every ideal of R is of the form (6’), 0 < j < m. We mention that special
PIR’s are chain rings. (See [3] and the references there for information and
examples of finite chain rings.)

Our work also has geometric connections. Specifically, let R be a principal
ideal ring and let & be a cover (see [2]) of R? by cyclic submodules. Then
for each f € MR(RZ) and each &, € ¥, there exists €; € € such that

f(8)c ?jg . Hence M R(Rz) is a set of operators for the geometry (R2 , B)
and we obtain a generalized translation space with operators as investigated
in [4].

Throughout the remainder of this paper all rings R will be commutative
principal ideal rings, unless specified to the contrary, with identity and all
R-modules will be unitary. Welet N =M R(Rz) denote the centralizer near-
ring and all near-rings will be right near-rings. For details about near-rings
we refer the reader to the books by Meldrum [6] or Pilz [7]. Also, for any set
S, let S* =S\{0}.

The objective of this investigation is to determine the ideals of N =
M R(Rz). After developing some general results in the next section we es-
tablish the characterization of the ideals of N in Section 3. As mentioned
above, the situation here differs from the PID situation. In fact, we find for a
special PIR, R, a very nice bijection between the ideals of R and the ideals
of M R(RZ) . In the final section we use our results to determine the radicals
J,(N), v=0,1, 2, and we find the quotient structure N/J (N).

2. General results

We start out with an arbitrary (not necessarily commutative principal
ideal) ring S with identity and suppose § = S, @ --- ® §, is the direct
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sum of the ideals S, S,,...,S,. Then 1 =¢, +e,+---+¢, where {¢;}
is a set of orthogonal idempotents, e, the identity of S;. Note further that

2 2 2 )
S’=Si®--@S/,andlet ) eS*, ()=()+---+(), () eS;. For

2 . 2
FeMy(sh), FG) =s(G)++()) =) ++ (), () esSl. But
f(;)ei = f((;)ei) implies f(;) = (Z) , 50 we obtain f(}) = f(;‘:) + -+
fGy) and f(S)HCS].

If M, = My(S’), then p: M — M, ®--- ® M, defined by p(f) =
(fis-e s f), where f, = f |Si2 , 18 a near-ring homomorphism. Moreover,
¢ is onto. For, if (g,,...,8) € M, & --- & M,, define g: s? - §? by
HOEF S (;‘:) +~-+g,(’y‘:) , where (5) = (’y‘:) +o 4 (’y‘:) Then g € M and
o(g) = (&,--- » &). Next, suppose f € M and ¢(f) = 0. This means
that flS,.2 =0, i=1,2,...,t,s0 f=0,and hence ¢ is an isomorphism.

Since S, C S, we have Mg(S?) C M, (S?). On the other hand, for s €
S, s=s5+-+s,, 5;,€8;,and for (j7) € Siz, G)s = (3)(es,+---+es,) =
(#)s;- Thusif f € Mg(S7), then £((5)s) = £((§)s,) = £ (s, = £(3)s.
ie., f€ MS(SI.Z) . We have established the following result.

THEOREM 2.1. Let S =S,®---® S, be a direct sum of ideals S, , ... , S,.
Then M(S*) = M (S}) @+ @ M (S}).

Let K = K, ®---® K, be a direct sum of near-rings with identities ¢;,
and let B denote an ideal of K. Note that BN K, is an ideal of X, and
for be B, b = (b,...,b,), we have be, = be, = b;, which implies
b,e BNK;. Thus B=(BNK,)®---®(BNK,), and so, from the previous
theorem, to determine the ideals of M S(SZ) it suffices to determine the ideals
of the individual components.

If R is a commutative PIR, then, as stated above, R is the direct sum
of principal ideal domains (PID) and special PIR’s, say R=R, & --- & R, .
From Theorem 2.1, N = MR(RZ) o MRI(Rf) @D MR'(RIZ), SO we are
going to determine the ideals of MRi(Rf). We know, however, if R, is a
PID then MR‘_ (Rf) is simple, so the only ideals are M, R, (Rf) and {0}. (See
[5, Theorem I1.12].) It remains to determine the ideals of My (Rf) when R,
is a special PIR. '

To this end, let R be a special PIR with unique maximal ideal J = (6},
and let m be the index of nilpotency of J, ie., 6™ =0 and 6™ ' # 0.
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We know that the ideals of R are of the form (6%), k=0,1,2,... , m.
We denote (6%) by 4, and remark that 4 = {(‘;;) |a,,a, €A} isan R-
submodule of R? with the property f (Ai) - A,2c foreach fe N=M R(Rz) ,
because f(7%) = £(7)6% forall r,s e R. But then ({(%)}: A2) is an ideal
of N. For r,s € R and f e ({()}:4;). we have (3) —f(’”) )6,

50 3
so f(7) e (8™ K2 o A . Therefore ({(8)}A,2() C (Am_k.R ). Since the
reverse mclusmn is stralghtforward, we have the next result.

PRroPOsSITION 2.2. If R is a special PIR with J = (6) and index of nilpo-
tency m, and if A, = (6%), then ({())}:4]) = (4%_:R%), k = 0,1,
2,...,m.

We know that if 7 is an ideal of N, then there exists a unique ideal
A, of R with In.#,(R) = #,(A,). In particular from [5], if f € I, say
fG)=(5), then fol[} ol =1%3]. This in turn implies f(RH C Ai , SO We
have 1 C (42:R?).

ProposiTION 2.3. If R is a special PIR with J = (6) and index of nilpo-
tency m, then for each non-trivial ideal I of N = My(R ) there is a umque

integer k, 0 <k < m, such that I C (A :R? Yforl<k,and I € (A,.R )
for I > k.

In the next section we develop the machinery to show that I = (A,ZC: RZ) .
(Of course, if I = {0}, then I = ({(J)}: R*) = (42: R*), andif I = M (R?),
then I = (R2: Rz) = (Ag: Rz) .) This will complete a proof of our major result.

THEOREM 2.4. Let R be a commutative principal ideal ring with R =
R, ®---®R, , where R, is a PID or a special PIR. Then N = MR(RZ) =
MR1 (Rf)eB- . -GBMR‘(RtZ), andif I isanidealof N, then I = I, ®---®I,, where
I, is an ideal of My (R}). If R, is a PID, then I, = {0} or I, = My (R}).
If R, is a special PIR with J = (0) and index of nilpotency m, then I, =
(A,zc:Rf) = ({(g)}:Afn_k) Jor some k, 0 <k <m, where A, = (0").

3. Ideals in M, (R’), R a special PIR
Unless otherwise stated, in this section R will denote a special PIR with

unique maximal ideal J = (#) and index of nilpotency m. Let I be an
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ideal of N =M R(Rz) with I C (A,Z(:R2 ) as given in Proposition 2.3. From
the fact that .#,(4,) € I our plan is to show that an arbitrary function
in (A,zc: R2) can be constructed from functions in 7. This will then give the
desired equality. To aid in the construction of functions in N we recall from
[5] that x,y € (Rz)* are connected if there exist x = ay,a,,... ,a, =y
in (R®)"* such that a,Rna, R # {(})}, i =0,1,2,...,s—1. This
defines an equivalence relation on (Rz)* and the equivalence classes are
called connected components. We first determine the connected components
of (R*)".

Let F be a set of representatives for the classes R/J , where we choose
0 for the class J. Thus for a € F*, « is a unit in R. We know for
each r € R there is a unique o, € F such that r = a, +r,0, r, € R. But
ro=oa,+r0,with o, € F, r, € R, implies r = a0+0110+r102 . Continuing,
we find that every element r € R has a unique “base 6 ” representation,
r=oy+taf+---+a, 0" o €F,i=0,1,2,...,m—1.

In the sequel, for ease of exposition we let # denote a symbol not in F,
and we let I?=FU{#}.

LEMMA 3.1. Let M, = (0m0—1> and let M = "00:__1]), o € F. The
submodules M 55 B e F, are the minimal submodules of R?.

Proo¥. Let H be an R-submodule of R?, {(8)}§H C M, where B €

m—1
F,andlet (3)# x € H. Then x = (%’f,._l )s for some s € R, and since

x #0,wehave s ¢ J,so s is a unit in R. But then xs e H , hence
M, C H. In the same manner if f=#,then H=M,.

To show that the M 5 p e F , are the only minimal submodules, we show
that every non-zero submodule L of R? must contain some M 5> B € F.

'}
Let y = (:'z,;) be a non-zero element in L, where u,, u, are units in
2
_ gy =lgly—l+m—1
R. Suppose [, > I,. Then yu2]0m L (M1 1(:,:.._1 ). If 1 > 1,
then yuz_lﬂm_lz_1 = (0,.,0_.), so M, C L. We have uluz_1 = a+rf for

some a € F, r € R, and uluz_lﬂ’"—1 = af™ ', and so if I, = 1,, then

yuz—lﬁ?m_lz_1 = (%0::) ,i.e, M C L. A similar argument for /| < I, gives
M, € L and the proof is complete.

LEMMA 3.2. For x,y € (Rz)* , the following are equivalent:

(i) x and y are connected,
(ii) xR and yR contain the same minimal submodule M ;
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(iil) there exist positive integers I, , |, such that x6" € M* and yt912 eM
for some minimal submodule M .

PrROOF. (i) = (ii). Suppose x and y are connected. As we showed in the
previous proof, xR and yR contain minimal submodules, say xR D M’ =
cR and yR D M"” = dR. Thus there exist r, s € R* such that ¢ = xr and
d = ys. Since x and y are connected, so are ¢ and d, say cr, = b;s, #0,
biry=1bys,#0,...,b_,r,=ds, #0. Since cr, € (M')", it follows that
cr,R = cR, so there exists r' € R such that c¢r;r’ = c, hence ¢ = cr;r' =

- . g
b,s,r'. Now c has the form (£)9" ', soif b, = (:;012) and s,r = vlﬁl’,

then blf)l = cvl_l € (cR)". If r, = v201‘ , then 0 # byr, = b1v2013+("_13) ,
and since blt913 € ¢R, a minimal submodule, it follows from Lemma 3.1
that /, < /;, otherwise b,r, = 0. Therefore r20'3_1‘ = 112013 , which in turn
implies blr20’3"[‘ = blvzﬁl3 € (cR)". Hence b2s2013_l4 € (¢cR)", so there
exists 7’ € R such that b,r” = ¢. Continuing in this manner we get # such
that d? = ¢ for some 7 € R. But this means M’ = M" .

(i1) = (iii). If xR 2> M and yR D M, then there exist r, s € R such that
xr,ys € M* , say r = ugh , 8= vo" , 4, v units. But then x6" and y012
are non-zero in M .

(iii) = (i). From x6" € M" we have {(NISMNxR =M. Hence M C
xR, and similarly, M C yR. Therefore, for some r,s € R*, xr=ys #0,
i.e., x and y are connected.

From this lemma we have that every minimal submodule M determines
a connected component &, where & = (U{xR| xR 2 M})\{(g)}.
Consider the minimal submodule M_, for some a € F. We consider the

m—1
submodules H(a, qa,... ,qa, ;) = ("‘+“'0+"‘T"m-19 ), where a, ...,
a,_, range over F. We note that H(a,o,,...,qa,_ ;) N
HPB, By, ..., B, ) ={(D)} if and only if « # B. Forif a = B, then
(a+a‘0+'-~+l-am_l0'"—l )om—l - (aeamm__ll) — (ﬁ+B10+"";'ﬂm_lgm—l)0m—l , SO
Ha,a,...,a, )NHB,B,...,B,_1)2M,.

-1

m
““”“'"T“m—'o s for some

m—1
Conversely, suppose { )r= (ﬂ+/’n"+'“Tﬁm_19 )
non-zero r,s € R. Then if r = aGI‘,s = bO’Z, we get /| = [, and

m—1 m-~1
(‘;,9,.._1) = (ﬂ;f.,_, ). Hence o = B, since a, § € F. In the same way
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1
a, 0+ +a,, _

H#, ap,...,a, YNHB, B ,...,B,_)={)} forall BeF.

I
Let a be an arbitrary non-zero element of R? , say a = ( 0,2) If

we see that H(#, o, ... ,a,,_,) = o7 1) contains M, and that

() —1 iy =1 . .
[, > 1,, then a = (“1‘9‘:2 2)t9[2 = (9% 10' z)a;,_OI2 implies a is in some
Ha,a,...,a, ), ae F.If . <l , then
1 m—1 1

a[ I 1 ) 4
a= 0! = _; a8
<a2012_1l> (az 1101 L)%

implies a is in some H(#, o, ..., a,,_,) - Thus we see that the collection
of submodules {H(8,¢a,,... ,a, )| BE€F, a,...,a, € F}isa
cover for R’ (see [2]) and we call the submodules H(8,a,,... , 0, )
covering submodules.

Therefore, to define a function f in N it suffices to define f on the gen-
erators of the covering submodules, use the homogeneous property f(xr) =
f(x)r to extend f to all of R? and then verify that f is well-defined. That
is, if x and y are generators of covering submodules and 0 # xr = ys
for r,s € R, then one must show that f(x)r = f(y)s. Suppose r =
a101‘ , §= a2012 and x = (1), ¥y = (*}). (A similar argument works for
X = (xll), y = (yll) .) Thus we have x‘a‘()I' = y,a,0"% and a,6" = a,6".
Thus /, = ,, and so a, = a, + r0™ " for some r € R. Thus xr = ys
implies x0" = y0" . Consequently, to show that f is well-defined, it suf-
fices to show that x6' = y(}l implies f (x)HI = f (y)HI , where x and y are

generators of covering submodules.
For convenience in manipulating functions in N we give the next result.

LemMA 3.3. If f€N, then forany j, 1<j<m—1, f(“”'“"f“m—'em—l)

ata, 0+ +a; 60’ J+1 m—1 _
= f( )+0,,67 +-+0,_ 0 and f(, o.. +a emt) =
1 j+1 -1
f(a10+“_+aj0j) + aj+10’ + o+ 0 0", where Tirr e > Opys
! ]
Oiprs e s Opy € R%.
ata, 0+ +a ™! ata, 0+ +a gm? .
ProOOF. We note that ("™ L )6 = f(*™ L™ )8 im-
m—1 m-—
plies f(a+ale+----il-am_10 )=f(a+a16+....+l.am_20 )+U lom 1 forsome Um .
€ R?. The result now follows by induction. The second equality follows sim-
ilarly.
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Some additional notation will now be introduced. Let x be a generator
of a covering submodule. We denote by m, f(x) the multiplier of 6% in

flx). If x = (a+ale+...+lam_10m_') and j+1 > k, then from the above lemma,

f(x) — f(a+al9+1..-+aj0j) + Uj+10j+l 4o+ Jm—lem—l and so mokf(X) —

a+010+---+a.0j j+l1-k m—1—k
m f( , ) +0,,0 +---+o,_,0 .

As at the beginning of this section, let 7 C (A,ZC:RZ). We consider two
cases, F finite and F infinite.

First, suppose F is finite, and let f € (AIZ(:RZ) . Since F is finite, there are
only a finite number of connected components, namely %} where f € F, %
determined by M, 5. We show how to find a function in I which agrees
with f on a single component and is zero off this component. Then by
adding we get f € I. We work first with the component %,. We know
the generators of the covering submodules for this component have the form
(a10+a202+~-1-+am_10'"—l)’ Qp, Qe s, EF.

For the fixed k above (determined by I C (A,Z(:Rz)) we partition these
generators of the covering submodules of &, into sets determined by the (k—
1)-tuples (a,, @y, v , 04 _y), 0, @y, ... ,a, , € F,wherewetake k > 2.
(The case k = 1 will be handled separately.) That is, given (o, ... , o, _;),
in one set we have all generators (ﬂ,9+-"+/;m_10'"_') where (B,,..., B,_,) =

. p? 2 _
(ay,...,,_,). Define p, :R° — R° by pk_1(510+,,'+;m_10m_1) =
1 .
(Bk0k+"'+ﬂm—10m_]) lf
1 0
(ﬂ[) vee s ﬂk—l) = (al y see ak—l)’ pk_l(ﬂ10+"'+ﬂm_10m—l) = (0)
if (By,...,B_y) #(a,,...,_,), extend using the homogeneous prop-
erty, and define p,_,(x) = (J) if x ¢ %,. We show that p, , is well-
defined. Let 6=a16+--~+am_10"’_1 , F=ﬂ10+---+ﬁm_10m"' and sup-
pose (é)el = (%)81. This means (o, ... ,a,_,_ )=, - B,_;_1). If
[ <m-k-1,then m—I—1> k andso (é) and (%) are in the same set of the
" 1\n! o' 1, ol
partition, thus p, _,(3)0 =(ak0k+z+m+am_l_lom_1+m+am_lgm_1+l) = pk_l(ﬁ)ﬁ .
If I>m—-k—1,then / >m—k andso p,_,(3)60' = (§) = p,_,(5)8".
Thus p,_, € Mg(R’). Also, since [ 1€/, f= [;: 1Py €1
Define h: R> — R?> by o pssa ont) = (HFHrranf
and define h(x) = (g) if x ¢ %,. As above one shows that A is well-
defined, i.e., 4 € MR(Rz). Thus for each g € MR(RZ), Gg=g(f+h) -

-1
)}, extend,

m—1
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gh € I. For x ¢ %, we have §(x) = (J), because p,_,(x) = (9) if
x ¢ &,. Further, 4(3) = g(f(3) + h(5)) — gh(5). If (B, ..., B,_,) #
(@, ... , 04_,), then f(%) = (8) and in this case é(%) = (g). Thus we
focus on (%) where (B,,...,B_,) = (o,...,_,). Here, 4(%) =
k e m_l n— .
g((g) + (BT 0n0) — g () (80" + - + B,,_,6™7"). We wish to
define g so that § agrees with f on all generators ( B+ +}m_10m_1) with
(Bys-e s B_y) =(a;, ... ,a,_,). First define g(%,) = {(8)}. Then define

1
="‘=g(ﬂ°+ﬂ10+"'+,3m_k_10'""‘—1)

((p 0™

1

1
= mekf (alo +...+ak_10k—l +ﬂoek RS ﬂm—k—lem_l) .

We show that g is well-defined. Let f = B, + 8,0 +---+f§,,_,_,0" "
and y =y, +7,0+---+7,_,_,0" ", and suppose (#)6' = (7)6'. Then

(Bys Bisvov s Bruiz1) = (gs Prvovv s Pty
Ifl<k,then m—-I-1>m-k—-1 and

o()mes ‘ ()
1 0’ \a 0+ +a,_ 0" + B0+ +p8,_, 6™ 1)

If I>k+1, then

/3) _ 1
g<1 —mok f a10+.”+ak_10k—1+ﬂ00k+”'+ﬂm_1_10m+k—l—l

-1 —k—1
+p 0" At 07T

where p,.,... , p, € R*. A similar expression holds for g(?). But then
g($)6' = g(1)6" as desired.
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; (%) _, (ﬂk0k+...;ﬂm_10m-1) _g((]))(ﬂkek_’_“”i_ﬂm_lem—l)

—1—k
=g(ﬂk+“'+p;m—10m >0k

1

0"
cota, 0 g6 g O™

- mokf(alﬁ +

1
-1(3)

Therefore § agrees with f on those generators ( B0+t ll?m_l gm-1) With
(Bys--e s By_y) = (@, ..., ), and is zero on all other generators of
covering submodules. Since there are |F |k_1 such functions, by adding we
obtain a function ¢, which agrees with f on %, and is 0 off .

For k =1 the situation is somewhat easier. There is no need to partition
the generators of the covering modules of &, . For this case we use [g g]e#

and the h defined above, where e, is the idempotent determined by Z; ,
ie, e,(x) =x if x €€, and e, (x) = @) if x ¢ €., ne F . Thus for
each g € My(R), § = g([gg]e#+h) —ghel.Forx ¢ %, 4(x)= ).

Further, (‘;(%) =g((O+ (%) -2g()B = g(ﬂ.0+ﬂ202+.;+ﬂm_,0m—') —¢(})B.
Define g(%,) = {(3)} and

¢ (a0+a10+...+am_10m_1) _ e (ao+a10+...+am_29m_2)
1 1

1
= mf <a00 +0, 0%+ +am_26’”“) ’

As above one verifies that g € M (R’) and that § agrees with f on %, .
In a similar manner one constructs g,, a € F, which agrees with f on
% andis O off € . Then f = Zﬂefqﬂ € I, and so the proof of Theorem
2.4 is complete when F is finite.
Alternatively, one could use the following approach in the finite case. For

a € F, define pa(a+a10+...-|l.am_lg'"—l) - (a10+,..+im_|0’"_1) and pa(x) = (8)

for x ¢ &, . Foreach g € N, q' = [g’([oqc g] +h)—g'hlp, € I. For
ata O+ ta. O™ o 0+ ta, 87

x ¢ gx, q/(x)z(g),and q’(+10+ ‘*l'm—le )=g’(k + ‘;kml ) —
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g0+ +a,_0™"). Define g'(,) ={(3)} and

m—1

) <ﬂ0+ﬂ10+---+ﬂm_10"’“)
g 1

=g (ﬂo +hO+ -+ ﬂm—k—lgm_k_l)
1

=m0kf

(a taf+-+a,_ 0 805+ + ,Bm_k_le'”“)
1 b

m—1
where we have partitioned the generators (°+"'0+"";"m-'9 ) of the covering

submodules in ?j’ by using the k-tuples (o, o, ..., a;_,). One shows that

g’ is well-defined and continuing obtains a function which agrees with f on
% and is zero off €, .

Suppose now F is infinite, and let §,: F k L F bea bijection. We again

start with ?j, , where as above we let @ = o, 0 + - + am_lﬁm_l . Define
k k+1 m—1
- R = R by h'(é) — (Jk(al,...,ak)e +ak+6o*+~-+a,,,_lo ) and A'(x) =

(3), x ¢ %,. As above one shows that 4’ € My(R®). Thus for each
g§EN, t,=gle,+h)—gh'el. For x ¢ %, t,(x)=(]). For x =
k k+1 m—1

(1), t,(x) = g((J) + (%l? +°k+(;" +4ean10"y) _ gh'(x). Define

m—1 m—1—k
8(®) = ()} and g(ArhO Iy = o< (Mg <

myc S (,, | 0+1,0% 4+ +uk0"+ﬁ O bk B O™ 1), where 0y (4, .- > i) = By
Ify=p+90+-+v, 8" "+ +y,,6"" and ()¢ =

!
($)6", then (g, ¥y e » V_yey) = (Bgs Bys--v s Bpu_y_y) - If 1 <k, then
m—-I1l—-1>m-k—-1 and so g(}’)ol = g(f)el. I[f I >k+1, iheln
1 m— m—k—
g('f) = mokf(#I9+m+uk0k+ﬂlek+1+m+ﬂm_1_lem—l—uk)+0’,0 +-- .+0’k+10

2
where o, ,,... ,0, € R", and

b

YN 1
g(l) _mgkf (U19+,_,+Vk0k+y10k+l+”_+ym_l_10m—l—l+k)

t am—I ’ m—k—1
+0,0 +--+a,,,0

b

where UII(+1"" ,a,' € R* and O (vy,..., 1) = v,. Since y, = B,
! !
Wy oo s ) =y, ... , ) and g(5)8' =g(?)8'. Hence g€ N.
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Further,

(1 2 Slays e )0 oy 0 o, 07T e
#lz)=8 pr g !

~1-k
=g((5k(a1,---,ak)+ak+110+"'+am—10m >0k—0

=mgy | k : k41 mot | 6°
a]0+"'+ak0 +ak+10 +"'+am_10

(1),

Thus ¢, agrees with f on %, and is zero off &,.

We next show that there is a function #, in I which agrees with f
off & and is zero on %,. This will imply that f = ¢, +1, € I. To
this end let 4,,: F**' — F be a bijection, let a = oy + a0 + - +
10" and define h”: R — R* by h"(%,) = {(3)} while A"(%) =

k k+1 m—1 o~
(%o @804 80 One finds that h” € N Let E, = 4]
(id. —e,). ThenAE#(‘i') =(5) and E(%,) ={(})}. Since E, € I, for each
gEN, i,=g(E,+h")—gh" isin I. For x € %,, i,(x)=({) and for

=0 a (D) =e () 7 () -7 ()

(6k+l(a0’ R ak) +ak+10+ +am_10m—l—k) Ok
1

[0

=g
1 k k+1 -1
_g(o) (6k+1(a03 aak)e +ak+10 +"'+am_10m )

Again we define g(%,) = {(J)} and

—1
N [r+rn0++y, 0"
3(1)"g( o

—1-k
- (y0+y10+'“+ym—-l—k0’nI )

k k+1 -1
=m0kf(c0+c10+~-+ck0 +9,0 vy, 07 )
1 b

https://doi.org/10.1017/51446788700035096 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700035096

380 C. J. Maxson and L. van Wyk [13]

where d,,,(¢y, ¢, ... , ) =7, Asabove, g € N and 7,(}) = f(7). Thus
f=t+ i# € I, and the proof of Theorem 2.4 is complete.

4. Applications

In this final section we apply the above characterization of the ideals
of N to determine the radicals J, (N) of N and the quotient structures
N/J(N), v=0,1,2.

From Theorem 2.1 and [7, Theorem 5.20], J (N)= JV(MRI(Rf)) DD
J, (Mg (Rf)). If R, is a PID, then Jy( R(R )) = {0}. If R, is a PID,
not a field, then J,(My (RY)) = J,(M (R2)) = My (R?), and if R, is a
field, then J,(M (R3)) = J,(Mg (R?)) = {0}. If R, is a special PIR, then
from the previous section we know that M (R 2) has a unique maximal ideal
(AZ‘R?) = {(0)}'Afn 1) - Moreover, Afn
for if (yom 1) € Am .

m—1 m—1 m—1
if x # 0 (say) then [:;_: g](;gm_l) = (;zm_;) for an arbitrary (;gm—l) in
A% . Therefore JZ(N) # N, so we have Jy(M, (R})) C J, (Mg (RY) C

S (M (R )) C (A R ). On the other hand it is straightforward to verify

that (A :R? ;) 1s a nil ideal, so by [7, Theorem 5.37], J,(M, R (R )2 (Af:Rlz.).
This proves the following result.

_, is atype 2, M, (R )-module,

then x and y are units in R (or zero), and so

THEOREM 4.1.. If R is a special PIR with J(R) = (), then J,,(MR(RZ)) =
(6):RY), v=0,1,2.

Since N/J,(N)= M (Rf)/J (M (R MNe-- -® My (RH/J, (M s (R?)), it
remains to determine M R, (R )/ J,( ( f)) when R, is a special PIR. This
characterization is prov1ded in the followmg result.

THEOREM 4.2. Let R be a special PIR with J(R) = (0} and index of nilpo-
tency m. Then Mn(R*)/J,(Mn(R*)) = My, o/(R/J(R))*, v=0,1,2.

ProoF. We know that every element of (R/J(R )) has a unique represen-

tative (;g(’*)) where a, ﬂ € F. We define y: Mg(R*) — R/, (R/J(R))

as follows: for f € Mp(R®), w(N(553R) = f(5)+I(R). (;:jgg)_

(gi%g) ,then a =y and B = &, so w(f) is well-defined. Furthermore
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y(f)eM, /J(R)(R/J( )%, since y NGB +I (R = f(§)+T (R) =
F(5) + IR = w(N(GEIR( + J(R)).

It is clear that yw(f + g) v(f) + w(g). Further, '//(fg)(;ﬂ R))
T8(5)+J(R)", while (v mv/(g)x;:j(ﬁ)) v (NEG)+IR?). I g(5) =

g 'om ), then w(£)(g(5 )+J(R) ) = f(%) + J(R)? . But, as in

Lemma 3.3, one finds f(§7"" z: :‘;m p " =
SR+ TR = (G o 'Zm'.>+J<R) = f8(3) + IR, ie, y(f8) =

Byt-+B,,_
v(Nw(g).
We complete the proof by showing that y is onto and Ker y=J (M (Rz)).

m—1
To show that y isonto, let g € My, R)(R/J(R)) For (ZT}'ZI':;'""Zm—I)

a 2 2 al o a (R
=(5) define f: R* — R* by f(5)=( 2) where g(ﬂo;‘jg) (ﬂojj )) If
(ao+a10+~--+am_.0m_' 5y+8,0+-+6

{ 10 apgta, 0++ea,
By+B,6+-+8,_ 0" )0 = (e +€,0+-+e,,_ 6™ ‘)0 then f(/i +ﬂl(9+~~-+/'i,,,_lt‘)""‘)(9

f( )+00, o € R*, so

= f (i:ﬁ z: I:’" 'Zm )8, so one finds that f € M(R?). Moreover,
W(ﬂ(;ﬁ:ﬁ;;) = f(a") + J(R)? (ﬂo) + J(R)? g(‘/;giﬁg;), and hence
v(fi=¢.

Finally, Ker ¥ = {f € Mp(R®) | f(§) € J(R)?, for all o, f € F} =
{(fe Mu(RY) | f(X) € J(R) forall x,y € R} = (J(R:R®) = ((6):R?) =
J (Mg (RY).
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