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We explore the application of the reference map technique, originally developed for
Eulerian simulation of solid mechanics, in Lagrangian kinematics of turbulent flows.
Unlike traditional methods based on explicit particle tracking, the reference map facilitates
the calculation of flow maps and gradients without the need for particles. This is achieved
through an Eulerian update of the reference map, which records the take-off positions
of fluid particles. This approach is found to be mathematically equivalent to the work
of Leung (J. Comput. Phys., vol. 230, issue 9, 2011, pp. 3500–3524), who computed
the flow map of simple two-dimensional flows using an Eulerian approach. We discuss
important modifications necessary for its first application to complex three-dimensional
turbulent flows, including the conservative, low-dissipation update of the flow map and
the treatment of periodic boundary conditions. We first demonstrate the accuracy of
finite-time Lyapunov exponent (FTLE) calculations based on the reference map against
the standard particle-based approach in a two-dimensional Taylor–Green vortex. Then we
apply it to turbulent channel flow at Reτ = 180, where Lagrangian coherent structures
identified as ridges of the backward-time FTLE are found to bound vortical regions of
flow, consistent with Eulerian coherent structures from the Q-criterion. The reference map
also proves suitable for material surface tracking despite not explicitly tracking particles.
This capability can provide valuable insights into the Lagrangian landscape of turbulent
momentum transport, complementing Eulerian velocity field analysis. The evolution of
initially wall-normal material surfaces in the viscous sublayer, buffer layer and log layer
sheds light on the Reynolds stress-generating events from a Lagrangian perspective.
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1. Introduction

Fluid flows are often characterized by dynamic behaviours of intricate spatial patterns.
Notable examples include bacteria-induced active matter chaos (Urzay, Doostmohammadi
& Yeomans 2017; Ran et al. 2021), a forest of vigorous turbulent eddies in wing boundary
layers (Goc et al. 2021), and the great red spot of Jupiter (Marcus 1993). While visually
captivating, the complex interaction among these spatial patterns can sometimes obscure
straightforward comprehension of the dynamically important mechanisms governing
them. The concept of coherent structures has proven integral to identifying these organized
features and furthering the analysis and modelling of their dynamical impact on the
flow. Coherent structures, broadly defined, represent persistent patterns or organized
motions that stand out against the background flow. In a more specific sense, Hussain
(1986) defined coherent structures in turbulent flows as ‘a connected turbulent fluid
mass with instantaneously phase-correlated vorticity over its spatial extent’. Meanwhile,
Haller (2015) offered a definition strongly rooted in Lagrangian/material kinematics and
dynamical systems theory, describing them as ‘special surfaces of fluid trajectories that
organize the rest of the flow into ordered patterns’. Despite differences in the perspectives
and approaches taken to define them, it is perhaps unanimously agreed that coherent
structures serve as the engines driving the complex interplay of momentum, heat and scalar
transport at various regimes.

Recognizing the crucial role that coherent structures play in fluid dynamics, the fluids
community has dedicated considerable attention to developing methods for elucidating
and understanding these organized features. A widely used class of Eulerian methods,
particularly within the turbulence community, involves vortex identification schemes
based on the invariants of the velocity gradient tensor or its symmetric/antisymmetric
decomposition. The well-known Q-criterion (Hunt, Wray & Moin 1988) extracts vortical
structures from the second invariant of the velocity gradient tensor ∇u, defined as

Q = −1
2

∂ui

∂xj

∂uj

∂xi
= 1

2
(‖Ω‖2 − ‖S‖2), (1.1)

where Ω and S are the rate-of-rotation and rate-of-strain tensors, respectively. Here, Q is
regarded as the strength of the rotational component of the velocity field relative to the
shear, and isosurfaces of Q at a selected positive threshold value are used as candidate
coherent structures. In response to potential inaccuracies of the Q-criterion when vortices
are subjected to strong external strain, Jeong & Hussain (1995) proposed the λ2-criterion.
The λ2-criterion imposes the condition that λ2 < 0, where λ2 is the median of three
eigenvalues of S2 + Ω2. This requirement is based on the principles of Galilean invariance
and the presence of net vorticity, which is correlated with a local pressure minimum at the
vortex core. Zhou et al. (1999) proposed a detection scheme based on complex eigenvalues
of ∇u. From the conjugate pair of the complex eigenvalues λcr ± iλci of ∇u, the imaginary
part λci was shown to represent the local swirling strength of the vortex. In an extension of
this work, Chakraborty, Balachandar & Adrian (2005) suggested an additional constraint
λcr/λci < δ to ensure the compactness of the spiral material orbits. The aforementioned
detection methods are computed from the instantaneous Eulerian velocity/tensor fields,
making their application to spatial velocity data obtained from numerical simulations or
experiments straightforward. They have proven effective in excluding regions of strong
shear without net swirling motion. These methods necessitate users prescribing arbitrary
thresholds for isosurface detection. As demonstrated by Pierce, Moin & Sayadi (2013), all
the aforementioned schemes produce nearly identical landscapes of turbulent eddies with
an appropriate selection of threshold values for each scheme.
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Reference map technique for Lagrangian coherent structures

In contrast to the Eulerian methods described in the previous paragraph, Lagrangian
coherent structures (LCSs) offer an alternative approach to coherent structure detection
with an emphasis on coherence at the material (Lagrangian) level and objectivity.
Haller (2005) demonstrated that the previously mentioned Eulerian diagnostics, while
Galilean-invariant, fail the test of objectivity, where the coherent structures identified
should be invariant under Euclidean coordinate changes, including time-dependent frame
rotation and translation. It is essential to note that this does not diminish the utility of
Eulerian diagnostics altogether. These approaches effectively reveal coherent patterns
in the instantaneous velocity field, aiding in understanding vortex interaction/formation
and momentum transport in wall-bounded flows (Jeong & Hussain 1995; Chong et al.
1998; Zhou et al. 1999; Duguet et al. 2012; Motoori & Goto 2019; Yao & Hussain
2020). However, limitations may arise in the presence of frame rotation, and structural
models built from the detected patterns may have constraints concerning objectivity. Haller
recognized that objectivity can be ensured by basing coherent structure detection on fluid
particle trajectories, which are fundamentally invariant Lagrangian features of a given
flow. The representation of trajectories may vary in different reference frames, but the
trajectories themselves remain invariant. The spatial patterns created by passively advected
tracers then naturally embody the candidates for LCSs. Haller (2015) explains LCSs as
‘the most repelling, attracting, and shearing material surfaces that form the skeleton of
Lagrangian particle dynamics’. As such, the LCS is expected to have a direct connection
to the motion of Lagrangian fluid elements.

A widely used diagnostic tool for LCS is the finite-time Lyapunov exponent (FTLE)
field. The FTLE characterizes the largest average stretching of an infinitesimal material
line over a finite time interval. The extremizing surfaces of the FTLE field (commonly
known as ridges) contain the candidates for LCSs, which are indicators of locally most
repelling or attracting material surfaces. The direction of time is important in this
context; repelling LCSs at a given time are computed from future data, while attracting
LCSs require past data. Attracting LCSs often correspond to structures seen in flow
visualization, such as near-wall turbulent eddies (Green, Rowley & Haller 2007) or von
Kármán vortex streets behind a cylinder (Kasten et al. 2010). However, FTLE ridges
are a necessary condition marking LCS candidates and may fail to differentiate between
attracting/repelling and shearing effects (Huang, Borthwick & Lin 2022). Sufficient and
necessary conditions for hyperbolic LCSs have been proposed in terms of invariants of
the Cauchy–Green strain tensor field and variational algorithms (Haller & Sapsis 2011;
Farazmand & Haller 2012, 2013; Haller & Beron-Vera 2012). Although more rigorous
and complete, calculating LCSs satisfying the full conditions poses algorithmic and
computational challenges (especially in three dimensions), and FTLE ridges continue to
be used frequently for visual diagnostics of LCSs.

The calculation of the FTLE field can be computationally expensive due to the necessity
of accurately reconstructing a large number of particle trajectories. Typically, tracers,
initially placed surrounding the fluid grid points, evolve by integrating in time their
Lagrangian equation of motion. This integration is performed using the available Eulerian
velocity data interpolated to the tracer locations. Subsequently, these trajectories are
utilized to calculate the deformation gradient through finite difference methods, where the
current tracer positions are differentiated with respect to their respective take-off positions.
For two-dimensional (2-D) flows, Onu, Huhn & Haller (2015) suggests using more than
1.25 million tracers for a fluid grid comprised of 0.25 million points. Huang et al. (2022)
employed 80 000 tracer particles to investigate LCSs in the flow past a backward-facing
step, where the 2-D flow simulation required 48 900 grid cells. In the study by Green
et al. (2007) focusing on turbulent channel flow, the particle grid resolution was six times
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greater in all three dimensions compared to the direct numerical simulations (DNS) grid
resolution.

The application of LCSs to three-dimensional (3-D) turbulent flows is rare compared
to a large volume of studies routinely applying Eulerian methods for coherent structure
detection. Green et al. (2007) and Rockwood, Huang & Green (2018) visualized a
hairpin vortex in turbulent channel flow at Reτ = 180, and tracked individual coherent
structure motion using Lagrangian saddle points. Pan, Wang & Zhang (2009) investigated
orientation angle and convection velocity of LCSs from a time-resolved 2-D particle image
velocimetry (PIV) measurement of a turbulent boundary layer. Bettencourt, López &
Hernández-García (2013) used the finite-size Lyapunov exponent to characterize LCSs in
a turbulent channel flow. Wilson, Tutkun & Cal (2013) highlighted LCSs of a flat-plate
boundary layer (FPBL) for Reθ = 9800 at y+ = 50 from stereo PIV measurements
on a wall-parallel plane. He et al. (2016) detailed evolution of LCSs in an FPBL
transition induced by the wake of a circular cylinder using 2-D PIV measurements.
Neamtu-Halic et al. (2019) studied Lagrangian vortical coherent structures in a gravity
current, and their influence on the turbulent/non-turbulent interface and entrainment
using 3-D particle tracking velocimetry. Thomas & David (2022) studied spatio-temporal
evolution of LCSs in a positive surge at Froude number 1.5, using 2-D stereo PIV in a
streamwise/free-surface-normal plane. All of the aforementioned studies used Lagrangian
tracers as a basis for LCS computation. Half of them reported volumetric LCSs from
full 3-D flow data (Green et al. 2007; Bettencourt et al. 2013; Rockwood et al. 2018;
Neamtu-Halic et al. 2019), whereas the rest focused on LCSs restricted to 2-D test planes.
This might be due to the high cost of tracer trajectories calculations.

The purpose of this paper is to explore an alternative, particle-free approach for
detecting LCSs in turbulent flows. Specifically, the reference map technique, originally
developed for Eulerian treatment of solid mechanics or fluid–structure interaction, will
be adapted for the fluid, and the steps for computing the FTLE field from the reference
map will be delineated. In our exposition, we arrive at the same update equation for the
inverse flow map as in Leung (2011) (see equation (14)) for simple 2-D flows. Our new
contributions include: (1) numerical methods pertinent to turbulent flows (conservative
and low-dissipation discretization of the equation as compared to dissipative schemes
(e.g. WENO) utilized by previous work; Leung 2011, 2013) and special treatment of
periodic boundary conditions; (2) material surface tracking; and (3) the first application
to 3-D turbulent flows. To the best of the authors’ knowledge, the Eulerian approach for
computing LCSs has been applied predominantly to simple flow applications (Leung 2013;
You & Leung 2014, 2018a,b, 2020, 2021). Here, we apply the method to complex 3-D
turbulent flow for the first time, and investigate flow structures and momentum transport
in a wall-bounded example. We consider a 3-D turbulent channel flow at a low Reynolds
number Reτ = 180.

2. Theoretical background

The discussion of the FTLE, LCS and the reference map naturally necessitates using tools
from (Lagrangian) continuum mechanics. The use of these tools in the fluid mechanics
community is currently not uniformly widespread. In this section, we begin by reviewing
definitions and concepts that are fundamental to describing the motion and deformation of
continuum bodies from a Lagrangian perspective.

First, the flow map (also referred to as deformation mapping or motion map)
x = χ t

t0(X , t) maps a fluid particle (tracer) located at X in the reference (or initial)
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Reference map technique for Lagrangian coherent structures

X
x

X = ξ(x, t)

B(t0) B(t)

x = χt
t0(X, t)

Figure 1. Motion map χ t
t0 (X , t) from the reference configuration B(t0) to the current configuration B(t), and

inverse motion map (or reference map) ξ(x, t) from the current configuration to the reference configuration.

configuration at the initial time t0, B(t0), to a point x in the current configuration of the
continuum body at time t, B(t) (see figure 1). The deformation gradient (or Jacobian of
the flow map) F t

t0(X , t) is defined as

F t
t0(X , t) ≡ ∂χ t

t0(X , t)

∂X
= ∂x

∂X
, (2.1)

which is an important kinematic quantity for the Lagrangian description of motion
and constitutive modelling of solid materials. For instance, F t

t0(X , t) fully characterizes
changes in volume, area and length of the infinitesimal material volume/area/line elements
initially placed at X . Additionally, Cauchy stress for hyperelastic materials undergoing
finite deformations is determined by the deformation gradient.

A basic continuum mechanics hypothesis is that the flow map is one-to-one (Gurtin,
Fried & Anand 2010). Thus at each time t, the flow map has an inverse,

ξ(x, t) = χ
t0
t (x, t) = X , (2.2)

which maps a material point x in the current configuration at time t to its initial position
X in the reference configuration. Hereinafter, this inverse flow map ξ is referred to as the
reference map, following Gurtin et al. (2010). The deformation gradient F t

t0(X , t), which
is the Jacobian of the forward motion map at the initial position X , i.e.

F t
t0(X , t)

∣∣
X=ξ(x,t) =

(
∂ξ(x, t)

∂x

)−1

, (2.3)

can be determined from the reference map. Analogously, the inverse deformation gradient
(or the Jacobian of the backward motion map at the current position x) is defined as

F t0
t (x) ≡ ∂ξ(x, t)

∂x
= ∂X

∂x
. (2.4)

The reference map framework was developed originally in the context of isothermal
compressible and incompressible fluid–structure interaction (Kamrin, Rycroft & Nave
2012; Valkov, Rycroft & Kamrin 2015; Jain, Kamrin & Mani 2019; Rycroft et al. 2020;
Wang, Kamrin & Rycroft 2022). Additionally, it has been employed in computational solid
mechanics with non-trivial hyperelastic constitutive models undergoing inhomogeneous
deformation (Kamrin et al. 2012). In this line of work, the Lagrangian solid equation recast
in the Eulerian form, which resembles the Navier–Stokes equations, was solved using finite
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difference methods. The deformation gradient, determining the solid stress, was updated
from the reference map. The key starting point was to identify x, the current position of
material points, as the fixed grid points in Eulerian simulations or measurements. Then
ξ(x, t) returns the initial position X of a Lagrangian material point that is arriving at the
grid point x at time t. Since a material point labelled by X preserves its identity during the
motion, the Lagrangian time derivative of the reference map is the zero vector, i.e.

Dξ

Dt
= ∂ξ

∂t
+ v · ∇ξ = 0, (2.5)

where v = v(x, t) represents the spatial (Eulerian) velocity field, ensuring that the
Lagrangian velocity of a material particle is equal to the Eulerian velocity taken at
the instantaneous particle position. The gradient is taken with respect to x. Eulerian
updates of the reference map (2.5) and conservation laws then enabled purely Eulerian
simulations of solid mechanics and fluid–structure interaction using a fixed grid. Note
this non-conservative form of (2.5) is equivalent to the Liouville equation of Leung
(2011) (equation (14) therein), where a level-set-based interpretation of the reference
map was adopted for an Eulerian formulation to compute FTLE fields in simple 2-D
flows. It is worth noting that there is no explicit notion of tracking particles with fixed
identities forward in time in the reference map approach. This is in clear contrast to
the particle-tracking-based method. Instead, the reference map approach assumes that
particles (tracers) with different identities are arriving at the grid points at each time, and
it endeavours to accurately remember where they took off from. In this sense, the reference
map tracks particles backwards in time but in an implicit manner.

In the present study, we employ the reference map to compute the Lagrangian kinematics
of a fluid, where the reference map is updated through (2.5) in an Eulerian manner.
That is, the reference map is passively advected on the same fixed Eulerian grid
utilized in fluid dynamics simulations or from experimental velocity measurements. The
deformation gradient is then determined entirely from the reference map, which can be
further processed to compute LCSs. Additionally, the reference map provides a natural
means for material surface tracking. Details of these two tasks are provided in the
following subsections. Computational details associated with the discretization of (2.5)
and initial/boundary conditions for the reference map are provided in § 3.

2.1. Computation of LCSs
Identification of coherent structures is a crucial tool for assessing and characterizing fluid
flows. In the LCS approach, the flow field is partitioned based on material surfaces,
allowing for the objective identification of ordered flow patterns. In this work, we adopt
the definition of LCSs using the FTLE fields, which characterize the rate of stretching
between two neighbouring fluid particles over a finite time interval (Haller & Yuan 2000;
Shadden, Lekien & Marsden 2005). According to this definition, LCSs are identified as
ridges (extremizing surfaces) of the FTLE field. The LCSs can be further categorized
into repelling and attracting LCSs, corresponding to ridges of the forward-time and
backward-time FTLE that repel or attract nearby fluid particle trajectories, respectively
(Haller & Sapsis 2011). For a more detailed explanation of LCSs and their relation to
FTLE, we refer the reader to Haller (2015) and Shadden et al. (2005).

The largest forward-time FTLE at position X is defined as

Λt
t0(X ) = 1

|t − t0| ln
√
λmax(C t

t0(X )), (2.6)
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Reference map technique for Lagrangian coherent structures

while the smallest forward-time FTLE at position X is defined as

Γ t
t0(X ) = 1

|t − t0| ln
√
λmin(C t

t0(X )), (2.7)

where C t
t0(X ) = (F t

t0(X ))TF t
t0(X ) is the (forward) right Cauchy–Green deformation

tensor, superscript T denotes the transpose, and λmax(C t
t0(X )) and λmin(C t

t0(X )) denote
the largest and smallest eigenvalues of C t

t0(X ), respectively. Note that the eigenvalues of
C t

t0(X ) are always real and positive, since C t
t0(X ) is a symmetric positive definite tensor.

Thus the key quantity necessary for computing the FTLE fields is the deformation gradient
or Jacobian of the flow map.

In Lagrangian approaches to compute the FTLE fields, a particle tracking procedure
is typically adopted Onu et al. (2015). In this approach, particles are seeded at mesh
positions, and their Lagrangian equation of motion

∂x(X , t)
∂t

∣∣∣∣
X

= v(x(X , t), t) (2.8)

is integrated in time to move particles to their final positions at time t that may not coincide
with a grid point. To follow the particle trajectories, a velocity interpolation algorithm is
required to define the right-hand side of the above equation from the Eulerian velocity
field. The deformation gradient is then computed typically at the initial particle position
X (that coincides with the mesh) from which the largest FTLE field – or simply the FTLE
field – is computed using (2.6). Note that the forward or backward FTLE fields are obtained
by integrating the equation forwards or backwards in time, respectively.

Alternatively, the deformation gradient or Jacobian of the flow map can be obtained
using only Eulerian quantities through the reference map technique discussed previously.
In such approaches, the current locations of fluid particles (tracers) x are always regarded
as the coordinates of the mesh points. Then ξ(x, t) returns the take-off position X
of the tracer that has arrived at x at time t. As X = ξ(x, t) is treated as continuous
variables transported through the advection equation, ξ(x, t) does not produce exact mesh
coordinates even if the tracers took off from the mesh points. Note that in this Eulerian
approach, the velocity field is required only at the existing fixed Eulerian grid points (or
flux points), and no additional velocity interpolation to particle locations is needed.

In this study, our focus is on analysing the backward-time FTLE only, the ridges of which
are identified as candidates for attracting LCSs. Attracting LCSs typically correspond
to the coherent structures observed in flow visualization or identified with Eulerian
diagnostics (Green et al. 2007; Kasten et al. 2010). The backward-time FTLE field is
computed in the same manner as the forward-time one, but now using the inverse flow
map (reference map), as described below.

(i) Initialize the reference map variable ξ(x, t = t0) = X in the region of interest.
(ii) Advect the reference map variable using the flow field and (2.5) to the final time t.

Now the reference map variable describes the backward flow map ξ(x, t) = X .
(iii) Compute the Jacobian of the backward flow map using the reference map:

F t0
t (x) = ∂ξ(x, t)

∂x
. (2.9)

(iv) Compute the (backward) right Cauchy–Green deformation tensor:

C t0
t (x) = (F t0

t (x))TF t0
t (x). (2.10)
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(v) Compute the largest backward-time FTLE Λ
t0
t (x) in the current configuration:

Λ
t0
t (x) = 1

|t − t0| ln
√
λmax(C

t0
t (x)). (2.11)

REMARK. Note that the backward-time FTLE is defined in the current configuration (x),
which can be computed directly at the current position (grid points) using the reference
map technique. Conversely, the forward-time FTLE is, in principle, defined in the reference
configuration X , which can be computed directly using a Lagrangian particle approach.
However, the reference map technique can be used to compute the image, under the forward
flow map, of the FTLE field in the current configuration. This can be shown by inverting
Proposition 1 from Haller & Sapsis (2011) to find

Λt
t0(X ) = −Γ

t0
t (χ t

t0(X )), (2.12)

which shows that the largest forward-time FTLE can be obtained from the smallest
backward-time FTLE defined at the current position x. Proof of this equation is provided
in Appendix A.

2.2. Lagrangian tracking of the material surface
In the original work by Kamrin et al. (2012) that introduced the reference map technique
for fluid–structure interaction, the reference map was used primarily for computing the
solid stress tensor, and the material interface was tracked separately by integrating the
level-set equation. Later, Valkov et al. (2015) observed that a level-set field for the interface
could be constructed directly from the reference map. Jain et al. (2019) and Rycroft et al.
(2020) used this to eliminate the need for separately integrating the level-set equation,
observing that the reference map provides a direct mapping to the initial positions of the
advected particles. This feature allows for convenient updates of the level-set function
or material interface directly from the reference map. Adopting this concept, particularly
from equation (25) in Jain et al. (2019), the reference map can be demonstrated to offer
basic capabilities for Lagrangian tracking of material surfaces in purely fluid flows. For
instance, in 2-D flows, consider a scalar field constructed from the reference map

F(x, y, t) = ξ1(x, y, t)2 + ξ2(x, y, t)2. (2.13)

Then the isocontour of F(x, y, t) = R2 represents a material line that formed a circle at the
initial time (t = t0), centred at the origin with radius R. The evolution of the material points
on this circle obeys the advection equation for the reference map: each Lagrangian particle
initially on the circle travels while keeping its identity fixed (or remembering where it
came from), the information for which can be retrieved from the reference map. The
isocontour of F = R2 at a later time t is then the collection of points that belonged to the
circle at t = 0, i.e. the Lagrangian map of the initially circular material line to its current
configuration. Similarly, in 3-D flows, an isosurface ξ2

1 + ξ2
2 represents the Lagrangian

evolution of the material surface that formed a cylinder (tube) (whose axis is along the
x3 direction) at t = 0. Other initial shapes placed at arbitrary locations are possible (e.g.
plane, sphere, ellipsoid or torus) by considering different contour functions in the form
F(ξ1, ξ2, ξ3) = constant. This property of the reference map allows for a relatively simple
way to track the Lagrangian evolution of material lines or surfaces with specified initial
shapes. This may be useful, for instance, for improved understanding of the Lagrangian
process of vortex formation or interaction.
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Note that a similar idea of computing the passive scalar field at the current time from a
direct mapping of the initial condition was explored in Yang, Pullin & Bermejo-Moreno
(2010) to conduct a multi-scale geometric analysis of Lagrangian structures in isotropic
turbulence. However, the mapping was based on explicit integration of tracer particles
backwards in time (reminiscent of the conventional approach for computing attracting
LCSs) rather than carrying the Eulerian mapping to the tracers’ initial positions (the
reference map) forwards in time.

3. Numerical details

We turn our attention to the implementation of (2.5), the passive scalar advection equation
for the reference map ξ (or strictly, its components ξ1, ξ2 and ξ3, which are scalar
quantities). We choose to solve the conservative form of (2.5) following Kamrin et al.
(2012),

∂

∂t
(ρξ) + ∇ · (ρξ ⊗ v) = 0, (3.1)

which can be shown to be valid for both incompressible and compressible flows thanks
to the continuity equation. For the 2-D incompressible Taylor–Green vortex examined in
§ 4.1, where the velocity field is defined analytically, the above equation (with ρ omitted)
is discretized in space with the finite-volume method, using a second-order accurate
central scheme for reconstruction of the surface flux terms. A hand-coded third-order
Runge–Kutta (RK3) method is used for time integration. For the turbulent channel case
in § 4.3 where the velocity and reference map are integrated simultaneously, a cell-centred
unstructured finite-volume compressible flow solver is used. As in Jain et al. (2019),
(3.1) was discretized with the second-order central scheme and RK3 for time integration,
consistent with the discretization of the continuity and momentum equations for the fluid.
For a detailed description of the solver and the numerical methods used therein, the reader
is referred to Park & Moin (2016). The flow solver was used extensively for scale-resolving
simulation of low Mach number wall-bounded turbulent flows (Park & Moin 2014; Park
2017; Hayat & Park 2023, 2024; Hu, Hayat & Park 2023).

Equation (3.1) must be paired with proper initial and boundary conditions. A natural
choice for the initial condition consistent with the typical choice made in the particle-based
approach is to seed the tracer particles at the mesh points (or cell centres):

ξ(x, t = t0) = x. (3.2)

Note that the choice of the initial condition for ξ can have significant implications in the
Eulerian simulation of solid, where the equations for the momentum and reference map are
two-way coupled. The above condition corresponds to an undeformed condition, whereas
different choices could be made to assume a pre-strain/stress condition at t = t0 (Kamrin
et al. 2012; Jain et al. 2019). This context does not apply to the one-way coupled situation
in the present study, where (3.1) is regarded as the tracer equation not affecting the flow in
any sense.

In this study, we consider solid walls, symmetry planes and periodic boundary
conditions. On the boundaries where un = 0 is expected (here, un is the boundary-normal
velocity), such as the solid wall or symmetry planes, the advective flux of ξ can be set
to zero (ξiun = 0, i = 1, 2, 3). The periodic boundary condition, which is straightforward
to implement for the flow variables, is problematic for the reference map, especially for
ξ1, where x1 corresponds to the main flow direction. When (3.2) is used for the initial

1000 A84-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
37

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1037


I. Hayat, R.T. Black and G.I. Park

condition, the reference map variables are linear functions of x, and periodicity cannot be
enforced inherently.

Advection of such discontinuous data with central schemes can be problematic, because
the dispersion error may lead to the formation of wiggles and their spread along or opposite
to the flow direction, as shown in figure 2 for a Reτ = 180 turbulent channel. This is often
accompanied with violation of the boundedness for passively advected scalars, where the
reference map at all times must be bounded by its range from the initial condition. This
can be remedied by rewriting (3.1) in terms of the displacement map

g(x, t) ≡ x − X (x, t) = x − ξ(x, t), (3.3)

which is the difference between the current position of a particle arriving at the grid point
(x) and its initial position (X ). The equations for the displacement map in the conservative
and material forms are

∂

∂t
(ρg) + ∇ · (ρg ⊗ v) = ρv and

Dg
Dt

= ∂g
∂t

+ v · ∇g = v. (3.4)

Note that, unlike the reference map, periodicity of the displacement map is guaranteed,
provided that its initial condition and the velocity field are periodic. Fortunately, from
(3.2), the initial condition for the displacement map is a zero field, which is periodic.
Advection of the displacement field therefore does not suffer from the dispersion error.
The strategy for periodic boundary conditions then will be to update the displacement field
via (3.4), and to recover the reference map via (3.3). Note that g, especially its streamwise
component, will in general grow/decay in time due to the right-hand side of (3.4), and
the reference map obtained from (3.3) may indicate initial particle locations outside the
computational domain. In the spirit of periodicity, this can be corrected by continually
adding/subtracting the spatial period to/from the reference map until it falls within the
domain. While the reference map so obtained is free from oscillations, it does exhibit a
discontinuity front that is advected in the flow, potentially impacting the computation of
derived quantities, such as the FTLE field shown in figure 2(b). Note that it is still easy to
identify extensive regions of the flow that do not contain the discontinuity.

Although not explored in the present study, on the outflow boundary zone where the
flow is expected to exit normal to the boundary, one may choose to treat the boundary data
as unknown, and implement a one-dimensional convective outflow boundary condition in
the boundary-normal direction (Schlüter, Pitsch & Moin 2005), which highly resembles
the equation for ξ .

In concluding remarks on computational cost, it is noted that the integration of the
reference map equations on the fly, along with the Navier–Stokes equations, incurs a 40 %
increase in wall clock time compared to stand-alone flow computations. However, we note
that the integration of reference map variables is necessary only for a limited time interval,
usually after the velocity field reaches a statistically steady state. For the computation of
the FTLE field and material surface tracking in channel flow at Reτ = 180 (§ 4.3), we find
that a time duration of 20 in viscous wall units and a small fraction of the large-eddy
turnover time (δ/uτ ) are sufficient, respectively, to obtain the converged results (30–40
viscous time units were suggested for the same flow by Green et al. 2007; Rockwood
et al. 2018). Nevertheless, it is acknowledged that the additional overhead is considerably
higher compared to Eulerian diagnostics, such as the Q or λ2 criteria, for coherent structure
detection. When the velocity field is pre-computed or accessible analytically, the cost
of the present approach for FTLE computation only (without solving the Navier–Stokes
equations) can be compared to that of the standard particle approach. Figure 3 presents
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Figure 2. The FTLE field in the x–y plane at z = 1.5 and t+ = 15 obtained from (a) the direct advection of
reference map (3.1), and (b) the advection of displacement map (3.4).

this comparison for the test case in § 4.1. With a fixed time step, the cost of the reference
map technique scales linearly with the number of grid points, as expected. The standard
particle approach (LCS Tool; Onu et al. 2015), employing a vectorized explicit high-order
adaptive ordinary differential equation solver with variable time steps, likely uses the
maximum time steps allowed for stable time integration. Under a similar constraint, the
reference map approach appears to be considerably faster than the particle approach up to
105 grid points. Beyond this point, the particle approach is observed to be more efficient,
presumably due to the substantial speed-up brought by optimal memory access patterns in
vectorized codes.

4. Results and discussions

4.1. The 2-D Taylor–Green vortex
We consider the incompressible 2-D steady (inviscid) Taylor–Green vortex to examine
the accuracy of FTLE calculation based on the reference map. We will also elucidate
the idea of using the reference map for material line tracking. The flow is defined
in a doubly periodic domain between 0 and 2π, where the velocity field is given by
u(x, y) = sin x cos y and v(x, y) = − cos x sin y. Note that for this example, we consider
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Figure 3. Comparison of the FTLE computation cost on MATLAB for the 2-D Taylor–Green vortex (§ 4.1).
The blue solid line indicates the particle-based approach (LCS Tool); the red circles indicate the asymptote
for linear scaling; the black solid line indicates the reference map approach where the time step was fixed to
dt = 2 × 10−2, corresponding to the maximum CFL condition on the finest grid; the black dashed line indicates
the reference map approach with the fixed CFL number (1.6). The effect of the time step on the computed FTLE
field was seen to be negligible in this test case. LCS Tool is a vectorized code, whereas the reference map code
is not.

non-dimensional units. At t = 0, the reference map variables are initialized with the
coordinates of grid collocation points, corresponding to the initial seeding of tracer
particles on the grid points. Note that the velocity component normal to the computational
boundaries is 0, and the boundaries are effectively non-penetrating walls.

Figure 4 shows the time evolution of the colour contour of ξ2(x, y, t) from t = 0 to
t = 22 computed on a 512 × 512 uniformly spaced grid . Note that the initial condition
for ξ2 is the y coordinates of the tracers placed on the grid points at t = 0. Therefore, the
line (or region, approximately) with identical colour can be identified as a timeline (or
material/Lagrangian area). The roll-up of the initially horizontal material lines/surfaces
into spiral ones due to the background vortical flows is observed. While the background
flow is steady, the contour of ξ2 does not reach the steady state, because the tracers’ current
position keeps varying in time. Figure 5 shows evolution of two material lines, which
form circles at t = 0 separated by a distance 0.6π along the vertical centreline at x = π.
Consistent with the background vortices and the evolution of ξ2 from figure 4, each circular
material line first migrates to the centre of the domain and deforms into a Hershey’s Kisses
shape, then squeezes into a pancake shape by the background shear, eventually rotating in
a spiral pattern in each quadrant.

Figure 6 compares the backward-time FTLE (Λt0
t (x)) obtained with the reference

map to that obtained with a direct particle-based approach. For LCS Tool, the main
particle grid for Lagrangian particle tracking is identical to the grid for the reference map
(a 512 × 512 uniformly spaced grid). However, LCS Tool utilizes an auxiliary particle
grid (four points surrounding each main grid point) with spacing 1–10 % of the main grid
spacing to approximate the deformation gradient accurately with finite difference (Onu
et al. 2015). It is readily confirmed from figures 6(a,b) that the FTLE fields produced by the
particle-based method and the reference map approach are indistinguishable, which serves
as validation of the current approach. As ridges (local maximizing lines/surfaces) of the
backward-time FTLE are candidates for attracting material lines or attracting LCSs (Haller
& Yuan 2000), we further attempt to locate the FTLE ridges through the zero-gradient

1000 A84-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
37

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1037


Reference map technique for Lagrangian coherent structures

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
(a) (b) (c) (d ) (e) ( f )

(g) (h) (i) ( j) (k) (l)

Figure 4. The 2-D steady Taylor–Green vortex. Time evolution of contours of the x2-component of the
reference map (ξ2(x, y, t)/(2π)) on the periodic domain [0, 2π]2: (a–f ) from t = 0 to t = 10, and (g–l) from
t = 12 to t = 22 (with time interval 2).

( j)(i)(g)

(a) (b) (e)

( f )

(c) (d)

(h)

Figure 5. The 2-D steady Taylor–Green vortex. Time evolution of two initially circular material lines
from (a) t = 0 to ( j) t = 9 (with time interval 1). Material lines are tracked from iso-level lines of two
scalar functions defined from the reference map: F1(x, y, t) = (ξ1(x, y, t) − π)2 + (ξ2(x, y, t) − 1.5π)2 and
F2(x, y, t) = (ξ1(x, y, t) − π)2 + (ξ2(x, y, t) − 0.5π)2. The circles are tracked with F1 = 1.52 and F2 = 1.52.

contours of the FTLE that satisfy a second-derivative condition in the x direction:

attracting LCS: |∇Λ
t0
t | = 0 and

∂2

∂x2

(
Λ

t0
t (x)

)
< 0. (4.1)

For visualization purposes only, this can be done simply by assigning a large negative
value to the computed FTLE gradient magnitude field when (∂2/∂x2)(Λ

t0
t ) is found locally

positive (masking out potential local minima/troughs). We find that (4.1) produces a
reasonable representation of the FTLE ridges (figure 6c), which were identical to those
obtained with the full Hessian test.

Additionally, we perform a convergence study of the reference map based approach
under grid refinement, and take the backward-time FTLE field computed on a fine grid
(1024 × 1024) using the reference map approach as a reference solution. Specifically,
we consider the uniform grids 64 × 64, 128 × 128, 256 × 256, 512 × 512, and compute
relative L2 errors against the fine grid result. Figure 7(a) plots these errors as a function
of uniform grid spacing, demonstrating that the reference map backward-time FTLE
field converges at rate approximately 0.7. Next, we assess the difference between the
backward-time FTLE fields computed on the same grid using the reference map approach
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Figure 6. The 2-D steady Taylor–Green vortex. Comparison of colour contours of the largest backward-time
FTLE (Λt0

t ) obtained from t = 10 to t0 = 0: (a) from LCS Tool (particle-based approach); (b) from the
reference map (present study); (c) as in (b), but the solid lines are the FTLE ridges as identified from (4.1).
Grid/particle resolutions are the same in all cases (512 × 512).
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Figure 7. The 2-D steady Taylor–Green vortex. (a) Relative L2 error between a fine grid (1024 × 1024)
reference backward-time FTLE field computed using the reference map technique (RMT) approach and a
sequence of successively refined grids, where we obtain convergence rate approximately h0.7. (b) Normalized
absolute difference between the backward-time FTLE fields computed using the particle-based LCS Tool and
the reference map approaches on a 512 × 512 grid.

and LCS Tool. The difference, albeit small, is concentrated most in the boundaries between
the neighbouring spiral vortices where rapid variations in the strain rate and FTLE are
observed, as seen in the normalized absolute difference plot in figure 7(b). As noted earlier,
the use of the auxiliary particle grid results in extra accuracy in LCS Tool, which is absent
in the current reference map approach. Nevertheless, we observed that the difference
decreases under grid refinement.

4.2. The 2-D lid-driven cavity
The next case that we consider for the validation of reference-map-based FTLE calculation
is an incompressible 2-D steady lid-driven cavity at Reynolds number 100. The geometry is
a square cavity with unit edge length, consisting of three rigid walls with no-slip conditions
and the top wall moving along positive x with a tangential unit velocity, inducing the flow
inside the cavity. At t = 0 where the flow has reached the steady state, the reference map
variables are initialized with the coordinates of grid collocation points. Similar to the 2-D
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Figure 8. Validation of velocity profiles in the 2-D lid-driven cavity at Re = 100: (a) horizontal velocity at
x = 0.5, and (b) vertical velocity at y = 0.5. Squares indicate reference data from Ghia et al. (1982); solid lines
indicate the present simulation on a 512 × 512 grid.

Taylor–Green vortex, the velocity component normal to all the walls is 0, simplifying the
boundary closure of the reference map as discussed in § 3.

In figure 8, the steady velocity profiles at the mid-sectional lines x = 0.5 and y = 0.5
from a simulation using a 512 × 512 grid are validated against the profiles from Ghia, Ghia
& Shin (1982). The profiles of both horizontal and vertical velocity show good agreement
with the reference data. Figure 9 shows the comparison of the backward-time FTLE
(Λt0

t (x)) from the present reference map approach and that from a direct particle-based
approach using LCS Tool, described in the previous subsection, both computed on a
512 × 512 uniformly spaced grid. For the Lagrangian tracking in LCS Tool, a fine auxiliary
grid is used, with grid spacing equal to 1 % of the main grid spacing. A visual inspection
of the FTLE fields produced by LCS Tool and the reference map approach in figure 9
shows reasonable overall agreement between the two fields, except for some localized
regions of high Λ

t0
t (x) towards the bottom right of figure 9(b). These localized regions

appear to be originating from the singularity of the boundary condition at the top right
corner (Bouffanais, Deville & Leriche 2007; Sousa et al. 2016; Kuhlmann & Romanò
2019). This effect is not observed in the velocity field. Note that the scalar advection
equation (which the reference map obeys) is more prone to the dispersion error due to
such discontinuous data. However, we find that the local nature of these artefacts prevents
them from significantly polluting most of the FTLE field, even after a long-time integration
of 11 time units.

4.3. Turbulent channel flow
The DNS of turbulent channel flow at Reτ = 180 were performed, where Reτ is the
friction Reynolds number based on the channel half-height (δ), friction velocity (uτ )
and kinematic viscosity (ν). A minimal channel with dimensions x/δ ∈ [0, 2π] in the
streamwise direction, y/δ ∈ [−1, 1] in the wall-normal direction, and z/δ ∈ [0, π] in the
spanwise direction, was used, where x, y and z represent the streamwise, wall-normal
and spanwise directions, respectively. Periodicity was imposed in the streamwise and
spanwise directions. A uniform grid was used in the streamwise and spanwise directions,
whereas a stretched grid was employed in the wall-normal direction, with the number of
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Figure 9. The 2-D lid-driven cavity at Re = 100. Comparison of colour contours of the largest backward-time
FTLE (Λt0

t ) obtained from t = 11.24 to t0 = 0: (a) from LCS Tool (particle-based approach); (b) from the
reference map (present study).

grid points in each direction given by (Nx, Ny, Nz) = (200, 260, 160). The wall-normal
spacing is given by the geometric progression �yi = ri−1 �y1, i = 1, 2, . . . , Ny/2,
where r = 1.035 and �y1/δ = 4.04 × 10−4. The resulting grid spacings in wall units
are (�x+, �y+

min, �y+
max, �z+) ≈ (6, 0.07, 6, 4). Note that the superscript ‘+’ denotes

quantities non-dimensionalized by viscous wall units, where the non-dimensionalized
distance l+ and time t+ are given by l+ = luτ /ν and t+ = tu2

τ /ν, respectively. After the
simulation reached statistical stationarity (which is verified through the convergence of
integrated wall forces and bulk velocity), statistics were collected over a non-dimensional
time period T+ = tu2

τ /ν ≈ 9500 (tUb/δ ≈ 822 , where Ub is the bulk velocity). Profiles of
the mean velocity and the Reynolds stresses from the present DNS were validated against
the channel flow DNS of Kim, Moin & Moser (1987). After the flow was fully developed,
computation of the FTLE field was started at an arbitrary time t = t0, where the reference
map variable was set to be the coordinates of cell centres.

Using the procedure described in § 2.1, the backward-time FTLE field is evaluated
at t+ = 12 + t+0 . At this time instance, figures 10(a–d) compare the backward-time
FTLE with the Q-criterion by visualizing a couple of hairpin structures at the wall.
As the potential attracting LCSs are identified with the ridges (local maxima) of the
backward-time FTLE, they are commonly visualized through 2-D planes rather than
3-D isosurfaces (Green et al. 2007). Nonetheless, we first look at isosurfaces of the
backward-time FTLE to get a global picture of the FTLE field. Figure 10(a) shows that the
isosurfaces of Λ

t0
t δ/uτ = 20 approximately coincide with the hairpin vortices identified

by the isosurface of the Q-criterion. However, a single FTLE isosurface does not faithfully
depict the boundaries of Lagrangian structures, and it is more appropriate to visualize a
range of constant-FTLE surfaces (or volume) above a prescribed high value as in Green
et al. (2007). Conversely, the negative volume etched by plotting constant-FTLE surfaces
below a prescribed FTLE limit can be visualized and compared with the Q-criterion
structures. Figure 10(b) utilizes this visualization technique by plotting the volume of the
region with Λ

t0
t δ/uτ ≤ 15. It is observed (from multiple view angles, although not all

are shown here) that the hairpin vortices from the Q-criterion fill up the negative region
created by this volume, showing that the boundaries of coherent structures can indeed be
delineated using the FTLE. In figures 10(c,d), FTLE is plotted in streamwise and spanwise
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Figure 10. Comparison of the backward-time FTLE with the Q-criterion structures at t+ = 12 + t+0 . In
each plot, where available, the isosurfaces coloured by instantaneous streamwise velocity are those of
Q+ = 350, which are shown along with (a) isosurfaces of Λ

t0
t δ/uτ = 20, (b) isosurfaces of Λ

t0
t δ/uτ ≤ 15,

(c) backward-time FTLE in a constant streamwise cut at x/δ = 6, (d) backward-time FTLE in a constant
spanwise cut at z/δ = 1.5. Also, (e,g) show Λ

t0
t in the same constant streamwise cut as (c); and ( f ) shows

Λ
t0
t in the same constant spanwise cut as (d). In (e, f ), the red boxes identify structures to be compared with

those from Green et al. (2007) shown in the insets. Note that Green et al. (2007) used a particle-tracking
(auxiliary) grid for the FTLE calculation that was six times finer in all directions than the flow grid for DNS.
In (g), the coloured arrows indicate the directions of in-plane instantaneous velocity vectors (coloured by the
Q-criterion).
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Figure 11. Time evolution of the material surface corresponding to the constant streamwise plane x/δ = 1.5
at t+ = 0. The surface is evolved from (a) t+ = 0 to (b) t+ = 4, coloured by the instantaneous streamwise
velocity. (c) shows the same material surface at t+ = 4 coloured by the backward-time FTLE.

cut-planes, respectively, to illustrate the 2-D skeleton of the LCS. It is clear that the regions
of high FTLE correlate closely with the vortical structures given by the isosurfaces of
the Q-criterion. The ‘mushroom’ structure in figure 10(e), and the roll-up structure in
figure 10( f ), are indeed reminiscent of LCSs computed from a particle approach in Green
et al. (2007) for the same flow, as shown in the insets of these plots. Further evidence of
the correlation between the FTLE and Q-criterion structures is provided by figure 10(g),
where the vortices indicated by the swirling velocity vectors (also corresponding to the
regions of high Q) tend to be bounded by regions of locally high Λt

t0 , consistent with the
finding of Green et al. (2007).

Specifically, for the ‘mushroom’ structure in figure 10(g), the head of the mushroom
closely wraps around the pair of counter-rotating vortices corresponding to the legs of
the hairpin structure. Closer to the wall (to the bottom left and right of the mushroom), we
observe more counter-rotating vortices likely related to the formation of low-speed streaks.
This will be further evidenced through the visualization of material surfaces in figure 13.

A rather rudimentary but insightful way to visualize fluid element deformation at a
macroscopic level is through the evolution of initially planar material surfaces (Yeung
2002), which is provided directly by the reference map ξ . Specifically, we track how
the tracers that form a constant streamwise and a constant wall-normal plane at t = 0
evolve in response to the background turbulent flow. Note that this is essentially the 3-D
counterpart of material-line tracking in figure 5. Figure 11 shows the time evolution of the
plane identified by ξ1(x, y, z, t = 0) = 1.5δ from t+ = 0 to t+ = 4. It is interesting to note
that the structures visible from the instantaneous velocity at t+ = 0 leave a mark on the
material surface as it evolves in time. Specifically, a mushroom structure indicative of a
hairpin vortex is observed towards the top right of the plane. The regions of lower velocity
within this structure lag behind the higher-velocity fluid particles outside it, leaving an
imprint of the background turbulent flow structures on the material surface at t+ = 4.
In figure 11(c), the backward-time FTLE is plotted on the deformed ξ1(x, y, z, t) surface,
showing that the imprinted structures correspond to regions of high FTLE.

Figure 12 shows three material surfaces at t+ = 8 identified by the isosurfaces of
ξ2. Note that at t = 0, these three material surfaces coincide with constant wall-normal
planes at y/δ = −0.95 (y+ = 10), y/δ = −0.85 (y+ = 30) and y/δ = −0.61 (y+ = 70).
These locations approximately lie in the viscous sublayer, buffer layer and log layer,
respectively. The tracking of a material surface initialized at a constant wall-normal
distance is particularly helpful in identifying flow structures that cause significant vertical
motion of the fluid particles such as sweep and ejection events. Figures 12(a,d,g) show that
the wall-normal deformation of the material surfaces gets stronger with increasing distance
from the wall, which is perhaps an indication of the increasing eddy sizes away from
the wall as per the attached-eddy hypothesis. Figures 12(b,e,h) show the same deformed
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Figure 12. Identification of ejection and sweep events through the time-evolved material surfaces of constant
ξ2(x, y, z, t = 0) at t+ = 8. Each row corresponds to a different wall-normal plane from which ξ2(x, y, z, t = 0)

is initialized: (a–c) y+ = 10, (d–f ) y+ = 30, (g–i) y+ = 70. Plots in (a,d,g), (b,e,h) and (c, f,i) are coloured by
y/δ, u′+ and u′+v′+, respectively.

surfaces now coloured with the streamwise velocity fluctuations. It is observed that the
elevations and depressions of the material surfaces (in figures 12a,d,g) tend to correspond
respectively with the regions of negative and positive u′ (in figures 12b,e,h), indicating
the presence of ejection and sweep events. This becomes evident in figures 12(c, f ,i),
where u′v′ is plotted onto the deformed material surface. The strongly deformed regions
(in figures 12a,d,g) are seen to correspond to regions of large negative u′v′ values (in
figures 12c, f,i). Furthermore, the regions of negative u′v′ dominate all three layers next to
the wall, but the buffer layer is most active in terms of these sweep and ejection events.

To get a more holistic and consolidated picture of the flow structures identified
individually from the x- and y-plane tracking, in figure 13 we superimpose at t+ = 8 the
constant ξ1 and constant ξ2 surfaces initially at x/δ = 2.4 and y/δ = −0.85, respectively.
Furthermore, to show the relation of these structures to those from the Q-criterion, the
velocity vectors coloured by the Q-criterion are plotted onto the deformed ξ1 surface. We
focus on one particular instance of a structure shown in the black box in figure 13(a). Here,
the ξ2 surface indicates the presence of an elongated low-speed streak through elevation
in the material surface. Consistent with the well-studied mechanism for the low-speed
streaks, this streak lies exactly between a pair of counter-rotating vortices depicted by
the velocity vectors and the regions of high Q. The velocity vectors clearly show the
ejection of fluid away from the wall between the two vortices. Furthermore, the lagging
region of the ξ1 surface (described above in relation to figure 11) also coincides with the
low-speed streak, and is located between the counter-rotating vortex pair. The ξ1 material
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Figure 13. Time-evolved material surfaces at t+ = 8 corresponding to the initially constant streamwise plane
x/δ = 1.5 and the initially constant wall-normal plane y/δ = −0.85 (y+ = 30) at t+ = 0. The streamwise
material surface is coloured by the instantaneous streamwise velocity, superimposed with the velocity vectors
(coloured by Q). The wall-normal material surface is coloured with the wall-normal coordinate (y/δ).
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Figure 14. Time evolution of the material surface initially corresponding to the constant y-plane at y+ = 100:
(a) t+ = 8, (b) t+ = 20, (c) t+ = 40, (d) t+ = 60.

surface exhibits twisting that is consistent with the direction of each of the counter-rotating
vortices.

In summary, the tracking of material surfaces over short durations of time presents a
simple but natural way of identifying instantaneous Lagrangian structures. It is noted
that material surfaces are found to retain the initial topologically connected surface for
considerable times commensurate with local-flow time scales. For instance, the time scale
of eddies in the logarithmic region according to Lozano-Durán & Bae (2019) is κy+
(κ ≈ 0.4). Consistent with this, the material surface in figure 14 initialized at y+ = 100
in the log layer remains topologically connected up to approximately t+ = 40, implying
that the current material surface tracking can be utilized usefully to study the Lagrangian
dynamics of eddies therein.
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5. Discussion and conclusion

In this study, we have explored the application of the reference map technique, originally
developed for the computation of solid stress in an Eulerian manner, to fluid mechanics
within the context of Lagrangian kinematics. This approach is mathematically equivalent
to the work of Leung (2011), who computed the flow map of simple two-dimensional
(2-D) flows using an Eulerian approach. We discuss important modifications necessary
for its application to complex three-dimensional (3-D) turbulent flows, including the
conservative, low-dissipation update of the reference map, and treatment of periodic
boundary conditions. Traditional methods for computing Lagrangian kinematics involve
the explicit tracking of tracer particles forwards or backwards in time, allowing for the
calculation of the flow map and its gradient on an auxiliary background grid. The reference
map offers an alternative by enabling the calculation of these quantities without the use
of particles. This is accomplished through the Eulerian update of the advection equation
governing the evolution in time of the spatial distribution of the reference map. The
reference map records the take-off positions of tracers arriving at fixed mesh points,
effectively tracking tracer particles backwards in time, but in an implicit manner.

The reference map approach for Lagrangian kinematics offers enhanced flexibility and
efficiency compared to the particle approach, particularly when the flow is derived through
numerical simulation. The particle approach often necessitates seeding a substantial
number of particles to reliably capture fluid particle trajectories across the flow domain
seamlessly. The clustering of particles may result in the flow map (or its inverse) becoming
a non-injective function, potentially leading to the ill-conditioning of the deformation
gradient (Kafiabad 2022). Overall, the effective particle resolution surpasses that of the
flow grid. When tracer trajectories are calculated on the fly with Navier–Stokes integration,
this can result in a significant increase in computational cost, as well as additional
overhead for large memory allocation. Achieving parallel load balancing of particles across
processors can also pose challenges, especially when particle distribution in the processor
space becomes highly irregular, as is often the case in inhomogeneous flows. The choice of
an interpolation scheme to approximate particle velocity at non-mesh points is recognized
to significantly impact the clarity of the Lagrangian structure (Kafiabad & Vanneste
2023). High-order schemes, recommended to be at least fourth-order accurate and twice
continuously differentiable (e.g. cubic spline; Yeung 2002), play a crucial role in this
regard. In contrast, the grid resolution for the reference map is inherently identical to that
of the velocity and can be increased as needed. Load balancing is easily achieved with the
standard domain decomposition already implemented for the flow solution. Velocity (or
flux) data are consistently available at locations required by the reference map, eliminating
the necessity for interpolation. The cost of the finite-time Lyapunov exponent (FTLE)
field calculation appears to be competitively comparable to the particle-based approach,
as demonstrated in figure 3.

The information implicitly embedded in the reference map regarding fluid particle
trajectories provides a means to calculate measures of Lagrangian fluid element
deformation solely from Eulerian data. These measures encompass displacement,
deformation gradient tensor, and (left/right) Cauchy–Green tensor. They can be further
leveraged to compute the backward-time FTLE field, with its ridges identified as
candidates for the attracting Lagrangian coherent structure (LCS). We demonstrated
the accuracy of FTLE calculations based on the reference map in comparison to the
standard particle-based approach using a simple 2-D flow (2-D Taylor–Green vortex).
The LCS detection utilizing the reference map was then applied to turbulent channel
flow at Reτ = 180. The computed LCSs exhibited consistency with structures identified
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through the Q-criterion, where the FTLE ridges closely approximated the boundaries of
the Q-criterion structures, as illustrated in Green et al. (2007). A notable drawback of
the current approach, in contrast to widely used Eulerian vortex identification schemes,
is the high cost associated with incorporating an additional three advection equations
for the reference map. While Eulerian schemes reveal coherent structures based on the
instantaneous velocity field, an LCS based on the concept of finite-time dynamical systems
necessitates fluid particle trajectories over a specified time interval. Given that dominant
LCSs tend to converge over relatively short time scales (Green et al. 2007; Huang et al.
2022), this increased computational cost may be confined to a small fraction of the total
simulation cost by integrating the reference map equation only during the time when it is
needed.

While the reference map does not explicitly track a particle with a fixed label, its ability
to return the take-off positions of tracers arriving at grid points makes it well suited
for material surface tracking. Various shapes of material surfaces at the initial time can
be realized through a judicious choice of the functional of the reference map. We have
demonstrated the evolution of material surfaces with initial conditions set as streamwise
constant or wall-normal constant planes in turbulent channel flow. This capability is
notably unique to the reference map, as the reconstruction and visualization of equivalent
surfaces with purely Lagrangian approaches are not straightforward. The time evolution
of material surfaces provides valuable insights into the Lagrangian landscape of turbulent
momentum transport, which remains obscured in the Eulerian velocity field. Figure 12,
in a sense, can be considered as a visual Lagrangian quadrant analysis. Although it
lacks quantitative information, it offers an immediate 3-D visual account of key events
to be analysed through quadrant analysis. These events include ejections and sweeps
identified from the vertical displacement of material surfaces, the signs and intensities
of associated velocity fluctuations (u′ and v′), the identification of low/high-speed streaks,
and confirmation of the dominance of Reynolds-stress-generating events in the second and
fourth quadrants.

In conclusion, this paper explores the application of the reference map technique (or
equivalently the approach of Leung 2011) to complex fluid flows, with a focus on the
computation of LCSs, the tracking of material surfaces, and the analysis of turbulent
momentum transport from a Lagrangian perspective, all in an Eulerian manner. It provides
a convenient method and a promising direction for future investigations into Lagrangian
kinematics and dynamics of fluid flows. One immediate application of the reference map
technique could be in characterizing the deformation of Lagrangian fluid elements. For
example, the deformation gradient fully characterizes the deformation of infinitesimal
material lines as well as oriented material areas (Nanson’s formula) (Gurtin et al. 2010).
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Appendix A. Duality between the backward- and forward-time FTLEs: proof of
(2.12)

The largest forward-time FTLE at position X is defined as

Λt
t0(X ) = 1

|t − t0| ln
√
λmax(C t

t0(X )), (A1)

where C t
t0(X ) = (F t

t0(X ))TF t
t0(X ) is the right Cauchy–Green deformation tensor of the

forward map. One can show from the chain rule that

F t0
t (x) F t

t0(X ) = ∂X
∂x

∂x
∂X

= I, (A2)

therefore F t
t0(X ) = (F t0

t (x))−1. Using this result on the right Cauchy–Green tensor,

C t
t0(X ) = [

(F t0
t (x))−1]T

(F t0
t (x))−1

= [
(F t0

t (x))T]−1
(F t0

t (x))−1

= [
F t0

t (x) (F t0
t (x))T]−1

= [
Bt0

t (x)
]−1

, (A3)

where Bt0
t (x) is the left Cauchy–Green deformation tensor of the backward flow map. Thus

we have

λmax(C t
t0(X )) = 1

λmin(B
t0
t (x))

. (A4)

Next, we show that the eigenvalues of Bt0
t (x) are equal to the eigenvalues of C t0

t (x). Let r
be an eigenvector of Bt0

t (x), with corresponding eigenvalue λ. Then

F t0
t (x) (F t0

t (x))T r = λr. (A5)

Pre-multiplying this relation by (F t0
t (x))T,

C t0
t (x) (F t0

t (x))T r = λ(F t0
t (x))T r. (A6)

Therefore, λ is also an eigenvalue of C t0
t (x) with eigenvector (F t0

t (x))T r, so
λmin(B

t0
t (x)) = λmin(C

t0
t (x)). Using this result in (A4) gives

λmax(C t
t0(X )) = 1

λmin(B
t0
t (x))

= 1

λmin(C
t0
t (x))

= 1

λmin(C
t0
t (χ t

t0(X )))
. (A7)

Substituting this result into (A1) produces the duality relation in (2.12):

Λt
t0(X ) = 1

|t − t0| ln
√
λmax(C t

t0(X ))

= 1
|t − t0| ln

[
λmin(C

t0
t (χ t

t0(X )))
]−1/2

= − 1
|t − t0| ln

[
λmin(C

t0
t (χ t

t0(X )))
]1/2

= −Γ
t0

t (χ t
t0(X )). (A8)

The utility of this equation is as follows. In the reference map approach, the smallest
backward-time FTLE can be first computed in the current configuration (or the grid)
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(Γ t0
t (x)). The negative of this can be considered as the largest forward-time FTLE (Λt

t0),
graphed not on X but on the forward-flow image of X . If Λt

t0 needs to be graphed on X ,
then X = ξ(x, t) can be used in principle to build the initial/reference configurations X .
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