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THE INDEX OF ELLIPTIC OPERATORS
OVER V-MANIFOLDS

TETSURO KAWASAKI

Introduction

Let M be a compact smooth manifold and let G be a finite group
acting smoothly on M. Let E and F be smooth G-equivariant complex
vector bundles over M and let P:¢~(M; E) — ¢~(M; F) be a G-invariant
elliptic pseudo-differential operator. Then the kernel and the cokernel of
the operator P are finite-dimensional representations of G. The difference
of the characters of these representations is an element of the represen-
tation ring R(G) of G and is called the G-index of the operator P.

(1) ind P = char [kernel P] — char [cokernel P] .

It is well-known that the G-index ind Pe R(G) depends only on the
homotopy class of the elliptic operator and, as Atiyah and Singer showed
in [2], ind P is determined by the stable equivalence class [¢(P)] € Ks(z M)
of the principal symbol ¢(P) viewed as the difference bundle over the
tangent bundle M. The Atiyah-Singer index theorem asserts that the
value (ind P)(g) is expressed by the evaluation of a certain characteristic
class over the tangent bundle z(M?) of the fixed point set M=,

(2) (ind P)(g) = (—=1)*=** {ch® [o(P)]/ (M), [«(M)]) .

Here ch? [¢(P)] is a class in the compactly supported cohomology group
H*(z(M#); C) expressed in the characteristic classes of the complex eigen-
vector bundles by the action of g on the stable vector bundle [¢(P)|.xs]
JE(M) is a class in H*(M#; C) expressed in the characteristic classes of
the real and complex eigenvector bundles by the action of g on the real
vector bundle zM|,:. We call these classes over the fixed point set as
the residual characteristic classes.

Next we consider the index of the operator P¢: ¢>(M; E)¢ — ¢~(M; F)¢
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between G-invariant sections. By the orthonormality of irreducible char-
acters, we have:
ind P¢ = dim [kernel P¢] — dim [cokernel P¢]

1

(3) = 157 5, (md P)e)
= o 5, (0 (b (P, (M

The operator P¢ can be viewed as an operator over the orbit space
G\M in the following sense. The invariant section s: M — E is determined
uniquely by the induced section 5: G\M — G\E over the orbit space. So
we may consider the invariant sections #~(M; E)° as the sections over
the orbit space X = G\M. The operator P¢ operates on these sections
and its index ind P¢ depends only on the G-equivariant homotopy class
of the principal symbol [¢(P)], which is considered to be a section over
the orbit space G\tM. Thus we consider P¢ as an operator over X = G\M.

We remark that the evaluation in (3) admits a purely local expres-
sion over X. Choose G-invariant metrics and connections on manifolds
M and M2, on bundles M, 7(M?) and v(M?) (the normal bundle of M¢ in
M) and on a stable bundle ¢(P). Then the evaluations of residual char-
acteristic classes are given by the integrations of the corresponding char-
acteristic forms. For each xe M, we choose a small neighbourhood U,
so that the isotropy subgroup G, acts on U, and, for ge G, U, N gU, + 0
implies g€ G,. Then the orbit space G,\U, is naturally identified with
an open subset in X. A family {G,\U,},.» defines an open covering of X.
Choose a partition of unity 1 = > ¢, subordinate to this coverinig. Then
we can rewrite (3) in the following form

(4)  ndP= 3 15 (—pmE| g ohe (Pl HTL) -
zeu |G,| £€6s «(U$)

The orbit space G\M is a typical example of V-manifold, and the
above formula (4) can be given an interpretation which still makes sense
for general V-manifolds.

The purpose of the present paper is to give an index theorem for
elliptic operators over V-manifolds which generalize the formula (4).

Let X be a compact V-manifold. (For the precise definitions of V-
manifolds and V-bundles, see Kawasaki [6]). For each xe X, there is a
neighbourhood U, and an identification U, = x\ﬁ,, where U, is a
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neighbourhood of the origin in an effective real representation space of
a finite group G,. For each ye U,, choose small U, so that U, C U,
then there is an open embedding ¢: ff,, — U, that covers the inclusion U,
"C U,. The choice of such ¢ is unique up to the action of G, on Ij,
Each ¢ determines an injective group homomorphism 2,: G, — G, that
makes ¢ be A,-equivariant.

To express our theorem in cohomological terms, we have to assign
to each V-manifold X a certain global geometric object over which the
residual characteristic classes should be evaluated. If we look at (4),
such an object must be a collection of all Uf’s. Each Uf admits the ac-
tion of the centralizer Z, (g) of g in G,. If g and g’ are conjugate in
G,, then U? and U¥ are diffeomorphic by the action of some element A
in G, (g’ = hgh™). So we consider one element g for each conjugacy class
(g) in G,. For each point x ¢ X, let (1), (Al), - - -, (h2*) be all the conjugacy
classes in GG,. Then we have a natural bijection

{(y9 (hf,))|ye Uz’ J = 1’ 2, tt py}
=[] Zo, ()T .
i=1

So we define globally:

32X = {(x, (h;.))lxeX, Gm +* {1}7 i= 1’ 2: : "’pz} .

Then 32X has a natural V-manifold structure whose local coordinate co-
verings are U* — ZGz(h)\fJ';‘ (h #1). The action of Z; (k) on U* is not
effective. The order of the trivially acting subgroup is called the multi-
plicity of 2X in X at (x, (h)). In general, 2X has many connected com-
ponents of varying dimensions. Let 3,3, ---,3, be the connected com-
ponents of 3X. Since the multiplicity is locally constant on X, we may
assign the multiplicity m; to each connected component 2',.

On each local coordinate U" over XX, we have the normal bundle
w(U?) in U, and the tangent bundle z(U”). On the normal bundle »(T%),
we have the action of . Then we have the eigenspace decomposition of
R

wUH = @ o,

0<o=sn
hv = ey ifvey, 0<6<n),
{hv=—v if vey:.
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The collection of these Z (h)-equivariant bundles v} (0 < ¢ < 7) and (0P
form a real or complex vector V-bundles over X. By choosing invariant
connections, we have a collection of residual characteristic forms

IHU,) e 22U} ®x C.
These forms define characteristic classes
JEX)e H¥*CX;C), and JS(X)eH*X;Q) (h=1).

By a V-bundle E over a V-manifold X, we mean a family {(GZ, E'x —
ﬁx)} of equivariant fibre bundles with surjective homomorphisms GZ — G,
and their attaching bundle maps {®}: E, — E, for each inclusive pair U,
C U,. We call V-bundle E to be proper if, for each xe€ X, GZ = G,. The
attaching bundle maps {@} define a unique induced open embedding
0: Gf\E~,, — GE\E, of the orbit spaces of total spaces. These induced maps
define the total space E = |J (Gf\E~,,) and the projection £ — X. E itself
admit a structure of V-manifold.

Let E— X be a proper V-bundle. A section s: X — E is called a C
V-section if, for each U,, s|U,:U,— E, = G,\E, is covered by a G,-
invariant C> section §,: U, — E.. For a vector V-bundle E, we denote
the set of all C~ V-sections by ¥5(X; E), which forms a vector space.
On a vector V-bundle E, we can always construct a invariant linear con-
nection, that is, a family of invariant connections on (GZ, E, — U,) which
are compatible with attaching bundle maps. Then the characteristic forms
define a C~ V-section of the exterior power of the cotangent vector V-
bundle, which represent a cohomology class on X.

Let E and F be proper complex vector V-bundles over X. A linear
map P:¥¢5(X; E) > ¢3(X; F) is called a (pseudo-) differential operator if
locally it is covered by invariant (pseudo-) differential operators

(modulo smoothing operators), which are compatible with attaching maps.
We call P to be elliptic if each P, is elliptic. For an elliptic pseudo-
differential operator P: ¥3(X; E) — €3(X; F), we have the V-index defined
by:

(5) ind, P = dim [kernel P] — dim [cokernel P] .

This index generalize ind P¢ in (3) and (4).
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Like G-equivariant case, the V-index depends only on the homotopy
class of elliptic operators. The principal symbol ¢(P) of the operator P
is a well-defined C= V-section of the V-bundle Hom (E, F) over the total
space r£X of the cotangent vector V-bundle. For P elliptic, the principal
symbol ¢(P) defines a compactly supported difference V-bundle and the
index ind, P is determined by its stable equivalence class [¢(P)]. The
stable equivalence classes of compactly supported proper difference vector
V-bundles over X = 7z, X form a group K,(z3X) = K,(¢,X). (z,X denotes
the total space of the tangent vector V-bundle). Then V-index defines a
homomorphism

(6) ind,: Ky(z, X) —> Z .

An element u e K, (r,X) is represented by proper complex vector V-
bundles E and F over 7,X and an isomorphism ¢: E— F over 7,X — X.
Then, choosing a suitable invariant connections, we have the residual
Chern characters

ch® (E) — ch* (F) e 2%:(U) ®: C ,
and globally we have the classes
ch® (u) e H¥(z,(2X); C) and chw)eH}X;Q) (h=1).
In this framework, we can state our theorem

THEOREM. Let X be a compact V-manifold. Then, for ue K (r,X), we

have:
ind, (@) = (~1)*** (ch (DS (X), e, X])
D +3 G2 (e @0, 530

As a special case of this theorem, we get the following results:

I) (Kawasaki [6]) Let X be a compact oriented V-manifold of di-
mension 4k. As a topological space, X is an oriented rational homology
manifold. The signature Sign (X) of X is defined by the signature of the
non-degenerate symmetric bilinear form on the middle dimensional co-
homology group H*(X; Q) given by the cup product. Using de Rham
cohomology, we can represent Sign (X) as the V-index of the signature
operator D, : 27(X) — 27(X) over V-manifold X. Then we have:
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Sign (X) = LX), (XD + 3 —— (LX), [5) -

The classes L(X) and L*(X) are defined locally by the residual L-class
LU,), as we have defined #(X) and #*(X).

II) (Kawasaki [7]) Let X be a compact complex V-manifold and let
E— X be a holomorphic vector V-bundle. Then X admits a natural
structure of an analytic space and the local holomorphic V-sections of E
define a coherent analytic sheaf 0,(E) over X. The arithmetic genus
x(X; E) is defined by:

im X

WX E) =5 (—1) dimg HY(X; 0,(E)) .

i=1

Then y(X; E) is represented by the V-index of the Dolbeault complex over
the V-manifold X with coefficients in E. We can apply our theorem and
we have:

2 B) = (TG E), XD + 3 - (X B), [2)) .

The classes 7 (X; E) and 7 *(X; E) are defined locally by the residual Todd
class with coefficients in E.

The proof that we adopt here is completely different from those in
the above two reports [6] and [7]. As we have remarked in [6], every V-
manifold X is presented as the orbit space of a smooth G-manifold X with
only finite isotropy subgroups and with the trivial principal orbit type.
We may choose such (G, X) with G compact and connected. Let P be
an elliptic operator over X. Then we can lift the principal symbol o(P)
considered as a difference V-bundle over 7,X to a G-equivariant difference
bundle over z-af(, the space of tangent vectors orthogonal to the orbits
of G. The lifted symbol determines up to homotopy a transversally elliptic
operator P over X relative to G. Then the V-index ind, P is equal to
the evaluation (ind® P) (1,) of the distributional index ind¢ P by the unit
function over G.

For the distributional index of transversally elliptic operators, we refer
to Atiyah [1]. We use two main results of [1]. One result is an expres-
sion of ind” P, for a transversally elliptic operator P over a manifold M
relative to a toral action with only finite isotropy subgroups. The value
(ind” P) (1,) is written by the evaluation of the equivariant residual char-
acteristic classes over the orbit spaces T\r,M" (he T, M* + ¢) (including
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h =1). By a direct translation, this formula gives the formula (7) in our
theorem, when the V-manifold X has the form X = T\M. Another result
is a reduction formula (ind? P)(1;) = (ind” ([7] ® P)) (1;), for a compact
connected Lie group G, where T is a maximal torus of G and [0] denotes
the Dolbeault complex over the flag manifold G/T.

Combining these two results, we get an expression of the V-index
using the evaluation of characteristic classes over an auxiliary V-manifold
T\X’ and its singularities. This new V-manifold T\f( is a fibration (with
singularities) over X with generic fibre G/T. We apply the Gysin homo-
morphism (the integration over the fibre) to these characteristic classes.
Then we get classes over the V-manifold X and its singularities. To
deduce (7), we need a formula on the equivariant residual Todd classes
over the flag manifold G/T. This formula is a generalization of the fol-
lowing result in Borel-Hirzebruch [5].

Let G be a compact connected Lie group and let T be a maximal
torus of G. We fix a G-invariant complex structure on the flag manifold
G|/T. Consider the fibration z: BT — BG of classifying spaces with fibre
G/T. Its bundle along the fibre is a complex vector bundle over BT.
We denote by 7 4(G/T) the Todd class of this bundle. (This class is the
G-equivariant Todd class of the complex G-manifold G/T). Then Borel
and Hirzebruch proved the following:

THEOREM (Borel-Hirzebruch [5]). Let =n,: H**(BT; R) — H**(BG; R) be
the Gysin homomorphism (the integration over the fibre). Then we have:

(8) .7 (G|T) = 1€ H**(BG; R) = Hf*(pt; R) ,
where HE* denotes the completed equivariant cohomology group for G-spaces.

Let he T be an element. The action of A on G/T is holomorphic.
So the fixed point set (G/T)* is a complex submanifold (non-connected)
with the holomorphic action of the centralizer Z;(h). The tangent bundle
7, and the normal bundle v, are the Z,(h)-equivariant complex vector
bundles. Let v, = @ ! be the eigenspace decomposition by the action of
h. Then we define the equivariant residual Todd class by:

’GL(G/T) = fz,;(h) 0<E2 fﬁze(h)(”;i)
= g’(EZG(h) X zgtn) ™) 0<£l2 fﬂ(EZG(h) X zgny vi)
€ H?;?n)((G/T)h; C) = H*EZyh) X zn G/T);C) .
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The base space EZy(h) Xz, (G/T)* is a fibration over BZy(h) with the
fibre (G/T)*. Then we have the Gysin homomorphism =,: H}%,(G/T)*; C)
— H3 k0 (pt; C) = H**(BZy(h; C).

TueoreEM. The Gysin homomorphism of the equivariant residual Todd
class is given by:

(9) 7.7 (G[T) = 1e H**(BZe(h); C) = HiJu(pt; C) .

If we put A = 1, we recover (8). The proof of this formula is straight-
forward. The same technique as in Borel-Hirzebruch [4] is applicable.
We can express n,.7 XG|T)e H¥**(BZy(h); C) C H**(BT; C) in the power
series in the roots of the Lie group G. Then we deduce our formula
from the Weyl’s relation on the roots of G.

§1. Distributional index and V-index

In this section we summarize the results in Atiyah [1] that we need
and we shall show the relation between the distributional index of trans-
versally elliptic operators and the V-index of elliptic operators over V-
manifolds.

Let G be a compact Lie group and let M be a compact smooth G-
manifold without boundary. We choose a G-invariant Riemannian metric
on M and we identify the cotangent bundle z*M and the tangent bundle
tM. We define a subset z,M in M as the set of all the tangent vectors
that are orthogonal to the orbits of G.

Let E and F be G-equivariant smooth complex vector bundles over
M and let P:%9~(M; E)— ¢~(M; F) be a G-invariant pseudo-differential
operator of order m. By choosing invariant metrics and invariant con-
nections on E and F, we have the space of Sobolev sections #*(M; E)
and s#°(M; F) (se€ R). Then the operator P extends uniquely to a bounded
operator P: #°(M; E) — s#°™(M; F). Also we have the adjoint operator
P*: #°(M; F) — s#°*-™(M; E). The null spaces A“(P) and A(P*) are
closed subspaces and admit the structure of Hilbert spaces. We may con-
sider #*(P) and A"°(P*) as unitary representations of G. We denote by
G the set of all equivalence classes of irreducible representations of G.
For a e é, we denote the a-components by A"(P) and A7%(P*).

We call a G-invariant pseudo-differential operator P:%~(M; E) —
€=(M; F) to be transversally elliptic relative to G if the principal symbol
a(P) is invertible over z,M — M. Then we have:
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THEOREM (Atiyah [1]). Let P:%~(M; E) — ¢~(M; F) be a transversally
elliptic operator. Then for each ac é, N(P) is finite dimensional and does
not depend on s. Furthermore the formal sum

char #'(P) = % char #7(P)

a€G

converges in #~"*(G) (n = dim M) for any ¢ > 0.
Now we can define the distributional index:

DEFINITION. Let P: ¥~(M; E) — ¢~(M; F) be a transversally elliptic
operator relative to G. Then the distributional index ind® (P) is defined
by:

ind¢ (P) = char A'(P) — char 4/ (P*) e 2'(G)'™

Here we denote by 2/(G)™ the distributions on G invariant under the
inner automorphisms of G.
The distributional index has the following properties:

THEOREM (Atiyah [1]). The distributional index of a transversally
elliptic operator P depends only on the homotopy class of the restriction of
the principal symbol o(P) to tcM — M

O(P)\cgr - € Is0 (@* B, *F) gy -ar -

CoroLLARY. The distributional index defines a R(G)-module homo-
morphism

ind¢: Ky(reM) —> 2/(G)™ .

For each acG, the transversally elliptic operator P defines a G-

invariant Fredholm operator
P,:#(M; E) —> #™(M; F) .
So we may consider ind¢ (P) = >, ind (P,). Then by the orthonormality
of irreducible characters, we have:
(ind® P) (1,) = index [P¢: ¥=(M; E)* —> ©~(M; F)°] .

Now we assume that the action of G on M is of trivial principal

orbit type and with only finite isotropy subgroups. Then, by definition,

the above number is the V-index of the elliptic operator P¢: €3(G\M; G\E)
— #3(G\M; G\F) over the V-manifold G\M. Each G-equivariant bundle
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E — M defines a proper V-bundle G\E — G\M, and vice versa. The V-
manifold G\r,M is exactly the total space 7,(G\M) of the tangent V-bundle.
Then we have the canonical isomorphism K,(r,M) = K,(z,(G\M)) and the
following commutative diagram

ind¢

Ky(zsM) ——> 2'(G)™

ot o

Ky (e (GM) 25 z = C.

Conversely, given a V-manifold X, we choose a Riemannian metric
on X. Then the total space O(n)(r,X) of the associated tangential ortho-
normal frame V-bundle is a smooth manifold. The right action of O(n)
is of trivial principal orbit type and with only finite isotropy subgroups.
Its orbit space is canonically identified with the original V-manifold X.
If we choose an injective homomorphism of O(n) into a compact connected
Lie group G, then the total space X= O(n)(zyX) Xowm G of the associated
tangential G-principal V-bundle is a smooth manifold with a right G-
action and its orbit space is again a V-manifold X. So we recover the
original situation and we also have an identification K,(r,X) = K (zcX).
Thus we reduce the computations of V-index into those of distributional
index.

For the computations of distributional index, we write down some of
the results in Atiyah [1]. Let G be a compact connected Lie group and
let T be its maximal torus. We choose and fix a G-invariant complex
structure on the flag manifold G/T. Then we have the Dolbeault complex
on G/T and we consider its symbol [0] as an element of K, (z(G/T)). Let
M be a smooth G-manifold with only finite isotropy subgroups. We have
a G-equivariant diffeomorphism G X, M = G/T X M by sending (g, x) €
G X M to (gT, gx). Then we have the equivalences of vector bundles

G XptoM = 1e(G X7r M) = t(GIT X M) = o(GIT) X teM .

The first equivalence comes from the (G X T)-equivariant bundle map G
X .M = 74,0(G X M), where G X T acts on G X M by (g, h)(g’,x) =
(gg’h™*, hx). The third equivalence comes from the natural identification
o(G/T X M) = «(G|T) X tM. Then we define a homomorphism r: K (z,M)
— K (z;M) by:

r: K(eod) 5 K(2(GIT) X teM) = KAG X 5 tsM) = Ky(coM) .
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By this homomorphism, we can compute ind® through ind”.

TuEOREM (Atiyah [1]). Let M be a compact smooth G-manifold without
boundary (with only finite isotropy subgroups)®. Then the following diagram
commutes: '

K(esM) —— Ky(e:M)
lindG lindT
2@ & (D),
where iy: 9'(T) — 2'(G)™ is the dual of the restriction i*: €~(G)™ — €=(T).
Especially, for ue K (z,M), we have:
(10) (ind® u) (1,) = (ind” ru) (1) .
Another result that we need is the following:

TuEOREM (Atiyah [1]). Let M be a compact smooth T-manifold without

boundary, with only finite isotropy subgroups. Then for ue K (t,.M), we
have:

(— 1)t @l

) G w)= > S (o DT M

MypcMR

where M} moves over the connected components of M* and for each M},
we define the multiplicity m,(M?) by:

m(M}) = the order of {ge T|gx = x, for any xe MM}** .

We review the definitions of ch? () and #%(u). Let i,:7,M" — .M
be the inclusion, then ifu e K (c,M") admits the eigenspace decomposition
ifu = @ycocae h, where uj € K (c,M") is the stable eigenvector bundle of
eigenvalue €. Then we have an element ch, (uf)e Hf (c;M"; Q) =
H¥(T\t;M"; @) (the subscript ¢ denotes the cohomology with compact
support). We define ch} (v) € Hf (z,M"; C) = H¥(T\t,M"; C) by:

ch? (u) = . >3 €echy (u).

=<2

*® In Atiyah [1], this theorem is proved without any restriction on isotropy sub-
groups.

*¥ The definition of the multiplicity m(h) in Atiyah [1] is incorrect. It depends on
the whole group T and the connected component M? in M=,
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Let c,M|yn = e, M* D v, r = t.M* D (@oco<. vi,r) be the eigenspace decom-
position. i, is the real eigenvector bundle of eigenvalue —1 and uf .,
(0 < 6 < x) is a complex vector bundle on which the action of A is the
multiplication by the scalar e?. We denote formally the equivariant
Pontrjagin classes of r,M" and vi, by py(c;M") = [ A + x%) € H¥(M"; Q)
and p,(vi ) = [ 1 + ¥3) e H¥(M*"; Q) respectively, and the equivariant
Chern classes of vi, by c;(vi,,) = [ (1 + 2,) € H¥(M"; Q). Then we define
JSHM) e H¥(M"; C) = H¥(T\M*; C) by:

HM) = dete (1 = Bl )60 TI #5680} 2047 ,

where

Io(MP) = T oe;M* @,C) = ] ( %% ) ,
i \1—e® 1—¢e%

2 2
#,650 = 1] ( ).
T(”h,T) U 1+ev 1+ e

l—e¢¥ 1—e¥
Sl ) = < - i ) :
T(phrT) l;[ 1 — ezj+'l.0 1 —_ e"zl_l”

Consider the orbit space X = T\M as a V-manifold. By definition,
we can see:
xy (=) =nau( 1, o),

heT ,Mh+g
uleun

X 1 ( i z'VZ'¢> — T\e; M [] ( 1l :l\fTM;b) .

So we may identify Hj} (z,M; Q) with H}(z,X; Q) and Hjf (r,M}; C) with
H}¥(z,2,; C). Then, for ue K,(z,X) = K, (r;M), we can interpret:

ch (w)A(X) + ch? (v)#*(X) = ch, (W)F (M) + ; ch? (w)# (M) .

Thus we have shown that the Atiyah’s formula (11) is equivalent to our
formula (7), if the V-manifold X is obtained as the orbit space of a toral
action.

Now we consider a general V-manifold X. We may assume that X is
the orbit space of a G-manifold M. G acts on M with only finite isotropy
subgroups and of trivial principal orbit type. Then, for a real or complex
G-equivariant vector bundle E, we may identify the G-equivariant char-
acteristic class of E with the characteristic class of the V-bundle G\E — X

https://doi.org/10.1017/50027763000019589 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000019589

ELLIPTIC OPERATORS 147

(defined by the same polynomial in Pontrjagin classes or Chern classes).
We shall rewrite the formula (7) in the word of equivariant characteristic
classes.

By the compactness of M and the smoothness of the G-action, the
number of orbit types of G-manifold M is finite. Also, all the isotropy
subgroups are finite, so the number of conjugacy classes of elements of
G with non-empty fixed point set is finite. Let (1), (h,), - - -, (h,) be such
conjugacy classes. Each fixed point set M"* admits the action of the
centralizer Zy(h). Then the action of 2 on tM|,. defines the decomposi-
tion into eigenvector bundles

TM!M’* = Tza(n)Mh @® Yr,e = Tza(h)Mh @( @ VZ, G) .

<o

Since Z,(h) commutes with A, each summand is Z;(h)-equivariant. Then
we define JLM)e H¥,,,(M"; C) by;

B = detn (L — By, )" gm0 I Franho) | zen ) .

We remark that v, ; and the normal bundle of M* in M differ in dimen-
sion equal to dim G — dim Z,(h). For uec K,(z,X) = K,(z;M), we have
ifue Ky y)(t2q00M") and the eigenspace decomposition ifu = @ogpcs, Un.
Then we define:

chi (u) = ' chym (W) € HE yy, (T 2600 M"; C) .

0s6<2x

Let XX = ][] 2, be the singularity V-manifold. Then we have canonical
identifications

2= ﬁl Zg(h)\M™ [ evds= ,Il ZG(hJ)\TZa(hJ)M M.,
iz -

Let Zy(h)\M"* = || Zs(h)\M! be the decomposition into connected com-
ponents. Each M? is Z,(h)-invariant but not connected in general. We
define the multiplicity m (M}) by:

mg(M}) = the order of {ge Zy(h)| gx = x, for any xe M}} .

Now we can rewrite the formula (7) into:

(—1)tm (ZarNMD)

s G =
(12) (ind® uw)(1y) ) h)Ze:(m me(MP)
M::LCM"

{chg (W) I UMM Zo(R)\r 200, M1
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where we denote by (G) the set of conjugacy classes of G. We shall
deduce this formula from (11) and a computation in the equivariant Chern
classes on the flag manifold G/T.

§2. Gysin homomorphisms (integrations over the fibre)

Let G be a compact connected Lie group and let M be a compact
G-manifold without boundary. We assume that G acts on M with only
finite isotropy subgroups. Let T be a maximal torus of G. We choose
and fix a G-invariant complex structure on the flag manifold G/T. Then,
by (10) and (11), we have, for ue K (z,M):

(ind¢ u) (1) = (ind? ru) (1,)
(13) B (— 1= \ul
B0

ulcur

{ch} (rw)# XM T \e M .

Here M? C M"* denotes a connected component. In the sequel we omit
i’s since all the arguments are parallel.

To deduce (12), we need to reform (13) into the evaluation over
[Zo(P)\t 200, M*)’'s. We use the Gysin homomorphisms. Consider the com-
mutative diagram

ET X, M*" —ﬂ—> EZ(h) X zatn) M

l !

M > Zy(h\M".

The vertical maps induce the identifications H*(T\M*; Q) = ;"(M k. @) and
H*(Zy(h)\M"; Q) = H},,,(M"; Q). The upper = is a fibration with fibre
Z.X)|T. We orient Z,(h)/T by the induced complex structure from G/T.
We denote the orientation sheaf on M”* by o(/M*). Then we have the
Gysin homomorphism z,: H}(M"; o(M™) ® Q) — H},,(M"; o(M™) @ Q). We
may reconstruct z, by using the Leray-Serre spectral sequence of the map
n: T\M"* — Z,(h)\M. Then we have the following proposition:

ProrositioN. The Gysin homomorphism =x,:
HEM"; oM™) Q@ Q) —> H i (M™; o(M") @ Q)

is a H¥, ., (M"; Q)-module homomorphism. For xe HF(M"; o(M*) ® Q), we
have the following formula:
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%, [T\M']) = ———— XX, [Z(W\M"]) .

T(M ") a(M ")

Also we have the Thom isomorphisms
#(M"; o(M") @ Q) —> Hf (crM"; Q)
and A
Vo Higa(M"; oM") @ Q) —> Hf gy, (tzemM"; @) .

Then we define zz, = Y zany © Ty 0 (Pr)7: H;,c(TrMh; Q) — Hfa(n),c(?zam)Mh; Q).
It is also a HZ,;,(M"; Q)-homomorphism. Looking carefully at the orien-
tations of T\tyM" and Z,(h)\r4x,M", we have, for ye H¥ (z,M"; Q):
i< el = o, s M7

(m, = } dimg (Zs(h)/T) = dim¢ (Z4(h)/T)) .

We apply 7z, to {ch? (ru)#%(M)} in (13). Then we get:
(ind° w) (1) = 3 28 1ymcr, (chi(ru) S HMZ e rons M
Ler mg(M™)
(coM?) = (— Ty cractnan)
We compute each term (—1)™*zz, {ch} (ru).#%(M)} independently. First
we consider SLM)e H¥(M"*;C). We have isomorphisms:

F(M*; C) = H} i (Zo(h) X M"; C) = Hf (1 (Zs(W)[T X M") .
Recall the definition:

HM) = ety (1 — hl )" Ri08.0{ JI 5680} 500" .

0<o<n

vu,r 18 a Zg(h)-equivariant bundle and decomposes equivariantly into:
Yo, 7 = VYa,q @ z'o(G/ZG(h)) ’

where 7(G/Zy(h)) denotes the tangent space of G/Zy(h) at the identity
coset. (We denote by the same symbol the vector space and the trivial
vector bundle). So, if we lift the T-equivariant bundle v, , to a Zy(h)-
equivariant bundle over Z,(h) X, M* = Zh)/T X M*, we may consider
it as the pull-back of a Z,(h)-equivariant bundle v,, over M". Since
Z(h)|T is a complex submanifold of G/T, t(G/Z4h)) is a complex vector
space with a linear action of A. A does not have any non-zero fixed
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vector on 7((G/Zg(h)). Let @ycocsr To(G/Z4(h)) be the eigenspace decomposi-
tion. We define:

HGIZo, = det (1 = Aloizaan)"|, TI #%un(H(GIZR)}
€ H3%,(pt; C) . ’

Then we have:
dets (1= hl, )05 T #304.0)]
<0<z
= SUGIZoWN: X det (L= bl )" Rrgn @i TI Foanha)} »
where the first factor is in H}X,(pt; C) and the second factor is in
H},.,,(M"; C). Also we have a T-equivariant decomposition:
o M" = Tza(n)M *® z'o(Za(h')/ T) .

If we lift z,M" over Zy(h)/T X M*, then tg,,M" is a Zy(h)-equivariant
bundle over M* and ¢(Z,(h)/T) is the tangent bundle of Zy(h)/T. Hence
we have:

jT(M’L) = fza(m(Za(h)/T) X fza(h)(Mh) .

As a whole, we have:

IHM) = S 250(Ze(D)T) X IUG|Zs(h))y X FHUM)
€ Hf;n((Z(W)|T X M*;C),

where the first factor is in H3}X,(Z,(h)/T; @), the second factor is in
H}%,(pt; C) and the third factor is in HZ,,,(M"; C).

Next we compute ch} (ru) e Hf (r,M"; C). By definition, we have ru
[0]1 X ue Ke(z(G/T) X teM) = Ky (z;M). So

ixru = [ac/rlza(h)/rl X ifue Kzam)(‘f(za(h)/T) X Tza(th) .
Since Z,(h)/T is a complex submanifold of G/T, we have [0gr|zg 2] =
[02ecnrr)A-1(z(GIZ5(h))) € K ;40\ (t(Zs(R)|T)). Hence we have:
iXru = [0z4myr] X A(zo(GlZs(R))) X iFu,

where the first factor is in K, ,,(c(Z;(h)/T)), the second factor is in
R(Z,(h)) and the third factor is in K ,(rz,x,M"). Consider the eigenspace
decomposition by the action of 4. The action is trivial on Zy(h)/T. So
we have:
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2. €“(iEru)’ = [0z0myr] X (2 €°2_4(z0(G/Zs(R))) X (32 e“(iFuw)’) .
Applying the Chern character on both sides, we have:

ch? (ru) = chzon [gza(m/z’] X ch (A_(z(G/Zx(h)))) X chg (w)
€ Hf (z;:M"; C) = Hf ), (z(Zs(W)[T) X t26mM"; C) ,
where the first factor is in H}}, (c«(Zy(h)/T); C), the second factor is in
H3k,(pt; C) and the third factor is in HY,,, (t;.nM"*; C). Combining
this with the computation on #2(M), we have:
ch} ru)s (M) = Chza(h)[aZG(h)/T]j zaZs(R)[T)

X ch (A_,(zo(GIZ(P))F UG Zs(h))s

X chi(w)f (M)

€ Hf (v, M"; C) = H} 1), (x(Zg(h)[T) X tz50,M"; C),
where the first factor is in H}¥,, («(Z,(h)/T; Q), the second factor is in
H}%. (pt; C) and the third factor is in H} ., (zz,xM"*; C). We have also:

chzon [0zay/r] 26y (Ze(MIT) = (=)™ T z,0(Ze(B)|T)) ,
(b HE0(Zo(W)T; @) —> H3X,),(x(Zs(h)|T); Q), Thom isomorphism) ,
chi A_i(z(GIZ(MN)F UG Zs(h))y = T G| Zs(R)), ,
(the residual Todd class restricted at the identity component) .
By the identification HZ (z,M"; C) = H} 4, (c(Zo(R)|T) X tz00M"*; C), =,
is given by the composite:
s HE oy, o(t(Zg(h)[T) X Tz M"; C)
-1
Y HE o Zo)IT X M*; o(M") ® C)
~> Hiy(M*; oM") ® C)
l’ H} ), (T2 M"; C) .
Then we can see:
(=Dm*ex, {chf (ru) S M)}
= 7T 20 Zes(MW T)T UG Zs(R))o} chi(uw) IS UM) ,
(m,: Za(h)(ZG(h)/T C)—> za(n)(pt, Q).
Thus we have proved:

0t w (1) = 3 M iz (7, 2T HCIZMN)

(15) mq(M")
X chiw) I UMM Ze(M)\ 55, M"]

Mh%ﬂ
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We compare this formula with the final form (12). In (12), the sum-
mation moves over the conjugacy classes (h) in G such that M”* = @, but
in (15), the summation moves over all the elements in T such that M*
# 0. We recall that every conjugacy class (k) in G meets T by finite
(non-zero) times. So in (15), we sum up first the terms corresponding to
the elements that belong to the same conjugacy class in G.

Let i and A’ be elements in T conjugate in G. Choose ge G such
that ghg' = h’. We denote by ¢, the action of g on M and by ¢, the
inner automorphism induced by g. Then ¢,: M — M is ¢,-equivariant and
maps M"* onto M"*. It induces bundle equivalences z,8,: 7z, M"* —
TagnnM” and v,@.:v, ;s —> vy e These equivalences are [¢,: Zy(h) — Zy(W)]-
equivariant. This shows ¢} (M) = FUM) and (z,4,)* chi (v) = chi(w).
Hence we have:

18 mAT 260 Za(W)T)T 5 (Gl Zo())o} ch (w).7E (M)}
= {GTAT 200 (Zs(W)T)T G (G| Zs(W))i}} chis ().I 5 M)

For each conjugacy class (k) in G, we put (h) N T'= {hy, hy, - -, h
For each j, we choose g;e G such that A, = g,hg;’. Then we have:

w(h)}'

w(h

(inda u) (10) Z GG(M ) {{Z) lg/l'l{f zg(h,)(Za(hj)/ T)

W) my (M)

rhl(G/ZG(hJ))O}} chf (w) 7% (M)} [Za(h)\fze(h)M 1.

(16)

Now we consider the class
w(h)
]Z;; {;fjn',{ﬂ' Za(hj)(ZG(hj)/ DT E(G|Zs(hy))e} € Hfﬁn)(pt; C).

The action of 2 on z,(G/Z4(h)) has no fixed non-zero vector. By an éle-
mentary consideration, we have:

@/ =11 e72h)IT .

Recall the definition of JUG/T)e H}¥,((G/T)*; C). We can see that
T 2 Zs(M)| TVT U G|Z(h)), is the restriction of J%G/T) onto the com-
ponent Zy(h)/T. The holomorphic action of g, on G/T defines a map
Vo, 87 Zo(h)|T — Zy(hy)|T. Tt is ¢, -equivariant. Hence we have:
l;ﬂ's{y Za(h ;)(ZG(hj)/ )T ¥(G ZG(hj))O}
= ”1{1[’;;-7 ZG(hj)(ZG(hi)/ )T hj(G/ZG(hJ))o}
= (T (G/T)‘gflzg(hj)/T)
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Thus we have proved:
(ind€ u) (1,)

) = 5 =MD o 6T) ehl () EDNZAN M
UEE m(M™)

(w: H5(GIT)*; C) —> HES,(pt; C)) .
To complete the proof it will suffice to show:
(T HUGIT)) = 1e HEf\(pt; C) .

This will be done in the next section.

§3. Equivariant residual Todd classes over flag manifolds

Let G be a compact connected Lie group and let 7' be a maximal
torus of G. Choose and fix a G-invariant complex structure on the flag
manifold G/T. Let he T be an element. Then the fixed point set (G/T)"
is a complex submanifold (closed but not connected in general). It admits
the holomorphic action of the centralizer Zy(h). Let E(=EG) — E/G(=BG)
be the universal G-principal bundle. Then we have an associated bundle:
E X 550, (GIT)* — E|Zg(h) (=BZy(h)). Over its total space E X z,, (G/T)*,
we have vector bundles

(G/ T)h)Zg(n) =E X zgn) T((G/ n,
v'((G/ T))zo0) = E X zatn) v'((GIT)") 0<o<2n),

(v denotes the eigenvector bundle by the action of A). Then we
define:

THGIT) = TE(CITzow) ]I, TG (GIT )zqr)
€ H**(E X z,m (G[T)"; C) = HF»(GIT)"; C) .
7: E X 550y (GIT)* — E|Zy(h) defines the Gysin homomorphism
w: H*(E X 70 (GIT)"; C) —> H**(E|Zs(h); C) .
The purpose of this section is to prove the following formula
(18) mJ {GIT) = 1e H**(E[Zy(h); C) = H}Ju(pt; C) .

This is the last formula in the previous section.
Let Z,(h), < Z,(h) denote the identity component. Then the projec-
tion E/Zyh),— E[Z,h) is a finite regular covering. The induced map
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H**(E|Zy(h); C) — H**(E[Zy(h),; C) is injective. So we may reduce the
structure group Z;(h) to Z;(h),, We denote by n’ the projection

7' E X 2400 (GITY —> E|Zy(h), .
Then it will suffice to show:

n 7 §GIT) = 1 e H**(E|Zs(h); C) .

Let W(G) = No(T)|T and W(Zy(h))) = Nzyn(T)/T be the Weyl group
of G and Z,(h), respectively. For each right coset [w,] in W(G)/W(Z(h),),
choose one representative g, € Ny(T). Then, as a Zy(h),-manifold, (G/T)*
decomposes into a disjoint union

@GIT) = 1 (Zs(R)ogi)IT

[ws1EW (G)IW (Zg(h)o)

Put h, = g;hg;", then the holomorphic action of g, maps (Z4(h),g;")/T onto
Zy(h,)/T. This map is [¢,,: Zy(h)y — Zs(h;)]-equivariant. Over each com-
ponent (Z,(h),g;")/T in (G/T)*, we may translate everything onto Z,(h,),/T
by the action of g;, Then the bundles

E X 200, T(GIT)*) and E X z,0, V"(G/T)*)
are translated to:

E X 2400 t(Z(B )| T) = E X 7t Zs(h)o/T) ,

E ng(hj)o l""(Zc:(hj)o/ T) =E X Tg(G/ ZG(hj)O) .

Then we have:
{7 HGIT) I(ZG(h)og}“)/T}
= [;:j(ﬂ])l {«7 T(To(ZG(hJ)o/ T)) 0<l"12z T ;(Tg(G/ZG(hj)o))} ’

(771: E/T— EJ ZG(hj)O’ Loyt E|Zh)y—> E| Za(hj)o) .

We can describe these classes in terms of the roots of G. Let
a, a,, - -+, a, be the positive roots of G, corresponding to the invariant
complex structure on G/T (see Borel-Hirzegruch [4]). Let g be the Lie
algebra of G and let g=5®Pq,Pa, D --- @ a, be the root space decom-
position. That is: g = 7(G) and § = ¢(T). T acts on g by the conjugacy.
g=5Pa,Pa,® --- ®a, is the irreducible decomposition of this T-action.
b is the trivial summand. a, (k= 1,2, ---,m) is a linear functional on
§ such that, on a, = C, the action of T is given by:
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hz - e2niak(li)z ,
(heT, zea, = C, HeYy such that exp H=h).

For the fixed he T, we choose Hel) such that exp H = h and we put
H,= w,H = Ad(g,)H. Then the T-invariant subspaces z,(Z.(h,),/T) and
10(G|Z4(h,)) In z(G/T) =g/ =0, D a, D --- Da, are given by:

t(Zo(h)o/T) = D «ap,

k; ag(Hy)=0
mod'Z

w(GlZg(h)) = D 0.

k; ax(Hy)=60/2x
mod Z

By Borel-Hirzebruch {4], we may identify H**(BT; R) = H**(E/T; R) with
the completion of the symmetric tensor algebra S**(§*). We denote by
[a.] € HXE[T; R) the corresponding class to a, € §*. Then the equivariant
total Chern classes are written by:

e Zulb TN = T L+ [ e H*ET; B),
exe(GlZah)) =TT (L+ [w) e H*ET; ).

k; ax(Hj)=0/2z

Hence we have:
“ T(fo(Za(hj)o/ 7)) 0<Q23 T ;(Tg(G/ZG(hJ)o))
I 5 1

ka@p=0 1 — e %] 0<o<2n k; axtiip=0/2e 1 — e~ [ok1-%8

— i 1
- {k;akg/)so [ak]} {IQI 1-— e‘[“ﬂ‘z"i“"(ﬂﬁ} )

By Borel-Hirzebruch [5], we can compute the Gysin homomorphism (z;),.
We remark that {a.|a.(H,) = Omod Z} are the positive roots of Z,(h,),.
Then we have:

{k;akl(—llij)s . [ak]} (nj)l{y 2(zo(Za(hy)ol T)) 0<1012,z T ”T(rS(G/ZG(h,)o))}
sen@{ 1 wall{f] L)

&; ar(H ) =0 1 1 — e—[wak]~2niak(Hj)

weEW (Zghgo)

For we W(Zy(h,),), we have:

sen (w) {k;akl(;llj)ao [wak]} - k; ak!;[I;) =0 [ak] ’

wak(Hj) = ak(w_'Hj) = ak(Hj) k=12---,m).

Hence we have:
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@) { T ZohWTY) T1 THH(GCIZoRI)]
" 1

wewZatpo k=1 1 — @~ lwarl-2miwagHy

The conjugation ¢,,: E/Z(h), — E[Z(h,), is covered by the map ¢,,: E/T —
E|T. So, in cohomology, ¢} is given by the action of the element wj!e
W(G). Then we have:

HCIT) = 32 @ | reZolh WD) T] T4H(GCIZo(h)))
~ 1

[wsIeW (O TW (Zgh)o) k=1 1 — @~[wy warl-2ziwaz(Hy) )
!weW( Zg(hg)o) 1 e

Here, wa,(H,) = wa,(w;H) = w;'wa,(H) and in summation w;'w move just
all over W(G). Hence:

1

— e [war] - 2ziwar(H)

UG = 3 11~

EW (G

Recall the Weyl’s relation that was used in Borel-Hirzebruch [4]. That
is, as a function in Xe Y, we have:

ﬁ———}&#-«51.

weW(@ k=1 1 — e~ ww(X)
Replace X by X + 2riH and we get:
i 1

WEW(R) k=1 1 _ e—wak(X)—Zziwak(H)

1.

The formal power series expansion of this expression gives a relation in
S**(h*) ® C = H**(E|T; C). This shows:

©.T MGIT) = 1e H**(E|Zy(h); C) € H**(E|T; C) .
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