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ACTIONS THAT FIBER AND VECTOR SEMIGROUPS
T. H. McH. HANSON

Introduction. From [2], we can derive a criterion for determining when an
action of a Lie group on a locally compact space leads to a fiber bundle. Here, we
present an equivalent criterion which can be stated purely in the language of
actions of groups on spaces. This is Theorem I. Using this result, we are able to
give a version of a result of Horne [1] for dimensions greater than one. This is
done in Theorem I'V and Corollary IVA. In Theorem I1, we show that if a vector
semigroup V,,~ acts on a space X, then whenever the map ¢+ txis1 — 1 from
V,~ onto V,~x, itisin fact a homeomorphism. Also, V,~x is a closed subset of X.
This is also a version of a result in [1].

Preliminaries. We shall invariably use the words semigroup and group to
mean topological semigroup and topological group, respectively. Furthermore,
all topological spaces are to be non-empty Hausdorff spaces. An action of a semi-
group S on a space X is a continuous function ¢: S X X — X with ¢(s, x)
usually denoted by sx, such that for all s,¢ € Sand x € X, s(tx) = (st)x. If S
has anidentity, 1, we further require that 1x = x, forall x in X. If the semigroup
S acts on the space X, i.e., there is an action of S on X, then for each x € X the
set Sx = {sx: s € S} C X is called the orbit of S through x. If S acts on X and
x € X, we define ¢,: S — Sx by ¢.(s) = sx, and see that ¢, maps S onto Sx
continuously. The set.S, = {s € S: sx = «x} is called the isotropy subsemigroup
of S at x, if it is non-empty. It is known that if .S, is non-empty, it is a closed
subsemigroup of S, and, furthermore, if S is in fact a group, then S, is a closed
subgroup of S. If the group G acts on the space X, then the collection {Gx: x € X}
of orbits of G in X is a decomposition of X. We denote this collection with the
decomposition topology by X /G, and call it the orbit space of G acting on X. The
natural map ®: X — X /G is an open mapping, and furthermore, a subset K of
X /G is closed in X /G if and only if ~1(K) is a closed subset of X.

Actions that fiber. A group G is said to act freely on a space X if, whenever
gx = xforsomeg € Gandx € X, theng = 1. From [2], we derive the following
criterion that the action of a Lie group G on a locally compact space X lead to a
fiber bundle. Suppose that G acts freely on X,and T = {(x, gx): x € X, g € G}
inX X X.Then X isa fiber bundle over X /G if and only if X /G is Hausdorff and
the function i(x, gx) = g from 7" onto G is continuous.
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Our first objective is to give a criterion equivalent to the above which may be
stated purely in the language of actions of groups on spaces. The result is

TueOREM 1. Suppose that the Lie group G acts freely on a locally compact
space X. Then X is a fiber bundle over X /G if and only if G is IP on X.

If {x,} isanetinaspace X, wesay that {x,} isfinallyin V, ¥ C X, if thereis
anindex I'such that,if p = T', thenx, € V. Wesay thatx, — co if, whenever K
is a compact subset of X, then {x,} is finally in — K. [t is easy to see thatif {x,}
has no convergent subnets, then x, — 00 in X, and that if X is locally compact,
then the converse is also true. It is well-known that a net {x,} in a space X
converges to a point x in X if and only if every subnet of {x,} converges to x.
If the group G acts on the space X, we say G is I P on X (relative to this action)
if, whenever {g,} and {x,} are nets in G and X, respectively, with g, —» © inG
and x, —» x € X, then g,x, — o in X. Theorem I is a consequence of two results
which are of independent interest.

LEmMaA 1. Suppose that the group G acts on a locally compact space X such
that G is IP on X. The orbit space X /G s a locally compact Hausdorff space.

Proof. We first show that if C is a compact subset of X, then
GC = {ge: g € G,c € C}

is closed in X. For, lety € (GC)*, the closure of GC in X. Then, there exist nets
{g,} inG and {¢,} in Csuch that g,c, — . Since C is compact, {¢,} must have a
convergent subnet and, by passing to this subnet, we may assume that ¢, — ¢
for some ¢ € C. If {g,} has no convergent subnets, then g, — o in G so, since G
isIPon X, g,c, — o0 in X. However, since g,c, — v and X is locally compact,
we have arrived at a contradiction. Therefore, {g,} has a convergent subnet,
and, by passing to this subnet, we may assume that g, — g for some g € G.
Hence, g,c, — gc € GC, so, since X is Hausdorff and g,c, » v,y = gc € GC, and
we conclude that GC is closed in X.

Letting ®: X — X /G be the natural map, we recall that a subset N of X /G is
closed in X /G if and only if #=1(NV) is closed in X . Itisalso known thatif K C X,
then ®1(®(K)) = GK. From this and from the above, we see that if K is a
compact subset of X, then, since GK is closed in X, ®(K) is a closed subset of
X /G. Since {x} is a compact subset of X,Gx = ®(x) is closed in X /G. Therefore,
points are closed in X /G, so X /G is a T'y-space.

Being a locally compact Hausdorff space, X is regular. Let Gx € X /G and U
be a neighborhood of Gx in X /G. Then, ®~'(U) is a neighborhood of x in X, so
there is a neighborhood V of x in X such that V* is compact and V* C & 1(U).
Since V*is compact, ®(V¥) is closed in X /G. Since ® is an open mapping, ®(V) is
a neighborhood of Gx in X /G such that

(V) C 2(V)* C (V*)* = &(V*) C (@ NV)) = U.

Therefore, since Gx and U are arbitrary, X /G is a regular space. Being a regular
T'1-space, X /G is a Hausdorff space.
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Since X is locally compact and ®: X — X /G is an open mapping, X/G is a
locally compact space.

Our next result is a generalization of one which appears in [1]. It is

LeMMA 2. Let G be a locally compact group acting freely on a locally compact
space X.G 1is I P on X if and only if X /G is Hausdorff and the function h(x, tx) = ¢,
mentioned earlier, is continuous.

Proof. Suppose first that X /G is Hausdorff and % is continuous. Let {g,} and
{x,} be nets in G and X, respectively, with g, >0 inGandx, >x € X. If G
isnot I P on X, we may as well assume that g,x, % o in X, and thereby conclude
that {g,x,} has a convergent subnet. By passing to this subnet, we may further
assume that g,x, — k for some k € X. Thus, (x,, g,x,) — (x, k), which implies
thatGx = Gk. For, letting U be a neighborhood of x and " a neighborhood of %,
there is an index 6 such thatx, € U, and gsx5 € V, because x, — x and g,x, — k.
Thus, Gxs € ®(U) N ®(V), where &: X — X /G is the natural map. Since X /G
is Hausdorff and since U and V are arbitrarily chosen, we conclude that
Gx = Gk.

SinceGx = Gk, thereisag € G such thatgx = k. Then, (x,, g,x,) — (x, gx) so,
since % is continuous, g, — g in G. Since G is locally compact and we know that
g, — 0, we have arrived at a contradiction. Therefore, we may conclude that
g%, — o0 in X and further that G is IP on X.

Conversely, suppose thatGis IP on X. Then, by Lemma 1, X /G is Hausdorff.
We need only show that % is continuous. Let {g,} beanetinG and {x,} anetin X
such that for some g € G and x € X, (x,, g,x,) — (x, gx). We must show that
o7 &

l.et {g,s} beany subnetof {g,} and assume that this subnet has no convergent
suonets. Then, g,s — 0 inG so, sinceGis [P on X and x,; — %, g,6%,5 — 0 in X.
But, {g,x,s} is a subnet of {g,x,} and g,x, — gx, so g,sx,; — gx. Therefore,
since X is locally compact, we have arrived at a contradiction. Hence, every
subnet of {g,} hasa convergent subnet. In fact, every subnet of {g,} hasa subnet
converging {6 g. For, suppose that {g,;} has a subnet {g,s,} converging to some
t € G, i.e., g5, — 1. Then, since Xy — X, go80X,p50 — 1%, But, g,5.%,50 — gx, so0,
since X is Hausdorff, gx = tx. But, G acts freely on X, so g = . Thus, every
subnet of {g,} has a subnet which converges to g. But, one sees that this implies
that g, — g. For, if not, let I/ be any neighborhood of g. Then, {g,s: g,; ¢ U}
contains a subnet of {g,! which -clearly has no subnets which converge to g.
Therefore, g, — g and & is continuous. This concludes the proof of Lemma 2.

Lemma 2 yields an immediate proof ¢f Theorem I.

Proof of Theorem 1. Being locally Euclidean, G islocally compact. By Lemma 2,
G is IP on X if and only if X/G is Hausdorff and k(x, tx) = ¢ is continuous.
However, as mentioned earlier, % is continuous and X /G is Hausdorft if and only
if X is a fiber bundle over X /G.
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Vector semigroups. We let P~ denote the semigroup of non-negative real

numbers under multiplication and P = P~ — {0} the multiplicative group. If n
is a positive integer, the n-dimensional vector semigroupis V,- = P~ X ... X P~
(n copies) under coordinatewise multiplication. I, = P X ... X P (n copies)

is iseomorphic (topologically homeomorphic and algebraically isomorphic) to
the n#-dimensional vector group, and V,, C V,~. In fact, V,~ is the topological
closure, V,*, of V, in E* We let L, be the frontier of V,~ in E® and see that
L, =V, — V, Itis clear that e = (0,...,0) is the zero for V,~ and
1 =(1,...,1)is the identity for V,~. If n is a positive integer, then, for each
7,1 =7 = n, we define

(i) Py={(p1,-.-,Pu) € Viym: p, =1, for i ## j}, and

(ii) €; = (].y e ey lj_l, O, 1]'+1, e ey 1).
From this we see thatin V,~, P;~ = P;* = P;\U {e;}. Furthermore, there is a
natural iseomorphism from P;~ onto P~ which maps ¢; onto 0. In addition,
v, =11P,
™) !
vV, =1P,
j=1
and e=1le,
=1
Set @ = {1,2,...,n}, K = {non-empty, proper subsets of @}, and
K*=K\U {Q}. I T € K* we set
P(T) = H Pj,
jeT
-P_(T) = H .Pj_,
jeT
and ery = H €j.
jeT

Since V,,~isabelian, we see thatif I"isin K, then V,, = Py P(—r) = P _5 P (py,
etc. We also observe that L, = U {Pnpem: T € K} \U {2} and thate, = e
if and only if T = Q.

If V,~ actson a space X, weset F; = {x € X: e, = x},for]l <j < #,and
F = {x € X: ex = x}. Asin [1], it is easy to see “hat for each 7,

F; = {x: P = x} = ¢,X,
and F = {x: Vox = x} = eX.
Furthermore, one readily observes that F = N}_; F,.

LeEmMmA 3. Suppose that V,~ acts on a space X,x € X, and t € L,. Choose
M € K* such that t € P e and let v be the cardinality of M. If tx € V,x,
then x € N {Fn:m € M} and dim Vo £ n — 7. In particular, dim V,x # n.
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Proof. Since t € P (e, it is easy to see that for each m € M, et = ¢. If
tx € V,x, thereisa g € V, such that tx = gx. Thus, x = (g7%)x,soif m € M,
we have

enx = ex[(g7)x] = [en(g7)]x = [g(ent)x = (g7)x = x.

Hence, x € N {F,: m € M}.

Ify € N {Fu: m & M}, then for eachm € M, P,y = yso Puny = y. Since
Vi = PP, Vay = PewyPan = Pany. Since we easily see that Py,
is iseomorphic to V,_,, we conclude thatdim P ny = dim Py = n — 7, 50
dim V,y = n — r, whenevery € N {F,,: m € M}.

Since x € N {Fpu:m € M}, dim V,x < n — 7, and, since M 5 ¢, 7 # 0 so
dim V,x # n.

In[1],itisshown thatif Vi~ = P~ actsonaspace X, then P~x = (Px)* for all
x,and further that either x € For ¢+ txisa homeomorphism from P~ onto Px.
Unfortunately, this is not generally true. For, define (a, ) (x1, x2) = (abxy, bxs)
for (a,b) € Vo and (x4, x2) € E2 Then we have an action of Vs~ on E? such
that, setting x = (1,1) € E?, Vox # (Vx)*, x ¢ F, and {+>ix is not a
homeomorphism from V.~ onto Vs x.

If V,~ acts on a space X, we set X’ = {x: ¢,is 1 — 1 from V,~ onto V,,~x}.
In spite of the above example we are able to prove

TuEOREM II. Suppose that V,~ acts on a space X. Then for every x € X', ¢,
is @ homeomorphism from V,~ onto V,~x and V, onto Vyx. Furthermore,
Vimx = (Vax)* so Vyx s closed in X'.

Proof. Letx € X'. Wefirst prove thatif {g,} isanetin V,,~ such thatg,x, >y
for some y € X, then thereisa g € V,~ such thatg, > gin V,~.

Westart by showing that {g,} hasasubnet which converges to some element of
V. From (*), we see that for every p, g, = II’_1 p;, with p,, € P;~. Thus, for
eachj, {p,,} isanetin P, If for each j, {$,,} has no subnets which converge in
P, then p,;, — 00 ; for every j. From this we see that there is an index T’
such that if p = T, the p;, € P,. Thus, if p =T, g, € V, so we may form
gl = H71%=1 bt Also, since p;, — 0, p;, 7' —e; and g, = H?=1 Pyt
II%_ie; = e. Hence, since gx, —y, x = g, (g,x) — ey € eX = F, which is
impossible because x € X'. Therefore, thereisatleast onejsuch that {p,,} hasa
subnet which converges to some p; € P ;. Passing to this subnet, if necessary,
we may assume that p,, — p,.

Choose M € K and assume that for each 7 € M, p,, — p; for some p; € P
Suppose that thereisnoj € — M such that {p;,} has a subnet which converges
to a p; € P;~. Then, as above, we see that Il p;/ ' — e_s. Thus,
(Liexe pi)x = (Lear 2,7 (@) — ecany. But, Iliey pi, — Ilica pi s0
(Licar pi)x — (Iienr po)x. Thus, since X is Hausdorff, (I1;c po)x = ecany.
Then, enx = ean(Ilicar pidx) = eunlecny] = ey. Thus, eanx = ey = ex,
which is impossible because M € K and x € X’. Thus, thereisaj € — M such
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that {p;,} hasasubnet which converges tosome p; € P,;~. By passing tosubnets,
if necessary, we may assume that p;,, = p; € P;.

The above has shown firstly that there is a T € K such that for all
je T, p;,—p; € P;,and secondly that, if M € K such that p,, > p; € P~
foralls € M, then thereisak ¢ M such that p;, — p; € P;~. Combining these
two, we see that for every j, 1 = j £ #, thereisa p;, € P;~such that p;, — p,.
Thus, g, = H',Ll Do — H'}=1 p;=g€ V.

Our passing to subnets above actually only shows that {g,} has a convergent
subnet. The method used can be applied to give us the fact that every subnet of
{g,} hasa convergent subnet. However, if {g,;} and {g,,} are two subnets of {g,}
converging to ¢ and t’, respectively, then g,sx — ix, g,,x — t'x, g,5x — v, and
2,0 —v. Thus, lx = vy = 'x, so, sincex € X', ¢ = t'. Hence, we conclude that
thereisa g € V,~ such that every subnet of {g,} has a subnet which converges
to g. Asin the proof of Lemma 2, this implies that we indeed haveg, — g € V,~.

To show that the desired maps are homeomorphisms, we need only show that
if {g,} isanetin V,, respectively V,, with g,x — gx with g € V,—, respectively
V., then g, — g. But, from the above, thereisat € 1, ~ such that g, — t. Then,
g,% — 1x so tx = gx. Therefore, sincex € X', ¢t = g.

Finally, suppose that y € (V,)* so that there is a net {g,} in V,, C 177,~ such
that g,x — y. From the above, g, — ¢ for some ¢t € V,,~ so g,x — tx and, hence,
y = ix € V,~x.Thus, (V,x)* C V,~xso,since V,,~x C (V,x)* by the continuity
of the action, V,~x = (V,x)*. From this, it is easy to show that V,x is closed in
X'. First, V,x C X’; for, let g € V, and suppose that ¢, ¢’ € V,~ such that
t(gx) = t'(gx). Then, tx = g} (gtx) = g7[t(gw)] = g7'[t'(gx)] = g7 (gt'x) = t'x s0,
sincex € X’,¢t = t’. Therefore, V,x C X’. Now, ify € (V,x)* — V,x then, since
(Vax)* = V,7x,y € Lyx. A quick investigation shows that Lt M X’ = ¢ for all
t € X. Therefore, if y € (V,x)* N X', y € V,x, and we see that V,x is closed
in X’.

A semigroup S is said to be absolutely closed if whenever T is a semigroup and
S C T, then S is a closed subset of 7. With this notion, Theorem II yields

CoroLLARY ITA. For each n, V,~ is an absolutely closed semigroup.

Proof. Suppose that T"is a semigroup such that V,,~ C T". Thenclearly 1 € 17,
where the action of V,~ on T is left multiplication in 7. By Theorem II,
V.~ = V. lisclosed in T'. Therefore, since T is arbitrary, we conclude that V,,~
is an absolutely closed semigroup.

If V,~ acts on a space X, then for each M € K, we define
Y = {y € X:eany = ey}.
Wethenset YV = U {YVy: M € K} and X' = X — V.

LeMMA 4. If V,~ acts on X, then each Yy is closed. Thus, Y is closed, so X"’
is open.

https://doi.org/10.4153/CJM-1972-004-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1972-004-6

VECTOR SEMIGROUPS 35

Proof. If y € Yy* thereisanet {y,}in ¥, such thaty, — y. Hence, ey, — ey
and eyny, — eany. But, eachy, € Yy s0ey, = euny, so, since X is Hausdorff,
eany = eyand y € V. Therefore, Yy, is closed. Since K is finite, we can now
conclude that Y is closed, and therefore that X"’ is open.

We now prove two results which permit us to prove a fibering theorem for
actions of 1, on locally compact spaces. The first of these is

TuroreM III. If V,~ acts on a space X, then V, acts on X" and is IP on X"'.

Proof. We first show that V, acts on X”’. To do this we need only show that if
t € Vyandx € X', thenix € X”.Suppose thatt € V,andx € X". Iftx ¢ X",
there is an M € K such that ec,(tx) = e(tx). Then, sincet € V,, we have

eany = tean(tx)] = t7'e(tx)] = ex,

sox ¢ X", and V, actson X”.

Suppose that {g,} = {II"21p,,} isanetin V,, P,, € P, with g, — o0 in V,
and suppose that {x,} is a net in X"’ such that x, — x for some x € X", If
g%, 7 00 in X", we know that {g,x,} has a subnet which converges and, by
passing to this subnet, we may assume that g,x, — y for somey € X",

Assume that for some j, 1 £ j < %, p;, = 0, so that p;,! —e,. Then,
(1., pi)x, = p;,Mgx,) — e;y. For each i # 7, esp; = e; for every p so, if
M =@ — {j}, eanx = eanl(ILiz; p1)x,] = ean(e;y) = ey and, since x, — x,
ex, — ex, so ex = ey because X is Hausdorff. Thus, eyx = ex which is im-
possible since x € X”’. Thus, foreach j, 1 < j = n, p;, » 0.

Next, assume that for somej, 1 £ j < n, p;, — ¢,. Then, setting M = Q@ — {j},
ecan(ge%,) = ecny- But, ean (g,%,) = ean[(LLiz; pin)pslx, = ecanp s, so, since
Pir— e;and x, = X, ean(g:%,) = ean(Pse%,) — eun(ex) = ex. Then, since X is
Hausdorff, esnyy = ex = ey, which contradictsy € X”’. Hence, if 1 < j < n,
P]’p ke €.

Hence, for every j, 1 = j =< n, {p;,} has a subnet which converges to some
member of P,. But, this implies that we may find a subnet of {g,} which con-
verges to some g € V,. However, this contradicts the fact that g, —» o in V,.
Therefore, we conclude that g,x, — c0 in X’ and from this see that V, is IP
on X",

LEMMA 5. If V,,~ acts on a locally compact space X, then X' = X",

Proof. From the way each of X’ and X"’ is defined, it is easy to see that
X' C X"

Conversely, let ¥y € X”. We shall first prove that the isotropy group, (75,
is trivial. If g £ 1 is in V,, then {g’}}1, is a sequence in V, such that g* — 0.
Hence, if (V,), is non-trivial, there is a net {g,} in (V,), such that g, — o0 in V,.
But, for each p, g, € (V,),,s0g,y = vy and hence g,y — y. But, by Lemma 4, X"’
is open in the locally compact space X and is therefore locally compact. Hence,
g,y — © and g,y — y is a contradiction. Therefore, we conclude that (V,), is
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trivial, so ¢, is a 1 — 1 map from V, onto V,x. From this we see that
dim V,y = dim V,, = #.

Suppose that ¢ € L, such that ty € V,y. Then, by Lemma 3, dim V,y # =,
which contradicts the above. Therefore, if ¢t € L,, ty ¢ V,y. Thus, to prove that
y € X', it is now sufficient to show that ¢,is1 — 1 on L,.

Now, L, = U {Pmeon: M € K} J {e}, so let t € L, — {e} and pick
M € K such thatt € P pean. Hence, thereare p; € P,,j € — M, such that,
setting g = Il ,e0 p;, t = gea and g € V,. If ty = ey, then g(eqany) = ey so
ey = g (ey) = ey. Thisimpliesthaty € ¥, C ¥, whichcontradictsy € X"

Assume that N € K, with N # M, and that for some ¢’ = g'ew) in P _yewy,
g € Py C V,, we have ty = t'y. Then, (geciny)y = (g'eany)y. Since N = M,
thereisa T € K such thateither T\UN = Qor T \U M = Q, but not both. We
may as well assume that 7'\U N = Qsothat T'\U M € K. Now, sincety = 'y,
it follows that e,y = [(g7'¢ ) e ]y so

erumy = emleanyl
= e ([(g7'¢)ew]y)
= [ecr (g7'g e ]y
= [(g7'g)ememnly
= [(g7'¢)ecrumly
= [(g7'gely = ey.

But,T'\U M € K sothisimpliesthaty € Y, whichisa contradiction. Therefore,
if N Mandt € P_yeuw, thenty == t'y.

Finally, suppose that ¢/ = (H]-¢M gean € P anean such that ty = t/y. If
t # ¢/, thereisak € — M such that p, ## g;. Setting N = Q@ — {k}, we see, since
ty = t'y, that pileqnyy] = qileanylsoewy = pi'qrleany]. But, thisimplies[1] that
P.leqnyy] = eany. Hence, eyyy € Frsoey = exleany] = ewyy. Since this implies
thaty € ¥, which is a contradiction, ¢ = ¢'.

Hence, we see thatift’ € L,such thatty = t'y,thent = t'so¢,isl — 1lonL,.
Since we have shown that ¢,is1 — 1on V, and that,if ¢t € L, thenty ¢ V,y, we
see that ¢, is 1 — 1 on V,~. Therefore,y € X', s0 X" C X'.

Since X’ C X" C X', X’ = X", as was to be shown.

We are now in position to prove our fibering theorem for action of vector
semigroups on locally compact spaces. It is

THEOREM 1V. Suppose that the vector semigroup V,~ acts on a locally compact
space X. Then X’ is a fiber bundle over X'/ V, with fiber (orbit) homeomorphic
to V.

Proof. By Lemma 5, X’ = X' and, by Lemma4, X"’ is open in X. Being open
in the locally compact space X, X"’ is locally compact. From the proof of
Theorem II, we see thatif x € X', then V,x C X’ so V, actson X’. Also, by the
definition of X’, we see that V,, acts freely on X’.
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Hence, the Lie group V,, acts freely on the locally compact space X’. Further-
more, by Theorem 111, V, is TP on X’ = X". Thus, by Theorem I, X’ is a fiber
bundle over X’/ V,. The fiber over a point V,x € X’/V, is the orbit V,x C X’
which, by Theorem II, is homeomorphic to V,,. This completes the proof of the
Theorem.

This yields

CoroLLARY IVA. Suppose that V,~ acts on a locally compact space X. If X'/ V,
1s normal and Lindeldf, then X' has a complete cross-section to the orbits of V,
wm X'. In particular, there is a set C C X' homeomorphic to X'/ V, such that
(v, ¢) > vc maps V, X C homeomorphically onto X'.

Proof. By Theorem 1V, X’ is a fiber bundle over X’/V, with fiber homeo-
morphic to V,. Since X’ is locally compact and V,, is I P on X', it follows from
Lemma 1 that X’/V, is a locally compact Hausdorff space. Hence [2], a local
cross-section to the orbits of V, in X’ exists at each point of X’/ V, because 1, is
a Lie group. This, together with the facts that X’/ V,, is normal and Lindel6f and
that the bundle has fiber homeomorphic to V,, implies the existence of a com-
plete cross-section C to the orbits of 1, in X’ [3, p. 55]. From this, we have that
X'’/ V, is homeomorphic to C and that the map (v, ¢) — vc is a homeomorphism
from V, X C onto X’. This concludes the proof of Corollary IVA.
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