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Elements of C∗-algebras Attaining their
Norm in a Finite-dimensional
Representation

Kristin Courtney and Tatiana Shulman

Abstract. We characterize the class of RFD C∗-algebras as those containing a dense subset of el-
ements that attain their norm under a ûnite-dimensional representation. We show further that
this subset is the whole space precisely when every irreducible representation of the C∗-algebra is
ûnite-dimensional, which is equivalent to the C∗-algebra having no simple inûnite-dimensionalAF
subquotient. We apply techniques from this proof to show the existence of elements in more gen-
eral classes of C∗-algebras whose norms in ûnite-dimensional representations ût certain prescribed
properties.

1 Introduction

Information about ûnite-dimensional representations of a C∗-algebra is useful for
studying its structural properties. RFD C∗-algebras are those that have many ûnite-
dimensional representations. Recall that aC∗-algebra is called residually ûnite-dimen-
sional (RFD) if it has a separating family of ûnite-dimensional representations.

One of the ûrst results on RFD C∗-algebras, due to Choi [7], is the fact that
the full C∗-algebra C∗(Fn) of the free group is RFD. In the ensuing years, vari-
ous characterizations of RFD C∗-algebras have been obtained (notably in [2, 11, 16]),
and various classes of C∗-algebras were proved to be RFD. A notable class of RFD
C∗-algebras are those whose irreducible representations are all ûnite-dimensional.
We call such C∗-algebras Finite-Dimensional Irreps (FDI). _is class includes, in par-
ticular, (n-)subhomogeneous C∗-algebras.
Examples of RFD C∗-algebras arising from groups include full group C∗-algebras

of amenablemaximally periodic groups [3], surface groups and fundamental groups
of closed hyperbolic 3-manifolds that ûber over the circle [22], and many 1-relator
groups with non-trivial center [17]. Other classes of RFD C∗-algebras include amal-
gamated products of commutative C∗-algebras [18], projective C∗-algebras [19], uni-
versal C∗-algebras of algebraic elements [21], the so� torus C∗-algebra [10], and cer-
tain just-inûnite C∗-algebras [15]. (_is list is certainly incomplete.) _e class of RFD
C∗-algebras is also closed under free products [11] (see also [14]), minimal tensor
products [6], extensions, and subalgebras.
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In [12] Fritz, Netzer, and _om proved that every element in the group algebra
CFn attains its universal norm under some ûnite-dimensional unitary representation.
ViewingCFn as a dense subalgebra of C∗(Fn), it is natural to askwhether there exists
in other RFD C∗-algebras a dense subset of elements that attain their norm under
a ûnite-dimensional representation. In Section 3, we prove that this is indeed true.
Moreover, this characterizes RFD C∗-algebras (Corollary 3.3).

Looking at the result of Fritz,Netzer, and_om, one can ask further questions. For
instance, are there elements inC∗(Fn)other than the elementsofCFn that attain their
norm under a ûnite-dimensional representation? Could this be true for all elements?

In Section 4, we prove that all elements of a C∗-algebra attain their norm un-
der a ûnite-dimensional representation if and only if the C∗-algebra has no inûnite-
dimensional irreducible representation, i.e., the C∗-algebra is FDI (_eorem 4.4).
In particular, this implies the existence of elements in C∗(Fn) that do not attain
their norm under a ûnite-dimensional representation. Moreover, we show that A is
FDI if and only if A has no C∗-subalgebra that surjects onto some simple, inûnite-
dimensional AF-algebra.

In Section 5, we introduce seminorms associated with ûnite-dimensional repre-
sentations and study their growth. Namely, for a C∗-algebra A with at least one ir-
reducible representation of dimension no larger than k < ∞, we deûne a seminorm
∥ ⋅ ∥Mk on A by

∥a∥Mk = sup{∥π(a)∥ ∣ π∶A→Mk} ,
for all a ∈ A. If A has irreducible representations of dimensions n1 < n2 < ⋅ ⋅ ⋅ < ∞,
then for each a ∈ A, we have a non-decreasing sequence (∥a∥Mnk

)k∈N . Let Λ(A) be
the set of all such sequences. Wewant to knowwhat sequences can be found in Λ(A)
for a given C∗-algebra A. In _eorem 5.1 we prove that Λ(A) contains the set of
all nondecreasing sequences of positive numbers that are eventually constant. Our
results, when relevant, also hold for C∗-algebras for which this sequence is ûnite. We
show that those two sets coincide exactly when A is FDI (Corollary 5.4). When A is
RFD but not FDI, we describe the behavior of some sequences in Λ(A) that are not
eventually constant (_eorem 5.7).
A technique developed in Section 4 allows us to say more about the subset of all

elements that attain their norm under a ûnite-dimensional representation. Particu-
larly, in _eorem 5.5 we prove that this subset is additively closed if and only if it
is multiplicatively closed if and only if the C∗-algebra is FDI. In particular, it im-
plies that there exist elements in C∗(Fn)/CFn that attain their norm under a ûnite-
dimensional representation. One of our main tools in Sections 4 and 5 is the pro-
jectivity of AF-telescopes, discovered by Loring and Pedersen [20]. For a simple AF-
algebra, it is o�en straightforward to ûnd elements in its AF-telescope whose norms
underûnite-dimensional representationsût certain prescribed properties. Whenpro-
jectivity can be invoked, it can be sometimes used to li� said elements to elements
in another C∗-algebra whose norms under ûnite-dimensional representations ût the
same properties.

Ifwe know an element in a C∗-algebra attains its norm in some ûnite-dimensional
representation, it is natural to then ask for an upper bound for the dimension re-
quired to witness this. In their proof that any element of CFn achieves its norm in
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a ûnite-dimensional representation, Fritz, Netzer, and _om give an estimate of the
dimension of such a representation ([12, Lemma 2.7]). If ℓ is the length of the longest
word in the support of the element, then such a representation can be chosen of di-
mension nomore than 4nℓ . In Section 5,we ûnd a better bound on the dimension for
binomials inCFn . In_eorem 6.2we prove that for any nontrivial, balanced, reduced
wordw ∈ Fn of length ℓ and any λ ∈ T, there exists a representation π∶C∗(Fn)→M2ℓ
such that the spectrum of π(w) contains λ. From this theorem we deduce (Proposi-
tion 6.1) that any element of the form αw1 + βw2, where α, β ∈ C and w1 ,w2 ∈ Fn ,
attains its norm under a 2ℓ-dimensional representation ofC∗(F2); here ℓ is the length
of the reduced word w−1

2 w1.

2 Preliminaries

2.1 AF Mapping Telescopes and Projective C∗-algebras

We brie�y introduce AF mapping telescopes (also called AF-telescopes); for more
information, see [19] or [20].

Let A = ⋃An be an inductive limit of an increasing sequence of C∗-algebras

A1 ⊂ A2 ⊂ ⋅ ⋅ ⋅ ⊂ A

with injective connecting maps. We deûne the mapping telescope of (An) as the C∗-
algebra

T(A) = { f ∈ C0((0,∞],A) ∣ f (t) ∈ A⌈t⌉ ∀t ∈ (0,∞)} ,

where ⌈t⌉ = min{n ∈ N ∶ n ≥ t}. Obviously the mapping telescope depends on the
sequence (An), but we will use the notation T(A) as opposed to T(A1 ,A2 , . . . ) and
specify the inductive sequence when necessary. In particular, we denote by T(M2∞)
themapping telescope corresponding to the inductive sequence

M2 ⊂M4 ⊂ ⋅ ⋅ ⋅ ⊂M2n ⊂ ⋅ ⋅ ⋅ ⊂M2∞ ,

whereM2n is identiûed with a subalgebra ofM2n+1 by themap a ↦ a⊕ a. Recall that
M2∞ is referred to as the CAR algebra and is a simple C∗-algebra ([8]). We denote by
T(K(ℓ2)) themapping telescope corresponding to the inductive sequence

C ⊂M2 ⊂ ⋅ ⋅ ⋅ ⊂Mn ⊂ ⋅ ⋅ ⋅ ⊂ K(ℓ2)

with embeddings a ↦ a ⊕ 0. When each An is ûnite-dimensional, the C∗-algebra A
is AF, and we call T(A) an AF-telescope.
For the sake of consistency, we deûne the AF-telescope for inductive sequences of

the form
Mn1 ⊂Mn2 ⊂ ⋅ ⋅ ⋅ ⊂MnN ,

as

T(MnN ) ∶= { f ∈ C0((0,∞],MnN ) ∣ f (t) ∈Mn⌈t⌉ ∀t ∈ (0, nN]} .

Recall that a C∗-algebra A is projective ([4, 19]) if given C∗-algebras B and C with
surjective ∗-homomorphism q∶B → C, any ∗-homomorphism ϕ∶A → C li�s to a
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∗-homomorphism ψ∶A → B such that q ○ ψ = ϕ. In other words, we have the com-
mutative diagram

B

A C .

qψ

ϕ

In [20], Loring and Pedersen proved that allAF-telescopes are projective. _is fact
will be used repeatedly throughout the paper.

2.2 Type I and GCR C∗-algebras

In Sections 3 and 4,we rely on a result (_eorem 2.1) ofGlimm and Sakai. _e partic-
ular formulation we would like to cite is not so readily found in the literature, so we
brie�y describe it here.

Let H be a Hilbert space. A C∗-algebra A is called GCR if K(H) ⊆ π(A) for any
irreducible representation (π,H) of A. In particular, all FDI C∗-algebras areGCR. It
is due to a deep theorem of Glimm and Sakai that a C∗-algebra is GCR if and only if
it is type I (see [13] for the classic theorem and [25] for the nonseparable case). We
will call all such algebras GCR.
AC∗-algebra isNGCR (antiliminal) if it contains no nonzero abelian elements, i.e.,

there is no nonzero x ∈ A so that x∗A0x is commutative. Glimm [13] and Sakai [24]
have shown that an NGCR C∗-algebra must have a subquotient isomorphic to the
CAR algebra; i.e., it has a subalgebra that surjects onto the CAR algebra. Since aGCR
C∗-algebra is characterized as having no NGCR quotients (see [5, Section IV.1.3]),we
arrive at the following formulation of the result.

_eorem 2.1 ([13,24]) Let A be a C∗-algebra that is not GCR. _en A has a subquo-
tient isomorphic to the CAR algebra.

3 A Characterization of RFD C∗-algebras

In this section, we characterize RFD C∗-algebras as being exactly those that have a
dense subset of elements that attain their norm under a ûnite-dimensional represen-
tation. In fact, we prove that, for any residually class C C∗-algebra (i.e., an algebra
with a separating family of representations that are class C) the set of elements that
attain their norm under a class C representations is dense.
First, we give a well-known characterization for a family of representations to be

separating.

Lemma 3.1 Let Abe a C∗-algebra andF be a separating family of its representations.
_en for each a ∈ A, ∥a∥ = supπ∈F ∥π(a)∥.

Proof Since F is separating, the representation a ↦ ⊕π∈Fπ(a) is injective. Hence,
it is isometric.
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_eorem 3.2 Let A be a C∗-algebra, F a family of representations of A, and deûne

AF ∶= { a ∈ A ∣ ∥a∥ = max
π∈F

∥π(a)∥} .

_en the following are equivalent:
(i) AF is dense in A.
(ii) F is a separating family of representations of A.

In the proof we use a trick with polar decomposition, which is folklore nowadays,
but was ûrst done in [1].

Proof If we assume (i), then for any a ∈ A/{0}, we can choose b ∈ AF/{0} such
that ∥a − b∥ < 1

4 ∥a∥ and π ∈ F so that ∥π(b)∥ = ∥b∥. _en

∥a∥ − ∥π(a)∥ = ∣∥a∥ − ∥b∥ + ∥π(b)∥ − ∥π(a)∥∣ ≤ ∥a − b∥ + ∥π(b − a)∥ < 1
2 ∥a∥.

Hence, 0 < 1
2 ∥a∥ < ∥π(a)∥; i.e., F is a separating family of representations.

Now, assume (ii), and let a ∈ A/{0} and є > 0. ByLemma 3.1 there exists π ∈ F such
that ∥a∥ ≤ ∥π(a)∥ + є. Embed Ã into B(H) for someH, where Ã is the unitization
of A, and let a = u∣a∣ be the polar decomposition of a in B(H). Deûne a function
f ∶R+ → R+ by

f (t) =
⎧⎪⎪⎨⎪⎪⎩

t t ∈ [0, ∥π(a)∥],
∥π(a)∥ t ∈ (∥π(a)∥,∞).

Let b = u f (∣a∣). We claim that b ∈ AF and ∥b − a∥ < є. First, note that b ∈ A. Indeed,
f (t) = tg(t) where

g(t) =
⎧⎪⎪⎨⎪⎪⎩

1 t ∈ [0, ∥π(a)∥],
∥π(a)∥

t t ∈ (∥π(a)∥,∞).

_en g is continuous on [0,∞), and g(∣a∣) ∈ Ã. Hence, b = u f (∣a∣) = ag(∣a∣) ∈ A,
since A is an ideal in Ã.

To show that b ∈ AF , it will suõce to show that ∥b∥ ≤ ∥π(b)∥. If A is non-unital,
let π′ denote the unique unital extension of π to Ã, and if A is unital, let π′ = π. _en,
since g(t) = 1when t ∈ [0, ∥π(a)∥],we have that π′(g(∣a∣)) = g(π(∣a∣)) = 1 in π′(Ã),
and hence

π(b) = π( ag(∣a∣)) = π(a)g(π(∣a∣)) = π(a).
_is gives us that

∥b∥ ≤ ∥ f (∣a∣)∥ = sup
t∈σ(∣a∣)

∣ f (t)∣ ≤ ∥π(a)∥ = ∥π(b)∥.

Finally,

∥a − b∥ = ∥u∣a∣ − u f (∣a∣)∥ ≤ ∥∣a∣ − f (∣a∣)∥
= sup

t∈σ(∣a∣)
∣t − f (t)∣ ≤ ∥a∥ − ∥π(a)∥ ≤ є.

Hence, A = AF .
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Corollary 3.3 _e following are equivalent for a C∗-algebra A:
(i) _e set

{ a ∈ A ∶ ∥a∥ = max
π∈Irrn(A)

n<∞
∥π(a)∥}

is dense in A.
(ii) A is RFD.

A natural question now is how to characterize the class of C∗-algebras for which
every element attains its norm under some ûnite-dimensional representation. For
example, is this true for C∗(Fn)?

It turns out that the answer is “no” for any C∗-algebra that has an inûnite-dimen-
sional irreducible representation, including C∗(Fn). We will address this in the next
section.

4 A Characterization of FDI C∗-algebras

We begin with a key lemma that is intuitively clear andmust be known to specialists.

Lemma 4.1 Let T(B) be an AF-telescope with associated inductive sequence (Bn).
_en any irreducible representation (π,H) of T(B) factorizes through a point eval-
uation evt , for some t ∈ (0,∞]. Moreover, when Bn are all simple and distinct, if
dimH ≤ dimBn for some n, then t ≤ n.

Proof Let π be an irreducible representation of T(B). Put

(4.1) I = { f ∈ T(B)∣ f (∞) = 0}.
Note that I is a closed ideal in T(B) and so π∣I is either irreducible or zero. If it is zero,
then π factorizes through T(B)/I ≃ B and hence through ev∞. So we assume now
that π∣I is non-zero and irreducible. For each n ≥ 1, deûne the closed ideal In ◁ I by

In ∶= { f ∈ I ∣ f (t) = 0 ∀ t ≥ n}

_en (In) is a nested sequence of closed, two-sided ideals with I = ⋃n In . _us, there
must exist n such that π∣In is non-zero and therefore irreducible. Let

Ĩn ∶= { f ∈ T(B) ∣ f (t) = f (n) ∀ t ≥ n} .

_en In is an ideal in Ĩn , and so π∣In extends uniquely to an irreducible repre-
sentation (in fact π ∣̃In ) of Ĩn . So, it will be suõcient to prove that any irreducible
representation, say ρ, of Ĩn factorizes through a point evaluation.

We will prove it by induction. Clearly, it holds for Ĩ1 ≃ C0(0, 1]⊗ B1. Assume that
it holds for (n − 1). Let Jn be the closed ideal in Ĩn deûned by

Jn = { f ∈ Ĩn ∣ f (t) = 0 for all t ∉ [n − 1, n]} ≃ C0(n − 1, n)⊗ Bn .

If ρ does not vanish on Jn , then it is irreducible on Jn and hence factorizes through a
point evaluation. So we can assume that ρ vanishes on Jn . _en ρ factorizes through
themap Ĩn → Ĩn/Jn ≅ Ĩn−1 given by the restriction f ↦ f ∣[0,n−1], and hence ρ factor-
izes through a point evaluation by the induction hypothesis.
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_us, π∣In factorizes through a point evaluation. Since an irreducible represen-
tation of an ideal extends uniquely to a representation of the whole C∗-algebra, we
conclude that π factorizes through a point evaluation.

Moreover, if each Bn is simple, then any irreducible representation of T(B) is
equivalent to a point evaluation evt for some t ∈ (0,∞], in which case the image
of the representation is isomorphic to B⌈t⌉.

Remark 4.2 Recall that a C∗-algebra is (n-)subhomogeneous if all of its irreducible
representations are of bounded ûnite dimension. Clearly any subhomogeneous C∗-
algebra is FDI, but there exist many FDI C∗-algebras that are not subhomogeneous.
For instance, if B is a UHF algebra or K(ℓ2), then I in (4.1) is not subhomogeneous.

More such examples come from group theory. In [23], Moore proves that a lo-
cally compact group has a ûnite bound for the dimensions of its irreducible unitary
representations if and only if it has an open abelian subgroup of ûnite index. On the
other hand, he also shows in [23] that a locally compact group has all of its irreducible
unitary representations of ûnite dimension if and only if it is a projective limit of Lie
groups with the same property, and a Lie group has this property if and only if it has
an open subgroup of ûnite index that is compact modulo its center. Consequently,
examples of FDI but non-subhomogeneous C∗-algebras include, for instance, the full
group C∗-algebra of a locally compact Lie group whose irreducible representations
are all ûnite-dimensional but which has no open abelian subgroups of ûnite index.

On the other hand, if G is a discrete group, _oma shows in [27, 28] that all irre-
ducible unitary representations of G are ûnite-dimensional if and only if they are all
of bounded ûnite dimension if and only if the group is type I if and only if the group is
virtually abelian. In otherwords, for a discrete groupG, the following are equivalent:
(a) C∗(G) is subhomogeneous;
(b) C∗(G) is FDI;
(c) C∗(G) is GCR;
(d) G is virtually abelian.

Lemma 4.3 For any simple, inûnite-dimensional AF-algebra B with inductive se-
quence (Bn), there is an element f ∈ T(B) such that ∥π( f )∥ < ∥ f ∥ = ∥ f (∞)∥ for any
ûnite-dimensional representation π of T(B).

Proof Let 0 /= x ∈ B1 ⊂ B and deûne f ∈ T(B) by f (t) = (1 − e−t)x. Recall that any
ûnite-dimensional representation π of T(B) is a ûnite direct sum of irreducible rep-
resentations. _en, since B has no ûnite-dimensional representations, by Lemma 4.1
there exists a ûnite set F ⊂ (0,∞) such that ∥π( f )∥ = maxt∈F ∥ f (t)∥. In particular,
since ∥ f (t)∥ is a strictly increasing function, ∥π( f )∥ < ∥ f (∞)∥ = ∥ f ∥.

Now we are ready to give themain theorem of this section.

_eorem 4.4 _e following are equivalent for any C∗-algebra A:
(i) A is FDI.
(ii) For each a ∈ A there exists a representation (π,H) of A with dim(H) <∞ such

that ∥a∥ = ∥π(a)∥.
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(iii) A does not have an inûnite-dimensional simple AF-algebra as a subquotient.

Proof To see that (i) implies (ii), recall that for any a ∈ A, there exists a pure state
φ on A such that ∣φ(a∗a)∣ = ∥a∗a∥. Applying the GNS construction to φ gives an
irreducible representation πφ and unit vector ξφ such that ∥πφ(a)ξφ∥ = ∥a∥. Since A
is FDI, we know πφ is ûnite-dimensional.

To show that (ii) implies (iii), suppose A0 ⊆ A is a C∗-subalgebra, B is a sim-
ple, inûnite-dimensional AF-algebra with inductive sequence (Bn), and q∶A0 → B
a surjective ∗-homomorphism. Let T(B) be the mapping telescope for (Bn). Since
AF-telescopes are projective ([20]), there is a ∗-homomorphism ψ∶T(B) → A0 such
that q ○ ψ = ev∞, i.e., the following diagram commutes:

A0

T(B) B.

q
ψ

ev∞

Let f ∈ T(B) be the element guaranteed by Lemma 4.3, and let a ∶= ψ( f ). _en
∥a∥ = ∥ f ∥, since

∥a∥ = ∥ψ( f )∥ ≤ ∥ f ∥ = ∥ f (∞)∥ = ∥ev∞( f )∥ = ∥q(a)∥ ≤ ∥a∥.

If ∥a∥ = ∥π(a)∥ for some ûnite-dimensional representation π of A, then f attains its
norm under the ûnite-dimensional representation π ○ ψ of T(B), which is not true,
by Lemma 4.3. _us, ∥a∥ > ∥π(a)∥ for any ûnite-dimensional representation π of A.

To show that (iii) implies (i), we notice ûrst that (iii) implies that A is GCR. In-
deed, otherwise A would have a subquotient isomorphic to the CAR algebra M2∞

by _eorem 2.1. Assume now that A does have an inûnite-dimensional irreducible
representation (π,H). Since A is GCR, K(H) ⊆ π(A). Let H′ ⊆ H be an inûnite-
dimensional separable subspace, and let PH′ denote the projection of H onto H′.
Since K(H′)⊕ 0∣H′⊥ is singly generated, we can choose x ∈ A such that π(C∗(x)) =
K(H′) ⊕ 0∣H′⊥ . _en C∗(x) is a subalgebra of A, and PH′πPH′ ∶C∗(x) → K(H′) is
a surjective ∗-homomorphism .

Remark 4.5 Rephrasing the theorem, we can say that a C∗-algebra A contains an
element a with ∥a∥ > ∥π(a)∥ for any ûnite-dimensional representation (π,H) of A
if and only if A has an inûnite-dimensional irreducible representation. Since C∗(Fn)
is primitive ([7]), we conclude that there are elements that do not attain their norm
under a ûnite-dimensional representation. Recall that in [12], the authors show that
no such element lies in CFn .

Remark 4.6 It follows from _eorem 3.2 and standard arguments (e.g., from [9,
Section 3.6]) that the following are equivalent for a C∗-algebra A and any n <∞.
(i) A is n-subhomogeneous (i.e., every irreducible representation is of dimension

no more than n).
(ii) A has a separating family of ûnite-dimensional representations of dimension no

more than n.
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(iii) For each a ∈ A there exists a representation (π,H) of A of dimension no more
than n such that ∥a∥ = ∥π(a)∥.

(iv) _e set {a ∈ A ∶ ∥a∥ = max
π∈Irrk(A)

k≤n
∥π(a)∥} is dense in A.

Before we conclude this section, we record a consequence of this remark, which
will prove useful in the next section.

Proposition 4.7 Suppose A is RFD and A0 ⊆ A is a non-subhomogeneous subalgebra.
_en there exists an unbounded sequence (nk)k∈N in N and irreducible representations
πk ∶A0 → Mnk such that each πk is a subrepresentation of π′k ∣A0 , denoted πk ≤ π′k ∣A0 ,
for some ûnite-dimensional representation πk of A.

Proof _en the collection {π∣A0 ∶ π ∈ F} is a separating family of representations of
A0. Let

F0 = {σ ∈ Irr(A0) ∶ σ ≤ π∣A0 for some π ∈ F} .
_en F0 separates the points of A0. If the set {dim(σ)∣ σ ∈ F0} is bounded, then A0
is subhomogeneous by Remark 4.6.

5 Growth of Finite-Dimensional Norms

Let n ∈ N. If a C∗-algebra has a representation of dimension no more than n, we
deûne a seminorm ∥ ⋅ ∥Mn on A by

∥a∥Mn = sup{∥π(a)∥ ∣ π∶A→Mn} ,
for all a ∈ A. We do not require representations to be non-degenerate, and so by
π∶A → Mn , we mean a representation of dimension not larger than n. Equivalently,
we can say that

∥a∥Mn = sup{∥π(a)∥},
where supremum is taken over all irreducible representations of dimension not larger
than n.

Suppose that {n1 , n2 , . . .} is the nonempty set of dimensions of all irreducible
ûnite-dimensional representations of a C∗-algebra A, arranged in increasing order,
with κ = ∣{n1 , n2 , . . .}∣. _en for each a ∈ A, we get a sequence

(∥a∥Mnk
)k≤κ .

In general, wewould like to knowwhat sequences of numbers can be obtained in this
way. Namely, deûne the set Λ(A) by

Λ(A) = {(∥a∥Mnk
)k≤κ ∣ a ∈ A} ,

where in the case κ = ℵ0 by (λk)k≤κ , we mean (λk)k∈N. Since we allow degenerate
representations, all such sequences will be nondecreasing. In this section we prove
that, for any C∗-algebra A with at least one ûnite-dimensional representation, Λ(A)
contains the set of all nondecreasing sequences of κ positive numbers that are eventu-
ally constant (_eorem 5.1). Moreover, we show that A is an FDI-algebra if and only
if the two sets coincide. (Corollary 5.4).
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Below, we will use the Chinese Remainder _eorem: Let A be a C∗-algebra and
I1 , . . . , Ik be closed two-sided ideals in A such that I i + I j = A, when i /= j. _en the
map

ϕ∶ a +
k
⋂
i=1

I i ↦ (a + I1 , . . . , a + Ik)

gives a ∗-isomorphism from A/(⋂k
i=1 I i) to A/I1 ⊕ ⋅ ⋅ ⋅ ⊕ A/Ik .

_eorem 5.1 Let N ∈ N, and 0 ≤ λ1 ≤ λ2 ≤ ⋅ ⋅ ⋅ ≤ λN be a sequence of nonnegative
numbers. Suppose that a C∗-algebra A has irreducible representations of dimensions
n1 < n2 < ⋅ ⋅ ⋅ < nN (and possibly of some other dimensions too). _en there exists
a ∈ A such that ∥a∥Mnk

= λk , for 1 ≤ k ≤ N . In addition, a can be chosen such that
∥a∥ = ∥a∥MnN

.

Proof For each i ≤ N , let π i ∶A→Mn i be an irreducible representation with kernel
I i , i.e., A/I i ≃ π i(A) =Mn i . Since eachMn i is simple, each I i is amaximal ideal, and
so I i + I j = A, for each i /= j. Since ker(⊕N

i=1 π i) = ⋂N
i=1 I i , we have (⊕N

i=1 π i)(A) ≃
A/(⋂N

i=1 I i), and hence by the Chinese Reminder _eorem,

(
N
⊕
i=1

π i)(A) = π1(A)⊕ ⋅ ⋅ ⋅ ⊕ πN(A).

_us, q = ⊕N
i=1π i ∶A→Mn1 ⊕ ⋅ ⋅ ⋅ ⊕MnN is a surjective ∗-homomorphism. Now, con-

sider standard embeddings Mn1 ⊂ Mn2 ⊂ ⋅ ⋅ ⋅ ⊂ MnN , and let T(MnN ) denote the
corresponding AF-telescope. For i ≤ N , let ev i ∶T(MnN ) → Mn i denote the evalua-
tion map, and let

ϕ =
N
⊕
i=1
ev i ∶T(MnN )→Mn1 ⊕ ⋅ ⋅ ⋅ ⊕MnN .

Since T(MnN ) is projective, ϕ li�s to some ∗-homomorphism ψ∶T(MnN ) → A so
that q ○ ψ = ϕ, giving us the commutative diagram

A

T(MnN ) ⊕N
i=1 Mn i .

q
ψ

ϕ

Let f ∈ T(MnN ) be any element such that ∥ f (t)∥ is a nondecreasing function on
(0,∞] with ∥ f (i)∥ = λ i for each i ≤ N , and let a = ψ( f ). _en

q(a) =
N
⊕
i=1

π i(a) =
N
⊕
i=1

π i(ψ( f )) = ϕ( f ) =
N
⊕
i=1
f (i).

Hence, for any k ≤ N ,
∥πk(a)∥ = ∥ f (k)∥ = λk ,

which implies ∥a∥Mnk
≥ λk .

On the other hand, for any representation π of A of dimension not larger than
nk , π ○ ψ is a representation of T(MnN ) of dimension not larger than nk , and hence
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factors through a ûnite direct sum of evaluations at some points in (0, k] by Lemma
4.1. Since ∥ f (t)∥ is a nondecreasing function and ∥ f (k)∥ = λk , it follows that

∥π(a)∥ = ∥π(ψ( f ))∥ ≤ λk .

_us for each k ≤ N , ∥a∥Mnk
= λk . If we additionally chose f to attain its norm at the

point nN , then we would have

λN = ∥ f ∥ ≥ ∥ψ( f )∥ = ∥a∥ ≥ ∥q(a)∥ = ∥
N
⊕
k=1
f (k)∥ = λN ,

whence ∥a∥ = λN .

Corollary 5.2 LetG be a discrete groupwith representations of dimensions n1 < n2 <
∞, and let є > 0. _en there is an a ∈ CG such that ∥a∥Mn1

≤ є and ∥a∥Mn2
> ∥a∥ − є.

Proof Since CG is dense in C∗(G), the statement follows from _eorem 5.1.

Remark 5.3 In case G = Fn with n < ∞, _om proves in [26] that for any d > 0
and є > 0, there exists a nontrivial w ∈ Fn such that

sup{∥π(1 −w)∥∶ π∶C∗(Fn)→Md} < є.

However, he doesnot state (in [26]) forwhichm > d we know thatwehave ∥1−w∥Mm >
∥1 − w∥ − є. Corollary 5.2 guarantees that for any m > d, we can ûnd some element
with this behavior, but, in contrast to _om, we do not know what this element looks
like.

On the other hand, it follows from [12, Lemma 2.7] that it suõces to takem ≥ 4nℓ ,
where ℓ is the length ofw. We show in Section 6 that it actually suõces to takem ≥ 2ℓ.

Corollary 5.4 Assume that A has irreducible representations of κ > 0 many distinct
ûnite dimensions. _en

Λ(A) ⊇ {(λn)n≤κ ∣ 0 ≤ λn ≤ λn+1 ∀ n ≤ κ and (λn) is eventually constant.}

Moreover, the two sets are equal if and only if A is FDI.

Proof _is follows from _eorems 5.1 and 4.4.

Using the techniques from this section, we can provide further characterizations
for FDI C∗-algebras.

_eorem 5.5 Suppose A is RFD, and let

A00 = { a ∈ A ∶ ∥a∥ = max
π∈Irrn(A)

n<∞
∥π(a)∥} .

_en the following are equivalent:
(i) A is FDI;
(ii) A00 is closed under addition;
(iii) A00 is closed under multiplication.
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Proof Clearly (i)⇒(ii) and (i)⇒(iii).
To show that (ii)⇒(i), we assume that A is not FDI.We demonstrate the existence

of a1 , a2 ∈ A such that a1 and a2 achieve their norm under a ûnite-dimensional repre-
sentation, but a1+a2 does not. By_eorem4.4, there exist a subalgebra A0 ⊆ A and a
simple inûnite-dimensionalAF-algebra B with inductive sequence (B′n) such that A0
surjects onto B. Moreover, we can take B to be either M2∞ with inductive sequence
(M2n) or K(ℓ2) with inductive sequence (Mn). By Proposition 4.7, there is a ûnite-
dimensional nonzero irreducible representation π0 of A0 and a ûnite-dimensional
representation π′0 of A such that π0 is a subrepresentation of π′0∣A0 . _en for some n,

B′n−1 ↪Ð→ π0(A0) ↪Ð→ B′n .

So,we can ûnd a new inductive sequence (Bk)where Bk = B′k for k < n, Bn ≃ π0(A0),
and Bk = B′k−1 for k > n. We still call the inductive limit B, and let π∶A0 → B be a
surjection. As in the proof of_eorem 5.1, since Bn and B are simple, it follows from
the Chinese Remainder _eorem that

q ∶= π ⊕ π0∶A0 → B ⊕ Bn

is a surjection. Let
ϕ ∶= ev∞ ⊕ evn ∶T(B)→ B ⊕ Bn .

_e projectivity of T(B) again yields the following commutative diagram:

A0

T(B) B ⊕ Bn .

q
ψ

ϕ

Let b ∈ B1 with ∥b∥ = 1. Deûne f1 ∈ T(B) by

f1(t) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2
n tb t ∈ (0, n],
2
n (2n − t)b t ∈ (n, 2n],
(1 − e2n−t)b t ∈ (2n,∞].

Deûne f2 ∈ T(B) by

f2(t) =
⎧⎪⎪⎨⎪⎪⎩

− f1(t) t ∈ (0, 2n],
0 t ∈ (2n,∞].

_en for i = 1, 2, ∥ f i∥ = ∥ f i(n)∥, but for any ûnite-dimensional representation ρ of
T(B),

∥ f1 + f2∥ = ∥( f1 + f2)(∞)∥ = 1 > ∥ρ( f1 + f2)∥.
Let a i = ψ( f i) for i = 1, 2. By the same argument as in _eorem 4.4, ∥a i∥ = ∥ f i∥ for
i = 1, 2, and ∥a1 + a2∥ = ∥ f1 + f2∥. Also as in the proof of _eorem 4.4, ∥a1 + a2∥ >
∥ρ(a1 + a2)∥ for any ûnite-dimensional representation ρ of A. Since ∥a i∥ = ∥ f i∥
for i = 1, 2, we know that each a i attains its norm under some ûnite-dimensional
representation of A0. To see that they will attain their norms under some ûnite-
dimensional representation of A, note that since

q(a i) = f i(∞)⊕ f i(n)
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for i = 1, 2, we have that
∥π0(a i)∥ = ∥ f i(n)∥ = ∥a i∥

for i = 1, 2. Because π0 ≤ π′0∣A0 , it follows that ∥π0(a i)∥ = ∥a i∥ for i = 1, 2.
To show that (iii)⇒(i), assume that A is not FDI. Again, by _eorem 4.4, there

exists a subalgebra A0 ⊆ A and a simple inûnite-dimensional AF-algebra B with in-
ductive sequence (B′n) such that A0 surjects onto B, and again, we take B to be either
M2∞ or K(ℓ2). By Proposition 4.7, there exist irreducible representations π1 and π2
of A0 and π′1 and π′2 of A such that π i ∶A0 → Mk i with k1 < k2 and π i ≤ π′i ∣A0 for
i = 1, 2. As before, we intertwineMk1 andMk2 into the inductive sequence (Bn) of B
and let n1 < n2 so that now Bn i = Mk i for i = 1, 2. Let π∶A0 → B be a surjection. As
before, we use the Chinese Remainder _eorem to get a surjection

q ∶= π ⊕ π1 ⊕ π2∶A0 → B ⊕ Bn1 ⊕ Bn2 .

Letting
ϕ ∶= ev∞ ⊕ evn1 ⊕ evn2 ∶T(B)→ B ⊕ Bn1 ⊕ Bn2 ,

the projectivity of T(B) yields the following commutative diagram:

A0

T(B) B ⊕ Bn1 ⊕ Bn2 .

q
ψ

ϕ

Let b ∈ B1 self-adjoint with ∥b∥ = 1. Deûne f1 ∈ T(B) by

f1(t) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

t
n1
b t ∈ (0, n1],
−1

n2−n1
(t − n2)b t ∈ (n1 , n2],

(1 − en2−t)b t ∈ (n2 ,∞].

Deûne f2 ∈ T(B) by

f2(t) =
⎧⎪⎪⎨⎪⎪⎩

t
n2
b t ∈ (0, n2],

b t ∈ (n2 ,∞].

_en ∥ f i∥ = ∥ f i(n i)∥ for i = 1, 2, and

∥ f1 f2∥ = ∥ f1 f2(∞)∥ = ∥b2∥ = 1 > ∥ f1 f2(t)∥
for all t < ∞. Let a1 = ψ( f1) and a2 = ψ( f2). As before, ∥a i∥ = ∥ f i∥ and ∥a1a2∥ =
∥ f1 f2∥. Moreover, ∥a1a2∥ > ∥ρ(a1a2)∥ for all ûnite-dimensional representations ρ of
A. Also as before, we have for i = 1, 2,

∥a i∥ ≥ ∥π′i(a i)∥ ≥ ∥π i(a i)∥ = ∥ f i(n i)∥ = ∥a i∥.

As a consequence, if a C∗-algebra is RFD but not FDI, then the set of elements in
a C∗-algebra that achieve their norm under a ûnite-dimensional representation does
not form an algebra. In particular, we have the following corollary.

Corollary 5.6 For n < ∞, there exists an element in C∗(Fn)/CFn that achieves its
norm under some ûnite-dimensional representation.
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_eorem 5.1 says we can ûnd an element that attains the prescribed norms λk for
k ≤ N . _eorem 4.4 says that if a C∗-algebra is not FDI, then we can ûnd an element
that does not achieve its norm under any ûnite-dimensional representation. _e fol-
lowing theorem says that if we assume the C∗-algebra is RFD and not FDI, then we
can ûnd an element that does both.

_eorem 5.7 Suppose A is RFD and has an inûnite-dimensional irreducible repre-
sentation. _en there exist M1 < M2 < ⋅ ⋅ ⋅ < ∞ such that for any ûnite sequence
0 ≤ λ1 ≤ λ2 ≤ ⋅ ⋅ ⋅ ≤ λN ≤ λ there is a ∈ A such that ∥a∥MMk

= λk for 1 ≤ k ≤ N ,
∥a∥ = λ, and, in the case λ > λN , ∥a∥ /= ∥a∥MMk

for any k <∞.

Proof Since A has an inûnite-dimensional irreducible representation, by _eorem
4.4 there is a C∗-subalgebra A0 ⊆ A, a simple inûnite-dimensional AF-algebra B,
and a surjective ∗-homomorphism π∶A0 → B. Again, we can and do take B to be
either M2∞ or K(ℓ2). Since A0 is a C∗-subalgebra of an RFD C∗-algebra, it is also
RFD. Since B is a quotient of A0, A0 is not subhomogeneous. It then follows from
Proposition 4.7 that we can build sequences ( j i), (m i), and (M i) of positive integers
such that

j1 < 2 j1 < m1 ≤ M1 < j2 < 2 j2 < m2 ≤ M2 < ⋅ ⋅ ⋅ ,
and such that for each i, there exists an irreducible representation π i of A0 and a
representation π′i of A such that dim(π i) = m i , dim(π′i) = M i , and π i ≤ π′i ∣A0 .

Since B is simple, using the Chinese Reminder _eorem in the same way as in the
proof of_eorem 5.1, we conclude that the ∗-homomorphism

q = (
N
⊕
i=1

π i) ⊕ π∶A0 →Mm1 ⊕ ⋅ ⋅ ⋅ ⊕MmN ⊕ B

is surjective. If B = K(ℓ2), let

ϕ = (
N
⊕
i=1

(evm i )) ⊕ ev∞∶T(B)→Mm1 ⊕ ⋅ ⋅ ⋅ ⊕MmN ⊕ B.

If B =M2∞ , let

ϕ = (
N
⊕
i=1

(ev j i )) ⊕ ev∞∶T(B)→Mm1 ⊕ ⋅ ⋅ ⋅ ⊕MmN ⊕ B

where we viewM2 j i as a subalgebra ofMm i via the standard inclusion. Since T(B) is
projective, ϕ li�s to some ∗-homomorphism ψ∶T(B)→ A0. _us, q ○ ψ = ϕ.
Choose f ∈ C0(0,∞] so that f is nonnegative, nondecreasing, f (∞) = λ, and for

each i ≤ N ,
f ∣[ j i ,M i] ≡ λ i ;

in case λ > λN , we also require f (t) < λ for each t <∞. We can view f as an element
of T(B) by the standard embdedding of C to B. Let a = ψ( f ).
By Lemma 4.1, for any i ∈ N and any representation ρ of A of dimension not larger

than M i , we have
∥ρ(a)∥ = ∥ρ(ψ( f ))∥ ≤ ∥ f (M i)∥.

Hence, for any i ≤ N ,
(5.1) ∥a∥MMi

≤ λ i ,
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and for all i ∈ N,

(5.2) ∥a∥MMi
≤ λ.

On the other hand, when B = K(ℓ2),

(π1(a), . . . , πN(a), π(a)) = q(a) = q(ψ( f )) = ϕ( f )
= ( f (m1), . . . , f (mN), f (∞)) ,

and we conclude that π i(a) = f (m i) = λ i for i ≤ N ; when B =M2∞ ,

(π1(a), . . . , πN(a), π(a)) = q(a) = q(ψ( f )) = ϕ( f ) = ( f ( j1), . . . , f ( jN), f (∞)) ,

and we conclude that π i(a) = f ( j i) = λ i for i ≤ N . In either case,

(5.3) ∥a∥MMi
≥ ∥π′i(a)∥ ≥ ∥π i(a)∥ = λ i ,

for i ≤ N . By (5.1) and (5.3) we have for each i ≤ N ,

(5.4) ∥a∥MMi
= λ i .

We also have

λ = ∥ϕ( f )∥ = ∥q(ψ( f ))∥ = ∥q(a)∥ ≤ ∥a∥ = ∥ψ( f )∥ ≤ ∥ f ∥ = λ,

and thus

(5.5) ∥a∥ = λ.

By (5.2), (5.4), and (5.5), we are done.

6 A Bound on Dimension

Fritz,Netzer, and_om showed in [12,Lemma 2.7] that, for any n <∞, any element in
CFn will achieve its norm in a representation of dimension no more than 4nℓ , where
ℓ is the length of the longest word in the support of the element. In this section, we
improve the bound on the dimension for binomials in CFn . Namely, we show the
following proposition.

Proposition 6.1 Let α, β ∈ C. Letw1 ,w2 ∈ Fn be distinct reduced words for some n <
∞, and let ℓ be the length of the reducedwordw−1

2 w1. _en, there exists a representation
π∶C∗(Fn)→M2ℓ such that

∥π(αw1 + βw2)∥ = ∣α∣ + ∣β∣.

We say a wordw in Fn is balanced if any representation C∗(Fn)→ Cmapsw ↦ 1,
e.g., w = x1x2x−1

1 x−1
2 . Notice that if the reduced wordw−1

2 w1 is not balanced, then this
normwill be achieved by a representation C∗(Fn)→ C sending all but one generator
to 1. For example, the word w = x1x2x−2

1 is not balanced, and the map C∗(F2) → C
sending x1 → 1 and x2 → −1 will send 1 −w to an element in C of norm 2. However,
for a balanced word, there is no such map. Since balanced words constitute the class
of nontrivial examples, we will assume that w ∶= w−1

2 w1 is balanced.
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Notice that for any representation π∶C∗(Fn)→ B(H),
∥π(αw1 + βw2)∥ = ∥απ(w−1

2 w1) + βIH∥ = ∥απ(w) + βIH∥
= max

λ∈σ(π(w))
∣αλ + β∣,

where w ∶= w−1
2 w1 and σ(π(w)) denotes the spectrum of an operator π(w) ∈ B(H).

_is maximum equals ∣α∣+ ∣β∣ if and only if sgn(β)
sgn(α) ∈ σ(π(w)), and so Proposition 6.1

will follow from the following theorem.

_eorem 6.2 For any nontrivial, balanced, reduced wordw ∈ Fn of length ℓ and any
λ ∈ T, there exists a representation π∶C∗(Fn)→M2ℓ such that λ ∈ σ(π(w)).

For the proof we will ûrst need two lemmas.

Lemma 6.3 Let w ∈ Fn be a nontrivial, balanced, reduced word. Deûne for each
1 ≤ d <∞

Σd ∶= ⋃{σ(π(w)) ∣ π∶C∗(Fn)→Md} .

_en for each 1 ≤ d <∞, there is a θd ∈ [0, π] such that

Σd = { e iθ ∣ θ ∈ [−θd , θd]}
with θd ≤ θd+1 for each 1 ≤ d <∞.

Proof Since (Σd) is clearly a nested sequence, we need only to show that for each
1 ≤ d <∞,

Σd = { e iθ ∣ θ ∈ [−θd , θd]}
for some θd ∈ [0, π].
Fix 1 ≤ d < ∞. We ûrst observe that Σd is symmetric about R and centered at

1. Indeed, since λ ∈ σ(w(u1 , . . . , un)) for some u1 , . . . , un ∈ U(d) implies that λ ∈
σ(w(u1 , . . . , un)), where u denotes the complex conjugate of the matrix u, clearly
1 ∈ Σd .
By these observations, itwill suõce to show that Σd is the union of two continuous

images of the compact, path-connected space ∏n
k=1 U(d), which have nontrivial in-

tersection. To that end, letw∶∏n
k=1 U(d)→ U(d) denote thewordmap; letψ∶U(d)→

[−1, 1] be given by u ↦ minλ∈σ(u) Re(λ), and let γ∶ [−1, 1]→ {e iθ ∣ θ ∈ [0, π]} be given
by r ↦ r + i

√
1 − r2 . _en γ ○ ψ ○w is a continuous map on∏n

k=1 U(d) whose image
is the compact, path-connected arc {e iθ ∣ θ ∈ [0, θd]} where

θd = max{θ ∈ [0, π] ∣ e iθ ∈ Σd} .

Likewise, the image of γ̄ ○ ψ ○w is the path-connected arc {e iθ ∣ θ ∈ [−θd , 0]} for the
same θd ∈ [0, π]. Hence, the union of the two is the compact, path connected arc
{e iθ ∣ θ ∈ [−θd , θd]} = Σd .

By Lemma 6.3, we can conclude that, if for some 1 ≤ d < ∞ there exists a repre-
sentation π∶C∗(Fn) → Md such that −1 ∈ σ(π(1 − w)), then Σd = T. _e following
lemma tells us for which 1 ≤ d <∞ we can expect such a representation.
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Lemma 6.4 For any nontrivial, balanced, reduced wordw ∈ Fn of length ℓ, there are
(permutation) matrices u1 , . . . , un ∈ U(2ℓ) such that −1 ∈ σ(w(u1 , . . . , un)).

Proof _e goal is to construct amap from Fn into S2ℓ , which mapsw to a permuta-
tion in S2ℓ containing the two-cycle (1, ℓ + 1). Composing this map with the natural
inclusion of S2ℓ into U(2ℓ) yields a map from Fn to U(2ℓ) mapping w to a permu-
tation matrix with −1 as an eigenvalue. Write w = xєℓiℓ ⋅ ⋅ ⋅ x

є1
i1 where є i ∈ {±1} and

ik ∈ {1, . . . , ℓ}.
First, we claim that we can assume that iℓ /= i1. Indeed, suppose iℓ = i1. Let d ≥ 0

and u1 , . . . , un ∈ U(d), and denote w(u1 , . . . , un) ∶= uєℓ
iℓ ⋅ ⋅ ⋅u

є1
i1 . If є1 = −єℓ , then

σ(w(u1 , . . . , un)) = σ(u−є1i1 w(u1 , . . . , un)u−є1i1 ) .

_is reduction will not change the length of the word and must terminate, since w
is balanced, reduced, and nontrivial. Hence, we can assume є1 = єℓ . Moreover, since
−1 ∈ σ(w(u1 , . . . , un)) if and only if −1 ∈ σ((w(u1 , . . . , un))∗),wemay assume є1 = 1.
Let j and k denote themultiplicity of x i1 at the end and beginning of w, respectively,
and assume j ≤ k. Now, write w = x j

i1x
єℓ− j
iℓ− j

⋅ ⋅ ⋅ xєk+1
ik+1

xk
i1 where x iℓ− j /= x i1 /= x ik+1 . _en

σ(w(u1 , . . . , un)) = σ(u− j
i1 w(u1 , . . . , un)u j

i1) .

Again, the length of the word is unchanged. Hence, we assume i1 /= iℓ .
Now, deûne a map ϕ∶Fn → S2ℓ by mapping the generators x i to permutations σi

such that for each 1 ≤ k ≤ ℓ, we require that

σik(k) = k + 1, if єk = 1 and σ−1
ik (k) = k + 1, if єk = −1.(6.1)

Note that since ℓ /= 1 and i1 /= iℓ , the values for σ є1
i1 (ℓ + 1) and σ−єℓiℓ (1) are not deter-

mined by the conditions in (6.1),whichmeans that ϕ(w)−1(1) and ϕ(w)(ℓ+1) are not
determined by the conditions in (6.1). Hence, we are free to require for 1 ≤ k ≤ ℓ − 1,
that

σik(ℓ + k) = l + k + 1, if єk = 1 and σ−1
ik (ℓ + k) = l + k + 1, if єk = −1;(6.2)

and for σiℓ that

σiℓ(2ℓ) = 1, if єℓ = 1 and σiℓ(1) = 2ℓ, if єℓ = −1.(6.3)

Aside from these restrictions, the σ єk
ik are free to take any values. _e following table

provides an illustration of the enforcedmappings:

1 2 ⋅ ⋅ ⋅ ℓ ℓ + 1 ℓ + 2 ⋅ ⋅ ⋅ 2ℓ 1
σ є1
i1 ↘ ↘

1 2 ⋅ ⋅ ⋅ ℓ ℓ + 1 ℓ + 2 ⋅ ⋅ ⋅ 2ℓ 1
σ є2
i2 ↘ ↘

⋮
1 2 ⋅ ⋅ ⋅ ℓ ℓ + 1 ℓ + 2 ⋅ ⋅ ⋅ 2ℓ 1

σ єℓ
iℓ ↘ ↘

1 2 ⋅ ⋅ ⋅ ℓ ℓ + 1 ℓ + 2 ⋅ ⋅ ⋅ 2ℓ 1.
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_e conditions in (6.1) guarantee that ϕ(w) = σ єℓ
iℓ . . . σ є1

i1 will map 1 ↦ ℓ + 1. _e
conditions in (6.2) and (6.3) guarantee that ϕ(w) maps ℓ + 1 ↦ 1. Hence, ϕ(w) has
the two-cycle (1, ℓ + 1), as desired.

Remark 6.5 _is proof likely uses too much “space,” and the argument may still
work withU(l + 1) instead. One would have to be very careful with choosing permu-
tations with respect to the given word.

We are now ready to prove_eorem 6.2.

Proof of_eorem 6.2 Let w ∈ Fn be a nontrivial, balanced, reduced word of length
ℓ, and let λ ∈ T. By Lemma 6.4, there exists a representation π∶C∗(Fn) → M2ℓ for
which −1 ∈ σ(π(w)). By Lemma 6.3, there then exists a representation π′∶C∗(Fn)→
M2ℓ with λ ∈ σ(π′(w)).

Acknowledgment We are grateful to David Sherman for many useful discussions.
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