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Elements of C*-algebras Attaining their
Norm in a Finite-dimensional
Representation

Kristin Courtney and Tatiana Shulman

Abstract. We characterize the class of RFD C*-algebras as those containing a dense subset of el-
ements that attain their norm under a finite-dimensional representation. We show further that
this subset is the whole space precisely when every irreducible representation of the C*-algebra is
finite-dimensional, which is equivalent to the C*-algebra having no simple infinite-dimensional AF
subquotient. We apply techniques from this proof to show the existence of elements in more gen-
eral classes of C*-algebras whose norms in finite-dimensional representations fit certain prescribed
properties.

1 Introduction

Information about finite-dimensional representations of a C*-algebra is useful for
studying its structural properties. RFD C*-algebras are those that have many finite-
dimensional representations. Recall that a C*-algebra is called residually finite-dimen-
sional (RFD) if it has a separating family of finite-dimensional representations.

One of the first results on RFD C*-algebras, due to Choi [7], is the fact that
the full C*-algebra C*(F,) of the free group is RFD. In the ensuing years, vari-
ous characterizations of RFD C*-algebras have been obtained (notably in [2,11,16]),
and various classes of C*-algebras were proved to be RFD. A notable class of RFD
C*-algebras are those whose irreducible representations are all finite-dimensional.
We call such C*-algebras Finite-Dimensional Irreps (FDI). This class includes, in par-
ticular, (n-)subhomogeneous C*-algebras.

Examples of RFD C*-algebras arising from groups include full group C*-algebras
of amenable maximally periodic groups [3], surface groups and fundamental groups
of closed hyperbolic 3-manifolds that fiber over the circle [22], and many I-relator
groups with non-trivial center [17]. Other classes of RFD C* -algebras include amal-
gamated products of commutative C*-algebras [18], projective C*-algebras [19], uni-
versal C*-algebras of algebraic elements [21], the soft torus C*-algebra [10], and cer-
tain just-infinite C*-algebras [15]. (This list is certainly incomplete.) The class of RFD
C*-algebras is also closed under free products [11] (see also [14]), minimal tensor
products [6], extensions, and subalgebras.
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In [12] Fritz, Netzer, and Thom proved that every element in the group algebra
CF,, attains its universal norm under some finite-dimensional unitary representation.
Viewing CF, as a dense subalgebra of C* (IF,, ), it is natural to ask whether there exists
in other RFD C*-algebras a dense subset of elements that attain their norm under
a finite-dimensional representation. In Section 3, we prove that this is indeed true.
Moreover, this characterizes RFD C*-algebras (Corollary 3.3).

Looking at the result of Fritz, Netzer, and Thom, one can ask further questions. For
instance, are there elements in C* (I, ) other than the elements of CIF, that attain their
norm under a finite-dimensional representation? Could this be true for all elements?

In Section 4, we prove that all elements of a C*-algebra attain their norm un-
der a finite-dimensional representation if and only if the C*-algebra has no infinite-
dimensional irreducible representation, i.e., the C*-algebra is FDI (Theorem 4.4).
In particular, this implies the existence of elements in C*(IF,) that do not attain
their norm under a finite-dimensional representation. Moreover, we show that A is
EDI if and only if A has no C*-subalgebra that surjects onto some simple, infinite-
dimensional AF-algebra.

In Section 5, we introduce seminorms associated with finite-dimensional repre-
sentations and study their growth. Namely, for a C*-algebra A with at least one ir-
reducible representation of dimension no larger than k < oo, we define a seminorm
I s, on A by

lalus, = sup { |m(a)] | m:A > M},

for all a € A. If A has irreducible representations of dimensions 7n; < 1, < -+ < oo,
then for each a € A, we have a non-decreasing sequence (|||, )ken. Let A(A) be
the set of all such sequences. We want to know what sequences can be found in A(A)
for a given C*-algebra A. In Theorem 5.1 we prove that A(A) contains the set of
all nondecreasing sequences of positive numbers that are eventually constant. Our
results, when relevant, also hold for C*-algebras for which this sequence is finite. We
show that those two sets coincide exactly when A is FDI (Corollary 5.4). When A is
RFD but not FDI, we describe the behavior of some sequences in A(A) that are not
eventually constant (Theorem 5.7).

A technique developed in Section 4 allows us to say more about the subset of all
elements that attain their norm under a finite-dimensional representation. Particu-
larly, in Theorem 5.5 we prove that this subset is additively closed if and only if it
is multiplicatively closed if and only if the C*-algebra is FDI. In particular, it im-
plies that there exist elements in C*(F, )\CF,, that attain their norm under a finite-
dimensional representation. One of our main tools in Sections 4 and 5 is the pro-
jectivity of AF-telescopes, discovered by Loring and Pedersen [20]. For a simple AF-
algebra, it is often straightforward to find elements in its AF-telescope whose norms
under finite-dimensional representations fit certain prescribed properties. When pro-
jectivity can be invoked, it can be sometimes used to lift said elements to elements
in another C*-algebra whose norms under finite-dimensional representations fit the
same properties.

If we know an element in a C*-algebra attains its norm in some finite-dimensional
representation, it is natural to then ask for an upper bound for the dimension re-
quired to witness this. In their proof that any element of CIF,, achieves its norm in
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a finite-dimensional representation, Fritz, Netzer, and Thom give an estimate of the
dimension of such a representation ([12, Lemma 2.7]). If £ is the length of the longest
word in the support of the element, then such a representation can be chosen of di-
mension no more than 4n¢. In Section 5, we find a better bound on the dimension for
binomials in CF,,. In Theorem 6.2 we prove that for any nontrivial, balanced, reduced
word w € IF,, of length £ and any A € T, there exists a representation 7: C* (F,,) - My,
such that the spectrum of 77(w) contains A. From this theorem we deduce (Proposi-
tion 6.1) that any element of the form aw; + fw,, where a, § € C and wy, w, € Fy,
attains its norm under a 2¢-dimensional representation of C* (I, ); here £ is the length
of the reduced word w3 w.

2 Preliminaries

2.1 AF Mapping Telescopes and Projective C*-algebras

We briefly introduce AF mapping telescopes (also called AF-telescopes); for more
information, see [19] or [20].
Let A = JA, be an inductive limit of an increasing sequence of C*-algebras

AICA2C"'CA

with injective connecting maps. We define the mapping telescope of (A,) as the C*-
algebra

T(A) = {f € Co((0,00],A) | f(£) € Ay Yt € (0,00)},

where [t] = min{n € N : n > t}. Obviously the mapping telescope depends on the
sequence (A, ), but we will use the notation T(A) as opposed to T(A;, A,,...) and
specify the inductive sequence when necessary. In particular, we denote by T(M,~ )
the mapping telescope corresponding to the inductive sequence

M, c My - € Myn C -+ € Myeo,

where M« is identified with a subalgebra of M, by the map a — a @ a. Recall that
M~ is referred to as the CAR algebra and is a simple C*-algebra ([8]). We denote by
T(K(€?)) the mapping telescope corresponding to the inductive sequence

CcMyc---cM,c---cK(&)

with embeddings a — a @ 0. When each A, is finite-dimensional, the C*-algebra A
is AF, and we call T(A) an AF-telescope.

For the sake of consistency, we define the AF-telescope for inductive sequences of
the form

M, cM,, c---cM,,,
as
T(M,y) = { f € Co((0,00], My ) |f(£) € My, Vi€ (0,ny]}.

Recall that a C*-algebra A is projective ([4,19]) if given C*-algebras B and C with
surjective *-homomorphism q: B - C, any *-homomorphism ¢: A — C lifts to a
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*-homomorphism y: A - B such that g o ¥ = ¢. In other words, we have the com-
mutative diagram

B
P
v lq

-
-,
-,

A T} .
In [20], Loring and Pedersen proved that all AF-telescopes are projective. This fact
will be used repeatedly throughout the paper.

2.2 Type I and GCR C*-algebras

In Sections 3 and 4, we rely on a result (Theorem 2.1) of Glimm and Sakai. The partic-
ular formulation we would like to cite is not so readily found in the literature, so we
briefly describe it here.

Let 3 be a Hilbert space. A C*-algebra A is called GCR if K(H) ¢ n(A) for any
irreducible representation (7, H) of A. In particular, all FDI C*-algebras are GCR. It
is due to a deep theorem of Glimm and Sakai that a C*-algebra is GCR if and only if
it is type I (see [13] for the classic theorem and [25] for the nonseparable case). We
will call all such algebras GCR.

A C”-algebra is NGCR (antiliminal) if it contains no nonzero abelian elements, i.e.,
there is no nonzero x € A so that x* Agx is commutative. Glimm [13] and Sakai [24]
have shown that an NGCR C*-algebra must have a subquotient isomorphic to the
CAR algebra; i.e., it has a subalgebra that surjects onto the CAR algebra. Since a GCR
C*-algebra is characterized as having no NGCR quotients (see [5, Section IV.1.3]), we
arrive at the following formulation of the result.

Theorem 2.1 ([13,24]) Let A be a C*-algebra that is not GCR. Then A has a subquo-
tient isomorphic to the CAR algebra.

3 A Characterization of RFD C~-algebras

In this section, we characterize RFD C*-algebras as being exactly those that have a
dense subset of elements that attain their norm under a finite-dimensional represen-
tation. In fact, we prove that, for any residually class € C*-algebra (i.e., an algebra
with a separating family of representations that are class C) the set of elements that
attain their norm under a class € representations is dense.

First, we give a well-known characterization for a family of representations to be
separating.

Lemma 3.1 Let A bea C*-algebra and J be a separating family of its representations.
Then for each a € A, |a| = sup .5 |7(a)||.

Proof Since J is separating, the representation a — @ ,c57(a) is injective. Hence,
it is isometric. u
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Theorem 3.2  Let A be a C*-algebra, J a family of representations of A, and define
A= {acA|a] = max|n(a)]}.

Then the following are equivalent:

(i) Agisdensein A.
(ii) T is a separating family of representations of A.

In the proof we use a trick with polar decomposition, which is folklore nowadays,
but was first done in [1].

Proof If we assume (i), then for any a € A\{0}, we can choose b € A5\{0} such
that [|a — b|| < }|a] and 7 € F so that | 2(b)]| = |b|. Then

lal = [7(a)] = la] - [6] + [2(6)] - [(a) || < |a - b] + [=(b - @) | < 3] al.

Hence, 0 < ||a| < |7(a)]; i.e., F is a separating family of representations.

Now, assume (ii), and let a € A\{0} and € > 0. By Lemma 3.1 there exists 7 € F such
that |a| < |7z(a)| + e. Embed A into B(3) for some {, where A is the unitization
of A, and let a = ula| be the polar decomposition of a in B(JH). Define a function

f:R* - R* by
t te[0,|n(a)]]
- [0, J(a)1]
Im(a)| te([n(a)],o0).
Let b = uf(|a]). We claim that b € A5 and |b - al| < e. First, note that b € A. Indeed,
f(t) = tg(t) where

1 te |0, |m(a)|l
g(t):{"’i“)' e In(oo

Then g is continuous on [0, 00), and g(|a|) € A. Hence, b = uf(|a|) = ag(|a|) € A,
since A is an ideal in A.

To show that b € A, it will suffice to show that ||b|| < ||7(b)]. If A is non-unital,
let 7’ denote the unique unital extension of 7 to A, and if A is unital, let 7" = 7. Then,
since g(t) = 1when t € [0, | 7(a)|], we have that ' (g(|a|)) = g(7(|a|)) = 1in 7’'(A),

,00).

and hence

n(b) = n(ag(lal)) = n(a)g(n(la])) = n(a).
This gives us that

[6] <l f(al)] = t Sl(llp‘)lf(t)l <m(a)] = |=(b)].

Finally,

la=0b] = ulal - uf(lal)| <[la| - f(|al)]

= sup [t—f(1)[<|a] - |n(a)] <e.
tea(lal)

Hence, A = A+ |
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Corollary 3.3  The following are equivalent for a C*-algebra A:
(i)  The set
{acaslal = max jn(a)l}

n<oo
is dense in A.
(ii) Ais RFD.

A natural question now is how to characterize the class of C*-algebras for which
every element attains its norm under some finite-dimensional representation. For
example, is this true for C*(F,)?

It turns out that the answer is “no” for any C* -algebra that has an infinite-dimen-
sional irreducible representation, including C*(F, ). We will address this in the next
section.

4 A Characterization of FDI C*-algebras
We begin with a key lemma that is intuitively clear and must be known to specialists.

Lemma 4.1 Let T(B) be an AF-telescope with associated inductive sequence (B,).
Then any irreducible representation (7, 3) of T(B) factorizes through a point eval-
uation evy, for some t € (0,00]. Moreover, when B, are all simple and distinct, if
dim I < dim B, for some n, then t < n.

Proof Let 7 be an irreducible representation of T'(B). Put

(4D I={feT(B)|f(c0) =0}
Note that I is a closed ideal in T'(B) and so 7| is either irreducible or zero. If it is zero,

then 7 factorizes through T(B)/I ~ B and hence through ev... So we assume now
that 7|; is non-zero and irreducible. For each # > 1, define the closed ideal I,, < I by

Li:={fel|lf(t)=0VY¢t>n}

Then (I,,) is a nested sequence of closed, two-sided ideals with I = U, I,,. Thus, there
must exist 7 such that 7|;, is non-zero and therefore irreducible. Let

L= {feT(B)| f(t) = f(n) V t>n}.

Then I,, is an ideal in T,,, and so 7| 1, extends uniquely to an irreducible repre-
sentation (in fact 7l; ) of T,. So, it will be sufficient to prove that any irreducible
representation, say p, of I,, factorizes through a point evaluation.

We will prove it by induction. Clearly, it holds for T ~ Cy(0,1] ® B;. Assume that
it holds for (7 —1). Let J, be the closed ideal in T,, defined by

]n:{feT,,|f(t)=0forallt¢[n—1,n]} ~Co(n-1,n) ® By,.

If p does not vanish on J,, then it is irreducible on J,, and hence factorizes through a
point evaluation. So we can assume that p vanishes on J,,. Then p factorizes through
the map I, > E/],, T, given by the restriction f — f][o,,-1]> and hence p factor-
izes through a point evaluation by the induction hypothesis.
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Thus, 7|, factorizes through a point evaluation. Since an irreducible represen-
tation of an ideal extends uniquely to a representation of the whole C*-algebra, we
conclude that 7 factorizes through a point evaluation.

Moreover, if each B, is simple, then any irreducible representation of T(B) is
equivalent to a point evaluation ev; for some ¢t € (0, co], in which case the image
of the representation is isomorphic to Bf,. ]

Remark 4.2 Recall that a C*-algebra is (n-)subhomogeneous if all of its irreducible
representations are of bounded finite dimension. Clearly any subhomogeneous C*-
algebra is FDI, but there exist many FDI C*-algebras that are not subhomogeneous.
For instance, if B is a UHF algebra or K(#?), then I in (4.1) is not subhomogeneous.
More such examples come from group theory. In [23], Moore proves that a lo-
cally compact group has a finite bound for the dimensions of its irreducible unitary
representations if and only if it has an open abelian subgroup of finite index. On the
other hand, he also shows in [23] that a locally compact group has all of its irreducible
unitary representations of finite dimension if and only if it is a projective limit of Lie
groups with the same property, and a Lie group has this property if and only if it has
an open subgroup of finite index that is compact modulo its center. Consequently,
examples of FDI but non-subhomogeneous C*-algebras include, for instance, the full
group C*-algebra of a locally compact Lie group whose irreducible representations
are all finite-dimensional but which has no open abelian subgroups of finite index.
On the other hand, if G is a discrete group, Thoma shows in [27,28] that all irre-
ducible unitary representations of G are finite-dimensional if and only if they are all
of bounded finite dimension if and only if the group is type I if and only if the group is
virtually abelian. In other words, for a discrete group G, the following are equivalent:
(a) C*(G) is subhomogeneous;
(b) C*(G)is FDJ;
(c) C*(G)is GCR;
(d) G is virtually abelian.

Lemma 4.3  For any simple, infinite-dimensional AF-algebra B with inductive se-
quence (B,,), there is an element f € T(B) such that |z(f)| < | f|| = |f(o0)| for any
finite-dimensional representation m of T(B).

Proof Let0 # x € B; c Band define f € T(B) by f(¢t) = (1- e™")x. Recall that any
finite-dimensional representation 7 of T'(B) is a finite direct sum of irreducible rep-
resentations. Then, since B has no finite-dimensional representations, by Lemma 4.1
there exists a finite set F ¢ (0, 00) such that |7(f)| = maxscr | f(¢)]. In particular,
since || f(t)| is a strictly increasing function, ||z(f)| < | f(oo)| = | f]- [ |

Now we are ready to give the main theorem of this section.

Theorem 4.4  The following are equivalent for any C*-algebra A:

(i) AisFDL
(ii) For each a € A there exists a representation (1, 3() of A with dim(H) < oo such
that |a| = [m(a)].
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(iii) A does not have an infinite-dimensional simple AF-algebra as a subquotient.

Proof To see that (i) implies (ii), recall that for any a € A, there exists a pure state
¢ on A such that |p(a*a)| = ||a*a|. Applying the GNS construction to ¢ gives an
irreducible representation 7, and unit vector &, such that |7, (a)&,| = |a]. Since A
is FDI, we know 7, is finite-dimensional.

To show that (ii) implies (iii), suppose Ay S A is a C*-subalgebra, B is a sim-
ple, infinite-dimensional AF-algebra with inductive sequence (B,), and q: A; — B
a surjective *-homomorphism. Let T(B) be the mapping telescope for (B, ). Since
AF-telescopes are projective ([20]), there is a *-homomorphism y: T(B) - A such
that g o v = ev, i.e., the following diagram commutes:

Ao
P
T(B) —— B.

Let f € T(B) be the element guaranteed by Lemma 4.3, and let a := y(f). Then
lal = 1f], since

lall = Ty(DT <111 =1f()] = leves (N = [g(a)] < [al.

If |a| = |n(a)| for some finite-dimensional representation 7 of A, then f attains its
norm under the finite-dimensional representation 7 o y of T(B), which is not true,
by Lemma 4.3. Thus, |a| > |(a)| for any finite-dimensional representation 7 of A.

To show that (iii) implies (i), we notice first that (iii) implies that A is GCR. In-
deed, otherwise A would have a subquotient isomorphic to the CAR algebra M-
by Theorem 2.1. Assume now that A does have an infinite-dimensional irreducible
representation (77, ). Since A is GCR, K(H) ¢ n(A). Let H' ¢ K be an infinite-
dimensional separable subspace, and let Py denote the projection of H onto 3’
Since K(H") @ 0|g¢: is singly generated, we can choose x € A such that 7(C*(x)) =
K(H") @ 0]g¢.. Then C*(x) is a subalgebra of A, and Py Pyc: C*(x) — K(H') is
a surjective *-homomorphism . [ ]

Remark 4.5 Rephrasing the theorem, we can say that a C*-algebra A contains an
element a with ||a| > ||(a)| for any finite-dimensional representation (7, 7) of A
if and only if A has an infinite-dimensional irreducible representation. Since C*(F,,)
is primitive ([7]), we conclude that there are elements that do not attain their norm
under a finite-dimensional representation. Recall that in [12], the authors show that
no such element lies in CF,,.

Remark 4.6 It follows from Theorem 3.2 and standard arguments (e.g., from [9,
Section 3.6]) that the following are equivalent for a C*-algebra A and any n < co.

(i) Ais n-subhomogeneous (i.e., every irreducible representation is of dimension
no more than n).

(if) Ahas aseparating family of finite-dimensional representations of dimension no
more than n.
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(iii) For each a € A there exists a representation (7, 3{) of A of dimension no more
than # such that |a| = ||(a)].
(iv) Theset{a€A:|a|= max |n(a)|}isdensein A.
nelrry (A)
k<n
Before we conclude this section, we record a consequence of this remark, which
will prove useful in the next section.

Proposition 4.7  Suppose A is RFD and Ay C A is a non-subhomogeneous subalgebra.
Then there exists an unbounded sequence (ny ) gen in N and irreducible representations
ki Ag = M, such that each i is a subrepresentation of 1} |a,» denoted m < 7} | a,»
for some finite-dimensional representation my of A.

Proof Then the collection {7|4, : m € F} is a separating family of representations of
A(). Let
Fo = {a € Irr(Ag) : 0 < 7|4, for some 7 € ?}.

Then F, separates the points of Ag. If the set {dim(0)| o € Fo} is bounded, then Ag
is subhomogeneous by Remark 4.6. ]

5 Growth of Finite-Dimensional Norms

Let n € N. If a C*-algebra has a representation of dimension no more than n, we
define a seminorm || - |, on A by

lalue, = sup{|n(a)]| m:A - M,},

for all @ € A. We do not require representations to be non-degenerate, and so by
m: A - M, we mean a representation of dimension not larger than n. Equivalently,
we can say that

lalsa, = sup{lm(a)[},

where supremum is taken over all irreducible representations of dimension not larger
than n.

Suppose that {nj, n,,...} is the nonempty set of dimensions of all irreducible
finite-dimensional representations of a C*-algebra A, arranged in increasing order,
with « = [{ny, n,,...}|. Then for each a € A, we get a sequence

(llafna,, s

In general, we would like to know what sequences of numbers can be obtained in this
way. Namely, define the set A(A) by

A(A) = { (@l xsx | a € A},

where in the case k = Rg by (Ag) k<, we mean (A )gey. Since we allow degenerate
representations, all such sequences will be nondecreasing. In this section we prove
that, for any C*-algebra A with at least one finite-dimensional representation, A(A)
contains the set of all nondecreasing sequences of x positive numbers that are eventu-
ally constant (Theorem 5.1). Moreover, we show that A is an FDI-algebra if and only
if the two sets coincide. (Corollary 5.4).
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Below, we will use the Chinese Remainder Theorem: Let A be a C*-algebra and
Iy, ..., I be closed two-sided ideals in A such that I; + I; = A, when i # j. Then the
map

k
dpra+ NI~ (a+h,...,a+I)
i=1
gives a +-isomorphism from A/(N¥, I;) to A/, & --- ® A/I.

Theorem 5.1 Let N e N, and 0 < Ay < A, <--- < Ay be a sequence of nonnegative
numbers. Suppose that a C*-algebra A has irreducible representations of dimensions

n < np < --- < ny (and possibly of some other dimensions too). Then there exists
a € A such that |alwm, = Ak, for1< k < N.In addition, a can be chosen such that
lall = lla]u,-

Proof Foreachi < N,letm;: A - M, be an irreducible representation with kernel
I;,ie, All; ~ m;(A) = M,,. Since each Ml,,, is simple, each I; is a maximal ideal, and
sol; +1I; = A, foreach i # j. Since ker(®Y, 7;) = NY, I;, we have (BN, 7;)(A) ~
A/(NN, I;), and hence by the Chinese Reminder Theorem,

N
( G_Blm-) (A) =m(A)®--- @ an(A).

Thus, g = &Y, 7;: A > M, & --- ® M, is a surjective *-homomorphism. Now, con-

sider standard embeddings M,,, ¢ M, c --- ¢ M,,,, and let T(M,,, ) denote the

corresponding AF-telescope. For i < N, let ev;: T(M,,, ) - M, denote the evalua-

tion map, and let

N
¢ = G_Blevi:T(M,,N) > M, & ®M,,.

Since T(M,,,) is projective, ¢ lifts to some *-homomorphism y: T(M,,) - A so
that g o y = ¢, giving us the commutative diagram

A
e
T(M"N) T> @f\il M"i .

Let f € T(M,, ) be any element such that | f(¢)]| is a nondecreasing function on
(0, 00] with || f(i)| = A; for each i < N, and let a = y(f). Then

a(a) = @ m (@) = S m(w(f) = $(1) = ® ().

Hence, for any k < N,
Im(a)l = [F(R)[ = A,

which implies ||a[u, > A
On the other hand, for any representation 7 of A of dimension not larger than
nk, 7 o Y is a representation of T(M,,, ) of dimension not larger than ny, and hence
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factors through a finite direct sum of evaluations at some points in (0, k] by Lemma
4.1. Since | f(t)| is a nondecreasing function and || f (k)| = A, it follows that

[n(a)]l = 2y ()] < Ak

Thus for each k < N, ||a[m,, = Ax.If we additionally chose f to attain its norm at the
point ny, then we would have

Av = 1f1 = lw(Hl = llal = lq(a)] = | éf(k)ﬂ =,
whence ||a| = Ay. [ |

Corollary 5.2 Let G be a discrete group with representations of dimensions ny < n <
oo, and let € > 0. Then there is an a € CG such that |a|w, <eand |a|w,, > [a] -e.

Proof Since CG is dense in C*(G), the statement follows from Theorem 5.1. ]

Remark 5.3 Incase G = F, with n < oo, Thom proves in [26] that for any d > 0
and € > 0, there exists a nontrivial w € F,, such that

sup { |m(1-w)|:m: C*(F,) > Mg} <e.

However, he does not state (in [26]) for which m > d we know that we have |1-w|y,, >
|1 - w]| - e. Corollary 5.2 guarantees that for any m > d, we can find some element
with this behavior, but, in contrast to Thom, we do not know what this element looks
like.

On the other hand, it follows from [12, Lemma 2.7] that it suffices to take m > 4n¢,
where ¢ is the length of w. We show in Section 6 that it actually suffices to take m > 2¢.

Corollary 5.4  Assume that A has irreducible representations of x > 0 many distinct
finite dimensions. Then

A(A) 2 { (An)nex | 0 < Ay € Ayi1 ¥ 1 < & and (1) is eventually constant. }

Moreover, the two sets are equal if and only if A is FDL

Proof This follows from Theorems 5.1 and 4.4. ]

Using the techniques from this section, we can provide further characterizations
for FDI C* -algebras.

Theorem 5.5 Suppose A is RFD, and let

Aw={acdslal = max |n(a)]}.
n<oo

Then the following are equivalent:

(i) AisFDL

(ii) Aqo is closed under addition;

(iii) Aoqo is closed under multiplication.
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Proof Clearly (i)=(ii) and (i)=(iii).

To show that (ii)=(i), we assume that A is not FDI. We demonstrate the existence
of a, a, € A such that a; and a, achieve their norm under a finite-dimensional repre-
sentation, but a; + a, does not. By Theorem 4.4, there exist a subalgebra A € Aand a
simple infinite-dimensional AF-algebra B with inductive sequence (Bj,) such that A
surjects onto B. Moreover, we can take B to be either M~ with inductive sequence
(Mn ) or K(£%) with inductive sequence (M, ). By Proposition 4.7, there is a finite-
dimensional nonzero irreducible representation 7y of Ay and a finite-dimensional
representation 77y of A such that 7 is a subrepresentation of 7g|,. Then for some #,

B,y — m(Ao) — By,
So, we can find a new inductive sequence (By ) where By = B} for k < n, B, ~ my(Ay),
and By = Bj_, for k > n. We still call the inductive limit B, and let 7: Ag - B be a
surjection. As in the proof of Theorem 5.1, since B, and B are simple, it follows from
the Chinese Remainder Theorem that

q=n®mny:A)~>B@B,
is a surjection. Let
¢:=eve ®ev,: T(B) > B® B,,.
The projectivity of T(B) again yields the following commutative diagram:

Ay
e
q
T(B) — BB,

Let b € By with ||b|| = 1. Define f; € T(B) by

2tb te(0,n],
A(t)=12@n-1)b  te(n,2n],
(1-e*""Nb te(2n,00].

Define f, € T(B) by
-fi(t) te(0,2n],

0 te(2n,00].

f(t) ={

Then for i = 1,2, || f;|| = | fi(n)|, but for any finite-dimensional representation p of
T(B),
[fi+ 2l = (A + f2) ()| = 1> p(fr + £2)-

Let a; = y(f;) for i = 1,2. By the same argument as in Theorem 4.4, |a;| = | f;| for
i =1,2,and ||a; + az|| = | fi + f2|- Also as in the proof of Theorem 4.4, |a; + a,| >
lp(ay + a)| for any finite-dimensional representation p of A. Since |a;| = |fi|
for i = 1,2, we know that each a; attains its norm under some finite-dimensional
representation of Ag. To see that they will attain their norms under some finite-
dimensional representation of A, note that since

q(ai) = fi(o) @ fi(n)
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for i = 1,2, we have that
[moan)| = £:(m)] = fla:]
for i = 1,2. Because g < 7|4, it follows that |7 (a;)|| = |a;| for i =1,2.

To show that (iii)=(i), assume that A is not FDI. Again, by Theorem 4.4, there
exists a subalgebra Ay ¢ A and a simple infinite-dimensional AF-algebra B with in-
ductive sequence (B],) such that A, surjects onto B, and again, we take B to be either
M, or K(£€?). By Proposition 4.7, there exist irreducible representations 7; and 7,
of Ag and 7] and 7 of A such that m;: Ag > My, with k; < ky and 71; < 7}|4, for
i =1,2. As before, we intertwine M, and M, into the inductive sequence (B,,) of B
and let n; < n, so that now B, = M, for i = 1,2. Let 11 Ay — B be a surjection. As
before, we use the Chinese Remainder Theorem to get a surjection

q=n®m®m:Ay—>B®B, ©B,,.

Letting
¢ = eveo @ evy, @ evy,: T(B) > B® By, @ By,,
the projectivity of T'(B) yields the following commutative diagram:

/i

T(B) — B® B, @ B,,.

Let b € By self-adjoint with |b| = 1. Define f; € T(B) by

Lb te (0, I’l]],

ny

f(t) = nz_lnl(t— ny)b  te(n,nl,
(1-e™"b t e (ny,00].

Define f, € T(B) by
ib te (0,}’12],
f)y=1m
A {b t e (ny,00].
Then ||fi|| = || fi(n;)] for i =1,2,and

Iifel = 1fifa(e0)| = 6% =1> | fifa(1)]

forall t < co. Let a; = y(f;) and a, = y(f2). As before, |a;| = |fi| and ||aia2| =
| fif2|- Moreover, ||aja; | > | p(a1a,)| for all finite-dimensional representations p of
A. Also as before, we have for i = 1,2,

laill 2 [7i(ai)| 2 [mi(ai)| = [ fi(ni)] = asl. u

As a consequence, if a C*-algebra is RED but not FDI, then the set of elements in
a C*-algebra that achieve their norm under a finite-dimensional representation does
not form an algebra. In particular, we have the following corollary.

Corollary 5.6  For n < oo, there exists an element in C*(F,)\CF,, that achieves its
norm under some finite-dimensional representation.
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Theorem 5.1 says we can find an element that attains the prescribed norms Ay for
k < N. Theorem 4.4 says that if a C*-algebra is not FDI, then we can find an element
that does not achieve its norm under any finite-dimensional representation. The fol-
lowing theorem says that if we assume the C*-algebra is RFD and not FDI, then we
can find an element that does both.

Theorem 5.7  Suppose A is RED and has an infinite-dimensional irreducible repre-
sentation. Then there exist My < M, < --- < oo such that for any finite sequence
0 <A €Ay £--- <Ay < Athereis a € A such that HaHMMk = A for1 < k <N,
lal = A, and, in the case A > A, [a|| # | alm,, for any k < oo.

Proof Since A has an infinite-dimensional irreducible representation, by Theorem
4.4 there is a C*-subalgebra Ay S A, a simple infinite-dimensional AF-algebra B,
and a surjective *-homomorphism m: Aq — B. Again, we can and do take B to be
either M~ or K(€%). Since A, is a C*-subalgebra of an RFD C*-algebra, it is also
RED. Since B is a quotient of Ag, A is not subhomogeneous. It then follows from
Proposition 4.7 that we can build sequences (j;), (m;), and (M;) of positive integers
such that
<2 <m <M<y <2 <my < My<oee,

and such that for each i, there exists an irreducible representation 7; of Ay and a
representation 71} of A such that dim(7;) = m;, dim(n}) = M;, and 7; < 7},

Since B is simple, using the Chinese Reminder Theorem in the same way as in the
proof of Theorem 5.1, we conclude that the *-homomorphism

N
q= ( @m) emAy->M,, & --oM,,, ®B
i=1
is surjective. If B = K(£?), let

N
¢=( qal(evmi)) ®eveo: T(B) > M, &---®M,,, ®B.

IfB= Mzm,let
N
¢=( G_al(evji)) ® eVeo: T(B) > My, ®--- & M,,, ®B

where we view M,;; as a subalgebra of M,,, via the standard inclusion. Since T'(B) is
projective, ¢ lifts to some *-homomorphism y: T(B) — Ag. Thus, go y = ¢.

Choose f € Cy(0, o] so that f is nonnegative, nondecreasing, f(oo) = A, and for
eachi <N,

f|[ji)Mi] = /11';

in case A > Ay, we also require f(t) < A for each t < co. We can view f as an element
of T(B) by the standard embdedding of C to B. Let a = y(f).

By Lemma 4.1, for any i € N and any representation p of A of dimension not larger

than M;, we have
lp(a)l = lp(w(f DI < | f(M:)].

Hence, for any i < N,

(5.1) Ha||MMi < /\i,
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and forall i e N,
(5.2) lalln,, <A
On the other hand, when B = K(¢?),

(m(a),....nn(a),n(a)) = q(a) = q(y(f)) = $(f)

— (FOm)see s fOmn), £()),
and we conclude that 71;(a) = f(m;) = A; for i < N; when B = M,
(7)., (@), 7(0)) = a(a) = a(w()) = $(F) = (G- FGn)s £(5)),
and we conclude that 71;(a) = f(j;) = A; for i < N. In either case,
(53) lallvey, > [7i(a)] > |mi(a)] = A,
for i < N. By (5.1) and (5.3) we have for each i < N,
(5.4) lalmy, = A
We also have
A= 16(H1 = law(N)] = la(@)] < lal = lw(H)] < 71 = 1

and thus
(5.5) lall = A.
By (5.2), (5.4), and (5.5), we are done. [ |

6 A Bound on Dimension

Fritz, Netzer, and Thom showed in [12, Lemma 2.7] that, for any # < oo, any element in
CF,, will achieve its norm in a representation of dimension no more than 4n‘, where
¢ is the length of the longest word in the support of the element. In this section, we
improve the bound on the dimension for binomials in CF,. Namely, we show the
following proposition.

Proposition 6.1 Let o, f3 € C. Let wy, wy € IF, be distinct reduced words for some n <
oo, and let € be the length of the reduced word w'wy. Then, there exists a representation
m:C*(F,,) > My, such that

|7 (aws + Bwa)| = laf + |B].

We say a word w in IF,, is balanced if any representation C*(F,) — C maps w ~ 1,
e.g,w = x1x%, ' x;". Notice that if the reduced word w;'w; is not balanced, then this
norm will be achieved by a representation C*(F, ) — C sending all but one generator
to 1. For example, the word w = x;x,; 2 is not balanced, and the map C*(F,) - C
sending x; - 1 and x, - —1 will send 1 — w to an element in C of norm 2. However,
for a balanced word, there is no such map. Since balanced words constitute the class
of nontrivial examples, we will assume that w := w3 w is balanced.
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Notice that for any representation 7: C*(F, ) - B(%(),

[m(awy + pwa)| = lan(wy'wi) + Blsc| = Jam(w) + Pla|
= A+ Bl
reotao 1A T
where w := w'w; and o (7(w)) denotes the spectrum of an operator 7(w) € B(H).
This maximum equals || + || if and only if % € o(n(w)), and so Proposition 6.1

will follow from the following theorem.

Theorem 6.2  For any nontrivial, balanced, reduced word w € F,, of length € and any
A € T, there exists a representation m: C*(F,,) — My, such that A € a(n(w)).

For the proof we will first need two lemmas.

Lemma 6.3 Letw € F, be a nontrivial, balanced, reduced word. Define for each
1<d<oo

4= U{o(n(w)) | m:C*(Fy) > Mg}
Then for each 1 < d < oo, there is a 04 € [0, 7] such that
X4 = {eie |6 € [—Gd,Gd]}
with 04 < 044, foreach1 < d < oo.

Proof Since (Z;) is clearly a nested sequence, we need only to show that for each
1<d < oo,

a={e]0e[-04,04]}
for some 6 € [0, 7].
Fix 1 < d < co. We first observe that X, is symmetric about R and centered at

1. Indeed, since A € o(w(uy,...,u,)) for some uy,...,u, € U(d) implies that A €
o(w(up,...,uy,)), where u denotes the complex conjugate of the matrix u, clearly
le Zd.

By these observations, it will suffice to show that X is the union of two continuous
images of the compact, path-connected space []j_, U(d), which have nontrivial in-
tersection. To that end, let w: [T} _; U(d) — U(d) denote the word map; let y: U(d) —
[-1,1] be given by u ~ min)e,(,) Re(1), and let y: [-1,1] — {e’®| € [0, 7]} be given
by r+— r+iv/1-r2 Then y o y o w is a continuous map on []}_; U(d) whose image
is the compact, path-connected arc {e"®| 8 € [0, 6]} where

04=max{0e[0,7] e e=,}.
Likewise, the image of j o ¥ o w is the path-connected arc {e’?| 6 € [-04,0]} for the

same 0, € [0,7]. Hence, the union of the two is the compact, path connected arc

{ei6|9€[—9d,9d]}:2d. |

By Lemma 6.3, we can conclude that, if for some 1 < d < oo there exists a repre-
sentation 7: C*(F, ) — M such that -1 € o(7(1 - w)), then £, = T. The following
lemma tells us for which 1 < d < oo we can expect such a representation.
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Lemma 6.4  For any nontrivial, balanced, reduced word w € IF,, of length ¢, there are
(permutation) matrices uy, . . ., u, € UW(2€) such that -1 € a(w(uy, ..., uy)).

Proof The goalis to construct a map from IF,, into 8,,, which maps w to a permuta-
tion in 8,, containing the two-cycle (1, £ + 1). Composing this map with the natural
inclusion of 8,, into U(2¢) yields a map from F,, to U(2¢) mapping w to a permu-

tation matrix with —1 as an eigenvalue. Write w = xf: . 'xfll where ¢; € {£1} and

ik € {1,...,6}.
First, we claim that we can assume that i, # i;. Indeed, suppose i, = i;. Letd > 0
and uy,...,u, € U(d), and denote w(uy, ..., u,) = ufﬁ - ufll If ¢; = —€,, then

a(w(ul, .. ,u,,)) = a(ulflelw(ul, ... ,un)ulflel).

This reduction will not change the length of the word and must terminate, since w

is balanced, reduced, and nontrivial. Hence, we can assume €; = €,. Moreover, since

-leo(w(ui,...,u,))ifandonlyif-1€ o((w(uy,...,u,))*), we may assume ¢; = 1.

Let j and k denote the multiplicity of x;, at the end and beginning of w, respectively,
J,ce-i €1,k

and assume j < k. Now, write w = x;. e X Xy where x;,_; # xi, # Xi,,,. Then

a(w(ul,...,un)) = a(u;jw(ul,...,u,,)ufl).

Again, the length of the word is unchanged. Hence, we assume i; # .
Now, define a map ¢:F, — 8,, by mapping the generators x; to permutations o;
such that for each 1 < k < ¢, we require that

(6.1) i (k) =k+1, ifep=1 and o;'(k)=k+1, ife=-L

Note that since £ # 1 and i, # i, the values for 07! (£ + 1) and o; (1) are not deter-

mined by the conditions in (6.1), which means that ¢(w)~!(1) and ¢(w)(£+1) are not
determined by the conditions in (6.1). Hence, we are free to require for1 < k < £ -1,
that

(62) 0;,(+k)=1+k+1,ife,=1 and ai_kl(€+k):l+k+l, ifep = -1;
and for o;, that
(6.3) 0;,(28) =1, ife,=1 and o0;,(1) =28, ife, = -1.

Aside from these restrictions, the o;* are free to take any values. The following table
provides an illustration of the enforced mappings:

1 2 14 +1 +2 20 1
afll N N

1 2 14 f+1 £+2 2¢ 1
;2 N \

2

1 2 14 +1 +2 20 1
aff N N

1 2 14 +1 e+2 20 1.
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The conditions in (6.1) guarantee that ¢(w) = o7’ ... 07" will map 1+~ £ + 1. The
conditions in (6.2) and (6.3) guarantee that ¢(w) maps £ + 1 — 1. Hence, ¢(w) has
the two-cycle (1, £ + 1), as desired. ]

Remark 6.5 This proof likely uses too much “space,” and the argument may still
work with U(] +1) instead. One would have to be very careful with choosing permu-
tations with respect to the given word.

We are now ready to prove Theorem 6.2.

Proof of Theorem 6.2 Let w € [F,, be a nontrivial, balanced, reduced word of length
¢, and let A € T. By Lemma 6.4, there exists a representation 7z: C*(F,) — M, for
which -1 € o(n(w)). By Lemma 6.3, there then exists a representation n": C*(F,) —
M,, with A € o (7' (w)). u
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