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Abstract

Let 7 be a set and let <#(7) denote the set consisting of the 0 matrix over 7x7 and the matrix
units over 7x7. Then for x, z in #(7) and x^ 0 ^ z, xyz^ 0 has precisely one solution y. This and
several other statements are shown to be equivalent characterizations of *(7) regarded as a
semigroup with zero.
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0. Introduction

This research arose in connection with an investigation of simple Banach algebras.
The authors are indebted to Professors Ching Chou and Kenneth Magill for their
contributions and, in some instances, essentially collaborative efforts.

The principal result centers on the well-known fact that the semigroup ^( / )
consisting of the 0 matrix and the set of all matrix units (each a matrix with
precisely one nonzero entry and that entry 1) for an arbitrary index set /enjoys the
property: if x^ 0 ^ z are in ^( / ) there is precisely one y in ^( / ) such that
xyz j= 0. This and three other properties are shown to be equivalent characteriza-
tions of 9t(I) as a semigroup with zero.

1. The characterization

For an arbitrary index set /, Ql{T) denotes the semigroup (7x/)u{0} where,
for i,j,k,l in /, (i,j)-(k,l) = (i,l) if j = k and = 0 otherwise, and where
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O-(i,j) = (i,j)-0 = 0. For an arbitrary semigroup P with zero (0), P* denotes the
set P\ {0}. If M is the set of morphisms of a small category, M u {0} may be regarded
as a semigroup with zero in which the product of two morphisms x and y is defined
to be their composition if they may be composed and 0 otherwise and where
0-x = ; r0 = 0 for all morphisms JC. Such a semigroup with zero is called a
categorical semigroup.

If P is a semigroup, l\P*) denotes the vector space of all functions / : P* -> C
such that 2p | / ( /0 |= | | / | | < °°- For/,g in l\P*) their product may be defined by
convolution:

where the sum on the right is taken to be 0 if the set {(x,y): xy = z} is empty. With
respect to this product and the norm ||... || above, l\P*) is a Banach algebra. Note
that if P = $1(1), where the cardinality of/is some integer n, then l\P*) is precisely
the algebra ofnxn matrices over C. When / is infinite, a similar interpretation
is available.

THEOREM 1. Let P be a semigroup with zero. Then the following are equivalent:
(a) P is isomorphic to %{l)for some {index) set I;
(b) for x, z in P* there is precisely one y in P* such that xyz =fc 0;
(b') for x in P* there is precisely one y in P* such that xyx ^ 0 and for p, r in P*,

where p3 = p, r2 = r, there is precisely one q in P* such that pqr # 0;
(c) for x, z in P* there is precisely one y such that xy^d and yz ^ 0;
(d) P is a categorical semigroup and l\P*) contains no proper, closed, nontrivial

ideals (l^P*) is simple).

Proof. The definition of ^( / ) shows that (a) implies (b). Furthermore, for /
given, the category of singleton subsets {/} of/as objects and maps between them as
morphisms leads to a categorical semigroup P. The simplicity of lx(P*) then flows
from the observation that if (ij) and (k, 1) are in P* then (k, i) (ij) (J, I) = (k, I) and
(k,i)(i',j')(J,l) = O if (i',/) # (ij). Thus (a)=>(d). The remaining implications
are proved below according to the scheme (d) => (c) => (b) =:> (a) and (b)o(br) from
which the theorem follows.

(b)=>(a): For x in P* let u = x be the unique solution of xux^O. Then
xx^Q^xx and the unique solution of (Joe) w{xx) =£ 0 must be Jc whence
xxxxx =£ 0. Since xxx and x are both solutions of xvx # 0, there obtains:

(*) xxx = x.

This equation is central to many of the following arguments. Obviously x = x.
First, (*) shows xx and xx are idempotents and thus /, the set of idempotents in

P*, is nonempty. The maps <p: P-+9KJ) where p(0) = 0, <p(x) = (xx,xx) if x & 0
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and I/J : <^(J) ->P where ^(0) = 0, tff((p, q)) = x where pxq # 0 are, as follows, shown
to be inverses of each other and semigroup homomorphisms: if x # 0 ,

by the earlier calculations; let <f>((p,q)) = x; then <p(ift((p,q))) = (xx,xx) and
pxq=£ 0. Thus y = xx and y = p =p2 both satisfy p(y)xq^ 0 whence p = xx, and
similarly q = xx. Hence rp and *\i are inverse maps.

The map <p is a homomorphism because: if x , j are in P* and xy = 0 then
xx^yy (otherwise 0 = x(xy) = yyy¥"0) and so p(x)-ip(y) = (XJC.XKVOF}', yj) = 0;
if xy/0 , then, since x = xxx, y = yyy, it follows that O^xy = xxxy= xyyy
whence xx = yy (hence also if xy^ 0, xy = jx since

xy(yx)xy = xyyxxy = xxxxxy = xy^O);

and both u = (^(Jcj') and u = xx satisfy xxuxy = xy^O while both v =
and v = yy satisfy xyvyy = xy^O whence (xy)(xy) = xx and (xy)(xy) = yy;
consequently if xy^O, <p(x)<p(y) = (xx,xx)(yy,yy) = (xx,yy), <p(xy) = ((xy)(xy),
(xy)(xy)) = (xx,yy) and so <p(xy) = <p(x)<p(y). In sum <p: P-+<%(I) is an iso-
morphism and (b) => (a).

(c) => (b): For x,z in P* let fi be the unique solution of the set xu^O, ux^=0,
let y be the unique solution of the set J O ^ O and vz^O and let w be the unique
solution of the set ttw^O and w{yz)¥=Q. Then r = w and f = x both satisfy: fif ^ 0
and ty^ 0 whence w = * and so xyz^ 0. Clearly (c) implies that xsz=£ 0 has at most
one solution and so (c) => (b).

(d) => (c): Let C be the small category such that its set of morphisms M and 0
constitute P. For A, B objects in C, C(A, B) denotes the set of morphisms associated
with A, B or the empty set if none such exists. Let Co be the category the objects
of which are those of C and where, for A, B in Co, C0(A, B)(=the set of morphisms
associated with A, B) is a singleton set if C(A, B)=£ 0, and C0(A, B) = 0 otherwise.
The rule of composition in Co is: C0(A, B) • C0(C, D) = C0(A, D)ifB=C and both
factors are not empty. Otherwise the product is 0. If M,, is the set of morphisms
for Co, let Po = MQ U {0} be the associated categorical semigroup. The map
F: [C,M]-> [Co.Mfl], where for an object A of C, F(A) = A, and for a morphism
xeC(A,B), F(x) = C0(A,B), is a functor. Regarded as a map on M, F may be
extended to a map P->P0 by setting F(0) = 0 and then to a map
by the formula

F(f)(Po)= £ f(p),

where/is in 1\P*), p is in P*, p0 is in P$. In these circumstances F is a homo-
morphism of P onto Po and of 1\P*) onto l\P^). Furthermore since ||F(/)||<||/||,
Fis continuous and ker (F) is closed. Since l\P*) is simple and since Fis nontrivial,
it follows that ker(F) is {0} and that F regarded as a homomorphism of P onto Po
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is injective. However for C0(A,B) and C0(C,D) in PJ there is in Po at most one
C0(X, Y) such that C0(A,B)C0(X, Y)¥=0¥=C0(X, Y)C0(C,D), namely C0(X, Y) =
C0(B, C) and so for x,z in P* there is at most one y in P* such that xy^O^yz.

To prove there is a? feart one y satisfying jty#0#jz let 0 ^ / ^ ^* be called an
Wea/ if P*JuJP*uP*JP*czJu{0}. Then clearly, for J an ideal in P*, 1\J) is a
nontrivial proper closed ideal in 1\P*). Furthermore, R={x: P*x = {0}, xeP*}
is empty or an ideal or all P*. If 1\P*) is simple, then R is empty and for all x,
P*x#{0}. By the same argument, L={x: xP* = {0}, xeP*} is empty if l\P*) is
simple. Thus P*xj={0}?xP* for all x if l\P*) is simple and so P*xP*#{0} if
l\P*) is simple. But P*xP*\{0} is then nonempty and, to avoid being an ideal,
must be all P* if/X(P*) is simple. In other words, if u, v are in P*, then u = pvq,
for some p,q inP*.

Now let x = pxq, p, q in P * and let q = yzs. Then x = />xyz.s ̂  0 and so *>> ̂  0 ̂  yz
as required, that is, (d) => (c).

Clearly (b) => (b'). Conversely, (b') implies that the unique y such that xyx± 0
gives rise to the idempotent xy (see the proof of (b) => (a)). Thus the set / of
idempotents is nonempty. If x,z are in P*, p = xx and r = zz are in / and the
unique q such that pqr^O also satisfies xqzj^O. If xq'z = w^O then

0# WJVW = w = x<?'z(;c<7'z);t0'z = xq'zzq'xxq'z

and so zzq'xx^O. But then xxq'zz =pq'r^=0 and so ?' = 9. Thus (b')=>(b) and
the proof of the theorem is complete.

NOTE. In the proof of (d) => (c), an alternative approach to showing that for
XytO^z there is at least one y satisfying xy^Oj^yz is the following: For A,B
objects in C let B < A signify C(B, A) ̂  0 and let JB = {A: Ann object in C, 5 ^ ^} .
Since C is a category the presence of identity morphisms shows Be JB and so
JB^=0. Let JB be the set of all morphisms in the sets C(C,A) where AeJB:
JB = {x: xeC(C,A), A eJB, C an object in C}. Then JB is an ideal in P*: if u,v
are in P* and if y is in JB, let yeC(C,A); then if uy^O, ueC(A, D) and D ^ 5
whence uyeC(C, D) and uyeJB; if yv^O, veC(E,C), yveC(C,A) and yveJB;
since yveJB, uyveJBu{0}. Since l\P*) is simple an4 since JB¥=0 it follows that
Jg = P*. Thus Jg is the set of all objects in C and so for any A, B, B^A. Conse-
quently, if xeC(A,B), zeC(C,D), the set C(D,A)jt=0 and if yeC(D,A) then
xyeC(D,B) and yzeC(C,A), that is, xy¥=0=£yz.

2. Complements

If P is a semigroup with zero and if /X(P*) is simple, P may fail to be isomorphic
to ^( / ) for all /, as the following example, due to Ching Chou, shows: Let P
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consist of the 2x2 matrices

/ 0 0 \ / 1 0 \ / 0 1 \ / 1 0 \ / 0 1

0 0

Then P is a semigroup with zero, l\P*) is the algebra of 2 x 2 matrices over C.
Nevertheless xx = x^O^y = xw, xz = x^=0^w = zw whence xyw^O does not
have a unique solution y.

The Wedderburn-Jacobson theorems on simple algebras show that if P is a
finite semigroup with zero and if l\P*) is simple then there is a ^( / ) such that
l\P*) = 1\%(I)*), and the cardinality of P must be /i2+l for some integer n. In
the proof of (d)=>(c) there emerged: l\P*) simple =>xyz^0 has at least one
solution y if x / 0 ^ z ; and l\P*) simple and xeP*=>PxP = P.

Let a semigroup P with 0 be called simple if it cannot be decomposed non-
trivially into equivalence classes {S} again constituting a semigroup with 0, that
is if Sx, S2 are two equivalence classes then there is an equivalence class S3 such
that for xx in Sv x2 in S2, xxx2 is in S3 and where the cardinality of {S} and of at
least one S is greater than one. Alternatively, if h: P^-Q is a semigroup homo-
morphism then either Q = {0} or h is an isomorphism.

Call a subset J of P an ideal if {0}#/^i> and if PJuJP<=J. If / is an ideal let
xRy if and only if x = y or x and y are in / . Then R is an equivalence relation, /
is an equivalence class of cardinality greater than one, if x$J, {x} is an equivalence
class different from /, and if x1Ry1,x2Ryi then (xxx^R(yxy^), whence R
decomposes P nontrivially into equivalence classes constituting a semigroup with
O(J).

On the other hand, let G be a group and let P = G u {0} be a semigroup with 0
in the obvious way. The equivalence relation xRy if and only if x = y = 0 or
x,yeG decomposes P nontrivially and so P is not simple. However, P contains
no ideal because G is a group.

If I\P*) is simple so is P. For if {S} is a nontrivial decomposition as described
above, let {S} constitute the semigroup Q (with 0) and let h: P-+Q be the related
homomorphism. Then h may be extended to H: /1(i'*)^-/1(2*) according to the
formula H(f)(q) = 2A(p)=s/(/>). Then 2,1#(/)(«)!<2,l/(/>)| and as in earlier
arguments / / is readily shown to be a continuous homomorphism. Since
ker(H)={f: 'Epf(p) = 0} is a nontrivial ideal in P(P*) a contradiction results.
There emerges the following chain of implications:

[1] [2] [3]

P = <%(I) => P(P*) is simple => P is simple => P is ideal-free
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The example ? = 6 u { 0 } above shows that the reverse of [3] is false. There remain
the related questions:

(a) Does l\P*) is simple imply that l\P*) is isomorphic to some
The Chou example does not resolve this question.

(b) Is the reverse of [2] true?
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