BULL. AUSTRAL. MATH. SOC. VOL. 32 (1985), 379-387.

ON A CONJECTURE OF LITTLEWOOD IN DIOPHANTINE APPROXIMATIONS

S. KRASS

A conjecture of Littlewood states that for arbitrary $\underline{x}=(x_1,\ldots,x_n)\in\mathbb{R}^n \text{ , } n\geq 2 \text{, and any } \varepsilon>0 \text{ there exist}$ $m_0\neq 0,\ m_1,\ldots,m_n \text{ so that } |m_0\prod_{i=1}^n (m_0x_i-m_i)|<\varepsilon. \text{ In this}$ paper we show this conjecture holds for all $\underline{\xi}=(\xi_1,\ldots,\xi_n)$ such that $1,\ \xi_1,\ldots,\xi_n$ is a rational basis of a real algebraic number field of degree n+1.

1. Introduction

In a paper by Cassels and Swinnerton-Dyer in 1955, [2] they show that if 1, α_1 , α_2 is a basis (over $\mathbb Q$) of a real cubic number field, then, for any $\epsilon > 0$, there exist integers $m_0 \neq 0$, m_1 , m_2 such that $\left| m_0 (m_0 \alpha_1 - m_1) \left(m_0 \alpha_2 - m_2 \right) \right| < \epsilon$

This result reinforces (but of course does not prove) for n=2 a conjecture by Littlewood that for arbitrary $\underline{x}=(x_1,\ldots,x_n)\in\mathbb{R}^n$, $n\geq 2$, and any $\epsilon>0$ there exists $\underline{m}=(m_0,m_1,\ldots,m_n)\in\mathbb{Z}^{n+1}$ with $m_0\neq 0$ such that

Received 26 March 1985,

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/85 \$A2.00 + 0.00.

$$|m_0 \prod_{i=1}^{n} (m_0 x_i - m_i)| < \varepsilon.$$

In this paper we extend the Cassels, Swinnerton-Dyer result from n=2 to all $n\geq 2$. That is to say if $\underline{\xi}=(\xi_1,\ldots,\xi_n)$ with $1,\ \xi_1,\ldots,\xi_n$ a basis of F, a real number field of degree n+1, then, for any $\epsilon>0$, there exists $\underline{m}\in\mathbb{Z}^{n+1}$, $m_0\neq 0$ such that

$$|m_0 \prod_{i=1}^n (m_0 \xi_i - m_i)| < \epsilon$$

If M is a full \mathbb{Z} -module in F, $\Re(M)$ denotes the coefficient ring of M. Namely

$$\Re(M) = \{ \alpha \in F : \alpha M \subseteq M \}.$$

We will first need to prove the following lemma concerning units in $\mathcal{R}(M)$ which may be of independent interest.

LEMMA. M is a full Z-module in F a real (algebraic) number field of degree n+1 and R(M) the coefficient ring of M. For all $\alpha = \alpha_{[0]} \in F, \ \alpha_{[j]}, \ j=0,\dots,n \ \ denote \ the \ conjugates \ of \ \alpha \ \ ordered \ so$ that $\alpha_{[j]} \in \mathbb{R}, \ j=0,\dots,n-2s, \ \alpha_{[j]} = \overline{\alpha}_{[s+j]} \in \mathbb{C}, \ j=n-2s+1,\dots,n-s$ where s is the number of pairs of complex conjugates. Then there exists an infinite sequence $\Gamma = (\gamma_k \in R(M), \ k=1,2,\dots) \ \ \text{with each} \ \ \gamma_k \ \ \text{a}$ whit in R(M) such that

(i)
$$\lim_{k \to \infty} \gamma_{k[j]} / \gamma_{k[n-s]} = 1, \quad j=1, \dots, n-s-1 \text{ (with } \gamma_{k[j]} = (\gamma_k)_{[j]})$$

(ii)
$$\lim_{k \to \infty} \gamma_k = \infty$$
.

2. Proof of Lemma

By a theorem of Dirichlet the (multiplicative) group of units in $\mathcal{R}(M)$ is generated by n-s independent units, [1, p. 112]. Let β_i , $i=1,\ldots,n-s$ be n-s independent units in $\mathcal{R}(M)$. For $\varepsilon>0$ it is clear that the system of inequalities

(2.1)
$$| \sum_{i=1}^{n-s} x_i \log |\beta_{i[j]}/\beta_{i[n-s]}| | < \varepsilon, j = 1, ..., n-s-1.$$

has infinitely many (integer) solutions $\underline{x} = \underline{v} = (v_1, \dots, v_{n-s}) \in \mathbb{Z}^{n-s}$.

Let
$$\epsilon_k > 0$$
, $k = 1, 2, \ldots$ with $\lim_{k \to 0} \epsilon_k = 0$ and let

 $\underline{v}_{k} = (v_{k1}, \dots, v_{k, n-s}) \in \overline{\mathbb{Z}}^{n-s}$ be an integer solution of (2.1) for $\varepsilon = \varepsilon_{k}$, $k = 1, 2, \dots$ Then writing

(2.2)
$$\psi_{k} = \frac{n-s}{1} \beta_{i}^{v} k_{i}^{k}, \quad k = 1, 2, 3, \dots$$

we have by construction

(2.3)
$$\lim_{k \to \infty} |\psi_{k[j]}/\psi_{k[n-s]}| = 1, j = 1, ..., n-s-1.$$

Now we will write for all k (with $e(x) = e^{\sqrt{-1} 2\pi x}$)

$$\psi_{k\lceil j \rceil} = |\psi_{k\lceil j \rceil}| e(\theta_{kj}), -\frac{1}{2} < \theta_{kj} \leq \frac{1}{2}, j = 0, \ldots, n.$$

Since $\psi_{k[j]} \in \mathbb{R}$, j = 0, ..., n-2s, replacing β_i by β_i^2 , i = 1, ..., n, if necessary, we may assume without loss of generality.

(2.4)
$$\theta_{kj} = 0, \quad j = 0, \dots, n-2s.$$

Now the infinite set of "amplitude" vectors

$$\Theta = \{ \underline{\theta}_k = (\theta_{k, n-2s+1}, \dots, \theta_{k, n-s}) : k = 1, 2, \dots \}$$

must contain at least one limit point $\phi = (\phi_{n-2s+1}, \dots, \phi_{n-s})$,

say, with
$$-\frac{1}{2} \le \phi_j \le \frac{1}{2}$$
, $j = n-2s+1, \ldots, n-s$.

If $\phi = \underline{0}$, then $\gamma_k = \psi_k$ satisfies (i) of the lemma. So we suppose $\phi \neq \underline{0}$. We may then choose an infinite subsequence of the ψ_k

$$\rho_p = \psi_{k_p}$$
, $p = 1, 2, \dots$

such that

$$\lim_{p \to \infty} \rho_{p[j]} / |\rho_{p[j]}| = e(\phi_j), \quad j = n-2s+1, \dots, n-s.$$

Finally we put

$$\gamma_k = \rho_{k+1}/\rho_k$$
.

Writing $Y_{k[j]} = |Y_{k[j]}| e(\phi_{kj})$ it is clear that

$$\lim_{k \to \infty} \phi_{kj} = 0 , \quad j = n - 2s + 1, \dots, n-s.$$

Of course $\phi_{k,j} = 0$, $j = 0, \dots, n-2s$ by (2.4).

Then we only need observe that, for j = 1, ..., n-s-1,

 $\begin{aligned} |\gamma_{k[j]}/\gamma_{k[n-s]}| &= |\rho_{k+1,[j]}/\rho_{k+1,[n-s]}| \ |\rho_{k[j]}/\rho_{k[n-s]}| \to 1, \text{ as } k \to \infty \\ \text{to see that } \gamma_{k}, \ k = 1,2,\dots \text{ satisfies (i) of the lemma.} \end{aligned}$

Now the (homogeneous) simultaneous equation system

(2.5)
$$\sum_{i=0}^{n-s} x_i \log |\beta_{i[j]}/\beta_{i[n-s]}| = 0 , \quad j = 1, ..., n-s-1$$

has at least one of the $(n-s-1) \times (n-s-1)$ submatrices of its coefficient matrix non-singular (since the regulator is non zero). So the solution set of (2.5) is the line, L, where

 $L=\{\lambda \underline{y}: \epsilon \ \mathbb{R} \ , \ \text{and} \ \underline{y}\neq\underline{0}, \ \underline{y} \epsilon \ \mathbb{R}^{n-s} \ \text{is a solution of (2.5)}\}.$ The set

$$\{\underline{v}_{k} \in \mathbb{Z}^{n-s} : \gamma_{k} = \prod_{i=1}^{n-s} \beta_{i}^{v_{k}i}, k = 1, 2, \dots\}$$

is a subset of solutions $\underline{x} \in \mathbb{Z}^{n-s}$ satisfying (2.1) and the elements are lattice points lying "near" the line L.

Suppose for the present $\lim_{i=1}^{n-s} \beta_i^y i \neq 1$. Observe both $\underline{x} = \underline{y}$

and $\underline{x} = -\underline{y}$ satisfy (2.5). Hence we may choose \underline{y} with $\begin{vmatrix} n-\underline{s} & y_i \\ | & \beta_i \end{vmatrix} > 1$.

Then for any J>0 there exists \underline{v}_{k} near $\lambda \underline{y}$ for some $\lambda>J$, establishing (ii) of the lemma. So we need only show

(2.6)
$$\prod_{i=1}^{n-s} \beta_i^{i} \neq 1, \quad \text{any } \underline{y} \neq \underline{0}, \ \underline{y} \quad \text{a solution to (2.5)}.$$

Suppose $\prod_{i=1}^{n-s} \beta_i^i = 1$. Then it follows easily that there exist solutions

$$\underline{x} = \underline{v} \in \mathbb{Z}^{n-s}$$
 to (1) such that $|\theta| = |\prod_{i=1}^{n-s} \beta_i^{i}| \approx 1$ and $|\theta_{[1]}| \approx \dots \approx |\theta_{[n-s]}|$

where "z" denotes equality up to any arbitrarily small fixed error.

But
$$|\theta_{[n-2s+j]}| = |\theta_{[n-s+j]}|$$
, $j = 1, ..., s$ and $1 = \prod_{j=0}^{n} |\theta_{[j]}|$, so

n-s y_i $\prod_{i=1}^{n-s} \beta_i^i = 1 \Rightarrow \text{ there exist irrational units } \theta \text{ with all conjugates}$

arbitrarily near the unit circle. But this is impossible, see [3, p.137]. So (2.6) is established proving the lemma.

The following results follow trivially.

COROLLARY 1. The lemma holds with (i) replaced by

(i')
$$\lim_{k \to \infty} \gamma_{k[j]} / \gamma_{k[n]} = 1, j = 1, \dots, n.$$

COROLLARY 2. Both the lemma and Corollary 1 hold with

(ii')
$$\lim_{k \to \infty} \gamma_k = 0.$$

3. Theorem

Let $\underline{\xi} = (\xi_1, \dots, \xi_n)$ so that 1, $\underline{\xi}$ is a basis of F a real number field of degree n+1. Then for any $\varepsilon > 0$ there exist integers $m_0 \neq 0$, m_1, \dots, m_n so that

$$|m_0 \prod_{j=1}^n (m_0 \xi_j - m_j)| < \varepsilon$$

Proof. Let $\xi_0 = 1$ and $\xi_{[i]j} = (\xi_j)_{[i]}$, $i, j = 0, \ldots, n$

with conjugates ordered by the convention in the lemma. A is the matrix

$$A = (\xi_{[i]j} : i, j = 0, ..., n)$$
.

It is well-known that $det A \neq 0$. So we may define

$$U = (u_{i,j} : i, j = 0, ..., n) = A^{-1}.$$

By the row conjugate structure of A we have

$$u_{i0} \in F$$
 and $u_{ij} = (u_{i0})_{[j]}$, $i,j = 0,...,n$.

Thus u_{00}, \dots, u_{n0} is a base of the full \mathbb{Z} -module

$$M = \{\underline{m} \cdot \underline{u}_0 = \sum_{i=0}^n m_i u_{i0} : \underline{m} = (m_0, \dots, m_n) \in \mathbb{Z}^{n+1}\} .$$

We have used the notation

$$\underline{u}_j = (u_{0j}, \dots, u_{nj})^t = j-th$$
 column of $U, j = 0, \dots, n$.

By Corollary 1 there exists a sequence of units

$$\Gamma = (\gamma_{\nu} \in \Re(M), k = 1, 2, ...)$$
 such that

(3.1)
$$\lim_{k \to \infty} \gamma_{k[j]} / \gamma_{k[n]} = 1$$
, $j = 1, ..., n$; and $\lim_{k \to \infty} \gamma_{k} = \infty$.

For convenience, noting $u_{n0} \neq 0$, $u_{n0} \in M$, we write

$$|Norm u_{n0}| = |\prod_{j=0}^{n} u_{nj}| = 0 > 0.$$

Clearly $\gamma_k u_{n0} \in M$, with $|Norm \gamma_k u_{n0}| = 0$, all $\gamma_k \in \Gamma$.

Let

$$\mathbb{Z}(\Gamma) = \{ \underline{m} = \underline{m}_k \in \mathbb{Z}^{n+1} : \underline{m}_k \cdot \underline{u}_0 = \gamma_k \ \underline{u}_{n0}, \ \gamma_k \in \Gamma \}$$

By (3.1) and this definition

(3.2')
$$\begin{cases} \lim_{k \to \infty} \frac{m_k \cdot \underline{u}_j / \underline{m}_k \cdot \underline{u}_n = u_{nj} / u_{nn}, \quad j = 1, \dots, n \\ \lim_{k \to \infty} |\underline{m}_k \cdot \underline{u}_0| = \infty \end{cases}$$

Thus for any $\ensuremath{\varepsilon} > 0$ and $\ensuremath{K} > 1$ we have for all sufficiently large k

(3.2')
$$\begin{cases} \underline{m}_{k} \cdot \underline{u}_{j} / \underline{m}_{k} \cdot \underline{u}_{n} - u_{nj} / u_{nn} = \varepsilon_{kj}, & |\varepsilon_{kj}| < \varepsilon, j = 1, ..., n \\ |\underline{m}_{k} \cdot \underline{u}_{0}| > K \end{cases}$$

Since
$$v = \left| \prod_{j=0}^{n} \underline{m}_{k} \cdot \underline{u}_{j} \right| = \left| \underline{m}_{k} \cdot \underline{u}_{0} \right| \left| \underline{m}_{k} \cdot \underline{u}_{m} \right|^{n} \prod_{j=1}^{n-1} \left| \underline{m}_{k} \cdot \underline{u}_{j} \right| / \underline{m}_{k} \cdot \underline{u}_{k}$$

it follows from (3.2') for all $\underline{m}_k \in \mathbb{Z}(\Gamma)$ with k sufficiently large

$$v > K \left| \prod_{j=1}^{n-1} \frac{1}{2} u_{nj} / u_{nn} \right| \left| \underline{m}_{k} \cdot \underline{u}_{n} \right|^{n}.$$

So
$$\underline{m}_{k} \cdot \underline{u}_{n} = O(K^{-1/n})$$
 and then by (3.2')

(3.3)
$$\underline{m}_k \cdot \underline{u}_j = O(K^{-1/n}), \ j = 1, \ldots, n, \ \underline{m}_k \in \mathbb{Z}(\Gamma) \text{ (sufficiently large) } k.$$

We note, and it is easily shown, that there are only finitely many $\underline{m} \in \mathbb{Z}(\Gamma)$ with $m_Q = 0$. So without loss of generality we suppose

$$(3.4) \underline{m} \in \mathbb{Z}(\Gamma) \Rightarrow m_0 > 0$$

as (3.2) holds if we replace \underline{m}_k by $-\underline{m}_k$.

Now suppose $\lim_{k \to \infty} \frac{m_k}{k} \cdot \frac{u_0}{m_{k0}} = 0$. Then writing

$$\underline{w}_{k} = (w_{k0}, \dots, w_{kn})$$
, $w_{kj} = \underline{m}_{k} \underline{u}_{j}/m_{k0}$, $j = 0, \dots, n$

we have by this assumption together with (3.3) and (3.4)

$$\underline{0} \neq \lim_{k \to \infty} \underline{m}_k / \underline{m}_{k0} = \lim_{k \to \infty} \underline{w}_k \ \underline{U}^{-1} = 0 .$$

By this contradiction we have shown there exists w > 0 so that

(3.5)
$$|\underline{m}_k \cdot \underline{u}_0/m_{k0}| > w$$
, $\underline{m}_k \in \mathbb{Z}(\Gamma)$, all (sufficiently large) k .

$$v = \left| \underline{m}_{k} \cdot \underline{u}_{0} / m_{k0} \right| \left| m_{k0}^{1/n} \underline{m}_{k} \cdot \underline{u}_{n} \right|^{n} \prod_{j=1}^{n-1} \left| \underline{m}_{k} \cdot \underline{u}_{j} / \underline{m}_{k} \cdot \underline{u}_{n} \right|.$$

$$\Rightarrow \upsilon > \omega \left| \prod_{j=1}^{n-1} \frac{1}{2} u_{nj} / u_{nn} \right| \left| m_{k0}^{1/n} \underline{m}_{k} \cdot \underline{u}_{n} \right|^{n}.$$

So by the above result and the first part of (3.2) there exists J>0 so that

(3.6)
$$|m_{k0}^{1/n} \underline{m}_k \underline{u}_j| < J, \quad j = 1, ..., n, \quad \underline{m}_k \in \mathbb{Z}(\Gamma), \quad (sufficiently large) k.$$

We now define an $n \times n$ submatrix of $U = A^{-1}$ by

$$U_* = (u_{ij} : i, j = 1, ..., n)$$
.

We note (and it is easily shown) that

$$(3.7) det U_* = det U \neq 0.$$

We define, for all $\underline{m} \in \mathbb{Z}^{n+1}$,

$$h(\underline{m}) = |m_0|^{1/n} (m_0 \xi_1 - m_1, \dots, m_0 \xi_n - m_n)$$

and note the identity

$$(3.8) \qquad \underline{h}(\underline{m}) U_* = - |m_0|^{1/n} (\underline{m} \cdot \underline{u}_1, \dots, \underline{m} \cdot \underline{u}_n).$$

For $\underline{m}_{\nu} \in \mathbb{Z}(\Gamma)$ we write

$$\underline{\rho}_k = (\rho_{k1}, \dots, \rho_{kn}), \quad \rho_{kj} = |m_{k0}|^{1/n} \underline{m}_k \underline{u}_j, \quad j = 1, \dots, n.$$

Then by (3.8)

$$\underline{h}(\underline{m}_k) \quad U_* = -\underline{\rho}_k = -\underline{\rho}_{kn}(\underline{\rho}_{k1}/\underline{\rho}_{kn}, \dots, \underline{\rho}_{k,n-1}/\underline{\rho}_{kn}, 1).$$

By (3.2')
$$\rho_{kj}/\rho_{kn} = u_{nj}/u_{nn} + \epsilon_{kj}, |\epsilon_{kj}| < \epsilon, j=1,...,n(\epsilon_{kn} = 0).$$

So

$$\underline{h}(\underline{m}_k) \ U_* = - \left(\rho_{kn}/u_{nn}\right)(u_{n1}, \dots, u_{nn}) - \rho_{kn}(\varepsilon_{k1}, \dots, \varepsilon_{kn})$$

an d

$$\underline{h}(\underline{m}_k) = -(\rho_{kn}/u_{nn})(0,\dots,0,1) - (\delta_{k1},\dots,\delta_{kn})$$

since (u_{n1}, \ldots, u_{nn}) $U_{\star}^{-1} = (0, \ldots, 0, 1)$ and we write

$$(\delta_{k1}, \ldots, \delta_{kn}) = \rho_{kn}(\epsilon_{k1}, \ldots, \epsilon_{kn}) U_*^{-1}$$

Finally writing $\underline{h}(\underline{m}_k) = \underline{h}_k = (h_{k1}, \dots, h_{kn})$ we observe

$$\left| \prod_{j=1}^{n} h_{kj} \right| = \left| \prod_{j=1}^{n-1} \delta_{kj} \right| \left| \rho_{kn} / u_{nn} + \delta_{kn} \right| \to 0 \quad \text{as} \quad k \to \infty$$

since by (3.6) $\rho_{kn}/u_{mn} = \theta(1)$ and by (3.2') and (3.6)

$$\delta_{kj} \rightarrow 0$$
 , $j = 1, ..., n$ as $k \rightarrow \infty$.

This completes the proof of the theorem.

References

- [1] Borevich, Z.I. and Shafarevich, I.R., Number Theory, (Academic Press, 1966).
- [2] Cassels, J.W.S. and Swinnerton-Dyer, H.P.F., "On the product of three homogeneous linear forms and indefinite ternary quadratic forms", *Philos. Trans. Roy. Soc. London*, Ser. A, 248 (1955), 73-96.

[3] Pollard, H., The theory of algebraic numbers, (The Mathematical Association of America, 1950).

School of Mathematics, University of New South Wales, Kensington, N.S.W. 2033.