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Abstract

Rosay and Rudin introduced the notion of ‘tameness’ for discrete subsets of C". We generalize the notion
of tameness for discrete sets to arbitrary Stein manifolds, with special emphasis on complex Lie groups.
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1. Introduction

For discrete subsets in C" the notion of being ‘tame’ was defined in the important
paper of Rosay and Rudin [3]. A discrete subset D c C" is called tame if and only
if there exists an automorphism ¢ of C”" such that ¢(D) = N x {0}*~!. (In this paper
a subset D of a topological space X is called a ‘discrete subset’ if every point p in X
admits an open neighborhood W such that W N D is finite.)

We want to introduce and study a similar notion for complex manifolds other
than C".

Therefore, we propose a new definition, show that it is equivalent to that of Rosay
and Rudin if the ambient manifold is C" and deduce some standard properties.

To obtain good results, we need some knowledge of the automorphism group of
the respective complex manifold. For this reason we get our best results in the case
where the manifold is biholomorphic to a complex Lie group. We concentrate on
semisimple complex Lie groups, since every simply connected complex Lie group is
biholomorphic to a direct product of C" and a semisimple complex Lie group.

Dermnition 1.1. Let X be a complex manifold. An infinite discrete subset D is called
(weakly) tame if for every exhaustion function p : X — R* and every map ¢ : D — R”
there exists an automorphism ¢ of X such that p(¢(x)) > {(x) for all x € D.

Andrist and Ugolini [1] have proposed a different notion, namely the following
definition.
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Dermnition 1.2. Let X be a complex manifold. An infinite discrete subset D is called
(strongly) tame if for every injective map f : D — D there exists an automorphism ¢
of X such that ¢(x) = f(x) for all x € D.

It is easily verified that ‘strongly tame’ implies ‘weakly tame’. For X ~ C" and
X ~ SL,(C) both tameness notions coincide. Furthermore, for X = C" both notions
agree with tameness as defined by Rosay and Rudin.

However, for arbitrary manifolds ‘strongly tame’ and ‘weakly tame’ are not
equivalent.

In this article, unless explicitly stated otherwise, tame always means weakly tame,
that is, tame in the sense of Definition 1.1.

2. Comparison between C” and semisimple complex Lie groups

For tame discrete sets in C” in the sense of Rosay and Rudin, the following facts
are well known.

(1) Any two tame sets are equivalent.

(2) Every discrete subgroup of (C", +) is tame as a discrete set.

(3) Every discrete subset of C” is the union of two tame ones.

(4) There exist nontame subsets in C”".

(5) Every injective self-map of a tame discrete subset of C" extends to a
biholomorphic self-map of C".

(6) If vy is a sequence in C" with )7, (1/Ivel?=1) < oo, then {vy : k € N} is a tame
discrete subset.

(See [3] for (1), (3), (4), (5), [5] for (6). For n = 2, (2) is implied by Proposition 4.1
of [2]. The proof given there generalizes easily to arbitrary dimension 7.)

For discrete subsets in semisimple complex Lie groups we are able to prove the
following properties.

(1) Any two tame discrete subsets in SL,(C) are equivalent (Proposition 10.6).

(2) Certain discrete subgroups may be verified to be tame discrete subsets.
In particular, SL,(Z[i]) is a tame discrete subset (Corollary 11.3) and
also every discrete subgroup of a one-dimensional Lie subgroup of
SL,(C) (Proposition 12.2) and every discrete subgroup of a maximal torus
(Corollary 10.11).

(3) Every discrete subset of SL,(C) is the union of n tame discrete subsets
(Corollary 10.10).

(4) Every semisimple complex Lie group admits a nontame discrete subset
(Proposition 9.9).

(5) Every injective self-map of a tame discrete subset of SL,(C) extends to a
biholomorphic self-map of SL,,(C) (Proposition 10.6).

(6) For every semisimple complex Lie group S, there exists a ‘threshold sequence’,
that is, there exist a sequence of numbers R; > 0 and an exhaustion function
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7 such that every sequence g; with 7(g;) > Ry defines a tame discrete subset
(Proposition 9.7).

3. Results for other manifolds

While tame discrete sets in semisimple complex Lie groups behave in a way very
similar to those in C”, for arbitrary complex manifolds the situation is quite different.

(1) OnC"\{(,...,0)} (n=2) there exist discrete subsets which may not be realized
as a finite union of tame discrete subsets (Corollary 6.4).

(2) On A XxC there are (weakly) tame discrete sets which are not strongly
tame. There are permutations of tame discrete sets which do not extend to
biholomorphic self-maps of the ambient manifold (Propositions 5.1 and 5.3).

(3) On A x C there exist inequivalent tame discrete subsets (Corollary 5.2).

4) OnC"\{(,...,0)} there is no ‘threshold sequence’ (Corollary 6.3).

4. Preparations

ProrosiTion 4.1. Let X be a complex manifold and let D be an infinite discrete subset.
Then D is tame if and only if there exists one exhaustion function p such that the
following property holds. For every map ¢ : D — R”, there exists an automorphism ¢
of X such that p(¢(x)) = {(x) for all x € D.

(In the Definition 1.1 for being tame it is required that this property holds for every
exhaustion function.)

Proor. Assume that the property holds with respect to a given exhaustion function p.
We have to show that D is tame, that is, that the property holds with respect to every
exhaustion function. Let 7 be an arbitrary exhaustion function andlet { : D — R be a
map. We choose a map {y : D — R in such a way that

o(x) > supip(p) : 7(p) < {(x)} VxeD.

By assumption, there is an automorphism ¢ of X such that p(¢(x)) > {p(x) for all x € D.
By the construction of ¢,

d(x)g{peX:t(p)<l(x)} VYxeD.
Hence, 7(¢(x)) > {(x) for all x € D, as desired. O

Derinition 4.2. Let X be a complex manifold. Two sequences A(k), B(k) in X are called
equivalent if there exists a holomorphic automorphism ¢ of the complex manifold X
such that ¢(A(k)) = B(k) for all k € N.

A sequence A(k) in X is called tame if the set {A(k) : k € N} is a tame discrete subset
of X.

ProrosiTion 4.3. Let X be a complex manifold. Assume that the automorphism group
Auto(X) is a finite-dimensional Lie group with countably many connected components.
Then X does not admit any tame discrete subset.
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Proor. Let D = {p, : n € N} be an infinite discrete subset of X. Fix an exhaustion
function p : X —» R*. Let K, be an increasing sequence of compact subsets of G =
Auto(X) which exhausts G, that is, | J, K, = G. Define ¢, = max{o(x) : x € K,,(p,)}.
Choose ¢, > ¢,. By construction, if p(¢(p,)) > ¢, for some n € N, then ¢ € G \ K,,.
Since M),(G \ K,) = {}, it follows that there is no ¢ € Autp(X) with p(¢(p,)) > &, for
all n € N. Thus, D is not tame. O

CoroLLARY 4.4. Complex manifolds which are hyperbolic in the sense of Kobayashi
(for example, bounded domains in Stein manifolds) do not admit tame subsets.

CoroLLARY 4.5. Let X be a compact complex manifold, dimc(X) > 2, and let S be a
finite subset. Then X = X \ S contains no tame discrete subset.

Proor. Every automorphism of X extends to an automorphism of X and the
automorphism group of X is a finite-dimensional Lie group by the theorem of Bochner
and Montgomery. O

CoROLLARY 4.6. There are no tame discrete subsets in Riemann surfaces.

ProposiTioN 4.7. A discrete subset D of C" is tame in the sense of Definition 1.1 if and
only if it is tame in the sense of Rosay and Rudin, that is, if and only if there exists a
holomorphic automorphism ¢ of C" such that ¢(D) = Z. x {0}"'.

Proor. For every map & : Z — R, there exists a holomorphic function f on C with
f(n) = &(n) for all n € Z. The automorphism z — (21,22 + f(21), 23, - - -, Zy) MAaps
Z x {0)"! to {(n,&(n),0,...,0): n€Z). Using this fact, it is clear that Z x {0}""!
is tame in the sense of Definition 1.1. Therefore, being tame in the sense of Rosay and
Rudin implies being tame in the sense of Definition 1.1.

Conversely, if a discrete set D = {a; : k € N} is tame in the sense of Definition 1.1,
then there exists a biholomorphic map ¢ of C" such that ||¢(ay)||*”"~' > k* for all k.
Then the proposition below implies that D is tame in the sense of Rosay and Rudin,
since Y, k7% < co. O

ProrosiTioN 4.8. Let vy be a sequence in C". If

[ee]

1
2, vt =

k=1
then D = {vy : k € N} is a tame (in the sense of Rosay and Rudin) discrete subset of C".
Proor. See [5]. O

Dermnition 4.9. Let X be a complex manifold with an exhaustion function p. A
sequence of positive real numbers R, is called a ‘threshold sequence’ for (X, p) if
every discrete subset D with

#xeD:p(x)<R,}<n VneN

1s tame.
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In other words: if R, is a threshold sequence, then every sequence x; in X with
p(xr) = Ry defines a tame discrete subset of X.

It follows from [5] that every sequence (Ry) with 3, (Ry)"?""! < o is a threshold
sequence for C" (with respect to the exhaustion function p(x) = ||x||).

If a complex manifold X with exhaustion function p admits a threshold sequence
R, and j is a different exhaustion function, we may define a threshold sequence R, for
(X, p) as follows. We need to ensure that p(x) > Ry implies that 5(x) > R;. Hence, we
may define

Re = max{p(x) : p(x) < Ry).

Thus, if there exists a threshold sequence for one exhaustion function, then there
also exists a threshold sequence for any other exhaustion function on the same complex
manifold, that is, whether or not there exists a threshold sequence depends only on the
complex manifold, not on the exhaustion function.

We will see that there exist threshold sequences for every semisimple complex Lie
group (Proposition 9.7).

In contrast, there is no threshold sequence for C* \ {(0, ..., 0)} (Corollary 6.3).

Prorosition 4.10. Let X be a complex manifold for which there exists a threshold
sequence. Let A C X be an unbounded (that is, not relatively compact) subset. Then A
contains a subset which is a tame discrete subset of X.

Proor. This is obvious. |

5. Thecase X = A x C

We start by deducing a description of the automorphisms. Let A = {z € C: |z] < 1}.
On X = A x C there is a natural equivalence relation: two points (x, y), (z, w) can be
separated by a bounded holomorphic function if and only if x # z. The projection onto
the first factor is therefore equivariant for every automorphism of X. Using this fact,
one easily verifies that every automorphism of X can be written in the form

(z,w) = (9(2), f(Dw + g(2))
with ¢ € Auto(A), f € O*(A) and g € O(A).

ProprosiTioN 5.1. Let X = AX Cwith A={z€C:|zl<1}. Let 1 : A x C — A denote
the projection onto the first factor.
A discrete subset D C X is tame if and only if

(D) ={ze€A:3(z,w) € D}

is discrete in A and
7 '(p)={(z,w)eD:z=p}
is finite for all p € A.
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Proor. The discrete sets fulfilling these conditions are tame due to Proposition 8.4.

Suppose conversely that D is a discrete subset which does not fulfill all of these
conditions. Then there exists a divergent sequence (p,, ¢,) in D with lim p, = p € A.
We fix an exhaustion function 7 on X such that 7(z, w) = [w| + (1 = |z])~'. We choose
R, such that R, > 2"|g,|. By the tameness assumption, there exists an automorphism
of X given as

(z, w) = (¢(2), f(Dw + g(2))
such that
T(¢(pn)s f(P)gn + &(pn)) > Ry Vn.
Since lim p,, = p,
lim(1 = ¢(p)™" = (1 = g(p) "
Thus, there exists a constant K such that (1 — ¢(p,))~! < K for all sufficiently large .
Then
lf(Pn)gn + &(pu)l > Ry — K > 2"|q,| — K.

On the other hand, we obtain (using lim p, = p)

1
lim lq—llf(pn)qn +g(p)l = 1f(p).

This yields a contradiction, since

1 K
—|f(P)qn + g(pp)| > 2" = —  Vn,
gl ]

but im(2" — K/|g,|) = +oo. m]
CoroLLARY 5.2. The manifold X = A x C admits inequivalent tame discrete subsets.

Proor. Every automorphism of the unit disc preserves the Poincaré metric. Hence,
it is clear that there are many inequivalent discrete subsets in the unit disc. By the
proposition, for each discrete subset D C A we obtain a tame discrete subset D’ in X
via D’ = D x 0}. O

Thus, X = A X C admits many (weakly) tame discrete subsets. In contrast, there are
no strongly tame discrete subsets.

ProposiTioN 5.3. There are no strongly tame discrete subsets in X = A x C.

Proor. Suppose that D is strongly tame. Then it is tame. Due to Proposition 5.1,
(D) C A is infinite. Thus, for any two points v, w € D, we can find an injective map
F : D — D with n(F(v)) # n(F(w)). It follows that x|p is injective. However, now
any injective self-map of n(D) is induced by an injective self-map of D. Thus, the
assumption of D being strongly tame in X implies that n(D) is strongly tame (and
therefore tame) in A, which is impossible (cf. Corollary 4.4). O
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6. The case C" \ {(0,...,0}
We start with a preparation.

LemMa 6.1. Let ¢ be a C'-diffeomorphism of C" fixing the origin. Then there exist an
open neighborhood W of the origin (0, .. .,0) and constants C;,Cy > 0 such that

Cilvll < llgWll < G|Vl Vv e W.

Proor. Let U be a convex relatively compact open neighborhood of (0, ..., 0). Define
C = sup,eyy max{||Dgll,, ID@l,}. Then [lp(v)|| < Cllvl| and [l¢~' (W] < ClIvl| for all
v € U. This implies the assertion with C, = C, C; = 1/C and W = U n ¢~ '(U). O

ProrosiTion 6.2. A discrete subset D in X = C" \ {(0, ..., 0} is tame if and only if it is
discrete and tame considered as a subset of C".

Proor. We recall that holomorphic automorphisms of X extend to holomorphic
automorphisms of C".

We fix the exhaustion function 7 : X — R* given by 7(x) = max{||x||, ||x/|'}.

Assume that D is tame and discrete in C". Then D; = D U {0} is likewise tame.
Enumerate the elements of D such that D = {a; : k € N}. Let a strictly increasing
sequence R; be given. Choose elements v; € C" such that Ry > ||vk|| > Ry for all
k € N. Since D is tame, there exists an automorphism ¢ of C" such that ¢(0) =0
and ¢(ay) = vy for all k € N. This shows: for any such sequence Ry, there exists an
automorphism of X such that ||¢(ay)|| > Ry for all k, that is, D is tame in X.

Now assume that D is a discrete subset in X which is not discrete in C". Then
there exists a sequence y; € D with limy; = (0, ...,0). We want to show that D is not
tame. We choose a map ¢ : D — R such that {(yx) > k/|ly,|| for all k. We claim that
there exists no holomorphic automorphism ¢ of X such that 7(¢(yx)) > {(y;) for all
k € N. Indeed, each holomorphic automorphism of X extends to an automorphism of
C" fixing the origin (0, . . ., 0). It follows that there exist a neighborhood W of (0,...,0)
in C" and constants C, > C; > 0 such that

Gl = llgWIl = Cilvll Vv e W.

Assume that W is contained in the unit ball. Then 7(v) = 1/||v|| for all ve W and

therefore | |

—— <1(p(v)) £ —— Vv e W\{(QO,...,0)}.

Golll CilvIl
This implies that 7(y;) < {(y;) for all k with y, € W and k > 1/C;. Hence, D cannot
be tame. O

CoroLLARY 60.3. There is no threshold sequence for X = C" \ {(0,...,0)}.

Proor. Let v, be any sequence in C" \ {(0,...,0)} which converges to the origin in
C". If there existed a threshold sequence, (v,) would contain a tame subsequence, in
contradiction to the above proposition. O
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CoroLLARY 6.4. There exist discrete subsets of X which cannot be realized as the union
of finitely many tame discrete subsets.

Proor. Just take any discrete subset of X which in C” has an accumulation point in
©,...,0). O

7. Some preparation

Lemma 7.1. Let G be a connected complex Lie group. Then there exists a surjective
holomorphic map from some complex vector space C" onto G.

CoroLLARY 7.2. Let G be a connected complex Lie group, X a Stein complex manifold
and D C X a discrete subset. Then every map f : D — G extends to a holomorphic
map F : X — G.

Proor. We fix a surjective holomorphic map @ : C" — G. Then, givenamap f : D —
G, there is a ‘lift’ g : D — C", that is, a map g : D — C" such that f = ® o g. The
existence of the desired map F' now follows from the classical fact in complex analysis
that the value of a holomorphic function can be described on a fixed discrete set. O

8. m-tame sets

DeriniTion 8.1. Let X, Y be complex manifolds and 7 : X — Y a holomorphic map. An
infinite discrete subset D C X is called m-tame if there exists an automorphism ¢ of X
such that the restriction of the map 7 o ¢ to D is proper.

RemARK 8.2. A map from a discrete space D into a locally compact space Y is proper
if and only if it has discrete image and finite fibers.

Remark 8.3. If D is n-tame and D’ is discrete infinite with D’ \ D being finite, then D’
is m-tame.

ProrosiTION 8.4. Let H be a noncompact connected complex Lie group and let w : X —
Y be a H-principal bundle. If Y is Stein, then every n-tame discrete subset D C X is
tame.

Proor. Let p be an exhaustion function on X. Assume that n|p is proper. Let g € 7(D)
and X, = n~'(g). Observe that X, N D is finite and that p|y, is unbounded. Hence,
there exists an element /i, € H (acting on X, by the principal H-action of the principal
bundle) with

p(phy) 2 {(p) VYpeX,ND.
Next we choose a holomorphic map F : Y — H with F(q) = h, for all g € n(D). (Such
a map F exists due to Corollary 7.2.) Now we can define the desired automorphism

¢ as the principal action of F(g) on X, for each g € Y. (In other words: ¢ : x —
x - F(n(x)).) O
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ProrosiTion 8.5. Let m: X — Y be a principal bundle with noncompact structure group
G. Assume that there exists a nonconstant holomorphic function on Y. Then there
exists a tame discrete subset in X.

Proor. Let f be a nonconstant holomorphic function on Y and W = f(Y). Note that
W is an open domain in C and in particular Stein. Choose a sequence x, in X such
that f(m(x,)) is without accumulation points in W. Assume that p is an exhaustion
function on X and let £ : D — R* be a given map where D = {x, : n € N}. Since
G is noncompact and acting with closed orbits, we can find elements g, € G such
that p(x,g,) > {(x,). Recall that for every connected complex Lie group G, there
exists a surjective holomorphic map & : C¥ — G. Using this and the fact that f(x(D))
is discrete in W, it is clear that there exists a holomorphic map F : W — G with
F(f(t(x,))) = g, for all n e N. Now ¢ : x — x - F(f(n(x))) defines an automorphism
of X such that p(¢(x)) > £(x) for all x € D. Since ¢ : D — R* was arbitrary, we may
conclude that D is tame. O

9. Generic projections
9.1. Generalities.

Prorosition 9.1. Let V, W be finite-dimensional (real) Hilbert spaces, V # {0}, and
let m1:V — W be a linear map. Let K be a connected compact Lie group which
acts linearly and orthogonally on V. We assume that ker n contains no nontrivial
K-invariant vector subspace. Let u denote the Haar measure on K (normalized, that
is, W(K) = 1). Then, for every r,d > 0, there exists a number R > 0 such that

ke Kt Ikl <r} <6
forallv eV with||v|| > R.

Proor. There is no loss in generality in assuming that ||x(v)|| < ||v|| for all v € V.
Let S ={ve V ||| =1}. Note that § is compact. We define an auxiliary function
f:KxS§S - Ras

Sflk,v) = lim(k - vl.

Since K does not stabilize any nontrivial vector subspace of ker 7, it is clear that
YveS:dkeK: f(k,v)> 0.

Thus, {(k,v) : f(k,v) = 0} is a real-analytic subset of K X S not containing any of the
fibers of the projection pry : K X S — §. Consequently,

u(fkeK: f(k,v)=0) =0 9.1)

for every v € S. (Here we use the fact that nowhere-dense real-analytic subsets of K
are of Haar measure zero.)
Next we define
Q,r)=tkeK: f(k,v) <r}
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and
h(v, r) = p(Q(v, r))
for (v,r) € § X (0, 1]. Evidently, » — h(v, r) is a monotonically increasing function for
every fixed v.
On the other hand, ||z(v)|| < ||v|| for all v € V implies that

lm(kv) — (kw)|| < |lv—w|| VkeK,v,weV.

Thus, |f(k,v) — f(k,w)| < |lv—w| forall k € K, v,w € §. This in turn implies that

Q,r) cQw,r+¢€)

for v,w € § with |[|[v — w|| < €. From this,
h(v,r) <h(w,r+|lv=wl|) VYv,w,r. 9.2)

Next we define another auxiliary function g: (0, 1] — [0, 1]:

r— g(r) =suph(v,r).

ves

We claim that lim,_, g(r) = 0.

First we note that the limit lim,_,¢ g(r) exists, because g is monotonically increasing
and bounded from below: g > 0.

Define ¢ = lim,_,o g(r). Then there exists a sequence r, in (0, 1] with lim,,_,., 7, =0
and g(r,) > c for all n.

Now assume that ¢ > 0. Then the definition of g implies the existence of a sequence
v, in S with h(v,, r,) > ¢/2. Since S is compact, we may assume that v, is convergent:
lim,, 00 v, = V.

Due to inequality (9.2),

h(v, 1y + [[vn = VID) 2 A(Va, 1) > /2.

Since lim,,_,o (1, + ||v, — V||) = 0, o-additivity of the Haar measure now implies that
k€ K 2 f06) =0 = [ TY{k: £tk <7+l =) 2 /2> 0,

contradicting (9.1).

Therefore, the claim must hold, that is, lim,_,o g(r) = 0.

Now we can prove the statement of the proposition. Given r,§ > 0, we choose
p € (0, 1] such that g(p) < 6. Then we define R = r/p.

Let v € V with ||v|| > R and define vy = (v/|]v|]) € S. We observe that ||7(k(v))|| < 7 is
equivalent to ||w(k(vo)ll < (7/|VI])-

Now g(p) < ¢ implies that i(w, p) < ¢ for all w € §. Thus, h(vy, p) < 6, that is,

k€ K : |ln(k(wo))ll < p} < 6,

which is equivalent to
ptk € K [ln(k)Il < plvll} < 6.

This completes the proof, since p||v|| > pR = r. O
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RemMark 9.2. Instead of a compact real Lie group K with its Haar measure y we may
take an arbitrary connected real Lie group with an arbitrary probability measure of
Lebesgue measure class.

Prorosition 9.3. Let K be a Lie group acting on a manifold S and letn:S — Y be a
continuous map. Let p : S — R* be an exhaustion function and let T : Y — R* be an
arbitrary continuous function.

Assume that K is endowed with a probability measure u such that the following
property holds.

(x) For every r,0 > 0, there exists a number R > 0 such that

ke K : t(m(kx)) <r}<d

for all x € S with p(x) > R.
Then there exists a sequence R, > 0 such that for every sequence x, in S with
p(x,) > R, for all n we can find an element k € K such that t(n(kx,)) > n for all n € N.

Proor. Using (x), we may (for every n € N) choose R, > 0 such that
wk € K = 1(n(kx,)) < n} < 27D

for all x,, with p(x,,) > R,,.
Since ¥,en 27D = 1 < 1, the set

{k e K : 1(n(kx)) > nV¥n € N}

has positive measure (and is therefore nonempty) for every sequence x, in S with
p(x,) > Ry,. O

CoroLLARY 9.4. Choose R,, as above and let D = {x,, : n € N} be a discrete subset of
S for which p(x,) > R, for all n € N. Let Q denote the set of all k € K for which
restricts to a proper map on k(D), that is, for which nlyp) has finite fibers and maps to
a discrete subset of Y. Then K \ Q has measure zero.

Proor. By construction,
wlk € K : t(n(kx,)) < n} <270+,
Let Qy (for a given N € N) denote the set
{ke K : 1(n(kx,)) > nV¥n > N}.

We observe that r restricted to k(D) is proper for any k for which there exists a number
N such that k € Qp. By construction,

w(K \ Qy) < 27W*D,

This implies that
K\Qc[ K\ Q)
N

is a set of measure zero, because (K \ Q) < 2-™*D for all N € N. O
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9.2. Generic projections on semisimple complex Lie groups.

PrOPOSITION 9.5. Let S be a semisimple complex Lie group, T ~ (C*)? C S, and let K
be a maximal compact subgroup of S. Let  denote the projectionn: S — S/T. Then
there are finitely many regular functions f; on S /T such that:

(1) themap (fi,...,fs):S/T — C* =W is a proper embedding;

(2)  all functions of the form x — fi(n(xk)) (ke K,ie I ={1,...,s}) generate a finite-
dimensional vector subspace V of C[S];

(3) the natural map from S to V* which associates to each point p € S the evaluation
homomorphism f w— f(p) defines a proper finite morphism from S to V*;

(4)  the kernel of the natural map V* — W* contains no nontrivial K-invariant vector
subspace.

Proor. First we note that ¥ = S/T is an affine variety, because both S and T are
reductive. This yields property (1).

Now we define V as in (2). Finite dimensionality follows from standard results on
transformation groups.

We obtain a natural map from S to V* which associates to each point p € S its
evaluation map f — f(p).

We have to show (3). As a preparation, we consider Z = (;ex kTk™'. This is
an algebraic subgroup of S, obviously normalized by K and therefore normal in S.
Since S is semisimple, T ~ (C*)? cannot be normal in S. Hence, dim(Z) = 0 and
consequently Z is finite.

Let x,y € §. If f(n(xk)) = f(n(yk)) for all f € W, k € K, then necessarily n(xk) =
n(yk) for all k € K. This is equivalent to y~!x € kTk™". It follows that F(x) = F(y) for
all F € V if and only if y™'x € Z. Thus, S — V* is induced by an injective map from
S/Zto V.

We still have to check properness.

We recall that the base S /T is properly embedded into W*. Choose a point 4 € W*
which is in the image of S /T, that is, is the image of some sT and consider its preimage
in V*.

Taking note that all maps between S, S/T, V* and W* are S -equivariant, we have
to show that T-orbits in the fiber in V* over 4 € W* are closed.

Using theory of toric varieties, we know that if a T-orbit in V* is not closed, there
is a subgroup C* ~ Ty ¢ T with a nonclosed T-orbit.

However, each such T is contained in some SL,(C) ~ H C S. Hence, there exists
an element k € K such that conjugation by k induces the automorphism z — 1/z of
C* ~ Ty. It follows that the closure of a nontrivial Ty-orbit in V* is either the orbit itself
or isomorphic to P!. Since P!(C) as a compact Riemann surface cannot be embedded
in a complex vector space like V*, it follows that Ty-orbits are closed. Therefore,
T-orbits are closed and consequently the image of S in V* is closed. This verifies (3).

Finally, we have to show (4). Assume that C is such a K-invariant vector subspace
of the kernel of the map V* — W*.
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The linear form on V which is defined by an element ¢ € C must vanish on W,
because C is contained in the kernel. But K-invariance of C implies that ¢ must in
fact vanish on the smallest vector subspace of V which contains W and is K-invariant.
However, this is V itself and hence C = {0}. O

LeEmMA 9.6. Let S be a semisimple complex Lie group and Z its center. Lett:S — S/Z
denote the natural projection. Let D C S be a tame discrete subset. Let R, be a
sequence of positive real numbers. Let p : S /Z — R* be an exhaustion function.

Then there exists a biholomorphic automorphism ¢ of S such that:

(1) 7 isinjective on ¢(D);
(2) the condition #{x € D : p(¢(x)) < R,} < n holds for all n € N.

Proor. First note that 7(g) = 7(h) if and only if g~'h € Z.

We choose a one-dimensional unipotent subgroup U of S and fix an isomorphism
of complex Lie groups ¢ : (C,+) = U. Letr: S — §/U=Y be the natural projection.
The quotient S/U is a quasi-affine variety, because U is unipotent. In particular,
Y = §/U admits an injective holomorphic map into some C”. As a consequence,
there is a finite-dimensional complex vector space V of holomorphic functions on Y
separating the points. Let B be the unit ball in V for some (arbitrary) norm on V. Note
that B is relatively compact and open.

To each F € V we may associate a holomorphic map from S to U via g +—
{(F(m(g))). Using the action on U by right multiplication on S, we obtain a way
to associate to each element F € V a biholomorphic self-map ®p(g) = g - {(F(n(g))).
(The automorphisms constructed in this way are in some sense analogous to ‘shears’
on C" or ‘replicas’ on flexible varieties.)

Observe that 7(g - {(F(n(g)))) = n(g). Hence, ¢_p o ¢ =idg. This confirms that
¢r is indeed an automorphism.

Since p is an exhaustion function, K, = {x € S : p(x) < r} is compact for all R > 0.
As a consequence, we may define

Rn =  max  p(¢-r(x)).
FeBp(0)<R,

Observe that p(p) > R, implies that p(¢r(p)) > R, for all F € B.
Recall that D is assumed to be tame. By definition of tameness, there exists a
biholomorphic automorphism a of S such that

#HpeD:pa(p) <R, <n VYneN.
Hence, we may (replacing D by a(D)) assume that
#HpeD:p(p)<R,)<n VneN.
For every g, h € D, we define a subset €, ; C V as follows:

Qi ={F €V:(pr() ' dr(h) ¢ Z).
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The condition

(0r(©) 'or(h) ¢ Z

is equivalent to
g 'h ¢ F(QZF(h).

Since Z is finite and the functions F' separate the points on S/U, it is clear that Qg
is a dense open subset of V. As the Fréchet space V has the Baire property, it follows

that - (ﬂ m Qgﬁ)

g€D heD

is again dense and in particular not empty. Choose an element F € W and define
D’ = ¢(D). By construction, p(p) > R, (for any p € S, n € N) implies that p(®r(p)) >
R,. Hence, p(®r(p)) < R, implies that p(p) <R, for any ne N, pe X, F € B and
consequently

#HipeD :p(p)<R)<n)<#{peD:p(p)<R,)<n)<n VYneN
for every n € N. This implies the statement. O

ProposiTiON 9.7. Let S be a connected semisimple complex Lie group with center Z
and exhaustion function p : S — R*. Let K be a maximal compact subgroup with
Haar measure u. Let T be a ‘maximal torus’ of S in the sense of algebraic groups,
that is, a maximal connected reductive commutative complex Lie subgroup of S .

For every discrete subset D C S, let Qp denote the set of all k € K for which the
following holds:

(1)  the natural projection map my from S to S/kTk™" restricted to D is proper, that
is, has discrete image and finite fibers,
(2) forevery x,y € D, we have mi(x) # mi(y) unless x”'y € Z.

Then for every tame discrete set D there is a biholomorphic self-map ¢ of S such
that H(K \ Q¢(D)) =0.

Moreover, there exists a sequence R, such that every discrete subset D C S is
tame if #{p € D : p(p) < R,} < n, that is, R, is a ‘threshold sequence’ as defined in
Definition 4.9.

Proor. We use Proposition 9.5 to obtain an embedding « : S/T — W*, a proper map
B:S — V* and a linear map L : V* — W*. Conjugation by K on S induces a natural
K-action on V*, because the dual space V of V* consists of functions on S'.

Due to property (4) of Proposition 9.5, we may invoke Proposition 9.1 to obtain the
following statement.

For every o,r > 0, there exists a number R > 0 such that

IMI>R = u(keK:[[LkW)|<r)<s VYveV:

Next we want to apply Proposition 9.3 with Y = W*.
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Since S is proper, p’(p) = ||B(p)|| defines an exhaustion function on §. We observe
that for any R > 0, there exists a number R’ > 0 such that p(p) > R’ implies that
o’ (p) > R.

Therefore, Proposition 9.3 combined with its corollary implies that there is a
sequence r,, of positive numbers such that we have a conull set Q}, for which (1) holds
provided #{p € D : p(p) < r,} < n for all n. Since D is required to be tame, there is no
loss in generality in assuming the condition #{p € D : p(p) < r,} < n for all n.

We still have to discuss property (2) of Qp. Let p, g € D and consider

Cpq =1k e K :m(p) = m(q)}.
If C,4 = K, then ﬂ
-1 -1
k

Thus, C,, is a nowhere-dense real-analytic subset of K if pq~' ¢ Z. This proves the
statement on (p, because nowhere-dense real-analytic subsets are of Haar measure
zero and there are only countably many choices for (p, g) € D X D.

Finally, the statement on the threshold sequence is a direct consequence. O

ProrosiTiON 9.8. Let S be a semisimple complex Lie group with maximal torus T and
a complex-analytic subset E C S. Let D C S be a tame discrete subset. Then there
exists an automorphism ¢ of S such that for both quotients of S by T, the quotient by
the right action as well as the quotient by the left action, the projection map restricts
to an injective map from S to a discrete subset of the respective quotient manifold. In
addition, ¢ may be chosen such that (D) N E = {}.

Proor. Let R, be a threshold sequence and let Z denote the center of S. Due to
Lemma 9.6, we may without loss of generality assume that the natural projection
7:8 — S/Z is injective on D. Now let Qp be defined as in Proposition 9.7.

Define v : S — S as a(g) = g' and D’ = a(D).

Due to Proposition 9.7, we know that K \ Qp and K \ Qp are sets of Haar measure
Zero.

Now define

U=KxK\| Jik.h) e KxK:kghe E).
geD

For each dg € D, the set {(k,h) € K X K : kgh € E} is a nowhere-dense real-analytic
subset and therefore a set of Haar measure zero. Since D is countable, it follows that
(K x K)\ U is a set of Haar measure zero. We observe that

M=QpxQp)NU

is a conull set and therefore nonempty. Now we choose (k,h) € M and define
¢: g kgh. O

ProposiTioN 9.9. Every semisimple complex Lie group S admits a nontame discrete
subset.

https://doi.org/10.1017/51446788718000241 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788718000241

[16] Tame discrete subsets in Stein manifolds 125

Proor. The group S is Stein as a complex manifold. Due to [4], there exists a discrete
subset Dy C S such that Autp(S \ Dy) = {id}. On the other hand, if D is a tame discrete
subset in S, then there exists a biholomorphic self-map ¢ of S such that 7(¢(D)) is
discrete in S /T, where T is a maximal torus and 7 : S — §/T denotes the natural
projection. But this implies that S admits many holomorphic automorphisms fixing
each element of D: we may just take any holomorphic map f : S/T — T such that
f(g) = er for all g € n(¢(D)) and define

x> ¢ () - fr(B(0)))).
Thus, Autp(S \ Dy) = {id} prevents Dy from being tame. O

10. The case SL,(C)

Dermnition 10.1. A sequence A(k) in S = SL,,(C) is called well-placed if the matrix
coefficients A; j(k) of the elements A(k) fulfill the following two conditions:

(1) A;jk)#0forallkeN,1<i,j<mn
(2) forevery2 < j<nandevery 1 <h <n, the sequences ay = |A ,(k)/A;;(k)| and
B = |Ap,1(k)/Ap, (k)| are unbounded and strictly increasing.

Prorosition 10.2. If a sequence A(k) is well-placed, then D = {A(k) : k € N} is a tame
discrete subset of S and both natural projectionsn: S — S/T andn’ : S — T\S map
D injectively onto a discrete subset of the respective quotient manifold.

Proor. The torus 7T is the subgroup of diagonal matrices. Its action by left
multiplication on S may be identified with (C*)""! acting on the coefficients A; ; of
elements A of SL,(C) via Ajx — Ajrdk—; for k>2 and A;; — Aj,IHk/l,:l. We may
identify S /T with (P"~!(C))" \ Z, where the projection map : § — S /T is realized by
projecting the columns of the matrix A to their respective equivalence classes in P"(C)
and where the ‘bad locus’ Z consists of those elements ([v;], ..., [v,]) € " (C))"
for which vy, ..., v, are not linearly independent. The assumption of A(k) being well-
placed implies that

lim 7(A(0) = ([el..... [e])

with e = (1,0...,0). Therefore, lim;_,. m(A(k)) € Z, that is, {n(A(k)): k € N} is
discrete in S/T. Injectivity follows from the requirement that any sequence k —
|A;1(k)/Ajx(k)| is strictly increasing. Tameness is due to Proposition 8.4, taking into
account that S /T is Stein due to the theorem of Matsushima. The statement for the left
quotient is derived in the same way. O

Lemma 10.3. Let A(k) be a well-placed sequence A(k). Assume that A;(k) € C* are
given for 1 <i < n, k € N such that:

(D) =14kl forall je€{2,...,n}, ke N;
(2) |4k + DAk = | (k)Aj(k + D) forall j€{2,...,n}, k€ N;
(3) I, Aik)=1forall ke N.

Define B; j(k) = A;A; j(k). Then B(k) is well-placed and equivalent to A(k).

https://doi.org/10.1017/51446788718000241 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788718000241

126 J. Winkelmann [17]

Proor. The conditions on the 4;(k) ensure that B(k) is well-placed. Proposition 10.2
implies that the sequence A(k) is mapped injectively onto a discrete subset of S/T by
the natural projection 7 : S — §/T. Now the A;(k) define a map g from D = {A(k) :
k € N} to T such that B(k) = A(k) - g(A(k)) for all k € N. Hence, B(k) is equivalent to
A(k). O

Prorosition 10.4. Let D(k) be a tame sequence in S = SL,(C). Then there is a
sequence A(k) in S such that:

(1) D(k) and A(k) are equivalent;
(2)  A(k) is well-placed.

Proor. Due to Proposition 9.8, we may assume that the projection map 7 : S — S/T
restricts to an injective map from D onto a discrete subset of S/7T. Moreover, we may
assume that all the matrix coeflicients A; j(k) of every element A(k) are nonzero, again
by Proposition 9.8. (Noting that the set E of all A € SL,,(C) with at least one matrix
coeflicient being zero is a complex analytic subset of §.) The torus 7' is noncompact
and S/T is Stein. Thus, for every sequence {(k) € T, we can find an automorphism ¢
of the complex manifold S such that ¢(A(k)) = A(k) - {(k). From this we deduce the
assertion. O

Prorosition 10.5. Let A(k), B(k) be well-placed sequences in S = SL,(C). Let 7:
SL,(C) = C"\ {(0,...,0)} be the map which associates to each matrix its first column
vector. Then there exist well-placed sequences C(k), D(k) in S such that:

(1) A and C are equivalent;

(2) B and D are equivalent;

(3) 7(C(k)) = 1(D(k)) for all k € N;
4) {t(Ck)): k € N} is discrete in C".

Proor. We want to use Lemma 10.3. For this purpose we define recursively sequences
Aj(k) and (k) in (C*)" such that:

(1) |A;(k)l <1 and |u;(k)| < 1forall2 < j<n;

2) 1B <Atk =1/ Ak =Dl for2 < j<m;

(3) (R < Jujk = D/ (k = Dl for 2 < j < n;

@) (04,16 = pj(k)B;y for2 < j<m;

(&) H’;zl/lj(k) =1= H;Zl,uj(k).

Next we choose recursively sequences /~l.,-(k) and fi;(k) in (C*)" such that:
(D I;lj(k)l <1land|ij(k)| <1forall2 < j<n;

2) k) <Atk — D/ (k= Dlfor2 < j<m

(3) ;I < lgjtk = D)/ (k = Dl for2 < j < n;

@ LRAERAL (k) = (o (k)B i
(5) M k) = 1 =117_, (k).
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Now we define sequences C’(k), C(k) as follows:

(1) €k = (kA j(k);
2)  Ciak) = B(k)C’ (k) = (k)4 (k)A ().

Lemma 10.3 now first implies that A(k) and C’(k) are equivalent well-placed
sequences and then it implies that C(k) and C’ (k) are equivalent well-placed sequences.
Thus, A(k) and C(k) are equivalent. Similarly, one verifies that for

D (k) = A (k)A;(k)By, (k)
the sequences B(k) and D(k) are equivalent. O
ProposiTioN 10.6. Any two tame sequences in S = SL,(C) are equivalent.

Proor. Let A(k), B(k) be two tame sequences. Each tame sequence is equivalent to
a well-placed sequence (Proposition 10.4). Thus, we may assume that both A(k) and
B(k) are well-placed. Due to Proposition 10.5, we may furthermore assume that for
every k the first columns of the matrices A(k) and B(k) coincide. The map projecting
each matrix A to its first column can be describedas 7: S — §/0 ~ C"\ {(0,...,0)}.
By Proposition 10.5, we know that 7(A(k)) = 7(B(k)) constitutes a sequence in S/Q
which is discrete in C". For each k € N, let g(k) € Q denote the element such that
A(k) = B(k) - g(k). Now let F : C" — Q be a holomorphic map such that F(r(A(k))) =
g(k) for all ke N. Then F defines an automorphism ¢ of the manifold S given
by x — x: F(7(x)). Via this automorphism ¢, the two sequences A(k) and B(k) are
equivalent. O

CoroLLARY 10.7. Let D be a tame discrete subset of S = SL,(C). Then every
permutation of D extends to an automorphism of the complex manifold S .

CororLARY 10.8. Let S = SL,(C), let Q be a Stein open subset with Q # S and let D
be a tame discrete subset of S. Then there exists a holomorphic automorphism ¢ of S
such that ¢(Q) N D = {}.

Proor. First we observe that S \ Q is unbounded due to Hartogs’ ‘Kugelsatz’,
because Q is assumed to be Stein. Furthermore, S admits a threshold sequence
(cf. Proposition 9.7). Hence, Proposition 4.10 implies that S admits a tame discrete
subset D’ with D’ ¢ S \ Q. Due to Proposition 10.6, the discrete sets D and D’
are equivalent. In particular, there is a biholomorphic self-map ¢ of S with ¢(D) C
S\Q. m]

Prorosition 10.9. Let D be a discrete subset of S = SL,(C). Let n: S — C" denote
the linear projection of matrices in S C Mat(n X n, C) onto its first column. Then D is
tame if 7t|p has finite fibers and its image is a discrete subset of C".

CororLAry 10.10. Every discrete subset D of S = SL,,(C) can be realized as the union
of n tame discrete subsets.
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Proor. Let m; denote the projection onto the kth column and define
Dy ={x € D : |lme(oll = [l Coll ¥ 7}
By construction,

1
[l Ol = ;IIXII Vx € Dy Vk.

Since D is discrete, {x € D : ||x|]| < R} is finite for all R > 0. Hence, {x € Dy : ||m(x)|| <
(1/n)R} is finite for all R > 0. It follows that m;(Dy) is discrete and that mi|p, has finite
fibers. Hence, each Dy is tame due to Proposition 8.4. O

CororLARY 10.11. Let T be a torus (that is, a commutative reductive complex Lie
subgroup) of SL,(C) and let D be a discrete subset of T. Then D is a tame discrete
subset in X = SL,(C).

Proor. Every torus is contained in a maximal torus and all the maximal tori are
conjugate. Hence, we may assume that 7 is the group of diagonal n X n matrices
with determinant 1.

Let A denote the matrix given as

1
A=t -,
1 - 1
Then, for each diagonal matrix M with coefficients A, ..., 4,),

M -A) =, Ay .., ) €Z={veC" : Ty =1}.

Thus, ¢ : M — M - A defines a biholomorphic self-map of X which maps T
biholomorphically onto the closed complex-analytic subset Z of C". Hence, ¥(D)
(and therefore also D) is tame due to the proposition. O

11. Special results for SL,(C)

11.1. SL,(Z[i]) is tame. We will see that SL,(Z), SL,(Z[i]) and more generally
SL,(Ok) for every imaginary quadratic number field K are tame discrete subsets in
SL,(C).

We will need some kind of ‘overshears’ on SL;(C).

Lemma 11.1. For every holomorphic function A : C* — C* with A0, w) = 1, for every
w € C there is a biholomorphic automorphism ¢, of the complex manifold SL,(C) such

that
fa c a cA(a,b)
ooly =6 5"
with
, 1 +bcA(a,b)
d=———7—""
a
ifa+0.
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If we choose a global coordinate for a fiber F, = n~'(v) = C, the restriction of ¢,
to F, assumes the form t — A(v)t + ¢ (with ¢ depending on the choice of the global
coordinate).

Proor. First note that

det (a cA(a,b)

b J ) =ad’ - bcA(a,b)

= a(—l * bcj(a, b)) — bcA(a, b)

=1+ bcA(a,b) — bcA(a,b) =1
(whenever a # 0).
Next we claim that d’ defined as above has a removable singularity along a = 0.

Indeed, 1 + bcA(a, b) is divisible by a: the identity A(0, w) = 1 for all w € C combined
with ad — bc = 1 implies that

1+bcA0,b)=1+bc=ad=0
for every
a b
(c d) € SL,(0)
witha = 0. o

ProrosiTioN 11.2. Let mr; : SLo(C) — C? denote the projection onto the ith column. Let
T be a discrete subset of SLy(C) such that m() is a discrete subset of C*. Then T is
tame.

Proor. Define H = {(z1,22) € C* : 2120 = 0}. Observe that m;(AB) = A - m;(B) for
A, B € SLy(C). For each y €T, the set U, = {A : An(y) ¢ H} is Zariski open, because
m1(T) € C?\ {(0,0)}. Since I"is countable, (yer Uy is not empty. Thus, by replacing I'
with {Ay : v € T'} for a suitably chosen A, we may assume that A = 7 (I') N H is empty.
We fix a bijection @ : N — A.

The fibers of &r; are the orbits of the principal right action given as

r-(2 ) (@ . I t\ (a c+at
“\b d b d) \0 1) \b d+bt)
Thus, there is a natural distance function on each m;-fiber given as d(A, B) = |t if

B = R,(A). Using this distance function, choose numbers p; such that nl‘l(a(k)) \T
contains a p;-ball. Next we choose a map Ay : HU A — C such that Ag|y = 1 and

|A(a()lorlla ()l >k Yk € N.

Using Lemma 11.1, we may from now on assume that pg||a(k)|| > k. Observe that for
any v, A,B € ﬂl‘l(v) we have ||m,(A) — m(B)|| = ||vlld(A, B).
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From this, we may deduce that there exists a sequence #; such that
Ry, (T N7y (@) N (w e C 2wl <&} = ().

Moreover, choosing #; sufficiently generic, we may assume that after applying an
automorphism ¢ extending the R,, the projection map 7, : I' — C2 becomes injective.
Then the assertion follows from Proposition 10. O

CororLLary 11.3. For K = Q or an imaginary quadratic number field K, let T =
SL,(Ok), where Ok denotes the ring of algebraic integers in K. Then T is tame.

Proor. If 7r; denotes the projection onto the first column, then 711(I') € O x Ox C C?
and O is discrete in C. O

In particular, SL,(Z[i]) is tame.

12. Miscellenea

PropositioN 12.1. Let G = SL,,(C) with a tame infinite discrete subset D.
Then the automorphism group Auto(G \ D) has uncountably many connected
components (with respect to the compact-open topology).

Proor. Since D is of codimension at least two in G, every holomorphic function on
G \ D extends to G. Now G is Stein and therefore may be realized as a closed complex
submanifold in some CV. For every holomorphic automorphism ¢ of G \ D, both ¢
and its inverse ¢! extend as holomorphic maps F (respectively 1) with values in
C" through D. Since G \ D is dense in G, we have F(G) C G and F{(G) C G. Now
F o F| and F o F equal the identity map on G \ D and therefore also on G. Hence,
F : G — G is a biholomorphic self-map of G extending ¢ € Autp(G \ D). Thus, every
holomorphic automorphism of G \ D induces a permutation of D. Conversely, every
permutation of D extends to a holomorphic automorphism. Let p, g € D. We choose a
compact subset K of G \ D and a Stein open subset Q2 C G such that

pekcQ

(where K denotes the holomorphically convex hull of K in G) and such that Q N D =
{p}. Let ¢ be an automorphism of G \ D (respectively its extension to G) with

$o(p) = q. Now
W ={¢ € Auto(G \ D) : ¢(K) C ¢po(Q)}

is open with respect to the compact-open topology on Autp(G \ D). For every
¢ € W, the extension to G (by abuse of notation again denoted by ¢) has the property
d(K) C ¢p(€2), because ¢o(Q2) is Stein and ¢(K) C ¢o(L2). Since

¢(p) € D N () = ¢o(€2 N D) = {¢o(p)},
we obtain that ¢(p) = ¢ for all ¢ € W. It follows that

{¢ € Auto(G \ D) : ¢(p) = g}
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is open in Auto(G \ D). This in turn implies that we have a continuous surjective map
from Autp(G \ D) to Perm(D), where Perm(D) is endowed with a totally disconnected
topology, namely the topology which has

Wp,q = {¢ : ¢(P) = q}

as a basis of topology. Because Perm(D) is uncountable for an infinite countable set
D, the assertion follows. O

It is easily verified that a discrete subset D in C" is tame if and only if there is a
biholomorphic self-map  of C" such that /(D) is contained in a complex line. The
complex lines through the origin in C” are precisely the one-dimensional connected
complex Lie subgroups of the additive group (C", +). Below we present a statement in
the same spirit for semisimple complex Lie groups.

Prorosition 12.2. An infinite discrete subset of S = SL,(C) is tame if and only
if there exist a connected one-dimensional complex algebraic subgroup A and an
automorphism of the complex manifold S such that (D) C A.

Proor. Since A is unbounded, it contains a tame discrete subset D’ (Propositions 9.7
and 4.10). This proves one direction, because any two tame discrete subsets of S are
equivalent (Proposition 10.6).

For the opposite direction, let D C A be a discrete subset.

If A is reductive, that is, if A ~ C*, then D is tame due to Corollary 10.11.

It remains to discuss the case where A ~ C. Let p; : § — C" denote the map which
associates to each matrix its kth column. Choose a k such that py is not constant on A.
Then p; : A ~ C — C" is a nonconstant algebraic morphism. Note that every algebraic
morphism from C to C”" is given by polynomials and therefore is a proper map. Hence,
D is tame due to Proposition 10. O

13. Some open questions

Is every discrete subgroup in a Stein complex Lie group tame?
To what extent do our results for SL,(C) extend to arbitrary Stein complex
Lie groups and, more generally, to arbitrary homogeneous manifolds, perhaps
presuming ‘flexibility’ or a ‘density property’?

e Does every noncompact complex manifold admit a nontame infinite discrete
subset?

Instead of considering the full automorphism group, one may also discuss certain

subgroups, for example the subgroup preserving some volume form.
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