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Abstract

Let \jr be a positive function defined near the origin such that lim,^0+ tyU) = 0. We consider
the operator Tzf, defined as the principal value of the convolution of a function / and a kernel
K(t) = eiYU)t~z/f(.t)l~z, where z is a complex number, 0 < Re(z) < 1, 0 < t < 1 and y is a
real function. Assuming certain regularity conditions on if and y and certain relations between i/f and y
we show that Te is a bounded operator on Z/(R) for 1/p = (1 +0)/2 andO < 6 < 1, and T\ is bounded
from//'(IR)toZ,l(IR).

1991 Mathematics subject classification (Amer. Math. Soc): primary 42A45, 42A85, 43A32, 44A05,
44A35.

1. Introduction

Consider the following operator, defined for functions in ( ^

= Km J e"

where a > 0 and ^ > 1. Hirschman studied this operator and proved the following

theorem in [2].

THEOREM 1.1. Let a > 0 and fi > 1. Whenever a + 2 > 20 the following

holds:

(i) Tap extends to a bounded operator on L2(IR).

(ii) If \l/2 — \/p\ < 1/2 — (f3 — \)/a then Tap extends to a bounded operator on
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[2] A family of strongly singular operators 59

(iii) If 11/2 — \/p\ > 1/2 — (fl — \)/a then Tap is not a bounded operator on

Fefferman and Stein considered the case ) 1/2 -\/p\ = 1/2 - (£ - \)/a in [1].
Their results complete Theorem 1.1.

THEOREM 1.2. Let a > 0 and £ > 1 such that a + 2 > 2/?. If

1 1 1 p-1
2~~p ~2 a~

then Tap extends to a bounded operator on Lp (K), for 1 < p < oo.

In the present work we are interested in studying the operator when the singularity
at zero is worse than a power. An example would be

(1) Tf(x) = lim f eiyWf(x - t)—dt,

where y is a real-valued function.
To compensate for the singularity at the origin, the phase function y should approach

infinity fast as the argument tends to zero. For/ in C£°(R) we consider the operator

(2) Tf(x) = lim f j

where lim,_,.o+ ^ ( 0 = 0 and lim,_o+ * ' (0 = 0.
The first thing to do is to understand under what conditions T is a bounded operator

onL2(K).
When 4> approaches zero faster than a power, y has to approach infinity faster than

the reciprocal of a power. It is clear that when 4> is supported in the interval [0, 1],
the behavior of y near zero should be dictated by that of 4>.

In the example given by equation (1) it turns out that if y is such that y'(t) = e2/t,
for example y(t) = - f* e2/sds, then T is bounded on L2(R).

If we now choose y so that y"(t) — t2b~2e2/l, for b > 0, T will not be bounded on

For this choice of <t> and y we have that

1
lim = lim t b = oo.
/-*<>->• |*(r)|VI/"(OI '-0*

Assuming some regularity conditions on y and <t> we will show that if

1
(3)
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then T is bounded on L2(
On the other hand if

(4) = oo

then T will not be bounded on L2(K).
Notice that when 4>(f) = tp and y(t) = t~a the above statements imply that Tap

is bounded on L2(K) only when a/2 + 1 — /3 > 0, which is Hirschman's result for
p=2.

We now turn our attention to the study of T on Z.1 (IR.). The only way T can
be bounded on L'(R) is when the function l/4> is integrable near zero. Since
l/<t>(r) = t~l just fails to be integrable near zero, there is some hope that

(5) Tf(x) = lim f eiY(t'/(-of,
is a bounded operator from //'(IR) to L'(IR), due to the oscillatory factor e'yU).

Fefferman and Stein proved this statement when y is the reciprocal of a power
(see [1]). Theorem 1.2 follows as a corollary.

When y approaches zero faster than the reciprocal of a power we will also have
that T, as defined in (5), is a bounded operator from Hl(R) to L'(IR).

The above discussion leads us to consider a family of operators

(6)

where z = -

= lim f e' y^flr — -dt.

ib,0<a<l and \fr is a positive function that satisfies

1

In this setting one of our tasks is to prove that To is a bounded operator on L2(K) and
T{ is a bounded operator from H' (K) to L' (R). To do so we will impose the following
regularity conditions on y and \fr.

1.1. Assumptions and results (a.l) We will assume that y and y' are monotone,
guaranteeing the existence of the inverse of y', denoted y'~l. Without loss of generality
we will take y'{t) > 0, with y' decreasing on (0, 1].

(a.2) As discussed before, for the operator to be bounded on L2(R) we will need to
assume 1/^(0 5 C*/\y"(t)\, for t > 0 close to zero and C a constant. However to
prove that the operator in bounded from //'(IR) to L'(K) we will assume the stronger
condition

(7)
VKO

1
- 2

Y'"(t)
y"(t)
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for t > 0 close to zero and C a constant. We will take ^ e C2[0, 1] and y € C3(0,1].
The fact that (7) implies that 1/^(0 < <Vly"(0l will be proved below.
(a.3) Several growth conditions on y" and y' will be assumed. One of these is that

y" is to be roughly constant where y' 'doubles'. We write that as follows:

\y"{y'-\2s))\ < C\y"(y'-\s))\,

where C is a constant bigger than one independent of 5.
(a.4) We will assume that there exists a constant A and € > 0 with A > 1 + e such

that

for t > 0 close to zero.
(a.5) The last condition on the growth of y is the following. There exists a k such

that 1/2 < A. < 1, and a constant C such that

2\\Y"(0\ < Cy'(t)

for / > 0 close to zero.
(a.6) Finally we will assume that xjr, rp-' and y" are monotone.
Unless otherwise noted, we will assume throughout that ijr and y satisfy assump-

tions (a.l) through (a.6) in Theorem 1.3 through Theorem 1.5 below.
Examples: y'(t) = ei/l, ee'", r " , e(m/l))° for a > 1 satisfy (a.l) through (a.6).
Let us prove now that inequality (7) implies that 1/^(0 5 C*/\y"(t)\. For

0 < t < 1 integrate both sides of (7) from Mo 1.

1

y"(s)
ds.

Since \fr and y" are monotone we get

and so 1/^(0 < CVIy"(0l-
Assuming that the limit in (6) exists we now state the results on Tz. If z = 0, for

0 < 0 < 1, we have

,iy(')tTef(x)= lim f e*

The main theorem for Tg is the following.

- 0
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THEOREM 1.3. (i) Te is a bounded operator on L"(1) for \/p = (1 + 9)/2
andO < 9 < 1, with \\ Tg\\Lp^.Lp < Ae where AB depends only on 9.

(ii) 7, is a bounded operator from / / ' (K) to L\R).

Theorem 1.3 will be obtained from the two following results.

THEOREM 1.4. Tib extends to a bounded operator on L2(W) with || Tib\\Li^Li < Ab,
where Ab= O(\b\ + 1).

THEOREM 1.5. Tl+ib is a bounded operator from //'(0&) to L'(K) with \\ Tl+ib\\H^Li
< Ab, where Ab = O(\b\ + 1).

Theorem 1.1 says that Taf) will not be bounded on L2(R) when 2 + a < 2/3. This
result is generalized as follows.

THEOREM 1.6. Suppose that y, y', y" and \jr are monotone and that

Also suppose there is a constant A > 1 such that

y'i\y\-\2s))<Ay'{\y\-x{s))

for all large s > 0. Then i/lim,_,.o+ l/(lVr(OIVIy"(Ol) = °o, To is not bounded on
L2(R).

In what follows C will denote a constant that may change from line to line.

1.2. Existence Let / be a function in C^CR). To see that under assumptions (a.l)
through (a.6) the limit in (6) exists, we integrate by parts. For 0 < e' < e we write

y'(t)

Let z = a + ib with 0 < a < 1. Then

- O k ^ |/(Jc-€)|g-a

) 1 " '
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Since lim,_,.o+ ^ ' (0 = 0' w e n a v e m a t f°r ' close to zero, yjr(t) < t. Using this and
the fact that \/f(t) < C^/\y"(t)\ we have that

Assumption (a.5) implies that limf_>0+ = 0. Hence

lim | I,
€- •0+

= 0.

Let's now estimate IIe.

| |

As before we have that lim,_>0+ f ~"/(Y'(.€)Vr (O1") = 0 aRd hence

lim |n«, | = 0.
£->0+

Since 1/^(0 < C*J\y"(t)\ we see that

111*21 < max | / ( * - Ollzl f * ." ' ,

< Cmax |/(JC - t)\\z\
Y \

dt.

Since lim,_>0+ y"(O/y'(O2 = 0. we have that l/y'(r) < Ct, for t small. Using
this together with assumption (a.5), ->J\y"it)\ < Cy'x(t) for some 1/2 < k < 1, and

< t we see that

| IIf21 < Cmax \f(x - t)\\z\ / y'(t)x-lrldt

< Cmax\f(x-t)\\z\ / t~kdt.

Hence

lim | II(21 = 0|
€ - • 0 +
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In a similar way we have

( |y"(OI3/2

If k' is such that y'"'(2*'+1) < e < y'~l(2k') then we see that

Y'it) y'(

oo

< Cmax |/ (x — f)| y"](2*)x"

As € -*• 0 + , &' —• oo and X — 1 < 0 hence we can conclude that

lim | IIe31 = 0.
£-»0+

To bound IIe4 just notice that

ff 1 h / / m
111*4 I < Cmax \f(x- Ollz - 1 | / —o<«<i yf, y'('(0 \

After an integration by parts, methods used before show that

lim | IIf31 = 0.

This shows that the limit in (6) exists.

2. Preliminaries

Let 0 < e < 1, and define

so that for / in C~(K) we have that TJ(x) = lim€_>0+ TeJ(x). Let K(z be such
that T(Zf(x) = K(l *f(x). To prove the L2-boundedness of Tib as well as the
L'-boundedness of Ti+ib on //'(K) we need some estimations of K(Jb and KfA+ib,
respectively. We devote this section to the proof of such estimates, which are contained
in the following theorem.
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[8] A family of strongly singular operators

THEOREM 2.1. Ifz = a + ib and 0 < a < 1 then

65

w large, and

\b\)

otherwise.

We start with a basic result on oscillatory integrals due to van der Corput.

LEMMA 2.1. Suppose that <j> is real-valued and smooth on (a,b), and that
10*0)1 > A. > 0 for all t e (a, b). Then

J a

L —I/A

holds when:

(i) k>2;or
(ii) k = 1 and(j>'{t) is monotonic.

C* depends only on k.

The proof of Lemma 2.1 can be found in [4].
We now state some propositions needed to prove Theorem 2.1.

PROPOSITION 2.1. is large, 0 < e < y'~\\%\), andO < a < 1

7. *

where C is a constant independent of\%\ and€.

P R O P O S I T I O N 2.2. If\%\ is large andO <a<l then

1 /"' n^'(t)\ra r'-fl \ . C

w/iere C is a constant independent o/|£|.

Before we proceed to the proof of these propositions the following remarks are in
order.
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REMARKS. (1) Given u < v let G(t) = j'ue
i(y{s)-^]ds for u < t < v. Then

G'(t) = e'W>-*'>. If p(s) = y(s) - $s then for"any u < s < t, \p"(s)\ = \y"(s)\ >
\y"(t)\. Hence by Lemma 2.1 we have that \G(t)\ < C/J\y"(t)\.
(2) Since lim,_>o+ d(\/y'(t))/dt = 0, for t > 0 close to zero l/y'(t) < Ct.
(3) Since y\x) > Ay'((l + e)x) for x small we have that l/(y'~l(Ak+l\%\)) <
(1 + e)/(y'~1(A*|^|)), for |^| large and k any positive integer.
(4) For 0 < a < 1 and t small we have that \y"{t)\a/2 < Cy'(t)ak < Cy^~HX~a)(t).

Hence \y"{y'-\\H\W/2 < C|£|1^<1-<» for |^| large.
(5) If t is small then \/t < y'{t). Hence if |£| is large we must have that

(6) For |?| large, l/(^(y'~'(l?l))) < C|§|, since \/f{t) < C^WWl < Cy'(t).
(7) There exists a constant C such that for t > 0 close to zero, \/t < C\y"(t)\/y'(t).

Remark 7 is a consequence of assumption (a.4):

/

(l+<0a

-y"(

Since

we have that

ea a \ A J e a A

which is Remark 7.
Let us prove the propositions.

PROOF OF PROPOSITION 2.1. Since \/f{t) < CVIy"(OI < Cy'{t)k we see that

/

Y t-\-a ~ / • ) ' ( A | f | ) f _ l - adt CJ

since by Remark 3 we have that ln (y'~l(Ak\^\)/y'-i(Ak+11^|)) < ln(l + e).
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Hence iterating Remark 3 k times we see that

"/"'(Ifl) t-l-a IfclX(l-a)

67

f {y'-\m))a\H\U

The last inequality is due to Remark 4 and the facts that 1 — A. > 0 and 1 + e < A.
Using assumption (a.2) we have that

I s-'M»r
a\r«)\

dt<cT
" A*\i;\ Jy'-\Ak*^l

dt

In I

Using assumption (a. 3) we see that there is a constant C independent of 5 so that

Y"(Y' (AS)) < C

and hence

As before we have that

and hence we have proved that

ri-a ra\*'(t)\

-

D

PROOF OF PROPOSITION 2.2. Since \jt is monotone and 1/VKO < CJ\y"(t)\ we
have that

i
-\-a

nt)2~a ~ \H\
In
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since

\%\ ~ m
if | | | is large.

Similarly

l-a

— In

Hence we have that

J_ /" (\f'(t)«r+*^UU<
(y/\Y"(Y'-

n

We can now proceed to the proof of Theorem 2.1.

PROOF OF THEOREM 2.1. We need to estimate

where z = a + ib. In order to take advantage of the behavior of y near zero we would
like to do an integration by parts by writing in the notation of Remark 1

and then integrate by parts.

Case I: £ is small so that \y'(t) — £| > Cy'(t), for some constant C.

For e < t < 1 we write G(t) = / / ei(YU)Ss)ds. Since \p'(s)\ = \y'(s) - £| >
Cy'(s), using van der Corput's Lemma we see that \G(t)\ < C/y'(t).
JWe now have K^z(^) = f* G'(t)ra-ib /\/r(ty-a-ibdt. We integrate by parts to get

< | I | + | I I | where

C
111 -
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For II we have that

and so

A family of strongly singular operators 69

Using Proposition 2.1 we see that | II | < C(l + \b\).

Case II: |f | is large.

Let t0 = y'-'(2|£|) and r, = y'^1(|^|/2). We write

/

tb I'll /• 1

+ / + / e'(
Jto J h

t—a—ib

l-a-ib

= 1 + 11 + 111.

We now treat II, III, and I separately.
For to < t < ty, define G as in Remark 1, G(t) = f^ ei(yU)-*s)ds. Then we have

\G(t)\ < B/y/\Y"(t)\ and II = f* G'(t)ra-ib/\lr(ty-a'ibdt. We integrate by parts to
get

where

and

I Hi I <

So

i n21 < a i + î i) (f' \ °W{3j

Since 1/^(0 < CJ\y"(t)\ we see that

, - l - a

dt<c-
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1+e

if k is such that 2/Ak < 1 we must have that

1 < <1 + g>* <

and so < C Hence

/

t, j-l-a 1

Similarly, using assumptions (a.2) and (a.3) we get

y"(t0)

/
" l '̂Olr" l

=dt < - < c

Finally, since

[13]

1 1

and

we get

\y"(y'-\2s))\ < C\y"(y'-1

|H |<
\b\)

Let's now estimate

111 =
f—a—ib

For tx < t < 1 we define

G(t) = Us.

For (j < J < r we have that \y'(s) — £| > C|§| and y'(j) - £ is monotone, hence by
van der Corput's Lemma we have that |G(OI <
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[14] A family of strongly singular operators 71

We write

III
/

I f—a—ib

and after an integration by parts we see that III = IIIi + III2 with

C C

y a ~W\'
Using Remark 4 we see that

\iih\ < c(Y'-1

Since for /, < t < 1, \G(t)\ < C/|£| we have that

mi i
IHI21 <

rf;

By Proposition 2.2 we have that

c(Y'-

We still have to deal with

I

For € < t < t0 we define

/

to f-a-ib

xlr(ty-""»

G(t) = f ei(ns)-*s)ds.

In this case we have that \y'(s) — £| > Cy'(s) and hence we now have that \G(t)\ <
'O). We write

/

/ t
G \t) r

and integrate by parts to get
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As before, we have that

C
I, <

Since for e < t < fo we have that \G(t)\ < - ^ , we see that

In view of Proposition 2.1 we can conclude that

h<c (Y'-

So for |£| small

and for |^| large

and Theorem 2.1 is proved. D

3. Lp(K)-boundedness of TB

In this section we want to prove the statement of the U -boundedness of Te, that is
Theorem 1.3. We start with the proof of Theorem 1.4 and Theorem 1.5. Then using
an interpolation argument we will be able to prove Theorem 1.3.

3.1. L2(R)-boundedness of Tib To prove the L2-boundedness of Tib it is enough to
prove the following theorem.

THEOREM 3.1. | | r ( , i 6 / | | t2 < C(l + \b\)\\f \\Lz for every f inC^(R). The constant
C is independent ofe.

To prove this statement we just have to see that \Kftib(%)\ < C(l + \b\), where C
is independent of £ and e. Since this is Theorem 2.1 when a = 0, there is nothing to
prove. •
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However it is important to mention the following. To prove that Tib is bounded on
2(R) it is enough to assume that l/f(t) < Cy/\y"(t)\.
The stronger assumption (a.2)

fit) < c
Y'"(t)

y"(t)

was used twice during the proof of Theorem 2.1, to estimate a pair of integrals, namely

'(01
y'(t)f(t)2-a dt and

2-a
-dt.

It can be easily seen that when a = 0 the desired estimate for these two integrals follows
from the monotonicity of V and the weaker assumption 1/VKO < C^/\y"(t)\.

3.2. L'(IR)-boundedness of Ti+ib on Hl(
enough to prove the following theorem.

THEOREM 3.2. ||re,i+1-fc/||ti < C(l
C is independent ofe.

Again, to prove Theorem 1.5 it is

wi forevery f inH\(W). The constant

Since KeA+ib is the kernel of T(A+ib we have that

- 1+iA, \-ib

0

ife <x < 1

otherwise.

Theorem 3.2 will be a consequence of the following Calderon-Zygmund type
lemmas. The first one is Theorem 2.1 for a = 1. We restate it here for convenience.

LEMMA 3.1. For^large \KeJ+ib(!-)\ < (C(l + \b\))/(J\y"(y'-l(\!;\))\y'-\\i;\)),

and for % small \K(:l+ib(%)\ < C(l + \b\). The constant C is independent of e.

LEMMA 3.2. For L small and \y\ < L

_ \KtA+ib(x - y) - K€A+ib(x)\dx < C(l + \b\).

Let's assume for a moment Lemma 3.2 in order to prove Theorem 3.2.

J \x\

PROOF OF THEOREM 3.2. It is enough to do it for atoms. So let a(x) be an atom.
Without loss of generality we can assume that a is supported in (—L, L). Since a is
an atom we have that \a(x)\ < \jL and /a(x)dx = 0.
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Case I: L > 1. Using Schwarz's inequality we have

f fL+l

I \T(A+iba(x)\dx < / \Tf,l+iba(x)\dx

\T(A+iba{x)\2dx\

l)lf2(j\a(x)\2dx\ .
The last inequality follows from the fact that T(A+ib is bounded in L2(K), by Lemma
3.1.

Since / \a(x)\2dx < \/L and L > 1 we get

j \TeA+iba(x)\dx < C{\ + \b\) ( ^ - ) < C(l + \b\).

Case II: i, < 1. Let L be as in Lemma 3.2 and write

f \TfA+iba(x)\dx = [ \TeA+iba(x)\dx + [
J J\x\<2y'~lniL) J\x\>2y'\x\>2y'-'(l/L)

= 1 + 11.

We will first estimate I. Again using Schwarz's inequality we have

I2 <2y'~l (j-^j J \TtA+iba(x)\2dx

= 2Y'~X (^) f \KZ^b^)am2d^

= W1 (T) \ f lC^(l)a(?)l2^
\LJ U\H\<\

+ f \K^

Since \KfA+ib(£)\ < C(l + \b\) for £ small and |a(£)| < ||a||Li < 1 we have

I Ii I < 2y'~l (y) C(l + \b\)2 I |a(

-2y'"' ( i )
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By Lemma 3.1 and the fact that |a"(£)| < 1 we see that

Make the change of variable M = )/'"'(§) to get

u-2du

Since for £ large

and for r small y'(t)/t < C\y"(t)\, we see that for § large

This together with the fact that / \a($)\2d% = f \a(x)\2dx < \/L gives us

< 2 C ( 1
k=0

- (I) t ty,.,
L

i

Now by hypothesis we have that for x small y'(x) > Ay'((I + e)x). For t large let
x = y'~\t). We then get

Y K ( ( l + O y

A

if and only if y'~l (j\ < (1 +e)y'~1(t)

if and only if / - 1 ( £ ) < (1 + e ) '

So finally we have

'-'(l/L)
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since 1 + e < A.
So we do have that 111 < C(l + \b\). It remains to see that | II | < C(l + \b\),

where II = / w ^ , . , ( , / t ) \TcA+iba(x)\dx.
Since f a(x)dx = 0 we have

TeA+iba(x) = / KfA+ib(x - y)a{y)dy = / [K(A+lb(x - y) - KeA+ib(x)]a(y)dy.

Hence

III < f f{KeA+lb(x -y)- K(A+ib(x)]a (y)dy dx

x)\dx< f W(y)\dy f \KtA+ib(x - y) - K(A+ib(
J J\x\>2y-l(\IL)

< [ \a{y)\dy [ \K(A+ib(x - y) - KeA+ib(x)\dx

j\a\b\)j\a(y)\dy<C(l

The next to last inequality is due to Lemma 3.2.
Altogether we have that / | Tf A+iba(x)\dx < C(l + \b\) and Theorem 3.2 is proved.

•
Let's now prove Lemma 3.2.

PROOF OF LEMMA 3.2. Recall that

if e < x < 1
xl+ibf(x)-ib

0 otherwise.

ForO < t < 1 let /(r) = K(l+ib(x - ty). Then

K(A+ib(x - y) - K(A+ib(x) = I f'{t)dt= f -yK'(X+ib{x~ty)dt.
Jo Jo

So

\KeA+ib(x - 3 0 - K(A+ib(x)\ < \y\(l
Jo

Y'U-ty)

x — ty

o i J t - r y l 2

dt

dt

i' \j/(x - ty)

1

\x-ty\
-dt.
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And hence

/ \KfA+ib(x -y)- K(A+ib{x)\dx

' Y'(x-ty)

A family of strongly singular operators 77

+ bid

x — t
(x - ty)

1 1
dtdx + |y|(l + \b\) I I -dtdx

- ty)

1

\x - ty\
-dtdx.

Making the change of variable z = x — ty and interchanging the order of integration
we get

/ l^.i+ifcC* -y) ~ KeA+ib(x)\dx

J ^\z\>j.y' i\y\ )—\y\

\Z\

f dz

For L small and \y\ < L we have that l/\y\ < y'(\y\). Hence \y\/y' \\y\~1) < 1
and2] / ' - I ( | y | - 1 ) - | y |> j / ' - 1 ( | y r 1 ) . So

II < C\y\(l + \b\) -
,2 2 K ' - 1 ( i ^ r 1 ) - i ^ i / ~

Since y'(x)/x < C\y"(x)\ we see that

l < \y\d + \b\) J i i (-y"(z))dz

<\y\(l+\b\)[y'(2y'-l(\y\-l)-\y\") + y

Since 2y '" ' ( |>>r1)- |> ' | > y'"1 (lyl"1) we have that y ' (2y'~l

So I < C(l + \b\). To estimate III it is sufficient to note that
- \y\) < \y\~l.

f'(z)
zfiz) < C

L
Izl

So III < Cl < C(l + \b\). Altogether we have

/ \KeA+ib(x -y)- KfA+ib(x)\dx <

for |y | < L and Lemma 3.2 is proved.

\b\),

D
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3.3. Lp(R)-boundedness of Te To prove Theorem 1.3 we will need a theorem on
interpolation of analytic families of operators. Here we will formulate the version
needed to prove the desired Lp -estimate. The proof of this particular case can be
found in [1]. For the general version see [5].

Let 5 be the open strip of complex numbers z such that 0 < Re(z) < 1. Consider
the mapping taking z to Tz from the closure of 5 to bounded operators on L2(R).
Suppose this mapping is analytic in S and continuous and bounded in the closure of
5. Then we have the following theorem.

THEOREM 3.3. Suppose \\Tiyf\\Li < M0(y)\\f ||Hi for f e L2(!) n Hl(R) and
\\Tl+iyf \\Li < M,(y)||/ \\Liforf € L2(R), where Mt{y) < A,(l + \y\)N for some N,
andi = 0, 1. Then \\T,f\\LP < M,\\f\\Lpforf € L2(R) n Lp (R) whenever 0 < t < 1
and l/p = I — t/2. M, depends only on t, Ao and A\.

Taking 6 = 1 — t in Theorem 3.3 we see that

Tef(x) = lim f e™.

is bounded on LP(R) for l/p = (1 + 0)/2, 0 < 0 < 1. This concludes the proof of
the Lp-boundednessof Tg. D

4. Sharp L2(K) result

The purpose of this section is to prove that if

1

and if there is a constant A > 1 such that for all large s > 0

then To cannot be bounded on L2(R).
In order to prove this we will need to find a lower bound for |Tof (x)\ for certain

points x and an appropriate function/ in L2(R). These points x will be such that for
t close to x, the oscillation e'y(l) will not vary too much. Those points will lie in the
intervals built in the following lemma.

LEMMA 4.1. Suppose there is a constant A > 1 such that for all large s > 0

Then there is a constant Bo such that whenever € < Bo < 1 and k < |y|(e), the
following is true:
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(i)

where B = 2TT/(3A3);

(ii) Let lk = [\y\
and Jk = [\y\-\2{k+ \)TZ -
k' is such that k' < \y \(e) < k' + 1 then

'{e)),\y\-\2kn-n/3)-B/{3y'{e))]
e))\. If

U Jk u h

(iii) There is a constant D such that \Jk\ < D\Ik+l\.

The construction of these intervals when the phase function is the inverse of a power
can be found in [3].

We will also need the following fact. If y is such that y'(t) > 0 for t > 0, y' is
decreasing, lim^o* y'(O = oo and limf_,.o+ Y"(e)/Y'(*)2 = 0.

lim y'(e +
0+

= 1-

To see this we write

I
Since

and 1^^,,+ y"(e)/y'(e)2 = 0 we get

Let's assume Lemma 4.1 and prove Theorem 1.6.

PROOF OF THEOREM 1.6. We are going to argue by contradiction. Suppose that To is
bounded on L2(K) and that limr_o+ l/(lVf(0lVly"(0l) = oa Then there exists a pos-
itive, decreasing function ^ such that l/\/r2(t) > |y"(0l^(0 and lim,_>0+ gU) = oo.
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Let / ( * ) = 1 for x <= ( - 1 , 1) and 0 otherwise so that f \f (x)\dx
/ 1/ (x)\2dx = 2. Let e and B be the same as in Lemma 4.1 and define

[23]

2 and

In the notation of Lemma 4.1 let* e Ik. lfxelk and \x — t\ < B/(3y'(e)) then

dt

Hence for 0 < e' < e and x 6 Ik we have

f e'^fAx-t)-^- > \ f
Jf' f(t) 2 J(,

fAx - t)

FAx -1)
dt

B/(3y'{e)))

B

The last inequality is due to the fact that since

t = \t\ < | * -

and f is monotone then f{t) < f (S/(3y'(e)) + x).
So we have

f ey ff(x — t)
1 1

> —-2 ir (x + B/(3y'(e)))
B

fAx-t)dt

Thus for x 6 h we have

Hence we get

And so we see that

y'(e)1,(B/Qy'(€))+x)

dx

\T0f((x)\2dx >
dx

£Jit\lr(B/{3y'{€))+x)
2"
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For any 1 < / < k' — 1, we have |//| < D|//+i |. Since rjr is monotone and //+1 lies to
the left of Ji we have that maxy, 1/^(0 < min^, l/iK*) and hence

dx

This implies that

\Tof((x)\2dx > —— ( /

dx

dx

Fore < S < |yr ' (7) we have

Since we are assuming that To : L
2(R) -+ L2(K) we have

\Tofe\
2(x)dx < ||ro||2^,2||/f||2

2 < \\T0\\L^L2~-.

So finally we have

«2 B > C ['
l i ^ t 2 3y ' (€) - y'(e)2./e

dx

or

(8) 1>

' ) [yf (37
Now, g(fl/(3y'(O) + 5) > ^(25) by also requiring S > B/(3y'(€)).
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The proof that

~0+ y'(e)

gives us that

Y'{c + B/(3y'(€)))
am = 1

and hence we have that

So letting e -> 0+ in inequality (8) we get 1 > Cg(28) and letting 8 -» 0+ we
have a contradiction. This concludes the proof of Theorem 1.6. •

Now let us prove Lemma 4.1.

PROOF OF LEMMA 4.1. (i) Using the mean value theorem we have:

-§) - ,„- 1). (-f)
for s o m e d such that 2kn - n/3 <d< 2kn + n / 3 .

Since there is an A > 1 such that y'(\y\'i(2k)) < Ay'(\y\'\k)) and /'(I/T'CO)
is increasing we have that

1 1 1

- y'(\y\-i(2kn+n/3) ~

>A"' I > l

y'(\y\-x(k)) ~

Hence we have | / | - ' (2kn -n/3) - \y\~l (2kjr+n/3) > 2n/(3A3y'
(ii) It is enough to prove

(a) € > \y\~l (2k'n + n/3) + B/(3y\e)) and
(b) \y\-\D < \y\~\2n - n/3) - B/(3y'{e)).

(a) Since k' < \y\(e) < k! + 1 < 2k'n - n/3 we have that

https://doi.org/10.1017/S1446788700000872 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700000872


[26] A family of strongly singular operators 83

(b)Let

«o - m* [b-l-m. y'-' (,(|H.(2;I_;/3)_|K|-,(7)))] •

~ Y V3(l/|-1(27r-7r/3)-|K|-'(7))J

Since e < BQ we have

B

(iii) Let a = 2kn + n/3 and fi = In 13, so that 2{k + 1)^ + n/3 = a + 3/6.
Since

then

for some t\ such that a < f, < a + 3/J.
Also

(2(Jk

- / » • '

for some r2 with a + 2y3 < t2 < a + 3)8.
Since t2 < a + 3/5 < 2a < 2tu we have t2/2 < ft. Using the doubling property of

Y'(\Y\~l(0) we get y'dyr1 (r2/2)) > ^/(lyr'fe)).
So finally we see that

l/t+il + I/*I = 3/8 < 3p
y'dyhH'i)) y'

1 / IB \
= 3A \Ik+y\ + — —

(\Y\~l(h)) \ 3y'(€)JY

<3A(\Ik+l\ + 2\Ik+l\).

So \Jk\ < (9A - l)|/t+i|. This ends the proof of Lemma 4.1. •
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