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Abstract

Let ¢ be a positive function defined near the origin such that lim, .o+ ¥(z) = 0. We consider
the operator T,f, defined as the principal value of the convolution of a function f and a kernel
K(t) = "2/ (1)! 7%, where z is a complex number, 0 < Re(z) < 1,0 <t < landyisa
real function. Assuming certain regularity conditions on ¥ and y and certain relations between ¥ and y
we show that Tj is a bounded operator on L? (R) for 1/p = (1 +6)/2and 0 < 6 < 1, and T, is bounded
from H'(R) to L'(R).

1991 Mathematics subject classification (Amer. Math. Soc.): primary 42A45, 42A85, 43A32, 44A05,
44A35.

1. Introduction

Consider the following operator, defined for functions in C3°(R)

Tosf &) = lim [ e F(x— &
apf (x) = lim 6 e fx— i

where @ > 0 and 8 > 1. Hirschman studied this operator and proved the following
theorem in [2].

THEOREM 1.1. Let « > 0 and B > 1. Whenever a« + 2 > 28 the following
holds:

(1) T, extends to a bounded operator on L*(R).
(i) If11/2-1/p| < 1/2 - (B — 1)/« then T,z extends to a bounded operator on
L7 (R).
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[21 A family of strongly singular operators 59

Gii) If11/2 —-1/p| > 1/2 — (B — 1)/« then T,z is not a bounded operator on
LP(R).

Fefferman and Stein considered the case |1/2 — 1/p| =1/2 — (8 — 1)/ in [1].
Their results complete Theorem 1.1.

THEOREM 1.2. Leta > Oand 8 > 1 such thata + 2 > 28. If
- 1 -1

-2 o

then T,z extends to a bounded operator on LF (R), for1 < p < oc.

In the present work we are interested in studying the operator when the singularity
at zero is worse than a power. An example would be

1 1/t
M 77 = tim [ e0f -0

where y is a real-valued function.
To compensate for the singularity at the origin, the phase function y should approach
infinity fast as the argument tends to zero. For f in C5°(R) we consider the operator

b dt
— 1i iy () A S
) Tf(x)—elggfe erOf (5 =S,
where lim,_, ¢+ ®(¢) = 0 and lim,_, ¢+ ®'(¢) = 0.

The first thing to do is to understand under what conditions T is a bounded operator
on L%(R).

When & approaches zero faster than a power, y has to approach infinity faster than
the reciprocal of a power. It is clear that when ¢ is supported in the interval [0, 1],
the behavior of y near zero should be dictated by that of &.

In the example given by equation (1) it turns out that if y is such that y'(¢) = €%/,
for example y (t) = — fll e**ds, then T is bounded on L%(R).

If we now choose y so that y”(t) = t**~2¢%/*, for b > 0, T will not be bounded on
L%(R).

For this choice of ® and y we have that

b = o0.

1
lim ————— = lim ¢
=0 [R@ VY ()] oo

Assuming some regularity conditions on y and ¢ we will show that if

3) < CVly"@)l,

5
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then T is bounded on L2(R).
On the other hand if

1
4 lim —————— =00
=0+ | B @)V ]y (1)
then T will not be bounded on L%(R).

Notice that when ®(¢) = t# and y (r) = ™ the above statements imply that T,
is bounded on L?(R) only when a/2 4+ 1 — B > 0, which is Hirschman’s result for
p =2

We now turn our attention to the study of 7 on L'(R). The only way T can
be bounded on L!(R) is when the function 1/® is integrable near zero. Since
1/®(r) = ¢! just fails to be integrable near zero, there is some hope that

) T dt
) Tf () = lim f rOf =%

is a bounded operator from H'(R) to L'(R), due to the oscillatory factor e* .

Fefferman and Stein proved this statement when y is the reciprocal of a power
(see [1]). Theorem 1.2 follows as a corollary.

When y approaches zero faster than the reciprocal of a power we will also have
that T, as defined in (5), is a bounded operator from H!(R) to L'(R).

The above discussion leads us to consider a family of operators

1
. v t
© =t [t g
where z = a + ib,0 < a < 1 and ¥ is a positive function that satisfies
1
— < CYIly"()I.
v()

In this setting one of our tasks is to prove that T is a bounded operator on L2(R) and
T, is a bounded operator from H'!(R) to L!(R). To do so we will impose the following
regularity conditions on y and .

1.1. Assumptions and results (a.1) We will assume that y and ¥’ are monotone,
guaranteeing the existence of the inverse of ¥/, denoted y'~'. Without loss of generality
we will take y'(t) > 0, with y’ decreasing on (0, 1].

(a.2) As discussed before, for the operator to be bounded on L?(R) we will need to
assume 1/ (t) < C/Ty”(@)], for t > O close to zero and C a constant. However to
prove that the operator in bounded from H'(R) to L' (R) we will assume the stronger
condition

Y'(1)
403

ylll(t)
y" ()

(M

’

1
< —
<5
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(4] A family of strongly singular operators 61

for t > 0 close to zero and C a constant. We will take ¥ € C*[0, 1]and y € C3(0, 1].
The fact that (7) implies that 1/4(¢) < C/]y”(#)] will be proved below.
(a.3) Several growth conditions on y” and y’ will be assumed. One of these is that
y"” is to be roughly constant where ¥’ ‘doubles’. We write that as follows:

"' @) < Cly" (' sl

where C is a constant bigger than one independent of s.
(a.4) We will assume that there exists a constant A and € > O with A > 1 4+ € such
that

') = Ay'(A+ o)),

for ¢t > 0 close to zero.
(a.5) The last condition on the growth of y is the following. There exists a A such
that 1/2 < A < 1, and a constant C such that

ly" ()| < Cy'(H?,

for ¢t > 0 close to zero.

(a.6) Finally we will assume that ¥, ¢’ and y” are monotone.

Unless otherwise noted, we will assume throughout that ¥ and y satisfy assump-
tions (a.1) through (a.6) in Theorem 1.3 through Theorem 1.5 below.

Examples: y'(t) = e'/', e, t7%, e™/D" for o > 1 satisfy (a.1) through (a.6).

Let us prove now that inequality (7) implies that 1/y(f) < C/[y"(®)]. For
0 < t < 1 integrate both sides of (7) from ¢ to 1.

/ ly/u(s)
//(s)
Since ¥ and y” are monotone we get
n (tﬁ(l)) < lln(“’"(‘“) ’
V() 2 \ly"M)]

and so 1/y(¢) < CJ/y"(1)].

Assuming that the limit in (6) exists we now state the results on 7,. If z = 6, for
0 <6 <1, we have

-—0

o

nﬂn—hm/ é7Of (x — 1)

The main theorem for 7, is the following.
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THEOREM 1.3. (i) Ty is a bounded operator on L? (R) for 1/p = (1 + 8)/2
andQ <0 < 1, with | Tllro1» < Ag where Ay depends only on 6.
(ii) Ty is a bounded operator from H'(R) to L' (R).

Theorem 1.3 will be obtained from the two following results.

THEOREM 1.4. T, extends to a bounded operator on L*(R) with || Tip|| 12212 < Ap,
where A, = O(|b| + 1).

THEOREM 1.5. Ty, is a bounded operator from H'(R) to L'(R) with || Ty4is || g1 11
< Ay, where A, = O(|b| + 1).

Theorem 1.1 says that T,z will not be bounded on L?(R) when 2 + o < 28. This
result is generalized as follows.

THEOREM 1.6. Suppose that y, y', y" and v are monotone and that

y"(€)
m 7 =
e—0* ‘y’ (6)

Also suppose there is a constant A > 1 such that
Yy @2s) < Ay'(y|7'(s))

for all large s > 0. Then if lim,_,o+ 1/(|1¥ ()I/Ty"(D)]) = 00, Ty is not bounded on
LY (R).

In what follows C will denote a constant that may change from line to line.

1.2. Existence Let f be a function in C§°(R). To see that under assumptions (a.1)
through (a.6) the limit in (6) exists, we integrate by parts. For 0 < €’ < € we write

61(1) . 1 _1/6_ iy () f(x t
/e A ’)w )'—z il i G v ,,,(,)n—zd’

ly(r)f(x = | - ‘1‘/‘ PUZC el ((f(x v )dt
e Ll dt vy v

i y(t) «/x(t)'z
Letz =a+ ibwith0O <a < 1. Then

=L +I.

If & —eNle™ N If x —e)]e™

el < )
Y ()=  ye)y(e)—
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Since lim,_, o+ ¥'(#) = 0, we have that for ¢ close to zero, Y () < t. Using this and
the fact that 1/y(t) < C/|y”(¢)| we have that

/6” FascvW“QQﬁW@YSC W%OL
y'(€)¥(€) y'(€) Y'(€)

Assumption (a.5) implies that lim,_, o+ +/|y"(€)]/y'(e) = 0. Hence
lim || =0
e—>0t

Let’s now estimate II..

Wi / 2 Ilf(x—t)lt‘“ ‘dt
e Y (t)w(t)“" YOy @)
If (x = o)le™|y" ()] / If(x — Dty (t)l
d —
+f ovo ) F Y OY @
= Hsl -+ ILz + H€3 + II€4 .

L | <

As before we have that lim._,o+ €7*/(y’(€)¥ (¢)'™*) = 0 and hence

lim |IL, | = 0.
-0t
Since 1/ (¢) < C/|y”"(¢)| we see that

€ -
e | < max If (x = t)nzlf v

" —a—1 a
< Cmax|f (x = DIz |/ Y@l f(t) ver .

Since lim,_,+ ¥"(¢)/y'(t)* = 0, we have that 1/y’(t) < Ct, for t small. Using
this together with assumption (a.5), +/|y” ()| < Cy"(t) for some 1/2 < A < 1, and
¥ (t) <t we see that

He | < C(I)‘naxl If (x — t)”Zlf V(e de
<t< o
< Cmax |f (x = Dle| / dt,
<1< .

Hence

lim |1I;} = 0.
-0t
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In a similar way we have

ol

YOO
Y@

Il < Cpuax|f 6 =0 [
<i< p

If k' is such that y'~' (2¥*!) < € < y'7'(2¥) then we see that

fy"'“‘) "l V'@l
Y

ey Y)Y

[oe) y' '@ | "
Y (@)

< Cmax|f (x — )] ) ,
0<tx1 = Sy V()

[Mes | < Cmax |f (x =] )

k=k’'

Yy @) dt

_ kyr-1
< Cmax |f (x — 1) ;e ' n(2).
Ase —> 0, k' — ooand A — 1 < 0 hence we can conclude that
lim {II;| = 0.
e—>0t
To bound II.4 just notice that

dt.

SR IA0)
| < Cgrsng;gf(x—z)nrul mIARED

After an integration by parts, methods used before show that

lim |15 | = 0.
=0t

This shows that the limit in (6) exists.

2. Preliminaries
Let0 < € < 1, and define

dt

o oy
T..f %) = f O (x =)
so that for f in C°(R) we have that T,f (x) = lim._¢+ 7. .f (x). Let K., be such
that 7, .f (x) = K., * f(x). To prove the L2-boundedness of T;, as well as the
L!-boundedness of Tj,;, on H'(R) we need some estimations of I?;b and m
respectively. We devote this section to the proof of such estimates, which are contained
in the following theorem.
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8] A family of strongly singular operators 65
THEOREM 2.1. Ifz=a+ iband 0 < a < 1 then
C(1+ (b))
(Vir o TaEmiy ' dgb)’

|k®| <

if |€| is large, and
|[Kee®| < ca + 18D
otherwise.
We start with a basic result on oscillatory integrals due to van der Corput.

LEMMA 2.1. Suppose that ¢ is real-valued and smooth on (a,b), and that
|¢*(t)] > L > Oforallt € (a, b). Then

b
[ e
a

< Ck)\.—l/k

holds when:

(i) k=>2;0r

(ii) k =1 and ¢'(t) is monotonic.
Ci depends only on k.

The proof of Lemma 2.1 can be found in [4].
We now state some propositions needed to prove Theorem 2.1.

PROPOSITION 2.1. If &} is large, 0 < € < y’“'(ISI), and0 < a < 1 then

]‘Y'_I(IH) ( t—1-a N t_awfl(t)l ) < C
< \OYOT v er )T (S Tag iy dgD)
where C is a constant independent of |&| and €.

PROPOSITION 2.2. If |E] is large and 0 < a < 1 then

1 ' —a —1-a

L/ (""(’)2" + )dts ¢ .

R AR A A (Vir o TaEDly agD)
where C is a constant independent of |€|.

Before we proceed to the proof of these propositions the following remarks are in
order.
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REMARKS. (1) Given u < v let G(¥) = fu' eV foru < t < v. Then
G'(t) = 7O If p(s) = y(s) —&sthenforany u < s < ¢, |p"(s)| = |y"(s)| =
|y”()]. Hence by Lemma 2.1 we have that |G(¢)| < C//]y"(D)].

(2) Since lim,o+ d(1/y'(£))/dt = 0, for t > 0 close to zero 1/y'(¢) < Ct.

(3) Since y’'(x) > Ay’((1 + €)x) for x small we have that 1/(y'~ LAMYED) <
a+ e)/(y/_l(A"ISI)), for |&| large and k any positive integer.

(4) For0 < a < 1 and ¢ small we have that [y"(1)|*? < Cy'(1)* < Cy"' " 2(1).
Hence |y”(y' "' (I§1)|*? < Cl&|'~*"=9 for |¢| large.

(5) If ¢ is small then 1/¢ < y’(z). Hence if |&| is large we must have that
1y~ (gD < I§].

(6) For |§| large, 1/(¥(y'~'(I€]))) < CI&|, since 1/¥(r) < CV/Ty" (D] < Cy'(0).
(7) There exists a constant C such that forz > O closeto zero, 1/t < C|y"(t)|/y’'(2).

Remark 7 is a consequence of assumption (a.4):

(1+¢€)a
ea(—y"(a)) = / —y"(t)dt = y'(a) — y'((1 + €)a).

Since

Y'(a)

—v (I +ea)z——

we have that

ly"(a)| =

y'(@) =y (1+¢€a) - y'(a) (A - 1) 1 y(a)l
A Je~ Y

€a - a € a A

which is Remark 7.
Let us prove the propositions.

PROOF OF PROPOSITION 2.1. Since 1/ (t) < C/[y”(t)] < Cy'(t)* we see that
vED  p-i-a oy TAED p—1-ayr(pr0-a)

[ st = e o

i (A*lg)" "™ m( y' " (AXIE) )

= (v N AMED)" AKE] y AR E])

@ (afg)

Z 3 (v (AYED)" AKEL

since by Remark 3 we have that In (y'~' (A¥[€]) /¥~ (A¥*!|£])) < In(1 +€).

|/\
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{10] A family of strongly singular operators 67

Hence iterating Remark 3 k times we see that

a3 g1 l;:lk(l—a) 00 (1 + 6>ka root
——dt<C - AXG-D
/s y'Ov®= T (y T ED)T 1§ Z—«; A

<C (y"‘usn\/ |y"(y'-‘(|e|>)|) :

The last inequality is due to Remark 4 and the facts that 1 — A > Oand 1 + € < A.
Using assumption (a.2) we have that

/V""'E'>z-“|w'(t)| P L) ) / RaAVA0)
vy = C L r@gy Al v

i (Ak(g)*? (oA
S (v ARED)” AxE [y &t AxED)| )

Using assumption (a.3) we see that there is a constant C independent of s so that

/\

AR E]

I/\

o @s| = clyroen|,

n (ly"(y' ' A*+'|s|)>|)

[y (v~ (A*|ED))]

and hence

As before we have that

= (AN - — -
g(y"‘(A*“l&i))“A*m5C<V (DNGL '((SI))I) :

and hence we have proved that

/‘V ()} ( t~1-a N tay 0] )dt - C
< \VOVOT Yy OvOT ) (Vg TaERy D)
0

PROOF OF PROPOSITION 2.2. Since  is monotone and 1/ (t) < C/|y”(¢)] we
have that

/ wor ¢ iy e ( v )
1< — — = In =
1§l Jy-1qen YO0 & (v dED) vy (8D

C(\/IV"(V"‘(IEI))IV"'(ISI))

IA
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since
VIy" G IEN In (v )/ (' (E1))) < CIEl*ln(ISI) <C
€1 - €1 -
if |£]| is large.
Similarly

/ r‘" cViy' e ( 1 )
dt < — — = In —

€] S,y W(D)1- lEl (D) )
<C (\/ |y"(y’-‘(1sn))|y"‘<|5|)>

since In (1/y'~(I&D) < Cln(lg]).

Hence we have that

QI ) ¢
— + +)dt < 7
15Ifw-'usn< v v (Vi G aEmiyaen)

We can now proceed to the proof of Theorem 2.1.

PROOF OF THEOREM 2.1. We need to estimate
o 1 - t—a—ib
_ iy(n~¢n)
K (®) = f e Tt

where z = a + ib. In order to take advantage of the behavior of y near zero we would
like to do an integration by parts by writing in the notation of Remark 1

rm-En — G (1)

and then integrate by parts.
Case I £ is small so that |y'(r) — &| > Cy'(¥), for some constant C.

Fore <t < 1 we write G(t) = [ e ¥9=4ds. Since |p'(s)| = |y'(s) — &| >
Cy’(s), using van de der Corput s Lemma we see that |G(1)| < C/y’(¢).

__We now have K, K, (6) = f G (1)t~ /yr(1)!72-"*dt. We integrate by parts to get
|Ker () < [1] + [T | where

Ms——v _<c
)
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1 d @ ib
n= [ cog (w(t)l—" "’)d'

sy (1) }
I C(1 b d
= i+ oD f [y(r)wm'-a+n/z(t>2-ayf(r) !

Using Proposition 2.1 we see that | 11| < C(1 + |b]).

For II we have that

and so

Case II: |&] is large.
Lett, = ¥~ (2I€]) and 1, = y' "' (|£]/2). We write

e —ib
Keo®) = / f / e 5",,,(,)1 !

=[4+I14+1II.

We now treat I1, 111, and I separately.
For fy < t < 1, define G as in Remark 1, G(t) = f; e'v9-4ds. Then we have

[G(t)) < B//ly"(1)] and Il = f: G ()t~ [y (1) *~i®dt. We integrate by parts to

get
|1} < C(IL | + | 1L, ]),
where
C
| < ——
(Vh’"(h)ltl)
and
4 t—a ib
Hz=/'0 G- (w(,)l.,,b)dt
So
"ol o )
II Ca+1|b _——dt + S —
= U+ "( . VO O] 0 VOO

Since 1/¢y(¢) < C/|y”(¢)| we see that

—l —a 1 tl)
<C——o— ().
/ vo o = i “(to

https://doi.org/10.1017/51446788700000872 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700000872

70 Magali Folch-Gabayet [13]

Since
1 1+e€
5 i
Y HAIED T oy ED

if k is such that 2/A* < 1 we must have that

1 __a+et . _d+ef
YT QRIED Ty 2IEl/AY Ty gD’

and so In(#; /1) < C. Hence

f t—l—a 1

L E— VIS o R —
o YOO T (6/Tr (m)])

Similarly, using assumptions (a.2) and (a.3) we get

S AQ L 1
0 VOO~ (o/Tr @)

Finally, since

co) =< (7))
1 Cl|l ——— .
" (y"(n) =\ Tmin

I _U+et
Y 2IED T oy TaED

and

Iy @)l < Cly" ('™ (s))]
we get
C(1+ |b))

11 < ;-
(Vir" & aEmly - agh)

Let’s now estimate

1 —a-ib
I = / gt _L___ g
A \//(t)l—a—lb

Forf; <t < 1 we define

t
G(t)=f ei(y(S)—ES)ds.

For t; < s <t we have that |y'(s) — &| = C|&]| and y’(s) — & is monotone, hence by
van der Corput’s Lemma we have that |G(t)| < C/|§].

https://doi.org/10.1017/51446788700000872 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700000872

[14] A family of strongly singular operators 71

We write

————dt
Vf ( t) 1-a—ib
and after an integration by parts we see that III = III, + III, with
C

C
| € ———e— < —

[Elw (D ~ 5

1 t—a—ib
I = / G
]

Using Remark 4 we see that

L < C (V'—'(IEI)\/ lV’(V"(IEI))I) .

Since for t; <t < 1,|G(¢t)| < C/|&| we have that

CA + b)) l[t""’ +I1/f’(t)lt"‘]
€] w LY@ v

By Proposition 2.2 we have that

| < C (}”—'(ISI)\/ly”(y’”'(lEl))l) .

We still have to deal with

L] t—a—ib
1= / ei(}'(l)—E!) dt.
P '(/j (t)l—a—ib

HIL| <

Fore <t < t, we define

t
G(r) = / €rOEgs,

In this case we have that |y'(s) — &] = Cy’(s) and hence we now have that |G(#)] <

C/y'(t). We write
1) t—a—ib
I= G({t)—————dt
[ o0si

and integrate by parts to get
1) < — S/
~ Y ()Y (0)|t)*

=I]+Iz.

) d t-—a—ib
+ / 0% (:/f(t)l-a-"b) @
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As before, we have that
C
(Vir T @Dy dgd)”

I <

Since for € < t < t, we have that |G(¢)| < 7%, we see that

of gt (1)) ]
I ca b d
25 O+ ')fe [y'(t)w(t)l-a pvTE ATl b

In view of Proposition 2.1 we can conclude that

L<C (y"'(IEI)\/IV"(y"‘(IEI))l) :

So for |&]| small
|Ke2(®)] < c + 15

and for |£] large

o C(l+ b
K@) < (a+15h
(Vir o TEDIy e D)
and Theorem 2.1 is proved. O

3. L?(R)-boundedness of T,

In this section we want to prove the statement of the L?-boundedness of T;, that is
Theorem 1.3. We start with the proof of Theorem 1.4 and Theorem 1.5. Then using
an interpolation argument we will be able to prove Theorem 1.3.

3.1. L?(R)-boundedness of T;, To prove the L?-boundedness of T}, it is enough to
prove the following theorem.

THEOREM 3.1. || T¢ inf HlL2 < CQA +1BDIS |12 for every f in C°(R). The constant
C is independent of €.

To prove this statement we just have to see that |I€_\,-,,(§)I < C(1 + |b]), where C
is independent of £ and €. Since this is Theorem 2.1 when a = 0, there is nothing to
prove. a
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However it is important to mention the following. To prove that T;, is bounded on

L*(R) it is enough to assume that 1/¥(¢) < C/Ty" (@)
The stronger assumption (a.2)

V(1)
v ()

was used twice during the proof of Theorem 2.1, to estimate a pair of integrals, namely

ylll (t)
y"(t)

<

>

d —_—
yoyn= T | oo

Itcan be easily seen that when a = O the desired estimate for these two integrals follows
from the monotonicity of ¢ and the weaker assumption 1/vr(z) < C/|y"(?)].

/V"“'“) Y ()| 4 [Tl

3.2. L'(R)-boundedness of T ,;, on H!(R) Again, to prove Theorem 1.5 it is
enough to prove the following theorem.

THEOREM 3.2. | T, 11inf o0 < CAF+|BDNS e forevery f in H,(R). The constant
C is independent of €.

Since K, ;. is the kernel of T, ,,;, we have that

eir®

Kevip(x) = § x1+byr(x)=it
0 otherwise.

ife<x <1

Theorem 3.2 will be a consequence of the following Calder6n-Zygmund type
lemmas. The first one is Theorem 2.1 for a = 1. We restate it here for convenience.

LEMMA 3.1. For § large |Ke 1 (§)] < (C(1 + 16D/ (V"' €Y'~ (D),
and for &€ small |K, 1,5(§)| < C(1 + |b]). The constant C is independent of €.

LEMMA 3.2. For L smalland |y| < L
/ |Keninx = y) — Kenwnn)|dx < C(1+ 5)).
Ix|=2y " Qy1™h

Let’s assume for a moment Lemma 3.2 in order to prove Theorem 3.2.

PROOF OF THEOREM 3.2. It is enough to do it for atoms. So let a(x) be an atom.
Without loss of generality we can assume that a is supported in (—L, L). Since a is
an atom we have that |a(x)| < 1/L and [ a(x)dx = 0.
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Case I: L > 1. Using Schwarz’s inequality we have

L+1
/|Te,1+iba(x)|dx 5/ ITe 14ipa(x)|dx

L-1

1/2
< CL+ 1" ( f m,1+,-ba<x)|2dx)
1/2
< CA+ |b)(L+D'? (f |a(x)|2dx) .

The last inequality follows from the fact that T, ,,;, is bounded in L2(R), by Lemma
3.1.
Since [ |a(x)|*dx < 1/L and L > 1 we get

L+1\"
/IE,1+fba(x)ldx < C(1+ (b)) (—Z—) < C(1 + |b]).

CaseII: L < 1. Let L be as in Lemma 3.2 and write

/|71.1+ibd(x)|dx =/ lTe,1+iba(x)|dx+/ | Te 1 +ivalx)|dx
Ix{<2y' ' (1/L)

Ixl=2y' "' (1/L)

=I1+41I.

We will first estimate I. Again using Schwarz’s inequality we have

/(1
P < 2y’ : (Z) / ITe.l+iba(x)|2dx

afl —— o~
=2y I(Z)—/lKe,IHb(‘E)a(s)lsz

- 1 ——— ~
=2y (—) [/ |Ke14is(§)a(§) | dE
L lEl<1

+ f |Krem (£)a(E)2dE + f |Im(s>a(s>|2ds]
Is|tl<t €12

1
3

=I| +Iz +I3

Since |K. 12(&)| < C(1 + |b]) for & small and [a()| < |lall.: < | we have
=1 1 2 -~ 2
(I <2y I C(1 + b)) [a(§)"dé
1&l=1

s
<2y (Z) C(1 + |b))* < C(1 + b))
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By Lemma 3.1 and the fact that [a(£)| < 1 we see that

L[ <2y (l) c1+ Ib|)2/ i il - .
L isieit T UEMI ™ (D)

Make the change of variable u = 3"~ (£) to get

_ 1
1L <2y (—) ca+ |b|)2f udu
L Y (/L) susy N )

2. 1—-1 1 1 1 2
= Ca+ by ( )[ Tt "(l/L)] ca+eh

Since for & large
C(1+1b))
Iy UEMNY ~HUED
and for ¢t small y'(¢)/t < C|y”(t)|, we see that for & large
C(1+ |b))?
&1y (gD
This together with the fact that [ [a(§)|*d§ = [ |a(x)|*dx < 1/L gives us

1 o0
1] <2y (—) ;f Ko )aE)1PdE

1K 1 (E)] <

Kersn ) <

L 0 J A <<t
<2C(1+ (b)Y~ '(l>i L f|a‘(g)|2ds
L) &g Aky'~H (A1)

2.1 _1_> - 1
<2C( + b))y (L ;Ak},/—l (A+1/L)

Now by hypothesis we have that for x small y'(x) > Ay'((1 + €)x). For ¢ large let
x = y'~'(r). We then get

-/’; >y (1 + ey @)

- t -
ifand only if y’ (Z) <(1+ey '
ifandonlyif y'~'(§) < (1 + €)y""'(Af).

So finally we have

i (1 + !

2, -1
|I3|_<_2C(1+|b|) Y ( ) Ak — l(l/L)

k=0

k
Ae) < C(1 + b))

=2C(1+ b1 +€) Y
k=0
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since ] +€ < A.
So we do have that |I| < C(1 4 |b]). It remains to see that |[II| < C(1 + |b)),
where II = f;x|32yf-'(1/L) | T, 1 4ipa(x)|dx.
Since [ a(x)dx = 0 we have

L vpalx) = /Ke,l+ib(-x = ya(y)dy = /[Ke,1+ib(x — ¥) — Ke1sin(x)]a(y)dy.

Hence

| < / | f [Kerin(x — ) — Kersin(0)la(y)dy| dx
[x[=2y"~*(1/L)

< / jaiay [ |Kerain(x = ) — Kenvp(0)ldx
Ixl=2y "1 (1/L)

< / la(}’)ld)’f [Ke14in(x — ) — Ke14ip(x)[dx
=2y "y

< C(L+ b)) f la)ldy < C(1 + [B).

The next to last inequality is due to Lemma 3.2.
Altogether we have that f 1T 1eipalx)ldx < C(1+|bl) and Theorem 3.2 is proved.
a

Let’s now prove Lemma 3.2.

PROOF OF LEMMA 3.2. Recall that
eiy(X)

Kepvip(x) = § x'Hibyr(x)-®
0 otherwise.

ife<x <1

ForO <t < 1llet f(t) = K 14is(x — ty). Then

1 1
Keivin(x —y) — Kep4ip(x) = / f'®dt = f =YK p(x ~— ty)dt.
0 0

So

y'(x —ty)
X —1y
1

1
+ I+ 18D [ ———ar
o |x —1tyl

"y —ty)
F Iyl + 1B /
o+ [T

dt

1
Kersin(r — ) — Keasn@] < Iy1(1 + 1]) /
0

1
lx —ty|
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And hence

/ | Kesiv(x — y) — Kei4is(x)|dx

< Iyl(1 + 16D H {” @ = ty)ldtdx+|y|(1+|b|) ff e
Y'(x —ty)

1
1+1b
I+ |>ff e

Ix —ty|
Making the change of variable z = x — ¢y and interchanging the order of integration
we get

/ Kersn(® = ) = Keram(6)ldx
x|>2y " H(yI™H

daz
< |y|(1+ b)) V(z)—+lyl(l+|b|) —
12222~ Uyl =)=y |zl 121222y~ =1yl 12]
z
+1yI(1 + 1B) V@ gy =1+,
12 (z122p 1y -yt 1 2¥ (2)

For L small and |y{ < L we have that 1/|y| < y'(lyl). Hence |y|/y'~'(Iy|™") < 1
and 2y~ (Iy1™") = Iyl = ¥~ (Iy]™). So

1 1
H<ClylQ+ 6D =+ — < C(1 + ]b)).
v <2 2y~ Iyl ')—Iyl)
Since y'(x)/x < Cly”(x)| we see that
< |yl(1+15]) (=y"(@)dz

1>1z1>2y" " IyimH -1yl

= A+ 16D [ (27 (1) = 1) + v’ ).

Since 2y"~" (Iy1™") = Iyl = ¥'~" (Iy|™") we have thaty’ (2y"~" (IyI™") — Iy]) < Iy|™".
Sol < C(1 + |b]). To estimate III it is sufficient to note that

v'(2) 1 <c Iy”(z)l<cy’(z)
¥ (2) ey ()| — lz|  — z

Solll < CI < C(1 + |b}). Altogether we have

/ Kersn( = ) — Keasin(0)ldx < C(1 + 1)),
=2y yih

for |y| < L and Lemma 3.2 is proved. O
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3.3. L?(R)-boundedness of T; To prove Theorem 1.3 we will need a theorem on
interpolation of analytic families of operators. Here we will formulate the version
needed to prove the desired L?-estimate. The proof of this particular case can be
found in [1]. For the general version see [5].

Let S be the open strip of complex numbers z such that 0 < Re(z) < 1. Consider
the mapping taking z to 7, from the closure of S to bounded operators on L*(R).
Suppose this mapping is analytic in S and continuous and bounded in the closure of
S. Then we have the following theorem.

THEOREM 3.3. Suppose | T, f e < Mo\ f ur for f € L*(R) N H'(R) and
N Tiinf iz < MiOOIF N2 for £ € LA(R), where Mi(y) < A;(1+ |y)¥ for some N,
andi = 0,1. Then | T,f |z < M,||f llze for f € LA (R)NLP(R) whenever0 < t < 1
and1/p =1 —1t/2. M, depends onlyont, Agand A,.

Taking 6 = 1 — ¢ in Theorem 3.3 we see that

-8

uﬂn—hm/ rOf (x = D)ot

is bounded on L?(R) for 1/p = (1 +60)/2,0 < 6 < 1. This concludes the proof of
the L?-boundedness of Tj. O

4. Sharp L*(R) result

The purpose of this section is to prove that if
. 1
hm —7———2~ =
=00 |y (D)2 (1)
and if there is a constant A > 1 such that for all large s > 0
Y'(y17'2s)) < Ay'(Iy1 7 (s))

then Ty cannot be bounded on L2(R).

In order to prove this we will need to find a lower bound for |T,f (x)| for certain
points x and an appropriate function f in L*(R). These points x will be such that for
t close to x, the oscillation ¢ will not vary too much. Those points will lie in the
intervals built in the following lemma.

LEMMA 4.1. Suppose there is a constant A > 1 such that for all large s > 0

Y (y17'(2s) < AY'(Jy |7 (s)).

Then there is a constant By such that whenever € < By < 1 and k < |y|(€), the
Jollowing is true:
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(1)
B < |y|™! (an - E) — |yl <2k7r + Z)
y'(e) ~ 3 3/
where B = 271 /(3A%);
(i) Let I = [ly|™'(kx +7/3)+B/By’(€)), ly|™' Qkn — n/3)— B/By'(€))]

and Jo=[ly|"' Qe + D —7/3)=B/(By'(€)), ly|™' @kn +7/3)+ B/ By’ (e))]. If
k' is such that k' < |y|(e) < k' + 1 then

k-1
(€. lyI7' (M) S Iy U [U Je U Ik] :
k=1
(iii) There is a constant D such that |Ji| < DHiql-

The construction of these intervals when the phase function is the inverse of a power
can be found in [3].

We will also need the following fact. If y is such that y'(#) > O for ¢ > 0, y' is
decreasing, lim,_,¢+ y'(€) = 00 and lim,_,¢+ ¥"(€)/y’(€)* = O, then

Jim Y(e+1/y'(e)/y'(e) = 1.

To see this we write

’ 1 4 1 ’ sy
Y (G * y’(e)) = (e * y'(e)) IRAAR
e+1/y'(e)
= y'(€) +/ y"(t)dr.

Since

y"(e)l

el

e+1/y'(€)
y'(t)dt| < —
fe y'(€)

and lim,_ ¢+ y"(€)/y'(€)? = 0 we get

lim Y e+ 1/y'(©) _
>0 y'(€)

1.

Let’s assume Lemma 4.1 and prove Theorem 1.6.

PROOF OF THEOREM 1.6. We are going to argue by contradiction. Suppose that Tj is
bounded on L2(R) and that lim,_, ¢+ 1/(I¢(t)|./ Iy”(t)l) = 00. Then there exists a pos-
itive, decreasing function g such that 1/¥2(¢) > |y”(#)|g(¢) and lim,_, ¢+ g(#) = o0.
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Let f(x) = 1 for x € (—1,1) and O otherwise so that flf(x)ldx = 2 and
JIf x)|?dx = 2. Let € and B be the same as in Lemma 4.1 and define

X
fex) =7 (B/(sy'(e))) '

In the notation of Lemma 4.1 let x € I;. If x € I, and |x — ¢t} < B/(3y’'(¢€)) then
2o — % < lyl(t) < 2km + %

Hence for 0 < €’ < € and x € I, we have

iy(n
/5 febe = wm -2f fex wm
dt
> = .
= 2 . Site- DG T B/Gr O
The last inequality is due to the fact that since
=l <k —tlx < et
B T
and ¥ is monotone then ¥ () < ¥ (B/(3y'(€)) + x).
So we have
/l zy(r)f (x — t) 1 1 /f — 1dt
¢ ¢ llf(t) - 2¢(X+B/(3V( mJ e

B
"6y (x + B/By'(€)) y'(e)

Thus for x € I, we have

C

Tof e = '
Ol 2 v BTGy @) + )

Hence we get

C dx
Y (€2 Ji, ¥ (B/(By'(€)) +x)*

f | Tofe(x))Pdx >

And so we see that

C dx
Tof ()1d '
[ 1nspax 2 TSP Ry
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Forany 1 <l <k’ — 1, we have {J;] < D{I;;4|. Since ¥ is monotone and I,,, lies to
the left of J; we have that max;, 1/4(¢) < min;,, 1/¥(¢) and hence

dx <D dx
A ¥ B/BYE)+x)Y T S, v (B/Gy'(e) +x)*

This implies that

C dx
Tof. dx >
f ITof 0P dx 2 — )2( . VB/Gr (@) +x7

+ / dx )
Ui W (B/(3y'(€)) + x)?

C Iy~ (D dx
> — .
~ y'(e)? -/e V(B/@By'(€)) + x)?
Fore < § < |y} (7) we have

C dx
y'(€)? Jo v (B/By(e)+x)?

JEZCEE
Since we are assuming that T, : L?(R) — L2?(R) we have

B
/ 1T P < VTl < Voo

So finally we have

B o C § dx
3y’(e) T y'(e)? J. w(B/(By'(e)) +x)?

1Tl Z 12

or
dx
8 >
® ‘y'(e) VB T
B
d
(e) (3y(e) )g (Me)”) ¥

8 B
8) | =" [ —— d
z y(e) (3y o )f Y (3y'<e)+") g
-sat (el e ) e )]
~ vt \Gre Y 3y "' \3y© ‘

Now, g(B/(3y'(€)) + 8) > g(28) by also requiring § > B/(3y’(¢€)).
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The proof that
’ 1 !
L Y(eryE)
e—0* y'(€)
gives us that
Y'(e+B/Gye)) _

- y'(€)

and hence we have that

1 , —B_ . _E_ )
y'(€) [y (6 * 3}”(6)) 4 (6 + 3y'(e))] — 1, ase—0".

So letting € — 0™ in inequality (8) we get 1 > Cg(25) and letting § — 0% we
have a contradiction. This concludes the proof of Theorem 1.6. a

Now let us prove Lemma 4.1.

PROOF OF LEMMA 4.1. (i) Using the mean value theorem we have:

-1 LA W N _ (2N gty n
Iyl (2k7r 3) Iyl (2k71+3)—( 3)(Iyl ) (d) = T @)

for some d such that 2kmr — /3 < d < 2km + 7/3.
Since there is an A > 1 such that y'(|y|7'(2k)) < Ay'(ly|71(k)) and ¥'(ly|~"(2))
is increasing we have that

1 1 1
Yy @) = Yy ke +7/3) = 7y @0
> A3 > ! .
T v (ylITHR) T Alyi(e)
Hence we have |y|™! 2kn — m/3) — |y1™! Qkn + /3) > 2n/(3A3%Y (€)).
(ii) It is enough to prove
(@ €>|y|™' @k'mr +n/3)+ B/(3y'(€)) and
®) lyI”'D) < lyI™'@r —n/3) — B/(3y'(e)).
(a) Since k' < |y|(e) < k' + 1 < 2k'm — /3 we have that

eIyl (2m - %) > Iy (27 + %) + yfe)

-1 ’ Z B
> Iyl (2 + 3) + e
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(b) Let

B
By = mi -1 7N, =1 ( )] .
0 m’“[”' DY S <23 =)

Since € < B, we have

=1 B
€= (3(|y|-1(2n iy lyl"(7))>
B

& yi(e) = 3y~ @r — w/3) — |y|7H(T))
<y (21 - 3) -y ")

3y'(e) — 3
B
Dyt 2z -5) - :
& POy (2 -3) -5
(iii) Leta = 2km + w/3 and B = 2n/3,s0that 2(k + )m + /3 = a + 38.
Since
— [y Nyt T
il + il = y1 (2 + ) = y1™ (206 + D + )
then
1
Heeal + 10 = (=38)Ay 1Y (1) = 38—
SRR P8 =3 e
for some #; suchthat e <1, < @ + 38.
Also
el + oo =y (204 D = Z) — 1y~ (204 D + T)
T 30006 3 3

=yI"@+28) — Iyl (@ +38)
=—B(yI™"Y ()
Y (ly|=1(n)
for some t, witha + 28 <, < a + 38.
Since t, < a 4+ 38 < 2« < 24, we have 1,/2 < t;. Using the doubling propetty of

Y'(yIT ) we get y'(ly 7' (2/2)) = 7'y 7 (1)
So finally we see that

1 1
[Zert] + |kl = 38 <3
il V=30 ey = Py @y
2B
<38A—— =341 |+———)
P Y (y1-' () ( T 300e)
< 3A (|| + 2| L) -
So |Jkl < (9A — 1)} ii41]- This ends the proof of Lemma 4.1. O
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