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Abstract
A wake model is pursued for potential flow past a submerged, finite-length plate that is perpendicular to a uniform,
horizontal stream bounded above by a free surface. The effects of gravity are included along the free surface. The
approach is to adopt an open-wake model such that the wake boundaries become parallel to the undisturbed stream
at some (unknown) point downstream. Boundary integral equations are formed and then discretised along the wake
boundaries and free surface in order to obtain a solution numerically. In terms of the dependency of the solution
on various parameters, the problem will be formulated in two ways. First, for a given Froude number and ratio of
the length of the vertical plate to the draft (the depth of the bottom of the vertical plate relative to the undisturbed
free surface), the effect of the wake underpressure coefficient on the size of the wake will be considered. Then, the
problem will be discussed where we instead (more naturally) fix the Froude number, draft and length of the vertical,
submerged plate. The dependencies of the solution on these parameters will be analysed regarding the effects on
several factors, including the size of the wake, the relative lengths of the upper and lower wake boundaries, and the
resulting wake underpressure coefficient.

1. Introduction
We present a wake model for the flow past a submerged, finite-length plate. We assume that the flow is
uniform and characterised by a constant velocity U far upstream. For simplicity, we assume that the plate
is normal to the direction of the velocity U (with possible extension for plates inclined at an arbitrary
angle discussed later in the concluding remarks). Figure 1 depicts this model. The flow is assumed to be
steady, two-dimensional and irrotational, whilst the fluid is assumed to be inviscid and incompressible.
Hence, we have potential flow. The effects of gravity will be included along the free surface that bounds
the uniform stream – the exclusivity of which will be later justified. The open-wake model will be utilised
for the approximation of the wake or ‘closure’ of the wake downstream. The investigations presented
here are based on work produced for Chapter 5 of the PhD thesis of McLean [10].

Wake flows have been studied by many investigators, from different viewpoints. The most fundamen-
tal recent theoretical advances, carried out in the 1970s and 1980s, through a combination of numerical
and asymptotic approaches concentrated on determining a self-consistent structure of the steady laminar
wake at large values of a Reynolds number, based on body size. It was demonstrated that, in planar flow
and in the absence of gravity, both the length and width of the wake scale linearly with the Reynolds
number in the limit, both therefore significantly greater than the body size. The recirculating flow in
the wake is characterised by having a constant vorticity, akin to so-called Prandtl–Batchelor flows. The
theoretical work is described in the studies by Sadovskii [13], Smith [14] and Chernyshenko [1] and the
numerical approaches in the work of Fornberg [3]. An excellent summary is presented by Fornberg and
Elcrat [4] and there is more recent work, showing the subtleties of the analysis, by Vynnycky [16].
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It is interesting that this structure emerges only as the Reynolds number passes around 400, which is
numerically large, and beyond the value at which the wake flow is in fact likely to be strongly unsteady
(which occurs at a value of around 100) resulting in significant mixing between the flow in the wake
and the external flow passing the body. This mixing will cause the wake to close, in the sense that
the mixing has essentially merged the external and wake fluid, removing the distinction between slow
moving fluid in a trapped wake and faster moving flow outside. This closure is over a significantly shorter
length scale, on the scale of the body itself. Although the wake may be steady on global scales, so that
it is possible to define a sensible time-averaged wake, there will be significant unsteady or random
mixing motions across the wake boundary. The study of this flow, using analytic techniques, on the
assumption of steady flow requires a model of the wake closure, the effects of this unsteadiness and an
acknowledgement that some average of the flow quantities are being modelled. Such models (along with
detailed description of fully established wake flow) are discussed by Wu [19] and typically involve the
use of potential flow theory. It is this approach that we follow here. Rather than taking the wake to be
a constant vorticity of Prandtl–Batchelor type (as would be relevant if the wake remained steady and
laminar), these approaches assume that the pressure in the wake take a constant value, as we shall do in
the present study. Of particular note are the classical potential flow investigations of Kirchhoff [9] and
Helmholtz [5] regarding the zero-gravity problem of a wake forming behind a finite-length plate that is
submerged within an infinite fluid and is normal to the flow, with the pressure within the wake assumed to
be ambient. In this case, a free streamline solution is obtainable through the use of conformal mappings.

To generalise the above zero-gravity problem such that the pressure within the wake can be freely
chosen, a closure model can be employed. Many closure models have been proposed by different inves-
tigators, but the following qualitative similarity exists between them: the aim of a closure model is not
to necessarily realistically capture the behaviour of the flow downstream but to facilitate the acquisi-
tion of a flow solution that is realistic in the near-field to the object behind which the wake forms. As
mentioned earlier, discussion of several of the closure models (or wake approximations) proposed by
various investigators is presented by Wu [19]. However, one of the simplest to implement is the open-
wake model, which is utilised in the present study. This requires that the boundaries of the wake become
parallel to the undisturbed stream at some point downstream. The idea for this model is suggested by
Joukowsky [8] in terms of the introduction of a point along a free streamline before which we impose the
usual dynamic boundary condition and after which the streamline continues in someway to downstream
infinity. This undetermined way of continuing the free streamlines downstream is taken as the stream-
lines being parallel to the undisturbed stream by Roshko [12]. Wu [18] and Mimura [11] also employ
the open-wake model in solving for more generalised obstacle shapes: Wu [18] formulates the problem
for a general curved barrier whilst providing explicit solutions for a circular arc and a flat plate; and
the work of Mimura [11] concerns an inclined flat plate. It should be noted that these previous studies
neglect the effects of gravity, the plate is submerged in an infinite fluid and analytic solutions can be
obtained through the use of conformal mappings.

An alternative approach is a closed-wake model (as opposed to the open-wake model discussed
above) in which the wake is forced to be of finite length, with the streamlines on either side of the
wake meeting to effect wake closure. Relevant work here is that of Hocking and Vanden-Broeck [7]
for a constant pressure wake and that of Hocking [6] for a constant vorticity wake. Both of these stud-
ies incorporate the effects of gravity but only in a direction parallel to the flow so that symmetry is
maintained. The problem considered in this paper does not allow such symmetric solutions.

Also of relevance to the flow of interest in the present study is the work of Faltinsen and Semenov [2]
where a closed cavity model is used for the flow past a hydrofoil close to the free surface. The relevance of
this study lies in the fact that wake and cavity potential flows are often studied simultaneously since their
physical manifestations can be similarly approximated: a (super-cavitating) flow is as described earlier
for the wake, but instead a vapour-filled bubble forms behind the obstacle, which is still a region of slow
recirculation (and so relatively constant pressure). Returning to the work of Faltinsen and Semenov
[2], it should be noted that they propose a more mathematically complex closure: it is assumed that
a curvilinear contour closes the upper boundary of the cavity; the upper and lower boundaries meet at
some point downstream to physically close the cavity; and the shape of the closure of the lower boundary
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Figure 1. Illustration of the open-wake model for flow past a submerged, finite-length plate that is
normal to the oncoming flow bounded above by a free surface.

is found from the solution. Boundary integral equations are obtained and solved numerically. It is found
that, as the depth of submergence decreases or gravity increases, there is a decrease in the length of the
cavity. Faltinsen and Semenov [2] state that this closure model is proposed to more realistically simulate
the potential flow at the end of the cavity. There is good agreement with experimental results, but this is
also often the case with the employment of more simple closure models, at least in terms of quantities
relevant to the local neighbourhood of the plate.

Analogous to the wake flow problem studied in the present work are ploughing flows as investigated
by Tuck and Vanden-Broeck [15]. The difference is that the ploughing flows concern flow around a
semi-infinitely long, solid block that is submerged in a uniform, horizontal stream bounded above by a
free surface: the top and bottom sides of the object in the ploughing flows case contrast with the upper
and lower wake boundaries of the present study. The approach used in the present study is similar to
that utilised by Tuck and Vanden-Broeck [15]. The results regarding the ploughing flows will be used
to validate our solutions presented here in the limit as the beginning points for the wake approximation
downstream approach the edges of the plate that is normal to the flow, that is, recovering the problem
of flow past a submerged, semi-infinitely long block.

2. Formulation of the problem
The flow is as depicted in Figures 1 and 2a. We have a plate BB′ (of length H̃) that is normal to a
uniform, horizontal stream of speed U; and this stream is bounded above by a free surface EF. The plate
is submerged with the lower edge of the plate at B′ at a distance d̃ below the level of the free surface
of the undisturbed stream (i.e. the level of the free surface far upstream). We will refer to d̃ as the draft
of the flow. At some point not known a priori, there is a stagnation point S along the plate BB′ and
we let AS denote the separation streamline. Note that, since we utilise the open-wake model, the upper
and lower streamlines that bound the wake become horizontal (i.e. parallel to the undisturbed stream) at
some points downstream. Let C and C′ denote these points (not known a priori) at which the flow angle
becomes zero along the bounding streamlines of the wake. Throughout this work, BC and B′C′ will be
referred to as the upper and lower wake boundaries, respectively. The horizontal parts (i.e. where the
flow angle is zero) of the bounding streamlines of the wake are denoted by CD and C′D′.

As discussed in the introduction, the pressure within the wake is assumed to be constant and we take
the pressure along the wake boundaries to be this same constant, say pc. Whilst gravity is included on
the free surface, we will neglect the effects of gravity on the wake boundaries. This can be justified by
noting that a wake contains fluid of the same density as that of the rest of the flow, but it is at (relative)
rest and so we have hydrostatic pressure within the wake. The Bernoulli condition tells us that

p + ρgy = pc (1)
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(a)

(b)
(c)

Figure 2. Complex planes for the open-wake model with a free surface bounding the flow above.

within the wake, where p denotes the pressure, ρ is the density and g is the gravitational accelera-
tion. Then, through use of (1) to eliminate the pressure p from the Bernoulli condition, along the wake
boundaries we have

1

2
ρq2 + pc = C̃, (2)

where C̃ is a constant and q denotes the speed. Hence, gravity does not appear in this boundary condition
and so we can neglect the effects of gravity along the boundaries of the wake.

We will now formulate the overall problem. The flow is as described above and shown in Figure 2a
where z = x + iy with the x-axis set along the level of the undisturbed free surface and the y-axis is set
along the vertical plate BB′. Recall that we employ the open-wake model, so the flow angle is zero along
CD and C′D′. The effect of gravity is included on the free surface EF that bounds the flow above and we
assume constant atmospheric pressure p = pa along this free surface. On the other hand, gravity is not
included along the wake boundaries BC and B′C′; and the pressure is taken to be constant (say, p = pc)
along these boundaries. We normalise the velocity such that the uniform, horizontal stream is of unit
speed and normalise the distances such that π is the normalised magnitude of the net volume flux of the
flow above the plate. We denote the characteristic length for the latter normalisation by L and note that
the normalised depth of the dividing streamline far upstream is such that it lies along y = −π . Then, the
Bernoulli condition on the free surface EF is

1

2
q2 + y

F2
= 1

2
, (3)

where

F = U√
gL

(4)

is the Froude number. Along the wake boundaries BC and B′C′, we have

q2 = K + 1, (5)
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Figure 3. ζ -plane with contour C̃ = CR ∪ [R, ζ + ε] ∪ Cε ∪ [ζ − ε, −R].

where

K = p∞ − pc

1
2
ρU2

(6)

is the wake underpressure coefficient and p∞ denotes the pressure of the stream in the far-field. The wake
underpressure coefficient is a non-dimensional parameter that characterises the flow regime, that is,
whether we have a fully or partially established wake. In particular, K = 0 corresponds to the formation
of wake at ambient pressure. Note that, in the present study, the wake is assumed to be fully established
with the plate edges B and B′ of the plate being the separation points.

We let f denote the complex potential for the flow and f = φ + iψ , where φ is the velocity potential
and ψ is the streamfunction. We set ψ = 0 along the dividing streamline and ψ = π along the free
surface (since we have a net volume flux of π for the flow between the dividing streamline and the free
surface). The velocity potential at the stagnation point is set to be φ = 1. Then, there is a branch cut
along the positive φ-axis for φ > 1. For illustration, the f -plane is as depicted in Figure 2b. We also
define an intermediate complex plane by ζ = ξ + iη via the relation:

f = ζ − log ζ . (7)

Therefore, the flow region maps to the lower-half of the ζ -plane. In particular, the free surface EF maps to
the negative ξ -axis; and the wake boundaries BC and B′C′, the downstream horizontal approximations
CD and C′D′, and the vertical plate BB′ all map to the positive ξ -axis. Also note that, by the given
mapping (7), ζ = 1 corresponds to the stagnation point S (that is situated at some point along the vertical
plate in the physical plane). The positions in the ζ -plane corresponding to the edges of the plate and the
points at which the zero flow angle begins along the streamlines bounding the wake are unknown and
left to be determined. By b, b′, c and c′ we denote these unknown positions corresponding to B, B′, C
and C′ in the ζ -plane, respectively.

Finally, we let 
= τ − iθ where 
 is defined such that 
= log (df /dz). Then, we apply the Cauchy
integral formula to
(ζ ) for ζ ∈R with a semi-circular contour C̃ = CR ∪ [R, ζ + ε] ∪ Cε ∪ [ζ − ε, −R]
in the lower-half of the ζ -plane, where CR is the semi-circular arc of radius R centred at the origin, Cε is
the semi-circular arc of radius ε centred at ζ and the intervals [R, ζ + ε] and [ζ − ε, −R] are along the
real ζ -axis. The contour is traversed anticlockwise, and we consider the limit as R → +∞. This contour
is depicted in Figure 3. Then, for ζ ∈R, on the contour, we obtain that

τ (ζ ) − iθ (ζ ) = − 1

π i
P.V .

∫ ∞

−∞

τ (σ ) − iθ (σ )

σ − ζ
dσ , (8)

where P.V . denotes the Cauchy principal value. Here, we have utilised the fact that we have horizontal
flow of unit speed in the far-field; hence, τ and θ tend towards to zero in the far-field. Taking the real
part of (8), we find

τ (ζ ) = 1

π
P.V .

∫ ∞

−∞

θ (σ )

σ − ζ
dσ . (9)
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Then, by using the known flow angles along the vertical plate BB′ and the downstream, horizontal parts
CD and C′D′ of the streamlines bounding the wake, the expression can be rewritten as:

τ (ζ ) = 1

π

[ ∫ 0

−∞

θ (σ )

σ − ζ
dσ +

∫ b

c

θ (σ )

σ − ζ
dσ +

∫ c′

b′

θ (σ )

σ − ζ
dσ

]
+ 1

2
log

∣∣∣∣ (1 − ζ )2

(b − ζ )(b′ − ζ )

∣∣∣∣. (10)

Note that one of the integrals in (10) is a Cauchy principal value, depending on the value of ζ . We recall
that the speed of the flow can be expressed as q = exp(τ ) and that the dynamic boundary condition along
the wake boundaries is given by (5). It follows that, along BC and B′C′ where ζ ∈R such that c< ζ < b
or b′ < ζ < c′, we have

1

2
log (K + 1) = 1

π

[ ∫ 0

−∞

θ (σ )

σ − ζ
dσ +

∫ b

c

θ (σ )

σ − ζ
dσ +

∫ c′

b′

θ (σ )

σ − ζ
dσ

]
+ 1

2
log

∣∣∣∣ (1 − ζ )2

(b − ζ )(b′ − ζ )

∣∣∣∣.
(11)

We also look to obtain an integral equation that is valid along the free surface EF. First, we
differentiate the Bernoulli condition (3) along EF with respect to ζ , so we have

dτ

dζ
e2τ + 1

F2

dy

dζ
= 0. (12)

Note that we can express the derivative that appears in the second term above as:
dy

dζ
= e−τ (ζ )

(
1 − 1

ζ

)
sin (θ (ζ )). (13)

Then, using this along with (12) and the fact that τ → 0 as ξ → −∞, we find

τ (ζ ) = 1

3
log

(
1 − 3

F2

∫ ζ

−∞

(
1 − 1

ξ

)
sin (θ (ξ )) dξ

)
. (14)

Finally, eliminating τ between (10) and (14), then along EF where ζ ∈R s.t. −∞< ζ < 0, we look to
satisfy

1

3
log

(
1 − 3

F2

∫ ζ

−∞

(
1 − 1

ξ

)
sin θ (ξ ) dξ

)
= 1

π

[ ∫ 0

−∞

θ (σ )

σ − ζ
dσ +

∫ b

c

θ (σ )

σ − ζ
dσ

+
∫ c′

b′

θ (σ )

σ − ζ
dσ

]
+ 1

2
log

∣∣∣∣ (1 − ζ )2

(b − ζ )(b′ − ζ )

∣∣∣∣.
(15)

Note that this is a Nekrasov-type equation [17]. Again, we remark that one of the integrals on the right-
hand side of (15) is a Cauchy principal value, depending on the value of ζ .

Before summarising the problem and discretising to obtain a numerical solution, we first discuss the
flow far upstream where, along the free surface, we have ξ → −∞. Considering (10) as ξ → −∞, we
have that

τ (ξ ) ∼ 1

ξ

(
− 1

π

∫ ∞

−∞
θ (σ ) dσ

)
+ · · ·

∼ 1

ξ

[
− 1

π

( ∫ 0

−∞
θ (ξ )dξ +

∫ b

c

θ (ξ )dξ +
∫ c′

b′
θ (ξ )dξ

)
− 1 + 1

2
(b + b′)

]
+ · · ·

∼ β

ξ
+ · · · ,

(16)

where we let β denote the constant coefficient of the ξ−1 term. From this behaviour of τ far upstream,
the Bernoulli condition (3) along the free surface and the fact that x ∼ ξ as ξ → −∞ (since we have unit
horizontal velocity of the undisturbed flow), we have

dy

dx
∼ βF2

x2
as x → −∞ (17)
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and hence

θ (ξ ) ∼ βF2

ξ 2
as ξ → −∞, (18)

where β is the constant as defined above.

3. Numerical approach
Now, we detail the numerical scheme. We discretise the problem by introducing N + 1 mesh points
along each of the wake boundaries and along the free surface, that is, we take

ξU
j − log ξU

j = b − log b + j − 1

N

(
c − b + log

b

c

)
, upper wake boundary BC

ξ L
j − log ξ L

j = b′ − log b′ + j − 1

N

(
c′ − b′ + log

b′

c′

)
, lower wake boundary B′C′

ξ FS
j − log |ξ FS

j | = X− + j − 1

N
(X+ − X−), free surface EF

(19)

where j = 1, 2, . . . , N + 1 and where the finite range (X−, X+) is used to truncate the range (−∞, ∞) of
the velocity potential. Then, the unknowns of the problem are the values of the flow angle θ at each of
these mesh points, that is, we aim to find θFS

j = θ (ξ FS
j ), θU

j = θ (ξU
j ) and θ L

j = θ (ξ L
j ) for j = 1, 2, . . . , N + 1.

Recall that the positions corresponding to B, B′, C and C′ in the ζ -plane which are b, b′, c and c′,
respectively, are unknowns. We also look to find the constant β of the decay of τ far upstream, as
defined through (16). Therefore, overall we have 3N + 8 unknowns.

For the equations in these unknowns, we introduce N collocation points along the free surface and
wake boundaries defined by:

ξ
Uinter
j − log ξUinter

j = b − log b + j − 1
2

N

(
c − b + log

b

c

)
, upper wake boundary BC

ξ
Linter
j − log ξ Linter

j = b′ − log b′ + j − 1
2

N

(
c′ − b′ + log

b′

c′

)
, lower wake boundary B′C′,

ξ
FSinter
j − log |ξ FSinter

j | = X− + j − 1
2

N
(X+ − X−), free surface EF,

(20)

for j = 1, 2, . . . , N. Satisfying the condition (15) at the collocation points along the free surface and
satisfying the condition (11) at the collocation points along the upper and lower wake boundaries leads
to 3N equations. In order to obtain these 3N equations, care is required to evaluate the integrals that
appear in (11) and (15) since, for a given value of ζ that corresponds to some point along the free
surface EF or the wake boundaries BC and B′C′, one of the integrals in each equation will be a Cauchy
principal value. Note that the collocation points (20) are the midpoints between the mesh points (19),
so the point to emphasise is that the collocation and mesh points do not coincide. Also, we assume that
θ (ξ ) is stepwise linear on [ξj, ξj+1] for j = 1, 2, . . . , N (i.e. on each interval of consecutive mesh points
(19)). Then, by integrating over each of these intervals (which make up the intervals for integration that
appear in (11) and (15)), we can obtain an expression to (analytically) approximate the Cauchy principal
value. The approximation here is due to the aforementioned assumption of stepwise linear behaviour of
the flow angle. This expression can then be evaluated numerically at each collocation point.

So far, we have 3N equations in the 3N + 8 unknowns. We also have several known values of the
flow angle θ . Along the upper wake boundary, we know that

θ (b) = θU
1 = π

2
and θ (c) = θU

N+1 = 0. (21)

Along the lower wake boundary, we have

θ (b′) = θ L
1 = −π

2
and θ (c′) = θ L

N+1 = 0. (22)
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Along the free surface, we take

θFS
1 = βF2

(ξ FS
1 )2

and θFS
N+1 = 0. (23)

The first condition of the above (23) is obtained by evaluating (18) at the furthest mesh point upstream;
and by the second condition of (23), we impose zero flow angle at the furthest mesh point downstream
along the free surface, which is appropriate for supercritical flow. We also have that the constant β is
constrained by:

β = − 1

π

( ∫ 0

−∞
θ (ξ )dξ +

∫ b

c

θ (ξ )dξ +
∫ c′

b′
θ (ξ )dξ

)
− 1 + 1

2
(b + b′). (24)

This is as derived earlier in (16). Finally, we set the ratio of the (normalised) length H of the verti-
cal plate to the (normalised) draft d by imposing a given value for H/d. In order to impose the value
of this parameter, note that expressions to evaluate the values of H and d are required. We have that
yC

′ = −π (1 + β), where yC
′ denotes the y-value at C′. This expression can be derived by noting that the

depth of the dividing streamline far upstream (i.e. point A in Figure 2a) is −π . Also, the πβ contribution
to the expression for yC

′ can be obtained by finding the difference between the y-values far upstream at
A and far downstream at D′. This is achieved by integrating around a large arc in the lower-half of the
ζ -plane, taking the limit as the radius of this arc tends to infinity and noting that 
∼ β/ζ in the far-
field. The draft d of the plate can then be determined by integrating from the point C′ on the lower wake
boundary to the bottom B′ of the plate. Also, the length H of the plate can be calculated by evaluating

H = yB − yB
′ . (25)

Overall, we have 3N + 8 equations in the 3N + 8 unknowns.
To solve, we specify the values of the following parameters: Froude number F, wake underpressure

coefficient K and ratio H/d. It is worth noting that, in the current presentation of the method of solution,
the problem is posed with the wake underpressure coefficient K as a chosen parameter and the draft is
obtained from the solution. This allows for convenient comparison of the results with those found by
Tuck and Vanden-Broeck [15] in their work on the similar ploughing flows where the bluff body is a
semi-infinite, rectangular block (instead of the plate and wake that we investigate in the present study).
However, the problem can be reworked so that the draft is prescribed and K is left to be found – this
is a more natural way to consider the physical problem of the submerged plate placed at some given
distance beneath the level of the undisturbed free surface. This will be considered later in the discussion
of results.

Finally, before presenting the results, we introduce Froude numbers based on the draft d of the plate
and based on the flow quantities that characterise the channel between the free surface and the upper
wake boundary. This will facilitate a quantitative examination of the results. We let q∞ and h∞ denote
the non-dimensional speed and width (respectively) of the channel that forms above the wake. Then,
we let

Fd = F√
d

, (26)

which is a Froude number defined based on the draft; and we let

Fh = Fq∞√
h∞

, (27)

which is a Froude number defined based on the downstream channel above the wake. These Froude
numbers are as utilised by Tuck and Vanden-Broeck [15].
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(a) (b) (c)

Figure 4. Profiles to show the wake boundaries for N = 200, F = 4 and H/d = 0.2. Note that the undis-
turbed free surface is set along y = 0. The dashed lines are the horizontal sections CD and C′D′ of the
streamlines bounding the wake.

4. Results
We begin analysis of the results by first looking solely at the wake boundaries. We find that, as the
wake underpressure coefficient K increases, the points at which the zero flow angle begins along the
streamlines bounding the wake approach the edges B and B′ of the vertical plate and hence, the size of
the wake decreases – this is clear in Figure 4. This is qualitatively as can be observed in the zero-gravity
case where the open-wake model is employed for the wake flow past a plate that is still normal to the
flow but is submerged in an infinite fluid, that is, in the case investigated by Roshko [12]. This can be
understood by considering the fact that a larger value of K corresponds to a smaller constant pressure pc

within the wake. Then, there is a larger centripetal force acting upon the streamlines, resulting in greater
curvature and we attain a zero flow angle closer to the vertical plate. Hence, we have a smaller wake.
This observation validates our results with respect to previous studies where gravity is neglected and
allows for the following further comparison with the results concerning gravitational ploughing flows
by Tuck and Vanden-Broeck [15].

Figure 5 shows plots of Fh against Fd for two different given values for the wake underpressure
coefficient and for various given values of the ratio H/d. Note that these Froude numbers are determined
here in post-processing once the solution has been obtained. These plots are similar to those presented
by Tuck and Vanden-Broeck [15]. In Figure 5, as H/d → 0, Fh varies linearly with Fd. In the ploughing
flows case of Tuck and Vanden-Broeck [15], as H/d → 0, it is found that Fh = Fd which is to be expected
since it is the zero-disturbance limit. To recover these results in the model of the present study, the limit
as K → ∞ is also required. This is apparent since, in Figure 5, the plots of Fh against Fd (approximately)
translate horizontally to the left as the wake underpressure coefficient increases; and since increasing
K decreases the length of the wake boundaries then, as K → ∞, we are left with a vertical plate and
horizontal streamlines that begin at the plate corners – hence approaching a semi-infinite, rectangular
block as studied by Tuck and Vanden-Broeck [15]. We also approach a linear relationship between Fh

and Fd in Figure 5 for each value of H/d for large given values of F. Note that this corresponds to all of
the Froude numbers tending towards infinity, that is, for small gravity. Unlike the ploughing flows case
of Tuck and Vanden-Broeck [15], we do not simply obtain Fh ≈ Fd for small gravity since the pressure
difference between the stream and within the wake in our case means that the velocity upstream and the
velocity downstream in the channel above the wake cannot be equal. Quantitatively, this is due to the
wake underpressure coefficient being non-zero. From Figure 5, it is also clear that, for supercritical flow
downstream (i.e. Fh > 1), there is a minimum value for Fd (the Froude number based on the draft of the
plate).

We now present the results obtained following a small change to the formulation of the problem since
it is more natural to set the draft d instead of the wake underpressure coefficient K. In brief summary, we
set the Froude number F, (normalised) length H of the plate and (normalised) draft d; and we leave K
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(a)

(b)

Figure 5. A plot of Fh against Fd for N = 200 and various given values for H/d. From left to right, the
lines correspond to setting H/d = 0.01, 0.1, 0.2, 0.5 and 1.

as an unknown to be found. First, we consider the effect of the Froude number. The profiles of Figure 6
depict the wake boundaries and free surface for a given draft d and length H of the plate but with
different given Froude numbers. In the case of Figure 6a, we have F = 8 where we obtain K = 0.92; and
in Figure 6b, we have F = 4 where we obtain K = 0.24. Hence, a smaller Froude number results in a
smaller value for K. Earlier, we discussed the correlation between the wake underpressure coefficient K
and size of the wake. Therefore, we have that a smaller Froude number results in a larger wake. We also
find that as the Froude number F decreases, the ratio between the length of the upper and lower wake
boundaries changes. For large Froude numbers, the upper wake boundary is longer than the lower wake
boundary, as is the case in Figure 6a. For smaller Froude numbers (i.e. increased gravity), the upper is
shorter than the lower wake boundary, as is the case in Figure 6b. Another point of note is that as the
Froude number F decreases from F = 8 to F = 4, the downstream height of the free surface increases. At
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(a)

(b)

Figure 6. Profiles to show the wake boundaries and free surface for N = 200, H = 1 and d = 3. Note
that the undisturbed free surface is set along y = 0. The dashed lines are the horizontal sections CD and
C′D′ of the streamlines bounding the wake.

this point, it is worth recalling that the effects of gravity have been neglected from the wake boundaries.
As mentioned above, the smaller Froude number results in a smaller wake underpressure coefficient
which correlates to a larger wake and hence a greater disturbance to the free surface.

The effect of varying H is also discussed. We see that, for a given Froude number F and draft d, as
the length H of the vertical plate decreases, the width of the wake obviously decreases but the length of
the wake increases. This is evident in Figure 7, particularly in Figure 7a and 7b. Similarly, the decreased
effect on the free surface of a shorter plate (i.e. smaller H) is also clear. This is due to the vertical
plate and wake becoming more slender as H decreases, and so the effect of the body and wake on the
flow diminishes. It is worth noting that in the majority of the profiles presented here, it appears that the
undisturbed level of the free surface (i.e. y = 0) is not reached until very far upstream due to the slow
decay of
 far upstream. However, in the case shown in Figure 7c where the plate is small, we can clearly
observe the recovery of the undisturbed flow far upstream.

We also discuss the effect of the draft on the wake flow. For a given Froude number and length of the
plate, we find that as d decreases, the resulting wake underpressure coefficient decreases and the size of
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(a) (b)

(c)

Figure 7. Profiles to show the wake boundaries and free surface for N = 200, F = 10 and d = 3. Note
that the undisturbed free surface is set along y = 0. The dashed lines are the horizontal sections CD and
C′D′ of the streamlines bounding the wake.

the wake increases. This is observable from Figure 8 where for d = 2.9 and d = 2.8 we obtain K = 0.78
and K = 0.57, respectively. There is also, as expected in the case of a smaller draft, an increased effect
on the free surface. There is greater displacement of the free surface from its undisturbed level. The
increase in length of the upper wake boundary, in particular, can be understood by noting that we have
a given magnitude of the net volume flux of flow above the plate and for a given Froude number (i.e. a
given gravitational dominance), we have a set curvature of the jet. Therefore, if the plate is closer to the
undisturbed level of the free surface, then a zero flow angle on the upper wake boundary will be attained
further from the plate edge. Hence, we have a longer upper wake boundary with a decrease in draft.

Finally, regarding the quality of the numerical solutions, there are several points to consider. Due to
the nature of the formulation and method of solution leading to discretised boundary integral equations
involving the unknown flow angle along the wake boundaries and free surface, the accuracy of the
integrations that are involved should be noted. As discussed earlier, the Cauchy principal values are
evaluated by use of an analytical approximation, made possible by the fact that the mesh and collocation
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(a) (b)

Figure 8. Profiles to show the wake boundaries and free surface for N = 200, F = 10 and H = 1. Note
that the undisturbed free surface is set along y = 0. The dashed lines are the horizontal sections CD and
C′D′ of the streamlines bounding the wake.

points do not coincide. Elsewhere in the method where numerical integration is required, the integral
function of MATLAB is utilised, performed with accuracy of order 10−6. Regarding the overall solution
method presented here, we repeated the calculations with various values of N and found that the results
were indistinguishable within graphical accuracy for sufficiently large N. All of the results presented here
have been obtained by setting N = 200, which is sufficiently large to obtain these graphically equivalent
solutions.

5. Concluding remarks
The model and results presented here can be used to better understand the flow past a submerged, finite-
length plate that is normal to the stream with a wake forming behind the object. Additionally, it is worth
emphasising that the open-wake model utilised here is relatively simple to implement, highlighting
the potential use and applicability of this approach for investigating wake flows forming behind more
arbitrarily-shaped obstacles. In particular, minimal modifications to the calculations and the code for
implementing the numerical scheme would be required to extend this work to plates at arbitrary angles
of attack to the stream. The numerical results have been validated by comparison with the case where
we have zero gravity and infinite fluid; and the results have also been validated by comparison with the
ploughing flows of Tuck and Vanden-Broeck [15]. In a more natural formulation of the problem where
we set the Froude number, draft and length of the submerged plate, the dependencies of the solution on
these parameters have been discussed. Further work will generalise the problem to allow for subcritical,
wave solutions.
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