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Adjoint-based sensitivity analysis is routinely used today to assess efficiently the effect
of open-loop control on the linear stability properties of unstable flows. Sensitivity maps
identify regions where small-amplitude control is the most effective, i.e. yields the largest
first-order (linear) eigenvalue variation. In this study an adjoint method is proposed for
computing a second-order (quadratic) sensitivity operator, and applied to the flow past a
circular cylinder, controlled with a steady body force or a passive device model. Maps
of second-order eigenvalue variations are obtained, without computing controlled base
flows and eigenmodes. For finite control amplitudes, the second-order analysis improves
the accuracy of the first-order prediction, and informs about its range of validity, and
whether it underestimates or overestimates the actual eigenvalue variation. Regions are
identified where control has little or no first-order effect but a second-order effect. In the
cylinder wake, the effect of a control cylinder tends to be underestimated by the first-order
sensitivity, and including second-order effects yields larger regions of flow restabilisation.
Second-order effects can be decomposed into two mechanisms: second-order base flow
modification, and interaction between first-order modifications of the base flow and
eigenmode. Both contribute equally in general in sensitive regions of the cylinder wake.
Exploiting the second-order sensitivity operator, the optimal control maximising the total
second-order stabilisation is computed via a quadratic eigenvalue problem. The approach
is applicable to other types of control (e.g. wall blowing/suction and shape deformation)
and other eigenvalue problems (e.g. amplification of time-harmonic perturbations, or
resolvent gain, in stable flows).
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E. Boujo

1. Introduction

Over the past decades, adjoint-based sensitivity analysis has become a standard tool for
estimating the effect of flow control. The key underlying idea is to compute the gradient
of a quantity of interest with respect to control by solving so-called adjoint equations, only
once. This approach contrasts with the brute-force method, where the gradient is obtained
by solving the direct equations (e.g. Navier–Stokes equations) once for each control degree
of freedom. When the control has many degrees of freedom, for instance when it depends
on space or time, the adjoint method dramatically reduces the computational cost. This
efficient calculation is crucial in iterative gradient-based methods for optimal control,
where the gradient is repeatedly evaluated. This is true in general for systems governed by
partial differential equations (Lions 1971), and in particular for a wide range of problems
in fluid mechanics: shape optimisation for aerodynamics or mixing (Jameson, Martinelli
& Pierce 1998; Mohammadi & Pironneau 2001); optimal wall actuation for turbulent drag
reduction (Bewley, Moin & Temam 2001) or mixing (Foures, Caulfield & Schmid 2014);
optimal kinematics for thin-film coating (Boujo & Sellier 2019); and optimal perturbations
(initial perturbations undergoing the largest possible transient growth), especially for
time-varying base flows or nonlinear amplification (Schmid 2007), the latter being relevant
to transition to turbulence (Pringle & Kerswell 2010; Monokrousos et al. 2011).

Adjoint equations also appear naturally in fluid mechanics when investigating how linear
stability properties (growth rate and frequency, characterised by a linearised eigenvalue
problem) are affected by flow control (Luchini & Bottaro 2014). Sensitivity maps are
obtained that allow one to identify the most sensitive regions at a glance and thus to
design effective controls easily. This approach is very efficient: unlike trial-and-error
techniques, it never actually solves for controlled flows, and only requires one adjoint
calculation. The method has been applied extensively in the flow past a circular cylinder,
a prototypical globally unstable open flow: the sensitivity of the leading eigenvalue has
been computed with respect to passive control (namely, a model of a small secondary
cylinder acting on both the base flow and the perturbations) (Hill 1992), to a localised
feedback force proportional to the perturbation flow velocity (Giannetti & Luchini 2007),
and to flow modification and steady forcing in the bulk (Marquet, Sipp & Jacquin
2008). To some extent, these studies correctly identified restabilising regions where vortex
shedding is suppressed by a small secondary cylinder, first identified by the systematic
experiment of Strykowski & Sreenivasan (1990). Other studies include sensitivity to
base flow modification in the parallel Couette flow (Bottaro, Corbett & Luchini 2003),
a compressible axisymmetric body wake (Meliga, Sipp & Chomaz 2010) controlled with
steady forcing in the bulk (with sources of mass, momentum or energy) and steady wall
control (with blowing/suction or heating), the wake past a spheroidal bubble (Tchoufag,
Magnaudet & Fabre 2013), a three-dimensional T-junction (Fani, Camarri & Salvetti
2013), and a thermoacoustic system (Magri & Juniper 2013).

Because standard sensitivity analysis computes a gradient, it is linear by nature and
expected to provide meaningful results in the limit of infinitesimal flow control only. For
finite-amplitude control, nonlinear effects come into play, and the actual variation of the
quantity of interest inevitably departs from the sensitivity prediction. This is illustrated in
figure 1, which shows the effect of a localised body force on the leading growth rate λr
of the cylinder flow. At Re = 50 the uncontrolled flow is slightly unstable, λr(ε = 0) > 0.
In all four control locations considered, the body force has a stabilising effect: the growth
rate computed about the nonlinearly controlled base flow (symbols) initially decreases.
Sensitivity analysis (dashed lines) perfectly captures the slope of the growth rate reduction
at zero amplitude, dλr/dε|ε=0. It does not, however, provide any information about finite
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Figure 1. Variation of the leading eigenmode’s growth rate for the flow past a circular cylinder at Re = 50,
induced by a body force oriented along −x, of amplitude ε, and localised in (a) xc = (1, 0.7), (b) xc = (1, 1),
(c) xc = (1, 0.6) and (d) xc = (3.5, 0.8). Symbols, nonlinear calculations; dashed line, first-order sensitivity.

amplitudes ε > 0: depending on the control location, sensitivity analysis is accurate up
to smaller or larger amplitudes, and may or may not predict well the critical stabilising
amplitude; it may also underestimate or overestimate the actual growth rate variation. This
information cannot be obtained except with nonlinear calculations of the controlled flow.

Given this limitation, it is tempting to investigate whether adding one or more
higher-order terms in the sensitivity analysis can improve the prediction accuracy for
small but finite amplitudes. In some scientific fields, second-order sensitivity is sometimes
calculated as a means to speed up the convergence of iterative gradient-based optimisation,
where the modified state and the sensitivity need to be repeatedly recomputed. In
hydrodynamic stability, iterative optimisation is seldom performed, and only first-order
sensitivity is routinely calculated. One notable exception concerns the three-dimensional
control of nominally two-dimensional (or axisymmetric) flows: when the control is
periodic in the spanwise (or azimuthal) direction, the standard first-order sensitivity is
exactly zero, and at leading order the effect of the control is quadratic (Hwang, Kim & Choi
2013; Del Guercio, Cossu & Pujals 2014a,b,c). In other words, expressing the eigenvalue
variation with the control amplitude ε as λ = λ0 + ελ1 + ε2λ2 + · · · , the aforementioned
periodic configuration is such that λ1 = 0, and one needs to compute λ2. This has triggered
a number of studies that either evaluated the second-order variation induced by a given
control (Cossu 2014; Tammisola et al. 2014), or computed optimal spanwise-periodic
flow modification or control (Tammisola 2017; Boujo, Fani & Gallaire 2015, 2019).
To the best of the author’s knowledge, the second-order sensitivity of eigenvalues has
never been computed in non-parallel flows subject to external control in the general case
where λ1 /= 0, although the steps of the derivation are similar. Very recently, a related
approach was proposed by Mensah, Orchini & Moeck (2020) to compute second- and
higher-order eigenvalue variations λn induced by some scalar parameter modification.
That approach, which explicitly computes eigenvector modifications, was applied to the
parallel Poiseuille flow for variations of the Reynolds number, and to a two-dimensional
time-delayed thermoacoustic system for variations of the time delay.

The first aim of the present study is to propose a method for computing efficiently
the second-order sensitivity of an eigenvalue with respect to control, in the context of
hydrodynamic instability. Some emphasis is put on exploiting adjoint operators to derive
a sensitivity that is valid for any control, instead of simply evaluating the second-order
variation λ2 for a specific control. Specifically, and postponing rigorous definitions to § 2,
it might help to recall that the first-order coefficient of the eigenvalue variation can be
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expressed as λ1 = (S1 | F ), the inner product of a control F with a first-order sensitivity
S1 that depends only on the uncontrolled base flow; therefore, as S1 is independent of
the control, it can be computed once and for all, without computing controlled base flows
and eigenmodes. Similarly, the present study will express the second-order variation as
λ2 = (F | S2F ), where the second-order sensitivity S2 depends only on the uncontrolled
base flow. The method will be illustrated with the global instability of the two-dimensional
cylinder flow, controlled by a steady localised force or by a small control cylinder. The
second aim of this study is to leverage second-order sensitivity to find the optimal control
for stabilisation, i.e. the control yielding the largest growth rate reduction up to second
order, ελ1r + ε2λ2r.

The paper is organised as follows. Section 2 introduces the theoretical framework for the
first- and second-order sensitivities of eigenvalues with respect to control (§§ 2.1–2.3). It
also discusses the generalisation to higher orders (§ 2.4) and the computational cost of the
method (§ 2.5). Section 3 presents the flow configuration and numerical methods. Results
for the growth rate of the leading eigenmode of the cylinder flow at Re = 50 are given in
§ 4: sensitivity to a steady force (§ 4.1), sensitivity to a small control cylinder (§ 4.2), and
an analysis of the stabilisation induced by the small control cylinder when located nearly
optimally (§ 4.3). Finally, § 5 deals with optimal controls that maximise the growth rate
reduction at first or second order separately, and first and second orders simultaneously.
In addition, Appendix A briefly presents results for the sensitivity of the leading mode’s
frequency; Appendix B details the derivation of the sensitivity operators; and Appendix C
outlines an extension of the method to the sensitivity of another quantity defined as an
eigenvalue problem: the linear amplification of time-harmonic forcing (resolvent gain).

2. Theoretical framework

2.1. Base flow and stability analysis
Consider a steady fluid flow satisfying the stationary incompressible Navier–Stokes (NS)
equations

U · ∇U + ∇P − Re−1∇2U = 0, (2.1)

∇ · U = 0, (2.2)

where P(x) is the pressure field and U(x) = (U, V)T or (U, V, W)T is the velocity vector
in two or three dimensions. Equations are made dimensionless with a characteristic
velocity U∞, a characteristic length scale D and the fluid kinematic viscosity ν, thus
defining the Reynolds number Re = U∞D/ν. In the following, all velocity fields are
incompressible and the continuity equation is omitted.

The linear stability of the base flow is determined by the temporal evolution of small
perturbations u′. Considering, in particular, the normal mode ansatz u′(x, t) = u(x)eλt +
c.c., the (complex) eigenmodes u(x) are solutions of the linearised NS equations

λu + U · ∇u + u · ∇U + ∇p − Re−1∇2u = 0. (2.3)

The real and imaginary parts of an eigenvalue λ represent the linear growth rate λr and
linear frequency λi of the associated eigenmode. The base flow is linearly unstable if at
least one mode has a positive growth rate. In compact form, (2.1)–(2.2) for the steady base
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flow and (2.3) for the eigenmodes can be expressed as

N(U) = 0, (2.4)

(λI + A)u = 0. (2.5)

Here N and A are the nonlinear and linearised Navier–Stokes operators, and I is the
identity operator:

N(U) = U · ∇U + ∇P − Re−1∇2U, (2.6)

A(U)u = U · ∇u + u · ∇U + ∇p − Re−1∇2u. (2.7)

2.2. Eigenvalue sensitivity to small-amplitude steady control
Assume now that a small-amplitude control is applied via a body force acting on the steady
base flow:

N(U) = εF , (2.8)

where ‖F‖ = 1 and 0 < ε � 1. This control modifies the base flow, eigenmodes and
eigenvalues, which can be expressed as power series expansions (Hinch 1991):

U = U0 + εU1 + ε2U2 + · · · , (2.9)

u = u0 + εu1 + ε2u2 + · · · , (2.10)

λ = λ0 + ελ1 + ε2λ2 + · · · . (2.11)

Injecting the expansion (2.9) into the base flow equation (2.8) yields the following at orders
ε0, ε1 and ε2:

N(U0) = 0, (2.12)

A0U1 = F , (2.13)

A0U2 = −U1 · ∇U1, (2.14)

where A0 = A(U0) is the NS operator linearised about the uncontrolled base flow U0, i.e.
A0Un = U0 · ∇Un + Un · ∇U0 + ∇Pn − Re−1∇2Un for n = 1, 2. Although the focus
of this study is on first and second orders, note that the steady force F modifies the base
flow at higher orders too, due to the nonlinear term of the NS operator.

Similarly, injecting the expansions (2.9)–(2.11) into the eigenvalue problem (2.5) yields
the following at orders ε0, ε1 and ε2:

(λ0I + A0)u0 = 0, (2.15)

(λ0I + A0)u1 = −(λ1I + A1)u0, (2.16)

(λ0I + A0)u2 = −(λ1I + A1)u1 − (λ2I + A2)u0, (2.17)

where the operators A1 and A2 are linear in U1 and U2, respectively, and do not depend
on any other field,

A1 = U1 · ∇(∗) + (∗) · ∇U1, A2 = U2 · ∇(∗) + (∗) · ∇U2. (2.18a,b)

Before moving on to determining the first- and second-order eigenvalue variations λ1
and λ2, note that the operator λ0I + A0 is singular, since (2.15) holds. Therefore, according
to the Fredholm alternative, commonly used in the context of weakly nonlinear expansions

920 A12-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

42
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.425


E. Boujo

(see e.g. Sipp & Lebedev 2007), (2.16)–(2.17) can be solved for u1 and u2 if and only if
their right-hand sides have no component in the direction of the eigenmode u0, i.e. no
projection on the adjoint mode u†

0. Recall that the adjoint mode is a solution of

(λ̄0I + A†
0)u

†
0 = 0, (2.19)

where the overbar stands for complex conjugation, and A†
0 is the adjoint NS operator for

the L2 inner product (a | b) = ∫∫
āTb dx for any a, b,

A†
0u†

0 = −U0 · ∇u†
0 + u†

0 · ∇UT
0 − ∇p†

0 − Re−1∇2u†
0, (2.20)

such that (a | A0b) = (A†
0a | b) for any a, b. In particular, projecting the left-hand side of

(2.16)–(2.17) on u†
0 necessarily yields zero:

(u†
0 | (λ0I + A0)un) = ((λ̄0I + A†

0)u
†
0 | un) = 0, n = 1, 2. (2.21)

Choosing the normalisation (u†
0 | u0) = 1, the eigenvalue variations are obtained by

projecting (2.16)–(2.17) on u†
0 (Hinch 1991; Chomaz 2005; Giannetti & Luchini 2007):

λ1 = −(u†
0 | A1u0), (2.22)

λ2 = −
⎛
⎝u†

0

∣∣∣∣ A2u0︸ ︷︷ ︸
I

+ (λ1I + A1)u1︸ ︷︷ ︸
II

⎞
⎠ . (2.23)

Any arbitrary component along u0 can be added to u1 and (2.16) will still hold, because
of (2.15). This arbitrary component does not influence λ2, because (2.16) also implies that
(u†

0 | (λ1I + A1)u0) = 0.
The two terms in (2.23) correspond to different mechanisms: term I is the effect of

the second-order base flow modification U2 (via the first-order flow modification and the
nonlinear term of the NS operator); term II is the effect of the interaction between the
first-order flow modification U1 and the first-order eigenmode modification u1. As will be
discussed in § 4, these two terms can either compete or collaborate.

Given a steady force F , one can compute the base flow modifications U1 and U2
from (2.13)–(2.14), build A1 and A2, and use expressions (2.22)–(2.23) to estimate the
eigenvalue variation up to first order, λ = λ0 + ελ1 + O(ε2), and up to second order,
λ = λ0 + ελ1 + ε2λ2 + O(ε3). This involves solving linear systems only, which avoids
computing the nonlinear controlled flow U and solving the eigenvalue problem for the
controlled mode u, thus reducing the computational cost. For instance, the dashed lines
in figure 1 may be obtained by computing λ1r this way. However, the procedure must be
repeated every time a different force F is considered, which may become prohibitively
expensive. More useful expressions for λ1 and λ2 can be obtained that do not depend
explicitly on U1 and U2, as explained in the next section.

2.3. Sensitivity operators
Because the operator A1 is linear in U1, which itself depends linearly on F , the first-order
eigenvalue variation (2.22) can be recast as

λ1 = (S1 | F ), (2.24)

where the vector field S1 is the usual sensitivity to a steady force (Marquet et al.
2008; Meliga et al. 2010), and depends only on the uncontrolled base flow U0 and the
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uncontrolled direct and adjoint modes u0 and u†
0 (see Appendix B). This formulation

offers a significant advantage: S1 can be calculated once and for all, and then used to
predict the first-order effect of any steady force. Since no base flow modification U1 is
ever calculated, evaluating λ1 for a large number of steady forces becomes straightforward.
For instance, figure 5(a) shows the real part of the streamwise component of S1. The value
displayed at each location xc is the first-order sensitivity of the growth rate to a steady force
F = (δ(x − xc), 0)T localised at that point and oriented along the streamwise direction.

In a similar way, because (2.23) is quadratic in U1 and thus in F , the second-order
eigenvalue variation can be recast as

λ2 = (F | S2F ), (2.25)

where S2 is a linear operator that, again, depends only on the uncontrolled fields U0, u0

and u†
0. The derivation steps from (2.23) to (2.25) introduce suitable adjoint operators

(see Appendix B), following the same steps as Boujo et al. (2019) for spanwise-periodic
controls in nominally spanwise-invariant flows (where λ1 = 0 and the expression for S2
is slightly simpler). Again, this formulation suppresses the need to calculate the base flow
modifications U1 and U2. Once S2 is available, λ2 can be readily evaluated for any steady
force. The dashed lines in figure 1 can now be obtained simply by probing S1(xc) at each
control location xc of interest.

Second-order variations are obtained just as easily, and results for the few control
locations considered earlier are shown as solid lines in figure 2. The predicted growth
rate variation is generally improved. In figure 2(b,d), for instance, the second-order
prediction follows closely the actual growth rate variation up to much larger amplitudes
than the first-order prediction. In other locations, however, like in figure 2(a,c), the
improvement is less significant, owing to higher-order variations. Figure 2(e–h) highlights
these higher-order variations, confirming their importance (figure 2e,g) or lack thereof
(figure 2f,h).

As will be discussed in § 4, sensitivity maps can be produced that allow one to identify
at a glance regions where a steady force alters the eigenvalue most effectively. Further,
the relative signs and magnitudes of the first- and second-order eigenvalue variations will
characterise the usefulness of the first-order sensitivity.

Before moving on to the next sections, it is worth mentioning that the method can be
applied to the sensitivity of other quantities, as soon as they are defined as eigenvalue
problems. To illustrate this point, Appendix C derives the first- and second-order
sensitivities of the linear amplification of harmonic forcing (resolvent gain).

2.4. Higher-order sensitivity
Higher-order terms Un for the base flow modification are governed by

A0U3 = −U1 · ∇U2 − U2 · ∇U1, (2.26)

...

A0Un =
∑

1�m�n−1

−Um · ∇Un−m. (2.27)
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Figure 2. Second-order sensitivity improves the prediction of growth rate variation. (a–d) Same data as
figure 1, together with second-order prediction (solid line). (e–h) Higher-order variation: nonlinear data, i.e. all
terms of order n � 2 (symbols), and second-order sensitivity (solid line).

Similarly, higher-order terms un for the eigenmode modification are governed by

(λ0I + A0)u3 = −(λ1I + A1)u2 − (λ2I + A2)u1 − (λ3I + A3)u0, (2.28)

...

(λ0I + A0)un =
∑

1�m�n

−(λmI + Am)un−m, (2.29)

which, upon projection onto u†
0, yields the eigenvalue variations (Hinch 1991; Mensah

et al. 2020):

λ3 = −(u†
0 | A3u0) − (u†

0 | (λ1I + A1)u2 + (λ2I + A2)u1), (2.30)

...

λn = −(u†
0 | Anu0) −

∑
1�m�n−1

(u†
0 | (λmI + Am)un−m). (2.31)

Just like λ1 and λ2 are linear and quadratic in U1, respectively, each of the above
expressions is exactly proportional to Un

1, and thus to F n. In principle, one can therefore
generalise expressions (2.24)–(2.25), which involve the vector S1 (tensor of order one) and
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Fully nonlinear First-order Second-order
controlled eigenvalue eigenvalue variation eigenvalue variation

λ(F ) λ1 = (S1 | F ) λ2 = (F | S2F )

Nonlinear base flow M × O(kN3) — —
Eigenvalue problem M × O( pN2) O( pN2) —
LU decomposition — O(N3) O(N3)

Matrix–vector product — M × O(N2) M × O(N2)

Dominant contribution M × O(N3) O(N3) O(N3)

Table 1. Computational cost for the eigenvalue variation induced by a steady force, in a system discretised
with N degrees of freedom and forced at M locations. The dominant contribution is derived assuming 1 �
M � N. Recomputing the controlled base flow and the corresponding eigenvalue for each forcing location is
substantially more expensive than evaluating the sensitivities.

the matrix S2 (tensor of order two), and introduce tensors Sn of order n such that

λ = λ0 + ελ1 + ε2λ2 + ε3λ3 + · · · + εnλn + · · ·

= λ0 + ε

∫∫
(S1)iF i dx + ε2

∫∫
(S2)ijF iF j dx + ε3

∫∫
(S3)ijkF jF jF k dx + · · ·

+ εn
∫∫

(Sn)i1i2...inF i1F i2 · · · F in dx + · · · , (2.32)

with Einstein notation for repeated indices. Conceptually, the method for obtaining
the higher-order sensitivity operators Sn is similar to that described in Appendix B,
and involves a combination of the following steps: (i) redefine linear forms like Anu0,
(λmI + Am)un−m, etc., so as to make explicit the dependence on the first-order flow
modification U1, and eventually on the force F = A0U1; (ii) introduce adjoint operators so
as to isolate F , and identify the remaining control-independent operator as the sensitivity
Sn.

It should be noted that adding more terms to the power series (2.11) does not necessarily
improve its accuracy, and it certainly does not for amplitudes larger than the radius of
convergence r of the expansion. In general, r depends on both the type and location of
the control. In order to rigorously assess the validity of a second-order or higher-order
sensitivity prediction, one must therefore compute the eigenvalue λ of the actual nonlinear
controlled flow, similar to validation calculations for first-order sensitivity prediction.

2.5. Computational cost
The cost of computing the effect of a steady force on the eigenvalue is estimated in table 1.
Different methods are compared: computing the fully nonlinear controlled flow and
associated eigenvalue λ; and computing the first- and second-order eigenvalue variations
λ1 and λ2 using sensitivity operators. In what follows, N is the total number of degrees
of freedom after numerical discretisation, and M is the number of independent forcing
locations. The uncontrolled base flow U0 and leading eigenmode u0 are computed prior
to considering any control.

For the sake of simplicity, it is reasonable to assume that 1 � M � N when estimating
the leading-order computational cost. That is, M must be rather large so as to obtain
sufficiently fine-grained sensitivity maps, and N must be large enough to compute the
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eigenvalue and its variation accurately. To fix ideas, 10 different values for both xc and
yc already yield M = 100 control locations to be evaluated. Further, with a finite-element
method, a minimum of N = 103 to 104 degrees of freedom seem necessary. In this study,
M � 104 and N � 6 × 105.

The computational cost of the different methods is as follows.

(a) Recomputing the fully nonlinear controlled flow and the corresponding eigenvalue
λ for each forcing location (second column of table 1) involves two steps:
(i) computing M nonlinear base flows U , for instance with a Newton method
requiring k linear system resolutions (typically five to ten iterations) of complexity
O(N3); (ii) solving M eigenvalue problems for u, for instance with an implicitly
restarted Arnoldi method, of complexity proportional to O(N2). Omitting constant
factors for simplicity, the total cost scales like M × O(N3).

(b) Estimating the first- and second-order eigenvalue variations with (2.24)–(2.25),
i.e. with sensitivity operators (third and fourth columns of table 1), involves the
following steps (see details in Appendix B): (i) computing once and for all the
(uncontrolled) adjoint mode u†

0, with a cost proportional to O(N2); (ii) computing
once and for all the lower–upper (LU) decompositions of complexity O(N3) of A†

0
and (λ0I + A0) for λ1 and λ2, respectively; (iii) evaluating a few matrix–vector
products, with a cost O(N2) for each forcing location. The total cost therefore scales
like O(N3), for both λ1 and λ2.

In conclusion, computing λ2 involves an additional cost similar to that of computing
λ1. It is much smaller than that of recomputing the nonlinear eigenvalue λ for each
forcing location. The advantage of adjoint methods therefore applies to both first and
second orders. Of course, this is true only when a large number M of control locations
are considered, e.g. when constructing sensitivity maps. Conversely, when only a few
control locations are of interest, calculating the actual eigenvalue λ is more accurate and
not significantly more computationally expensive.

In the above analysis, memory requirements have not been considered. Storage is
not an issue for two-dimensional configurations, and for spatial discretisation methods
that yield sparse matrices (e.g. finite-element method), but may become prohibitive
for three-dimensional configurations or methods that yield dense matrices (e.g. spectral
methods). This is a practical limitation of the proposed approach. For standard eigenvalue
calculations and first-order sensitivity analysis, one can use matrix-free time-stepping
techniques as an alternative to matrix-based techniques (Tuckerman & Barkley 2000).
Whether such an approach is possible for second-order sensitivity analysis remains to be
determined.

3. Flow configuration and numerical method

The two-dimensional, incompressible flow past a circular cylinder of diameter D with
free-stream velocity (U∞, 0)T is considered. In the remainder of this study, the Reynolds
number is set to Re = 50 unless otherwise stated.

3.1. Base flow
A two-dimensional triangulation of the domain

Ω = {(x, y) | −10 � x � 50, |y| � 10,

√
x2 + y2 � 0.5} (3.1)
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Figure 3. Vorticity of the base flow at Re = 50. Dashed line: recirculation region.

is generated with the finite-element software FreeFem++ (Hecht 2012), resulting in
approximately 136 000 elements. Velocity and pressure fields are discretised with P2
and P1 Taylor–Hood elements, respectively, yielding a total of N � 615 000 degrees of
freedom. All discrete operators are built from their continuous expressions (see details
in Appendix B) in variational form. In particular, this means that the ‘differentiate then
discretise’ approach is used for adjoint operators, as opposed to the ‘discretise then
differentiate’ approach.

The uncontrolled steady base flow U = U0 is obtained by solving (2.4) with a Newton
method, iterated until residuals are smaller than 10−12. Boundary conditions are imposed
as follows: uniform free-stream velocity at the inlet, no-slip boundary condition on the
cylinder wall, outflow boundary condition −Pn + Re−1∇U · n = 0 (with n the normal
vector) at the outlet, and symmetry condition on the lateral sides of the domain. Figure 3
shows the vorticity ω = ω0 = ∂xV0 − ∂yU0 of the base flow at Re = 50. Shear layers
of opposite vorticity are created on both sides of the cylinder. The recirculation region
(dashed line) extends over three diameters downstream.

Controlled base flows U are computed for validation purposes, solving (2.8) with the
same method. For steady forces F that are localised in space, Dirac delta functions are
smoothed out numerically into Gaussians of variance 0.0025.

3.2. Stability analysis
The eigenvalue problem (2.5) is solved with Matlab using an implicitly restarted
Arnoldi method with shift-and-invert preconditioning. This study focuses on the leading
eigenmode u = u0, which becomes unstable at Re � 47 via a Hopf bifurcation, as a
pair of complex conjugate eigenvalues cross the imaginary axis, as illustrated in the
half-plane λi > 0 in figure 4(a) (the other half is symmetric with respect to λi = 0).
The leading eigenmode at Re = 50, associated with the eigenvalue λ � 0.0173 + 0.7797i,
is shown in figure 4(b). It is largest a few diameters downstream of the recirculation
region, as perturbations are advected by the base flow. With its wave packet structure
and its complex eigenvalue, this mode breaks both the spatial and temporal symmetries,
leading to periodic vortex shedding and to the Bénard–von Kármán street in the cylinder
wake.

The adjoint problem (2.19) is solved with the same method. The leading adjoint
mode u†

0 shown in figure 4(c) is largest in the recirculation region, and adjoint
perturbations travel upstream, a consequence of upstream advection in the adjoint NS
operator.
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Figure 4. (a) Eigenvalues of the cylinder flow at Re = 50 (filled squares), and leading eigenvalue at Re = 40,
45, . . . , 100 (empty circles). The full spectrum is symmetric with respect to λi = 0. (b) Leading eigenmode and
(c) leading adjoint mode (real part, cross-stream velocity) at Re = 50, normalised such that (u†

0 | u0) = 1 and
‖u0‖ = 1.

3.3. Sensitivity
First- and second-order sensitivity maps are computed for localised control forces F . The
control is moved within the subdomain x ∈ [−2, 6], y ∈ [0, 3], with a step size �x = �y =
0.05, leading to approximately M � 10 000 control locations.

The second-order sensitivity operator S2 defined by (2.25) contains inverse operators
(see detailed expression in Appendix B) and is therefore not formed explicitly. Instead, the
LU decomposition of each operator to be inverted is precomputed once and for all, such
that each subsequent matrix inversion is replaced with two simple matrix–vector products.
(Note that S2 is a second-order tensor; by contrast, the first-order sensitivity S1 defined
by (2.24) is a vector that can be formed explicitly and plotted without further difficulty. In
this study, sensitivity maps for λ1 and λ2 are evaluated location by location.)

4. Second-order sensitivity of the growth rate

This section investigates the effect of control on the first- and second-order variations of
the leading growth rate λr. (For the effect on the linear frequency λi, see Appendix A.)

4.1. Sensitivity to a steady body force
Let us consider first a generic steady body force. Figure 5(a) shows the real part of the x
component of the first-order sensitivity S1(x) to such a steady force. As shown by (2.24),
the value at each location x = xc is also the value of the first-order variation λ1r when
choosing a localised force along the x direction, F = (δ(x − xc), 0)T. The sensitivity is
large and negative on the sides of the cylinder and inside the recirculation region, and
positive on the sides of recirculation region, in agreement with Marquet et al. (2008)
(figure 9(a) therein). Note that changing the sign of Fx changes the sign of λ1, such that
stabilising regions (λ1r < 0, blue) become destabilising (λ1r > 0, red) and vice versa.

The second-order sensitivity S2(x) is visualised in figure 5(b), which shows the
second-order growth rate variation λ2r evaluated according to (2.25) for the same localised
force F = (δ(x − xc), 0)T. Overall, and in absolute value, sensitive regions are similar
at first and second orders, namely, the domain approximately delimited by 0 � x � 4,
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Figure 5. Sensitivity of the leading mode’s growth rate to a localised steady force oriented along the x
direction, at Re = 50. All fields are symmetric with respect to y = 0. Black dots show the control locations
considered in figures 1 and 2. (a) First-order variation λ1r . (b) Second-order variation λ2r. (c) Term I and
(d) term II in the decomposition (2.23) of the second-order variation. (e) Sign of the product λ1rλ2r.
( f ) Relative importance of first- and second-order variations, quantified by the threshold amplitude (4.2), shown
here as log10(εt). Insets: close-up views of the region 0.7 � x � 1.3, 0.4 � y � 1.2.

|y| � 1, and containing the sides of the cylinder, the recirculation region and the shear
layers. Note that, unlike S1, the sign of S2 does not change with the sign of Fx.

With these two maps available, it is now possible to explain the results of figure 2.
The three control locations xc = (1, 0.7), xc = (1, 1) and xc = (1, 0.6) lie in a region of
similar first-order sensitivity (figure 5a), and therefore induce similar first-order reductions
λ1r (figure 2a–c). The second-order variations, however, differ substantially between these
three locations (figure 5b): small in xc = (1, 0.7), negative in xc = (1, 1) and positive
in xc = (1, 0.6). As a result, the second-order prediction is not much different from the
first-order one in figure 2(a), and yields a larger growth rate reduction in figure 2(b) and
a smaller one in figure 2(c). The second-order prediction generally follows more closely
the nonlinear results than the first-order one. In the last control location, xc = (3.5, 0.8),
the first-order sensitivity is small (figure 5a), yielding a weak first-order variation in
figure 2(d). The second-order variation, however, is clearly negative (figure 5b), and the
actual growth rate reduction is well captured by the second-order prediction (figure 2d).

Considering the large differences observed between different control locations, and the
potential impact on flow restabilisation, it would be useful to find a simple way to address
the following questions: (i) What is the range of control amplitude where the first-order
sensitivity yields an accurate prediction? (ii) Outside this range, does it underestimate or
overestimate the actual variation? One step towards answering the first question is possible
with the ratio of first- to second-order variations. Recalling the expansion

λ = λ0 + ελ1 + ε2λ2 + O(ε3), (4.1)

it appears that the second-order correction ε2|λ2| is of the same order of magnitude as the
first-order variation |λ− λ0| = ε|λ1| for the threshold amplitude

εt =
∣∣∣∣λ1

λ2

∣∣∣∣ . (4.2)
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For small enough amplitudes ε � εt, the first-order variation predicts the actual variation
accurately, as the second-order correction is negligible. Conversely, for large amplitudes
ε 
 εt, the second-order variation dominates the first-order one. In between, the
second-order variation becomes important and cannot be ignored when the control
amplitude reaches some fraction of the threshold amplitude, say εt/10.

Obviously, the analysis needs to be refined when λ2 = 0. Taking into account ε3λ3
or the next non-zero higher-order correction εnλn, the threshold amplitude becomes
εt = |λ1/λn|1/(n−1). Note that the threshold amplitude decreases as the relative importance
of ε2λ2 grows; this latter term becomes the leading-order term in the limiting case λ1 = 0
(e.g. for the spanwise-periodic control of spanwise-invariant flows), and the threshold
amplitude then becomes εt = |λ2/λn|1/(n−2).

Figure 5( f ) shows the threshold amplitude (4.2), i.e. the ratio of the maps in
figure 5(a,b), in logarithmic scale. Focusing on regions where λ1r and λ2r are not
both small, it appears that the first-order prediction is especially accurate up to large
amplitudes (log10(εt) > 0, green) near the cylinder, downstream of the cylinder on the
symmetry axis up to x = 2, and in a thin strip running along and outside the recirculation
region. Conversely, the second-order prediction must be taken into account (log10(εt) <

−1, yellow and red) in other regions both inside and outside the recirculation region,
particularly in a thin strip running along and inside it. The proximity of those two strips
warns about locating a steady force near the separatrix, or in any region where εt has a
strong gradient: slight, unintentional shifts can dramatically increase the amplitude of the
second-order variation and ruin the accuracy of the first-order prediction.

Figure 5( f ) confirms observations from figure 2: εt is large and the first-order prediction
is accurate over a wide range of control amplitudes in xc = (1, 1) and xc = (1, 0.7), while
εt is small and the second-order variation quickly becomes important in xc = (1, 0.6) and
xc = (3.5, 0.8).

The second question above is answered by considering the signs of λ1r and λ2r. If both
signs are identical, the second-order correction strengthens the effect of the first-order
variation: when λ1r, λ2r < 0, the flow is stabilised even more than predicted by λ1r alone
(and destabilised even more when λ1r, λ2r > 0), such that a smaller control amplitude is
actually sufficient to obtain the desired effect. Conversely, if the signs are opposite, the
effect is weakened: for example, when λ1r < 0 and λ2r > 0, the flow is not stabilised
as efficiently as predicted by λ1r alone, such that a larger control amplitude is actually
required to obtain the desired effect. As a way to distinguish between those two situations,
figure 5(e) shows the sign of the product λ1rλ2r. Focusing again on regions where λ1r and
λ2r are not both small, this map indicates that ‘safe’ regions where λ1rλ2r > 0 (green) are
rather few and apart (mainly near the cylinder and along the separatrix), the rest being
‘dangerous’ regions where λ1rλ2r < 0 (red).

Consider again the four control configurations of figure 2, where Fx < 0 (recall that the
sign of λ1r changes when the sign of Fx is changed, which swaps the ‘safe’ and ‘dangerous’
regions). Figure 5(e) confirms that the first-order prediction underestimates the growth
rate reduction (compared to first- and second-order predictions together) in xc = (1, 1),
xc = (1, 0.7) and xc = (3.5, 0.8), and overestimates it in xc = (1, 0.6).

Let us come back to figure 5(c,d), which shows the two terms I and II in the second-order
sensitivity equation (2.23), i.e. the effects of U2 and of the U1–u1 interaction, respectively.
The map in figure 5(b) is the sum of those two maps, and all three colour scales are
identical. Overall, terms I and II are of the same order of magnitude. Both terms display
regions of positive and negative sensitivity. They collaborate to yield positive sensitivity
near the downstream end of the recirculation region, and negative sensitivity on the side
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of the recirculation region. Conversely, they compete on part of the symmetry axis inside
the recirculation region, and on part of the separatrix, resulting in a weak total sensitivity.
Although the map of term I bears an overall qualitative similarity to the map of total
sensitivity, term II makes a significant contribution everywhere; in other words, the steady
control force modifies the growth rate at second order by changing not only the base flow
but also the eigenmode that develops on that base flow.

4.2. Sensitivity to a small control cylinder
The sensitivity analysis is now applied to a practical flow control strategy, namely inserting
a small passive device in order to reduce the growth rate of the leading mode. Following
Hill (1992), and later Marquet et al. (2008) and Meliga et al. (2010), the effect of a small
circular cylinder of diameter d located in xc is modelled as a steady force acting on the
base flow, equal and opposite to the drag force that would be felt by that cylinder in a
uniform flow with the local velocity

εF (x) = −1
2 dCd(x)‖U0(x)‖U0(x)δ(x − xc). (4.3)

The drag coefficient Cd of the control cylinder depends on the local Reynolds number
Red = ‖U0(x)‖d/ν and is modelled here with the power law Cd(Red) = 0.8558 +
10.05Re−0.7004

d (Boujo & Gallaire 2014; Meliga et al. 2014) meant to approximate data
from the literature (Finn 1953; Tritton 1959) and in-house numerical simulations in the
range of interest 1 � Red � 15. In the following, results are illustrated with d = 0.1, i.e. a
control cylinder 10 times smaller than the main cylinder.

The first-order growth rate variation induced by the control cylinder is displayed in
figure 6(a). The map shows a destabilising region on the sides of the main cylinder,
stabilising regions on the sides of the recirculation region, and more weakly stabilising
regions on the symmetry axis both upstream and downstream of the main cylinder. This
is in agreement with the map obtained by Marquet et al. (2008) (figure 11(a) therein), and
is consistent with the map of figure 5(a), since the force (4.3) is oriented mainly along −x
outside the recirculation region and mainly along x inside.

Figure 6(b) shows the second-order growth rate variation. The main destabilising and
stabilising regions appear rather similar to those of the first-order variation of figure 6(a).
This means that, where the signs of those regions do correspond, the second-order
variation tends to strengthen the effect of the first-order one. A closer look at figure 6(e)
reveals that, where λ1r and λ2r are not both small, they generally have the same sign.
Therefore, for a small control cylinder, and considering the variation of λr up to second
order, the situation is one of the following almost everywhere: (i) both λ1r and λ2r are
small, so the control cylinder does not modify the growth rate substantially; (ii) only λ2r
is small, so the effect of the control cylinder is well predicted by λ1r alone; (iii) λ1r and
λ2r are not small and have the same sign, so the effect of the control cylinder is stronger
(more destabilising or more stabilising) than predicted by λ1r alone. One exception is the
narrow region where λ2r > 0 and λ1r is small: although first-order sensitivity predicts no
effect, the control cylinder is actually destabilising.

The decomposition of λ2r into terms I and II in figure 6(c,d) shows that the second-order
destabilising effect is primarily due to U2, while the second-order stabilising effect is due
both to U2 and to the U1–u1 interaction.

Figure 7(a,b) shows the contours where inserting a small control cylinder of diameter
d = 0.1, as described above, is predicted to make the leading mode neutrally stable.
Several Reynolds numbers Re � 50 are considered. Inside the regions delimited by
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Figure 6. Growth rate variation induced by a small control cylinder of diameter d = 0.1 at Re = 50: (a) ελ1r

and (b) ε2λ2r . (c) Term I and (d) term II in the decomposition of ε2λ2r . (e) Sign of the product λ1rλ2r .
(Figure 5( f ) has no equivalent here because the diameter d, and therefore the amplitude ε, are fixed.) The
black dot shows the location xc = (1, 1) investigated in § 4.3.

these contours, the mode is stable and vortex shedding is expected to be suppressed.
In figure 7(a), only the first-order sensitivity prediction is considered, λ0r + ελ1r = 0,
while in figure 7(b), the second-order correction is included too, λ0r + ελ1r + ε2λ2r = 0.
The results compare qualitatively well with the experimental observations of Strykowski
& Sreenivasan (1990) (figure 20 therein): stabilisation is achieved on the side of the
recirculation region, in an area that is rather wide at Re = 50 and that becomes smaller
as the Reynolds number increases, until shrinking to a single point and vanishing
when restabilisation is not possible any more. Compared to the first-order sensitivity,
however, the second-order sensitivity seems to better capture the results of Strykowski
& Sreenivasan (1990): in particular, it predicts a wider stabilising area at Re = 60, and a
larger value of the maximum stabilisable Reynolds number 70 < Re < 80.

For completeness, figure 7(c,d) shows stabilising contours for a pair of control cylinders
located symmetrically in (xc, yc) and (xc, −yc), still with d = 0.1. In the sensitivity
framework, the two cylinders are assumed not to influence each other, which is not satisfied
close to the symmetry axis y = 0. Unsurprisingly, the main stabilising region is wider
but still located on the side of the recirculation region. Although conclusions should be
drawn with care at larger Reynolds numbers, as the uncontrolled flow becomes linearly
unstable to a second two-dimensional mode at Re � 100 (Verma & Mittal 2011) and to
a three-dimensional mode at Re � 190 (Barkley & Henderson 1996), restabilisation can
be achieved up to Re � 100 and Re > 100 according to first- and second-order sensitivity
predictions, respectively.

4.3. Analysis of the stabilisation induced by a small control cylinder located optimally
In this section, the effect of a small control cylinder is investigated in more detail for the
specific control location xc = (1, 1), close to the location of largest first- and second-order
stabilising effects identified in § 4.2.
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Figure 7. Passive control with (a,b) one cylinder or (c,d) two symmetric cylinders modelled by the force (4.3)
for a diameter d = 0.1. On the contours, sensitivity analysis predicts the leading mode to be stabilised, i.e.
become exactly neutrally stable. (a,c) First-order prediction, λ0r + ελ1r = 0; (b,d) second-order prediction,
λ0r + ελ1r + ε2λ2r = 0. Reynolds numbers Re = 50, 60, . . . , 100. Contours are symmetric with respect to
y = 0.

0

0.2

0.4

0.6

0.8

1.0

d

0.7

0.8

d = 0.1

d = 0.05
d = 0.03

d = 0

–0.2 –0.1 –0.10 –0.05 0.0500 0.1

λi

λr λr

Nonlinear λ

λ0 + ελ1

λ0 + ελ1 + ε2λ2

(b)(a)

Figure 8. (a) Eigenvalues of the uncontrolled flow (black squares), and of the flow controlled with a small
secondary cylinder of diameter d (triangles, d = 0.03; circles, d = 0.05; diamonds, d = 0.1) located in xc =
(1, 1). (b) Zoomed-in view of the leading eigenvalue (dashed region in panel (a)), with first- and second-order
sensitivities (dashed and solid lines, respectively). Re = 50.

Figure 8 shows the eigenspectrum of the flow controlled with a secondary cylinder of
increasing diameter d. The leading mode is restabilised for diameters d � 0.004. Other
modes remain stable for the whole range of diameters investigated. As seen in the close-up
(figure 8b), the second-order sensitivity (thick solid line) follows closely the actual path
of the leading eigenvalue in the complex plane (symbols), accurately capturing both the
growth rate and the frequency, and improving on the first-order prediction (dashed line).

Let us now focus on the diameter d = 0.1. As apparent from figure 6, the predicted first-
and second-order growth rate variations are comparable,

ελ1r = −0.0426, ε2λ2r = −0.0424, (4.4a,b)

and the two second-order contributions are of similar order of magnitude: ε2λ2r,I =
−0.0258, ε2λ2r,II = −0.0167. Figure 9 depicts the base flow modification. At first
order, the control cylinder induces a strong velocity deficit U1 < 0 in its wake, and
a slight acceleration U1 > 0 between the two cylinders (figure 9a). As a result, two
layers of opposite vorticity emanate from the control cylinder (figure 9b) in a roughly
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Figure 9. First- and second-order flow modification. (a) Streamwise velocity U1, (b) vorticity ω1,
(c) streamwise velocity U2, and (d) vorticity ω2. (e) Profiles of streamwise velocity U and horizontal shear
∂U/∂y.

symmetric way. At second order, velocity and vorticity are modified more weakly, with a
more complicated spatial pattern (figure 9c,d). The net effect of the control cylinder is best
illustrated by the velocity and shear profiles in figure 9(e). In x = 0.8, just upstream of the
control location xc = 1, the flow modification U1 (red dashed line) smooths the velocity
profile and reduces the maximum shear. Downstream (x = 1.5 and 2), the induced velocity
deficit further reduces shear in the lower shear layer emanating from the control cylinder,
where the positive vorticity ω1 (figure 9b) counteracts the negative base flow vorticity
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Figure 10. Integrands of the first- and second-order growth rate variations λ1r and λ2r expressed as
(2.22)–(2.23), for a small control cylinder (d = 0.1, xc = (1, 1)) at Re = 50. (a) Integrand of (4.5); (b) density
l1(x) (black dash-dotted line) and its cumulative integral (red solid line). (c) Integrand of (4.6); (d) density
l2,I(x) (black dash-dotted line) and its cumulative integral (green solid line). (e) Integrand of (4.7); ( f ) density
l2,II(x) (black dash-dotted line) and its cumulative integral (green solid line).

ω0 (figure 3). These observations are consistent with those of Marquet et al. (2008). In the
upper shear layer, however, the negative ω1 adds up to the negative ω0, and shear is strongly
increased, well beyond the maximum uncontrolled shear. The second-order modification
(green solid line) tends to yield an additional reduction in maximum shear, both upstream
and downstream of xc, albeit much smaller. In light of these observations, shear alone does
not seem to explain entirely (i) why U1 is stabilising, and (ii) why U2 brings an additional
stabilisation as large as U1.

Some complementary insight can be gained by looking at regions that contribute
to the growth rate variation. Recalling that λ1 and λ2 are defined by (2.22)–(2.23) as
inner products, it is natural to look at the integrands of λ1, λ2,I and λ2,II, shown in
figure 10(a,c,e). For a more quantitative picture, it is useful to consider the contribution
from each streamwise location x: let us integrate those integrands vertically and define
one-dimensional densities,

l1(x) =
∫ ∞

−∞
Re{−ū†

0 · (A1u0)} dy, (4.5)
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l2,I(x) =
∫ ∞

−∞
Re{−ū†

0 · (A2u0)} dy, (4.6)

l2,II(x) =
∫ ∞

−∞
Re{−ū†

0 · ((λ1I + A1)u1)} dy. (4.7)

By construction, the cumulative integral
∫ x
−∞ l1(x′) dx′ tends to λ1r as x → ∞. Similarly,

the limits of the cumulative integrals of l2,I(x) and l2,II(x) are λ2r,I and λ2r,II, respectively.
These densities and cumulative integrals are shown in figure 10(b,d, f ) as dash-dotted
lines and solid lines, respectively. All three densities are positive at the control cylinder
location; farther downstream they become negative, in a longer region and with a similar
intensity, finally resulting in λ1r < 0 and λ2r < 0. The two-dimensional integrands are
mostly positive in the early wake of the control cylinder, and negative in a wider region
running downstream along the separatrix. This region can therefore be identified as the
main stabilising one when λ1r and λ2r are understood as inner products expressed in terms
of modifications A1, A2 of the linearised NS operator, and eigenmode modification u1.

It is also possible, and perhaps more informative, to consider alternative expressions for
λ1r and λ2r where the base flow modification U1 appears explicitly. The interested reader
is referred to (B5) and (B18) in Appendix B, where the sensitivity operators are derived.
The corresponding integrands are shown in figure 11(a,c,e), and the densities

l′1(x) =
∫ ∞

−∞
Re{(−L̄†ū†

0) · U1} dy, (4.8)

l′2,I(x) =
∫ ∞

−∞
Re{U1 · (KU1)} dy, (4.9)

l′2,II(x) =
∫ ∞

−∞
Re{U1 · (M†(λ0I + A0)

−1T U1)} dy, (4.10)

in figure 11(b,d, f ). The density l′1(x) is qualitatively similar to l1(x): positive around xc
and negative in a longer region downstream. The two-dimensional integrand, however,
exhibits a more complicated structure with alternating positive regions (separatrix and
control cylinder wake) and negative regions (especially the recirculation region). This
reveals that the main first-order stabilising contribution in terms of flow modification U1
comes from the inside the recirculation region, not directly from the control cylinder wake.
Again, this is consistent with the observations of Marquet et al. (2008). Turning now to
second order, it appears that l′2,I and l′2,II are mostly negative or zero, and only marginally
positive. The integrand of λ2r,I is strongly negative immediately upstream of the control
cylinder, while the integrand of λ2r,II is negative in the control cylinder wake and along
the separatrix. Therefore, the main second-order stabilising contribution from the flow
modification (quadratic effect of U1) comes directly from the control cylinder and its
wake.

5. Optimal control

Previous sections have investigated the second-order sensitivity to given, localised
controls. One may wonder about how to design an optimal distributed control F opt so
as to maximise the growth rate reduction. This section first recalls how to compute
optimal controls targeting separately the first- and second-order variations, λ1r and λ2r,
and then presents a method for computing the optimal control targeting at once the total
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Figure 11. Same as figure 10, for λ1r and λ2r expressed with sensitivities to first-order base flow modification
U1. (a) Integrand of (4.8); (b) density l′1(x) (black dash-dotted line) and its cumulative integral (red solid line).
(c) Integrand of (4.9); (d) density l′2,I(x) (black dash-dotted line) and its cumulative integral (green solid line).
(e) Integrand of (4.10); ( f ) density l′2,II(x) (black dash-dotted line) and its cumulative integral (green solid line).

second-order variation, ελ1r + ε2λ2r. This method, borrowed from general linear algebra
and applied mathematics, seems rather new in the field of hydrodynamic stability.

5.1. Optimising first- and second-order variations separately
When only the first-order variation λ1r is considered, the optimal unit control is
proportional to the sensitivity itself (Bottaro et al. 2003; Boujo et al. 2015):

F opt
1 = arg min‖F‖=1{λ1r} = arg min‖F‖=1(S1r | F ) = − S1r

‖S1r‖ . (5.1)

This classical result can be obtained with a Lagrangian method, or as a direct consequence
of the Cauchy–Schwarz inequality becoming an equality for two linearly dependent
vectors.

When only the second-order variation λ2r is considered (which is relevant when λ1r = 0,
for example for the spanwise-periodic control of spanwise-invariant flows), the largest
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growth rate reduction is

min
‖F‖=1

{λ2r} = min
‖F‖=1

(F | S2rF ) = min
‖F‖

(F | 1
2 (S2r + ST

2r)F )

(F | F )
, (5.2)

i.e. the optimal unit control F opt
2 is the eigenvector associated with the smallest eigenvalue

μ of the following symmetric eigenvalue problem (Boujo et al. 2015, 2019):

1
2 (S2r + ST

2r)F = μF . (5.3)

5.2. Optimising the total second-order variation
If now the total second-order variation is to be minimised,

min
‖F‖=1

{ελ1r + ε2λ2r} = min
‖F‖=1

{ε(S1r | F ) + ε2(F | S2rF )}, (5.4)

one can introduce the Lagrangian

L(F , β) = ε(S1r | F ) + ε2(F | S2rF ) − β[(F | F ) − 1], (5.5)

where β is an as yet unknown Lagrange multiplier enforcing the normalisation ‖F‖ = 1.
From the stationarity condition ∂L/∂F = 0, one obtains the following equation for the
optimal unit control F opt

1+2:

ε2(S2r + ST
2r)F − 2βF = −εS1r. (5.6)

One can verify that: (i) in the limit of small control amplitudes, ε � 1, the optimal
control reduces to F opt

1 proportional to S1r, as given by (5.1); (ii) in the limit of vanishing
first-order sensitivity, S1r = 0, the optimal control reduces to the F opt

2 solution of an
eigenvalue problem equivalent to (5.3). In both cases, F opt

1 and F opt
2 are independent of

the control amplitude ε.
In general, however, (5.6) for F opt

1+2 is neither a linear system nor an eigenvalue problem,
and F opt

1+2 depends on the amplitude ε considered. Together with the associated constrained
minimisation problem (5.4), it appears in some least-squares problems, constrained
eigenvalue problems and trust-region problems. It has been studied extensively in the
literature, and several solution techniques are available. For instance, Gander, Golub &
von Matt (1989) give an iterative method based on solving a so-called explicit secular
equation for β, but it involves a full diagonalisation of the operator (S2r + ST

2r), which
is not tractable in the present study. Another method consists in finding the smallest β

solution of the implicit secular equation

ε2ST
1r[ε

2(S2r + ST
2r) − 2βI]−2S1r − 1 = 0. (5.7)

In either case, the optimal control F opt
1+2 is obtained by substituting the obtained value of

β in (5.6).
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Here, yet another approach from Gander et al. (1989) is used. First, F is expressed from
(5.6) as F = −[ε2(S2r + ST

2r) − 2βI]−1εS1r, and the (unit) norm of F becomes

F TF = 1 = εST
1r[ε

2(S2r + ST
2r) − 2βI]−2εS1r (5.8)

because the operator in square brackets is symmetric. Second, defining the vector

γ = [ε2(S2r + ST
2r) − 2βI]−1F = −[ε2(S2r + ST

2r) − 2βI]−2εS1r, (5.9)

one can write F TF = 1 = −εST
1rγ and

[ε2(S2r + ST
2r) − 2βI]2γ = −εS1r = −εS1rF TF , (5.10)

finally obtaining the quadratic eigenvalue problem

[ε2(S2r + ST
2r) − 2βI]2γ = ε2S1rST

1rγ , (5.11)

to be solved for the smallest eigenvalue β. The associated eigenvector γ yields the optimal
control F opt

1+2 via (5.9). In practice, the quadratic eigenvalue problem is transformed into
an equivalent linear one,[

ε2(S2r + ST
2r) −I

−ε2S1rST
1r ε2(S2r + ST

2r)

] (
γ

F

)
= 2β

(
γ

F

)
, (5.12)

which has twice the dimension but can be solved with standard methods.
As mentioned earlier, the optimal control F opt

1+2 is a function of the amplitude considered
because ε is a parameter of the optimisation problem (5.12), which one is free to choose.
In the following, let us denote by ε∗ the optimisation amplitude. A given optimisation
amplitude ε∗ yields an optimal unit control F opt

1+2, and the associated values λ1r and
λ2r. The control ε∗F opt

1+2 is therefore optimal for this amplitude. When implementing this
optimal unit control with another amplitude ε /= ε∗, the second-order effect of εF opt

1+2 will
be λr = λ0r + ελ1r + ε2λ2r. By construction, this effect will be optimal only for ε = ε∗.

Figure 12(a,b) compares the linear variation of the leading growth obtained with the
first-order optimal control F opt

1 (dashed line), and the quadratic variation obtained with the
total second-order optimal control F opt

1+2 (solid lines) for several optimisation amplitudes
ε∗ (symbols). In all cases, the second-order effect is stabilising (λ2r < 0). For Re = 50
(figure 12a), changing ε∗ makes little difference. For Re = 80 (figure 12b), however, the
impact of ε∗ is clearly visible: controls optimised for larger amplitudes ε∗ perform better
at large ε, but worse at small ε (see inset). This highlights the flexibility of the method,
which allows one to select a control amplitude and optimise for that specific amplitude.

Figure 12(c–h) shows the unit optimal control for several values of ε∗, at Re = 50
(a,c,e,g) and Re = 80 (b,d, f,h). Each panel compares the first-order optimal control F opt

1
(upper half), and the total second-order optimal control F opt

1+2 (lower half). Contours show
the magnitude of the vector F , streamlines show its orientation. For small amplitudes,
F opt

1+2 is very similar to F opt
1 , as seen in figure 12(c,d) for ε∗ = 0.02. As the optimisation

amplitude increases (ε∗ = 0.1 in figure 12e, f and ε∗ = 0.5 in figure 12g,h), the optimal
control becomes weaker in the recirculation region and immediately outside, and stronger
in a new area outside the recirculation region, while its overall orientation is preserved.
For finite control amplitudes, making small changes to a control may thus be important, as
this can improve its second-order effect.
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Figure 12. Optimisation of the total second-order variation. (a,b) Quadratic variation of the leading growth
rate λ0r + ελ1r + ε2λ2r induced by the optimal control εF opt

1+2. Each solid line corresponds to a different
optimisation amplitude ε∗ (symbols). Dashed line: linear variation for the first-order optimal εF opt

1 . Inset:
close-up of the small-amplitude region, also showing the linear variations (slopes in ε = 0). (c–h) Optimal
unit control for first-order growth rate variation only (ε∗ = 0, upper half) and for total first- and second-order
growth rate variation (ε∗ > 0, lower half). Colour, magnitude; streamlines, local orientation. Optimisation
amplitude: (c,d) ε∗ = 0.02, (e, f ) ε∗ = 0.1, and (g,h) ε∗ = 0.5. Reynolds number: (a,c,e,g) Re = 50, and
(b,d, f,h) Re = 80.
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6. Conclusion

A second-order sensitivity operator has been derived and used to predict quadratic
eigenvalue variations induced by flow control. Introducing suitable adjoint operators,
this second-order sensitivity is made independent of the control. First- and second-order
sensitivity maps have been obtained for the control of the cylinder wake with a steady body
force and a model of a small control cylinder, at a much lower computational cost than
by recomputing nonlinear controlled flows and eigenmodes. Considering finite-amplitude
control, the range of validity of the first-order sensitivity is characterised with a
map of ‘threshold amplitude’. Regions where the first-order sensitivity underestimates
or overestimates the eigenvalue variation up to second order are also conveniently
visualised with another dedicated map. The effect of a small control cylinder tends
to be underestimated, such that regions where the flow is fully restabilised become
larger when including second-order effects at all the Reynolds numbers investigated.
Decomposing the second-order variation into two contributions (second-order base flow
modification, and interaction between first-order base flow and eigenmode modifications,
respectively) reveals that both contributions are equally important in the most sensitive
regions. Analysing the effect of a small control cylinder located nearly optimally shows
that stabilising effects arise from flow modifications in different regions: inside the
recirculation region for first-order stabilisation, immediately upstream of the control
cylinder and in its wake for second-order stabilisation.

Finally, with the second-order sensitivity operator available, the optimal control
(distributed body force) for stabilisation up to second order is computed. While the
first-order optimal control is directly proportional to the first-order sensitivity (and
independent of the control amplitude), the total second-order optimal control is obtained
via a quadratic eigenvalue problem and depends on the amplitude. As the amplitude
increases, this control becomes stronger on the sides of the cylinder and the recirculation
region, and weaker inside the recirculation region. Therefore, given a desired amplitude, it
is possible to fine-tune the control.

While first-order sensitivity perfectly captures the effect of infinitesimal control on
linear stability properties, this study shows that adjoint-based second-order sensitivity
provides a range of useful information for finite-amplitude control, at little extra
computational cost. At some locations in the cylinder flow, e.g. in the shear layers, it
seems that higher-order terms would improve the sensitivity prediction. This has not
been investigated systematically in the present study, so several questions remain open,
including the following ones: In which regions are higher-order effects λn stronger? How
does the radius of convergence r of the power expansion vary in space? Is it possible to
relate spatial distributions of λn and r to any physical mechanism, in this and other flows?

The present approach can easily be extended to other types of control, such as wall
blowing/suction and shape deformation. It is expected to be useful for the passive control
of other globally unstable flows, and may be applied to stable flows too since the resolvent
gain (amplification of time-harmonic perturbations) can be expressed as an eigenvalue
problem and treated in a similar framework. It could also be used to speed up the
convergence of gradient-based optimisation when iteratively designing practical controls
aiming for flow stabilisation.
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Figure 13. Same as figure 5 for the sensitivity of the leading mode’s frequency λi to a localised steady force
oriented along the x direction, at Re = 50.

Appendix A. Second-order sensitivity of the frequency

Section 4 focused on the sensitivity of the leading growth rate λr. For completeness, the
sensitivity of the leading mode’s frequency λi is given here.

A.1. Sensitivity to a steady body force
The sensitivity of the leading mode’s frequency to a steady force F = (δ(x − xc), 0)T is
shown in figure 13. The following few comments can be made.

(i) While the first-order sensitivity is positive almost everywhere (negative if changing
the sign of Fx), the second-order sensitivity is positive in two distinct regions and
negative in two others.

(ii) Term I is dominant on the sides of the cylinder and immediately downstream (x � 1),
while term II is dominant farther downstream (x � 1).

(iii) The threshold amplitude εt is rather large almost everywhere, generally larger than
for the leading growth rate (figure 5), indicating that second-order effects are less
important for the frequency than for the growth rate.

A.2. Sensitivity to a small control cylinder
The sensitivity of the leading mode’s frequency to a small control cylinder is shown in
figure 14. The following few comments can be made.

(i) The first-order sensitivity is negative almost everywhere, while the second-order
sensitivity is negative on the sides of the cylinder and positive on the sides of the
recirculation region. Both sensitivities are small inside the recirculation region.

(ii) Term I is dominant on the sides of the cylinder, whereas term II is dominant on the
sides of both the cylinder and the recirculation region.
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Figure 14. Frequency variation induced by a small control cylinder of diameter d = 0.1, at Re = 50: (a) ελ1i;
(b) ε2λ2i. (c) Term I and (d) term II in the decomposition of ε2λ2i. (e) Sign of the product λ1iλ2i. (Figure 13( f )
has no equivalent here because the diameter d, and therefore the amplitude ε, are fixed.) The black dot shows
the location xc = (1, 1) investigated in § 4.3.

(iii) The second-order effect is approximately one order of magnitude smaller than the
first-order effect. This contrasts with the growth rate (first- and second-order effects
of the same order of magnitude; see figure 6).

Appendix B. Derivation of the sensitivity operators

B.1. First-order sensitivity operator
Recall the first-order eigenvalue variation (2.22) induced by a steady force F :

λ1 = −(u†
0 | A1u0). (B1)

Next, define the linear operator L, which depends only on u0, such that

A1u0 = U1 · ∇u0 + u0 · ∇U1 = LU1. (B2)

Substituting into (B1) yields

λ1 = −(u†
0 | LU1) = −(L†u†

0 | U1), (B3)

where the adjoint operator of L reads

L† = (∗) · ∇ūT
0 − ū0 · ∇(∗). (B4)

The first-order sensitivity to base flow modification is therefore

−L†u†
0, (B5)

and since U1 is a solution of (2.13), the first-order sensitivity to a steady force F is

S1 = −A†
0
−1

L†u†
0. (B6)

One recognises the usual sensitivities to flow modification and to a steady force (Marquet
et al. 2008; Meliga et al. 2010).
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B.2. Second-order sensitivity operator
Recall the second-order eigenvalue variation (2.23) induced by a steady force F :

λ2 = −(u†
0 | A2u0 + (λ1I + A1)u1). (B7)

As explained in § 2.2, u1 is defined up to any component along u0 (i.e. u1 = ũ1 + αu0,
such that ũ1 has no component along u0). Injecting and developing yields

λ2 = −(u†
0 | A2u0) − (u†

0 | (λ1I + A1)(ũ1 + αu0))

= −(u†
0 | A2u0) − (u†

0 | (λ1I + A1)ũ1) − α(u†
0 | (λ1I + A1)u0)

= −(u†
0 | A2u0) − λ1 (u†

0 | ũ1)︸ ︷︷ ︸
=0

−(u†
0 | A1ũ1) − α(u†

0 | (λ0I + A0)u1)

= −(u†
0 | A2u0) − (u†

0 | A1ũ1) − α

⎛
⎜⎝(λ0I + A0)

†u†
0︸ ︷︷ ︸

=0

∣∣∣∣ u1

⎞
⎟⎠ , (B8)

so the arbitrary component αu0 does not modify λ2. The second term can be rewritten in
terms of u0 by recalling that ũ1 is a solution of (2.16):

λ2 = −(u†
0 | A2u0) + (u†

0 | A1(λ0I + A0)
−1(λ1I + A1)u0). (B9)

Next, defining the linear operators T and M , which depend only on u0 and u†
0,

respectively, such that

(λ1I + A1)u0 = λ1u0 + U1 · ∇u0 + u0 · ∇U1 = T U1, (B10)

A†
1u†

0 = −U1 · ∇u†
0 + u†

0 · ∇UT
1 = MU1, (B11)

substituting into (B7) and noting that A2u0 = LU2 yields

λ2 = −(u†
0 | LU2) + (MU1 | (λ0I + A0)

−1T U1)

= −(L†u†
0 | U2) + (U1 | M†(λ0I + A0)

−1T U1), (B12)

where the adjoint operator of M reads

M† = −(∗) · ∇ū†
0 − (∗) · ∇ū†

0
T
. (B13)

Since U2 is a solution of (2.14), one can rewrite the first term,

λ2 = (L†u†
0 | A−1

0 (U1 · ∇U1)) + (U1 | M†(λ0I + A0)
−1TU1)

= (U† | (U1 · ∇U1)
T) + (U1 | M†(λ0I + A0)

−1T U1), (B14)

where U† is a solution of
A†

0U† = L†u†
0. (B15)

Finally, introducing the linear operator

K = U† · ∇(∗)T (B16)
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allows one to rearrange the first term:

λ2 = (U1 | KU1) + (U1 | M†(λ0I + A0)
−1T U1). (B17)

The second-order sensitivity to base flow modification is therefore

K + M†(λ0I + A0)
−1T , (B18)

and since U1 is a solution of (2.13), the second-order sensitivity to a steady force F is

S2 = A†
0
−1

⎛
⎝ K︸︷︷︸

I

+ M†(λ0I + A0)
−1T︸ ︷︷ ︸

II

⎞
⎠ A†

0. (B19)

Like in (2.23), term I is the effect of U2 and term II is the effect of the U1–u1 interaction,

Appendix C. Application to other sensitivity problems: the example of the resolvent
gain

The method reported in this paper can easily be adapted to compute second-order
sensitivity in other problems if the quantity of interest is defined by an eigenvalue
problem. This is the case of the resolvent gain, a measure of the linear amplification of a
time-harmonic perturbation or external forcing. The resolvent gain is particularly relevant
to linearly stable flows, as it captures non-normal effects not accessible to modal stability
analysis. The main steps of the method are outlined here.

Consider a harmonic forcing f ′(x, t) = f (x)eiωt + c.c. applied to a linearly stable base
flow U(x). In the stationary regime, small-amplitude perturbations are harmonic at the
same frequency, u′(x, t) = u(x)eiωt + c.c., and their linear evolution is described by

iωu + U · ∇u + u · ∇U + ∇p − Re−1∇2u = f . (C1)

In other words, the problem is defined as

N(U) = 0, (C2)

(iωI + A)u = f . (C3)

The linear gain at the frequency of interest is the ratio of the norm of the response to the
norm of the forcing, G(ω) = ‖u‖/‖ f ‖, which can be recast as

G2(ω) = ‖u‖2

‖ f ‖2 = (R†R f | f )

( f | f )
(C4)

upon defining the resolvent operator R(ω) = (iωI + A)−1 such that u = R f , and its
adjoint operator R†. At a given frequency, the gain is maximised by the optimal forcing,

G2
opt(ω) = max

f

‖u‖2

‖ f ‖2 = ‖uopt‖2

‖ f opt‖2 = (R†Rf opt | f opt)

( f opt | f opt)
, (C5)
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which can be solved via the eigenvalue problem

R†R f = G2f , (C6)

i.e. a problem similar to (2.5), where the operator and the eigenvalue are now R†R and
−G2, respectively.

When a small-amplitude steady control is applied on the base flow,

N(U) = εF , (C7)

the base flow, the linear response and the resolvent gain are modified and can be expressed
as power series expansions,

U = U0 + εU1 + ε2U2 + · · · , (C8)

u = u0 + εu1 + ε2u2 + · · · , (C9)

G2 = G2
0 + εG2

1 + ε2G2
2 + · · · , (C10)

and one would like to predict the first- and second-order gain variations G1 and G2. Two
cases should be distinguished: either (i) the harmonic forcing f is prescribed, or (ii) the
optimal gain is of interest and the optimal forcing f opt is itself modified by the control as

f opt = f 0 + εf 1 + ε2f 2 + · · · . (C11)

Let us consider for now the most general case (ii). Injecting the above expansions in
(C6)–(C7) yields (2.12)–(2.14) for U0, U1 and U2, and the following equations analogous
to (2.15)–(2.17) for the response:

[(R†R)0 − G2
0I] f 0 = 0, (C12)

[(R†R)0 − G2
0I] f 1 = −[(R†R)1 − G2

1I] f 0, (C13)

[(R†R)0 − G2
0I] f 2 = −[(R†R)1 − G2

1I] f 1 − [(R†R)2 − G2
2I] f 0. (C14)

In the derivation of the above equations, the expansion R = R0 + εR1 + ε2R2 + · · · has
been injected into R†R, giving

(R†R)0 = R†
0R0, (C15)

(R†R)1 = R†
0R1 + R†

1R0, (C16)

(R†R)2 = R†
0R2 + R†

1R1 + R†
2R0, (C17)

and the expansion A = A0 + εA1 + ε2A2 + · · · has been injected into R = (iωI + A)−1,
allowing one to identify

R0 = R, (C18)

R1 = −R0A1R0, (C19)

R2 = −R0A2R0. (C20)

Projecting (C13)–(C14) on the adjoint forcing f † = f (note that R†R is self-adjoint)
and choosing the normalisation ( f 0 | f 0) = 1 yields the expressions of the desired gain
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variations, similar to (2.22)–(2.23):

G2
1 = ( f 0 | (R†R)1 f 0), (C21)

G2
2 = ( f 0 | (R†R)2 f 0 + [(R†R)1 − G2

1I] f 1). (C22)

For a given control F , one can easily compute the base flow modifications U1 and U2,
build the operators A1, A2, R1 and R2, compute the forcing modification f 1, and finally
calculate the first- and second-order gain variations G2

1 and G2
2.

More interestingly, it is possible to recast these variations as

G2
1 = (S1 | F ), (C23)

G2
2 = (F | S2F ), (C24)

where the sensitivity operators S1 and S2 depend only on the uncontrolled base flow U0
and the forcing f 0. The derivation involves introducing suitable adjoint operators, along
the same lines as the derivation of the sensitivity operators for λ1 and λ2. The final result
reads

S1 = −2G2
0 Re{A†

0
−1

L†f 0} (C25)

for the first-order sensitivity, where one recognises the usual sensitivity to a steady force
(Brandt et al. 2011), and

S2 = A†
0
−1

⎛
⎜⎝2G2

0 Re{K} + L†R†
0R0L︸ ︷︷ ︸

I

+ M†[R†
0R0 − G2

0I]−1T︸ ︷︷ ︸
II

⎞
⎟⎠ A†

0 (C26)

for the second-order sensitivity, where K , L, M and T are now defined by

K = U† · ∇(∗)T, where A†
0U† = L†f 0, (C27)

A1u0 = LU1, (C28)

−(R†R)1 f 0 = MU1, (C29)

[(R†R)1 − G2
1I] f 0 = T U1. (C30)

Comparing with the second-order eigenvalue sensitivity (B19), it appears that term II
(from the U1–u1 interaction) is directly analogous, while term I (from U2) contains an
analogous part depending on K but also an additional part.

Coming back to case (i), where the harmonic forcing f is fixed, the second-order gain
variation becomes G2

2 = ( f | (R†R)2 f ), term II is null, and the second-order sensitivity
operator reduces to

S2 = A†
0
−1

(2G2
0 Re{K} + L†R†

0R0L)A†
0. (C31)
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