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On Cardinal Invariants and Generators
for von Neumann Algebras

David Sherman

Abstract. We demonstrate how most common cardinal invariants associated with a von Neumann

algebra M can be computed from the decomposability number, dens(M), and the minimal cardi-

nality of a generating set, gen(M). Applications include the equivalence of the well-known genera-

tor problem, “Is every separably-acting von Neumann algebra singly-generated?”, with the formally

stronger questions, “Is every countably-generated von Neumann algebra singly-generated?” and “Is

the gen invariant monotone?” Modulo the generator problem, we determine the range of the invariant
(

gen(M), dens(M)
)

, which is mostly governed by the inequality dens(M) ≤ Cgen(M).

1 Introduction

In this paper we consider various ways of describing the size of a von Neumann al-

gebra M. We show that most common cardinal invariants can be computed in terms

of the minimal cardinality of a generating set, gen(M), and the decomposability num-

ber, dec(M). For example, their product is the representation density, χr(M) (The-

orem 2.1(2)). (See the next section for definitions.) With c the cardinality of the

continuum, always dec(M) ≤ cgen(M) (Theorem 2.1(2)); this essentially determines

the range of the invariant
(

gen(M), dec(M)
)

(Theorem 4.3). We give a formula

for computing gen of an arbitrary direct sum (Theorem 4.1) and deduce that the

condition dec(M) > ℵ0 · gen(M) can only hold when the center is large (Proposi-

tion 5.1(1)). We also show that dec(M) and gen(M) determine the cardinality of M∗,

but not of M, although the formula |M| =
(

ℵ0 · gen(M)
)ℵ0·dec(M)

works as long as

M can be written as a direct sum of algebras each of which can be generated by

κ < (2ℵ1 )+ω1 elements, and this bound is sharp (Theorem 8.3).

One of our underlying motivations is to give new formulations of the generator

problem for von Neumann algebras, which we briefly describe now.

There are many criteria by which a von Neumann algebra may be considered

“small”. One is separability of the predual; this is equivalent to the existence of a

faithful representation on ℓ2. We will call such algebras “separably-acting”. Another

criterion for smallness is the presence of a countable generating set, or even better,

the presence of a single generator.

Question 1.1 (The Generator Problem) Is every separably-acting von Neumann

algebra singly-generated?
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Every separably-acting von Neumann algebra is countably-generated, but the con-

verse is not true. For example, the atomic abelian von Neumann algebra ℓ∞c is gen-

erated by any single element whose components are all distinct, and its predual ℓ1
c is

nonseparable. Thus the following question is formally stronger.

Question 1.2 Is every countably-generated von Neumann algebra singly-genera-

ted?

We will see that the two questions are actually equivalent (Theorem 3.4), so that ei-

ther may be termed “the generator problem”. We also show that Questions 1.1 and 1.2

are equivalent to asking whether gen is monotone (Theorem 6.1(3)) or multiplicative

on tensor products (Corollary 6.2(3)). Unfortunately we offer little insight here into

the answers to these questions, other than the fact that they are identical. Over the

years more and more classes of separably-acting von Neumann algebras have been

shown to be singly-generated, including those that are type I [27] or properly infi-

nite [47, Theorem 2]. It is also known that a full positive answer would follow from

a positive answer for II1 factors [46, Corollary 2]—here we add the possibly useful

observation that one can restrict attention to finitely-generated II1 factors (Theo-

rem 3.8(3)). On the other hand there has been feeling that free entropy and other

tools from free probability might show that algebras such as L(F3) are counterexam-

ples. For more on the current status of the generator problem for II1 factors, the

reader could consult [41, Chapter 16] or [13].

The paper is structured as follows. In the next section we establish a number of

relations between invariants that measure the size of a von Neumann algebra. In

Section 3 we prove that Questions 1.1 and 1.2 are equivalent and use Shen’s invari-

ant G(·) to further reduce to the finitely-generated case. Section 4 establishes the

formula gen(
∑⊕

Mi) = logc(|I|) · sup gen(Mi) and then identifies (modulo the gen-

erator problem) the pairs of cardinals that arise as
(

gen(M), dec(M)
)

. In Section 5

we consider what cardinal invariants can say about the center, or about the algebra

modulo the center, and we generalize some results of Kehlet. Section 6 proves that

the generator problem is equivalent to monotonicity of gen or multiplicativity of gen

on tensor products. Section 7 comments on the invariants of double duals of C∗-

algebras and responds (not quite completely) to some questions of Hu and Neufang.

In the final section we investigate when and how gen(M) and dec(M) determine the

cardinality of M.

Owing to the quantity of invariants, it can be difficult even for experts to keep

the interdependences straight. A secondary goal of this paper is simply to collect and

organize all the relevant information, including examples and some brief historical

discussion.

None of the results in this paper rely on set theoretic assumptions beyond ZFC.

2 Describing the Size of a von Neumann Algebra

Representations of von Neumann algebras are always understood here to be normal.

The symbol “≃” stands either for ∗-isomorphism of von Neumann algebras or iso-

metric isomorphism of Banach spaces. The center of a von Neumann algebra M is
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Z(M), and in any direct sum
∑⊕

Mi we let {ei} be the coordinate projections.

The cardinality of a set S is |S|. The density character of a topological space is

the minimal cardinality of a dense set, and the norm density character of a Ba-

nach space X will be denoted dens(X). For a Hilbert space H, we have dens(H) =

ℵ0 · dim(H): consider finite linear combinations of basis elements over Q + iQ . We

also write s-dens for the density character of a von Neumann algebra M or its unit

ball M≤1 with respect to the σ-strong topology. The reader should be aware that in

general (nonmetrizable) Hausdorff spaces the density character may increase when

passing to a subspace, or even a closed subgroup of a topological group (see [6] for

examples and discussion). It will turn out that this phenomenon does not occur in

the situations considered in this paper.

Here are three cardinal invariants for a von Neumann algebra M.

• gen(M) = minimal cardinality of a generating set. By fiat we set gen(C) = 1

instead of 0.
• χr(M) = minimal dimension of a Hilbert space on which M acts faithfully. We

take this notation and the name representation density from [10, Section 7], where

the C∗-version is briefly developed. In Theorem 2.1(2) we show that χr(M) =

dens(M∗) whenever M is infinite-dimensional, which generalizes the often men-

tioned, rarely proved fact that a von Neumann algebra is separably-acting if and

only if it has separable predual (e.g., [48, Lemma 1.8]).
• dec(M) = maximal cardinality of a set of pairwise orthogonal nonzero projec-

tions in M. (That the supremum is achieved is proved in [17, Theorem 2.6(i)].)

This notation, for decomposability number, is taken from the series of papers [17],

[16], [25], although the concept had appeared earlier in [1, p. 54]. Of course it is

motivated by the condition called either σ-finiteness or countable decomposabil-

ity, which amounts to dec(M) ≤ ℵ0.

It is classical that a von Neumann algebra M acts faithfully on a separable Hilbert

space if and only if it is both countably-generated and σ-finite [7, Exercice I.7.3bc].

In other words,

(2.1) χr(M) ≤ ℵ0 ⇐⇒ [gen(M) ≤ ℵ0 and dec(M) ≤ ℵ0].

In Theorem 2.1(2) we will obtain the general statement χr(M) = gen(M) · dec(M).

(See Remark 5.2 for a related generalization.)

One reason (2.1) is easy to misremember is that the analogous conditions for C∗-

algebras interact in a totally different manner: countable generation is equivalent to

separability (of the algebra), and this is strictly stronger than being representable on

a separable Hilbert space. Figure 1 is intended to help the reader visualize (2.1) and

its relation to our treatment of the generator problem. Most von Neumann algebras

one encounters are in C , and we have already mentioned that the algebra ℓ∞c belongs

to B. We will describe several inhabitants of E in Example 4.2. The usual generator

problem (Question 1.1) asks whether D is empty, while Question 1.2 asks whether A

and D are both empty.

The next theorem shows how several cardinal invariants for von Neumann alge-

bras are related. Some special cases were noted in work of Hu and Neufang (e.g.,
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dec(M) ≤ ℵ0gen(M) ≤ ℵ0

gen(M) = 1

6

[χr(M) ≤ ℵ0] = [C ∪ D]

A B C D E

Figure 1: The “small” von Neumann algebras described in (2.1). Question 1.1 asks whether D

is empty. Question 1.2 asks whether A and D are both empty.

[16, Proposition 3.2] and [17, Corollary 2.7]); their emphases were different and are

briefly discussed in Section 7.2.

Theorem 2.1 Let M be a von Neumann algebra.

(1) One can write M as a direct sum
∑⊕

i∈I Mi , where |I| ≤ dec
(

Z(M)
)

≤ dec(M),

and for each i

χr(Mi) ≤ ℵ0 · gen(M) = s-dens(M) = s-dens(M≤1).

(2) The following relations hold:

gen(M) · dec(M) = χr(M) ≤ ℵ0 · χr(M) = dens(M∗) ≤ |M∗|

= c · χr(M)ℵ0 ≤ cgen(M).

(♥)

Thus gen(M) and dec(M) together determine s-dens(M), χr(M), dens(M∗), and

|M∗|.

Proof We first dispose of the case where M is finite-dimensional. Then M is of the

form
∑⊕

k Mnk
, with gen(M) = 1 and χr(M) = dec(M) =

∑

k nk. All claims of

the theorem are easily verified. For the remainder of the proof we assume that M is

infinite-dimensional, so that χr(M) and dec(M) are necessarily infinite ([17, Propo-

sition 2.5]).

(1) Let M be generated by {xα}α<gen(M). Set A0 to be the σ-strongly dense subset

of M consisting of noncommuting ∗-polynomials in the xα with coefficients in Q +

iQ . Because any σ-strongly dense set is infinite and generating, we have

s-dens(M) ≤ |A0| ≤ ℵ0 · gen(M) ≤ ℵ0 · s-dens(M) = s-dens(M).
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As mentioned earlier, it is in general false that the density character of a topological

space dominates the density character of a subspace, so we need a short argument to

establish that s-dens(M≤1) also equals |A0| = s-dens(M). The Kaplansky density

theorem implies that M≤1 ∩ A0 is σ-strongly dense in M≤1, giving s-dens(M≤1) ≤
|M≤1 ∩A0| = |A0|. On the other hand, if S is any σ-strongly dense set in M≤1, then

the set of positive rational multiples of elements of S (which has the same cardinality

as S) is σ-strongly dense in M: this gives s-dens(M≤1) ≥ s-dens(M).

Now representM on a Hilbert space H and choose any 0 6= ξ ∈ H. The space H0 =

Mξ = A0ξ is M-invariant and clearly has density character ≤ |A0| = ℵ0 · gen(M).

Since M is represented normally (but not necessarily faithfully) on H0, the image

of M is isomorphic to zM for some central projection z ∈ M.

By Zorn’s lemma H can then be decomposed as a sum of M-invariant subspaces

{Hi}i∈I with dim Hi ≤ ℵ0 · gen(M). Write M|Hi
≃ ziM. Totally order the index

set, and define yi = zi(1 − ∨ j<iz j). Set I ′ = {i ∈ I | yi 6= 0} and Mi = yiM for

i ∈ I ′, so {yi}i∈I ′ are nonzero central projections summing to 1 and M ≃
∑⊕

I ′ yiM.

By definition |I ′| ≤ dec
(

Z(M)
)

. Also χr(Mi) ≤ ℵ0 · gen(M), since Mi can be

represented on a subspace of Hi .

(2) We treat each nontrivial relation separately.

• gen(M) ≤ χr(M): Since gen(M) ≤ ℵ0 · gen(M) = s-dens(M≤1) from part (1), it

suffices to prove that s-dens(M≤1) ≤ κ whenever M ⊆ B(ℓ2
κ). We effectively show

that s-dens(M≤1) ≤ s-dens(B(ℓ2
κ)≤1). Later (Theorem 6.1(2)) we will combine this

fact with others to obtain the same conclusion for any inclusion of von Neumann

algebras.

Fix a basis {ξβ}β<κ for ℓ2
κ. Let {xα}α<κ ⊂ B(ℓ2

κ)≤1 be a σ-strongly dense set: for

example, one can take the contractive operators whose matrices have finitely many

nonzero entries taking values in Q + iQ . The σ-strong topology on B(ℓ2
κ)≤1 is just

the strong topology, generated by the seminorms pβ(y) = ‖yξβ‖. Consider the κ
strongly open subsets of B(ℓ2

κ)≤1

Vα,F,n = {y | pβ(y − xα) < 1/n for all β in the finite set of indices F}.

For each multi-index (α, F, n), choose an element yα,F,n ∈ M≤1 ∩ Vα,F,n if the inter-

section is nonempty. We claim that the set of ≤ κ elements chosen is strongly dense

in M≤1.

For the claim, it suffices to take any y ∈ M≤1, any F, and any n, and show that

some yα ′,F ′,n ′ satisfies pβ(y − yα ′,F ′,n ′) < 1
n

for all β ∈ F. By density of {xα}, find

xα ′ with pβ(y − xα ′) < 1
2n

for all β ∈ F. Then Vα ′,F,2n intersects M≤1 nontriv-

ially (it contains y), so it contains an element yα ′,F,2n. Finally, note that for β ∈ F,

pβ(y − yα ′,F,2n) ≤ pβ(y − xα ′) + pβ(xα ′ − yα ′,F,2n) < 1
n

.

• dec(M) ≤ χr(M): If M ⊆ B(ℓ2
κ), M cannot contain a set of > κ pairwise orthog-

onal projections.

• dec(M) · gen(M) = χr(M): From part (1) we have

χr(M) = χr

(

∑⊕

I
Mi

)

=

∑

I
χr(Mi) ≤ |I| · ℵ0 · gen(M)

≤ dec(M) · ℵ0 · gen(M) = dec(M) · gen(M).
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(This also uses the additivity of χr on direct sums, an easy fact noted as part of The-

orem 4.1 below.) The opposite inequality follows from the preceding two bulleted

statements.

• ℵ0 ·χr(M) = dens(M∗): Recall that L2(M) denotes the underlying Hilbert space in

a canonical left regular representation (with extra structure) called the standard form

of M [14]. Since L2(M) and M∗ ≃ L1(M) are homeomorphic [34, Lemma 3.2], we

have dens(M∗) = dens
(

L2(M)
)

= ℵ0 · dim
(

L2(M)
)

≥ ℵ0 · χr(M). On the other

hand, if M ⊆ B(H), then

dens(M∗) = dens
(

B(H)∗/M⊥

)

≤ dens
(

B(H)∗
)

= ℵ0 · dim H,

which suffices for the conclusion. Here M⊥ is the preannihilator of M (the annihila-

tor of M in B(H)∗). The last equality is justified by identifying B(H)∗ with the trace

class operators under the tracial pairing; a dense set can be obtained by choosing a

basis for H and considering matrices with finitely many nonzero entries taking values

in Q + iQ .

• |M∗| = c · χr(M)ℵ0 : This follows from the preceding bulleted statement and the

fact that the cardinality of any Banach space X is dens(X)ℵ0 [22, Lemma 2].

• |M∗| ≤ cgen(M): With A0 as in the proof of part (1), let A = C∗({xi}) be the norm

closure of A0. Now M ≃ zA∗∗ for some central projection z in the von Neumann

algebra A∗∗, and M∗ ≃ zA∗. Any linear functional on A is completely determined

by its restriction to A0, so |M∗| = |zA∗| ≤ |A∗| ≤ c|A0|
= cℵ0·gen(M)

= cgen(M).

Remark 2.2 The proof of Theorem 2.1(1) shows that ℵ0 ·gen(M) is also the density

character of M or M≤1 in the σ-strong* or σ-weak topology.

Example 2.3 (Type I factors) The representation density and decomposability

number ofB(ℓ2
κ) are easy to compute; one argument is κ = dim(ℓ2

κ) ≥ χr

(

B(ℓ2
κ)
)

≥

dec
(

B(ℓ2
κ)
)

≥ κ, using (♥) for the third relation and minimal projections for the

fourth. As for the gen invariant, note that a type I factor cannot be written nontriv-

ially as a direct sum, so Theorem 2.1(1) gives κ = χr

(

B(ℓ2
κ)
)

≤ ℵ0 · gen
(

B(ℓ2
κ)
)

≤

ℵ0 · κ
2 (generating B(ℓ2

κ) from its matrix units). This forces gen
(

B(ℓ2
κ)
)

= κ for κ
uncountable. For κ ≤ ℵ0, B(ℓ2

κ) is singly-generated by classical results, being either

finite-dimensional or properly infinite.

We separate out the following consequence of Theorem 2.1 for use in Section 3.

It is in some sense “known to the experts”. We could not find it fully proved in the

literature, although it has been stated [9, bottom of p. 95], and half of it (remove

the modifier “≤ c”) appeared as [40, Lemma 6.5.2]. Its converse is also valid (see

Remark 3.3(2)).

Corollary 2.4 A countably-generated von Neumann algebra M is a direct sum of ≤ c

separably-acting algebras.

Proof If gen(M) ≤ ℵ0, Theorem 2.1(1) says that M is a direct sum of ≤ dec(M) von

Neumann algebras Mi , each satisfying χr(Mi) ≤ ℵ0 · gen(M) = ℵ0. Thus the Mi are

separably-acting. There are at most c of them, as dec(M) ≤ cgen(M)
= c by (♥).
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3 An Equivalent Formulation of the Generator Problem

We start this section with some review of the relevant history.

In the very first paper on what are now called von Neumann algebras, von Neu-

mann showed that an abelian von Neumann algebra is generated by a single self-

adjoint operator [26, Satz 10]. This was in 1929, so Hilbert space meant ℓ2 (explicitly

stated in the opening paragraphs), and thus the result is often stated as “separably-

acting abelian von Neumann algebras are singly-generated”. But in his proof, the first

step is to note that the algebra is generated by a countable family of projections; he

then gives a purely algebraic method for constructing a generator. Since the spectral

theory in the same paper shows that a singly-generated abelian von Neumann alge-

bra is generated by a countable family of spectral projections, a countably-generated

abelian von Neumann algebra is also generated by countably many projections, and

von Neumann has really shown that “countably-generated abelian von Neumann al-

gebras are singly-generated.” (His spectral theory is developed on a separable Hilbert

space, but this is not needed for the existence of spectral projections.) Von Neu-

mann’s construction of a generator is quite intricate. Nowadays we have an elegant

one-paragraph proof that goes back at least to Rickart’s 1960 book [35, A.2.1].

From von Neumann’s result and the decomposition into real and imaginary parts,

a general von Neumann algebra is singly-generated if and only if it is generated by

two abelian ∗-subalgebras that are either countably-generated or a fortiori separably-

acting. This seems to have been first leveraged nontrivially in Pearcy’s 1962 paper

[27] on type I algebras. In 1963 Suzuki and Saitô made the following observation.

Lemma 3.1 ([42, Lemma 4]) If a von Neumann algebra is generated by countably-

many commuting singly-generated ∗-subalgebras, then it is singly-generated.

For completeness we sketch the proof. If generators of the subalgebras are decom-

posed into real and imaginary parts as x j + i y j , then W ∗({x j}) and W ∗({y j}) are

abelian and countably-generated. By von Neumann’s result each has a single self-

adjoint generator, say x and y respectively. Then x + i y generates the original algebra.

Lemma 3.1 implies in particular that the direct sum of countably many singly-

generated algebras is singly-generated (noted, for instance, in [36, Remark, p. 451]).

The following improvement seems to be new.

Lemma 3.2 Let {Mi}i∈I be a set of ≤ c singly-generated von Neumann algebras.

Then
∑⊕

Mi is also singly-generated.

Proof For each i, let xi be a generator for Mi with norm ≤ 1. Since |I| ≤ c,

W ∗({ei}) ≃ ℓ∞I is a singly-generated subalgebra of the center of
∑⊕

Mi . The com-

muting singly-generated algebras W ∗({ei}) and W ∗
(

(xi)i

)

together generate all of
∑⊕

Mi , which is therefore singly-generated by Lemma 3.1.

Remark 3.3

(1) Lemma 3.2 generalizes neither Lemma 3.1 nor the von Neumann result. In par-

ticular, it does not say that an abelian von Neumann algebra generated by ≤ c

elements is singly-generated; that is false. There are counterexamples in Exam-

ple 4.2(2,3) and at the end of Section 7.1.
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(2) Lemma 3.2 is a noncommutative analogue of the Pondiczery–Hewitt–Marczewski

theorem from classical point-set topology [31], [15], [23]: the Cartesian prod-

uct of ≤ c separable Hausdorff spaces is still separable. In fact, this theorem

and the equality ℵ0 · gen(M) = s-dens(M) can be used to show directly that the

direct sum of ≤ c countably-generated von Neumann algebras is still countably-

generated. For countable generation is equivalent to σ-strong separability, and

the σ-strong topology on a direct sum is the product topology. (This can also

be proved in the same way as Lemma 3.2.) When combined with Corollary 2.4,

this gives the following characterization: a von Neumann algebra is countably-

generated if and only if it is a direct sum of ≤ c separably-acting algebras.

In terms of cardinal invariants, von Neumann algebras behave very much like a

tractable class of topological spaces, with gen, χr, and dec substituted for density,

weight, and cellularity, respectively [5].

(3) Lemma 3.2 is sufficient to prove the next theorem. But the reader will guess that

it can be generalized, and we do this in Theorem 4.1 below.

Theorem 3.4 Questions 1.1 and 1.2 are equivalent: if all separably-acting von Neu-

mann algebras are singly-generated, then all countably-generated von Neumann alge-

bras are singly-generated.

Proof Assume that all separably-acting von Neumann algebras are singly-generated.

Let M be countably-generated. By Corollary 2.4, M is a direct sum of ≤ c separably-

acting algebras, each singly-generated by assumption. Then Lemma 3.2 implies that

M is singly-generated.

The author considers Question 1.2 to be a natural formulation of the generator

problem and closer in spirit to von Neumann’s original result. Nearly all construc-

tions involving generators have been algebraic, i.e., without reference to an underly-

ing Hilbert space. For example, Wogen’s original proof that separably-acting prop-

erly infinite von Neumann algebras are singly-generated [47, Theorem 2] requires no

change if M is only assumed to be countably-generated. The exception is the use of

direct integrals.

Recall that a von Neumann algebra is said to be approximately finite-dimensional

(AFD) if it has an increasing net of finite-dimensional ∗-subalgebras whose union is

σ-strongly dense.

Proposition 3.5 A countably-generated AFD von Neumann algebra M is singly-

generated.

Proof By Corollary 2.4, M is a direct sum of ≤ c separably-acting algebras, each

clearly AFD. By Lemma 3.2 it suffices to show that any separably-acting AFD algebra,

say N, is singly-generated. This is known, but a little hard to pin down in the liter-

ature. A very short argument goes by direct integral theory. By [45, Theorem 2], N

has a direct integral decomposition into (a.e.) AFD factors, each of which is singly-

generated by [42, Theorem 1]. Then their direct integral N is singly-generated [46,

Theorem 1].
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Remark 3.6 Here is an alternate proof of the last step in Proposition 3.5 that avoids

both direct integral theory and post-1969 mathematics. Decompose N into three

summands that are type I, type II1, and properly infinite. The type II1 summand is

isomorphic to R⊗̄A, where A is abelian and R is the unique hyperfinite II1 factor

[20, Théorème 6]. The four commuting subalgebras R, A, the type I summand, and

the properly infinite summand are each singly-generated by [42, Theorem 1], [26,

Satz 10], [27], and [47, Theorem 2], respectively. They generate N, which is then

singly-generated by Lemma 3.1.

Suzuki and Saito wrote [42, p. 279] that single generation of R had been estab-

lished in 1956 by Misonou, who apparently did not publish his proof. But the earliest

claim for this fact, also without proof, goes all the way back to Murray and von Neu-

mann [24, Footnote 68].

We conclude this section by showing that the generator problem is also equivalent

to deciding whether all finitely-generated algebras are singly-generated, or even just

all finitely-generated II1 factors. It seems possible that this reduction could be useful.

The main tool is Shen’s [0,+∞]-valued invariant G for countably-generated tra-

cial von Neumann algebras, which was introduced in [38] and further developed

in [8]. One thinks of G(·) very roughly as a continuous version of the invariant

gen(·) − 1; it is defined to be +∞ only when the algebra is not finitely generated.

In the interest of economy we simply quote the facts we need about G, referring the

reader to [41, Chapter 16] for a full treatment (including the definition).

We thank Stuart White for his suggestions on organizing this argument. The sec-

ond equivalence in Theorem 3.8(3) was essentially pointed out to the author by Don

Hadwin.

Theorem 3.7 Let M be a countably-generated II1 factor. We allow the value G(M) =

+∞ in the (in)equalities below, with obvious interpretations.

(1) Bounds. The minimal cardinality of a set of self-adjoint generators for M lies be-

tween 2G(M) + 1 and 2G(M) + 2, inclusive [8, Corollary 5.7].

(2) Scaling. For t ∈ R+, G(Mt ) =
G(M)

t2 [8, Theorem 4.5]. Here Mt is the usual

amplification: the II1 factor is well defined up to isomorphism as p(Mn ⊗M)p, for

any n ∈ N and projection p ∈ Mn ⊗M whose normalized trace is t/n.

(3) Continuity. If M1 ⊆ M2 ⊆ · · · ⊆ M are II1 subfactors of M such that M =

W ∗(∪Mn) and G(Mn) = 0 for all n, then G(M) = 0 (∼[38, Theorem 5.5]).

Theorem 3.8

(1) The range of G on countably-generated II1 factors is either {0} or [0,+∞].

(2) The range of gen on countably-generated II1 factors is either {1} or {1, 2, . . . ,ℵ0}.

(3) The generator problem is equivalent to deciding whether all finitely-generated II1

factors are singly-generated, or whether all countably-generated II1 factors are

finitely-generated.

Proof (1) In all cases where G has been computed for a countably-generated II1 fac-

tor, the value is zero. By Theorem 3.7(2) it either attains all finite nonzero values or

none. If none, we claim that it does not attain the value +∞ either. For let M be an

arbitrary countably-generated II1 factor, and let {xn}
∞
n=1 generate M. We may choose
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x1 so that W ∗(x1) is an irreducible hyperfinite subfactor of M, i.e., W ∗(x1) ′∩M = C

[32, Corollary 4.1]. Now for n ∈ N, setMn = W ∗({x1, . . . , xn}). EachMn is a II1 fac-

tor, because any central projection has to commute with x1. And by Theorem 3.7(1),

G(Mn) ≤ n − 1
2
, so the assumption that G attains no nonzero finite values implies

G(Mn) = 0 for all n. From Theorem 3.7(3) we conclude that G(M) = 0.

(2) This follows from part (1) and Theorem 3.7(1).

(3) For the nontrivial directions, note that either of the last two conditions, plus

part (2), entail that all countably-generated II1 factors are singly-generated. This

implies a positive answer to the generator problem, as mentioned in the Introduction.

4 Cardinal Invariants and Direct Sums

In this section we will see that the inequality dec(M) ≤ cgen(M) essentially determines

which pairs of cardinals arise as
(

gen(M), dec(M)
)

. As we have seen, these two

invariants determine many others. For cardinals κ and λ > 1, logλ(κ) denotes the

least nonzero cardinal µ such that λµ ≥ κ.

Theorem 4.1 Let {Mi}i∈I be a family of von Neumann algebras. The invariants χr

and dec are additive on direct sums in the sense that χr(
∑⊕

Mi) =

∑

χr(Mi) and

dec(
∑⊕

Mi) =

∑

dec(Mi). The invariant gen is only subadditive and follows the

formula

(4.1) gen
(

∑⊕
Mi

)

= max{logc(|I|), sup gen(Mi)} = logc(|I|) · sup gen(Mi).

Proof Since each Mi can be represented faithfully on ℓ2
χr(Mi )

, clearly
∑⊕

Mi can

be represented faithfully on
⊕

ℓ2
χr(Mi )

, which has dimension
∑

χr(Mi). On the

other hand, if
∑⊕

Mi acts faithfully on H, then each Mi = ei(
∑⊕

Mi) acts faith-

fully on ei H, which therefore has dimension ≥ χr(Mi), entailing that dim H =
∑

dim(eiH) ≥
∑

χr(Mi).

The additivity of dec is only slightly less straightforward. For each j ∈ I, let

{p
j
α}α<dec(M j ) ⊂ M j be nonzero projections summing to 1M j

. For each j ∈ I and

α < dec(M j), consider the projection (δi j p
j
α)i ∈

∑⊕
Mi ; this family shows that

dec(
∑⊕

Mi) ≥
∑

dec(Mi). For the opposite inequality, let {qβ}β∈ J ⊂
∑⊕

Mi

be nonzero projections summing to 1. For each β,
∑

i eiqβ = qβ , so in partic-

ular eiqβ 6= 0 for at least one i. Then the nonzero projections in {eiqβ}i,β sum

to 1 and have cardinality ≥ | J|. Also for each i, the identity
∑

β eiqβ = ei implies

|{β | eiqβ 6= 0}| ≤ dec(Mi). Finally,

| J| ≤ |{(i, β) | eiqβ 6= 0}| =
∑

i

|{β | eiqβ 6= 0}| ≤
∑

i

dec(Mi).

The second equality of (4.1) follows from the fact that logc(|I|) takes no finite

values other than 1. Before proving the first inequality of (4.1) in generality, we han-

dle the subcase when all Mi = C and so
∑⊕

Mi ≃ ℓ∞I . We simply need enough
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generators to separate the points of the underlying topological space I [44, Proposi-

tion 6.1.3]. Any element of ℓ∞I partitions the space into at most c equivalence classes

as inverse images of single complex numbers. Thus λ elements can create up to cλ

equivalence classes. Separating the points means that each equivalence class is at most

a singleton, so λ has to be large enough to satisfy cλ ≥ |I|.

The remainder of the argument consists of establishing three inequalities.

• gen(
∑⊕

Mi) ≥ sup gen(Mi): If {xα} generates
∑⊕

Mi , then {eixα}α must gener-

ate Mi .

• gen(
∑⊕

Mi) ≥ logc(|I|): This follows readily from the computation

|I| ≤ dec
(
∑⊕

Mi

)

≤ cgen(
∑

⊕
Mi ),

based on (♥).

• gen(
∑⊕

Mi) ≤ max{sup gen(Mi), logc(|I|)}: Each M j can be generated by a

set of contractions {y
j
α}α<sup gen(Mi ). For α < sup gen(Mi), set xα = (yi

α)i . Let

{zβ}β<logc(|I|) generate W ∗({ei}) ≃ ℓ∞I , as explained at the beginning of this ar-

gument. Then S = {xα} ∪ {zβ} is a generating set for
∑⊕

Mi of cardinality

(sup gen(Mi)) + logc(|I|). For indices γ < min{logc(|I|), supi gen(Mi)}, xγ and

zγ commute, since zγ belongs to the center: then W ∗(xγ , zγ) is singly-generated by

Lemma 3.1. Replacing the doubletons {xγ , zγ} in S by singletons gives the conclu-

sion.

Example 4.2 To belong to region E of Figure 1, a von Neumann algebra M must

have gen(M) > ℵ0 and dec(M) = ℵ0. Here are some examples; the main novelty

probably lies in the technique of (1), the generality of (2), and the reference for (3).

We repeatedly use the fact that an algebra with a faithful normal state must be σ-

finite.

(1) Let G be a discrete group and L(G) its associated (left) group von Neumann al-

gebra, which has a faithful normal trace. Using (♥) (including the fact, noted in

its proof, that M∗ and L2(M) are homeomorphic),

ℵ0 · gen
(

L(G)
)

= ℵ0 · dec
(

L(G)
)

· gen
(

L(G)
)

= dens
(

L(G)∗
)

= dens
(

L2
(

L(G)
)

)

= ℵ0 · dim L2
(

L(G)
)

= ℵ0 · dim L2(G) = ℵ0 · |G|.

In particular, gen
(

L(G)
)

= |G| when G is uncountable. For the group of finite

permutations of an uncountable set, this conclusion was obtained differently in

[3, Proposition I.1].

(2) Let {(Mi , ϕi)}i∈I be an infinite family of nontrivial von Neumann algebras

equipped with faithful normal states, and assume that either I or sup gen(Mi)

is uncountable. Consider the tensor product M =
¯⊗(Mi , ϕi) with its faithful
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normal state ϕ = ⊗ϕi [4, Section III.3.1], and identify each Mi with its image in

M under the canonical inclusion. We claim that

(4.2) gen(M) = |I| · sup gen(Mi) =
∑

gen(Mi).

The second equality follows from elementary estimates of the sum:

|I|, sup gen(Mi) ≤
∑

gen(Mi) ≤ |I| · sup gen(Mi),

and by assumption one of |I| and sup gen(Mi) is infinite. The first equality re-

quires a little more assembly.

It is obvious that gen(M) ≤
∑

gen(Mi), by taking the union of generating

sets for the Mi .

Also observe that for each i, the slice map Si corresponding to the normal

faithful state
⊗

j 6=i ϕ j on ¯⊗
j 6=i(M j , ϕ j) is a normal conditional expectation

from M onto Mi [4, Section III.2.2.6]. It follows that no Mi = Si(M) can have

greater σ-weak density character (=σ-strong density character, see Remark 2.2)

than M. This gives s-dens(M) ≥ sup s-dens(Mi).

Any element of M≤1 is a σ-strong limit of finite linear combinations of finite

tensors, which we may assume by Kaplansky density to belong to M≤1. On M≤1

the σ-strong topology is generated by the norm ‖x‖ϕ = ϕ(x∗x)1/2, so it suffices

to consider limits of sequences. Suppose xn → x strongly, where each xn is a

finite linear combination of finite tensors as above. Then for each n, Si(xn) is a

scalar for all but finitely many i. Thus Si(x) = s- lim Si(xn) is a scalar for all but

countably many i. Since Si is normal, any σ-weakly dense set must have elements

that expect onto non-scalars in each Mi . It follows that when I is uncountable,

s-dens(M) ≥ |I|. Of course this inequality is also valid when I is countable.

Putting the conclusions of the previous three paragraphs together with

s-dens(N) = ℵ0 · gen(N) from Theorem 2.1(1) and the second equality

from (4.2), we get

|I| · sup s-dens(Mi) ≤ s-dens(M) = ℵ0 · gen(M) ≤ ℵ0 ·
∑

gen(Mi)

= ℵ0 · |I| · sup gen(Mi) = |I| · sup s-dens(Mi).

(4.3)

All terms of (4.3) are therefore equal. By the assumption that I or sup gen(Mi) is

uncountable, the ℵ0 factors can be dropped, giving the first equality in (4.2).

If I and sup gen(Mi) are countable, we can only give the estimate gen(M) ≤
sup gen(Mi). For each i ∈ I, let {xi

j} j<sup gen(Mi ) generate Mi . Then for each

j < sup gen(Mi), the family {xi
j}i is commuting, so by Lemma 3.1, W ∗({xi

j}i) is

generated by some y j . This allows us to write M = W ∗({Mi}) = W ∗({xi
j}i, j) =

W ∗({y j} j<sup gen(Mi )).

We discuss (finite) tensor products of non-σ-finite von Neumann algebras,

with no reference states, in Section 6.

(3) A tracial ultrapower of a II1 factor is a II1 factor (so σ-finite) that is not

countably-generated. This follows from a more general theorem proved in [11]
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in 1956(!), well before ultrapower terminology was introduced in operator alge-

bras. See [32, Remark 4.4 and proof of Proposition 4.3] for the fact that a tracial

ultrapower of L∞[0, 1], which has cardinality c as a quotient of ℓ∞(L∞[0, 1]), is

not countably-generated.

Note that the examples in (2) and (3) include abelian algebras.

Example 4.2 shows that gen(M) is not bounded by any function of dec(M). One

can manufacture examples with dec(M) strictly larger than gen(M) by exploiting

the distinction between additivity and subadditivity on direct sums (Theorem 4.1,

simple examples are M = ℓ∞cκ for any κ), but the gap is restricted by the inequality

dec(M) ≤ cgen(M) from (♥). This turns out to be nearly the whole story.

Theorem 4.3

(1) For any pair of cardinals κg and κd satisfying

(4.4) κg > ℵ0 and ℵ0 ≤ κd ≤ cκg ,

there is a von Neumann algebra M with gen(M) = κg and dec(M) = κd.

(2) The range of the von Neumann algebra invariant M 7→ (gen(M), dec(M)) is the

union of the following three sets:

(a) all values allowed by (4.4);

(b) {(1, κ) | 1 ≤ κ ≤ c};

(c) either ∅, or [2,ℵ0] × [ℵ0, c].

(The generator problem asks whether the third set is ∅.)

Proof (1) We claim that M = ℓ∞κd

(

L(Fκg
)
)

works, where Fκ denotes the free group

on κ letters. By Theorem 4.1 and Example 4.2(1), we compute

dec
(

ℓ∞κd

(

L(Fκg
)
)

)

= κd · dec
(

L(Fκg
)
)

= κd · ℵ0 = κd,

gen
(

ℓ∞κd

(

L(Fκg
)
)

)

= max{logc(κd), κg} = κg .

(2) It follows from part (1) and the algebras ℓ∞κ that the values in (a) and (b)

are attained. Also these are the only possibilities when gen(M) is 1 or uncountable,

because of the inequality dec(M) ≤ cgen(M) from (♥), and the fact that gen(M) > 1

implies that M is infinite-dimensional and so dec(M) ≥ ℵ0.

If the generator problem has a negative answer, then by Theorem 3.8 the gen in-

variant takes all countable values on II1 factors. Assuming this is so, choose any

(λ, µ) ∈ [2,ℵ0] × [ℵ0, c], and let M be a II1 factor with gen(M) = λ. Then

gen
(

ℓ∞µ (M)
)

= λ and dec
(

ℓ∞µ (M)
)

= µ by Theorem 4.1.

Remark 4.4 Note that in Theorem 4.3(1), L(Fκg
) could be replaced with any algebra

with the same gen and dec invariants, even an abelian one (Example 4.2(2)). So if

the generator problem has an affirmative answer, the entire range of the invariant
(

gen(M), dec(M)
)

is achieved on abelian algebras.
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Remark 4.5 As stated, the converse to Theorem 3.4 is trivial. However, looking

at Figure 1, Theorem 3.4 could be phrased, “If D is empty then A is empty.” This

statement’s converse follows from the last part of Theorem 4.3. An algebra M lying

in region D would have gen(M) ∈ [2,ℵ0] and dec(M) = ℵ0; then gen
(

ℓ∞c (M)
)

=

gen(M) and dec
(

ℓ∞c (M)
)

= c by Theorem 4.1, making ℓ∞c (M) an element of re-

gion A.

5 Cardinal Invariants and the Center

In the previous section we built our examples satisfying dec(M) > gen(M) as direct

sums. This is unavoidable, as the first part of the next proposition shows.

Proposition 5.1 Let M be a von Neumann algebra.

(1) If dec(M) > ℵ0 · gen(M), then dec(M) = dec
(

Z(M)
)

.

(2) ℵ0 · χr(M) = ℵ0 · dec
(

Z(M)
)

· gen(M).

(3) If M has σ-finite center, then χr(M) ≤ ℵ0 · gen(M), with equality when M is

infinite-dimensional.

(4) (Strengthening of Theorem 2.1(1)) M can be written as a direct sum in which each

summand Mi is either some Mn or satisfies χr(Mi) = ℵ0 · gen(Mi).

Proof (1) Assume dec(M) > ℵ0 · gen(M) and let M =

∑⊕
Mi be as in Theo-

rem 2.1(1). Compute

χr(M) =
∑

χr(Mi) ≤ dec
(

Z(M)
)

· ℵ0 · gen(M)

≤ dec(M) · ℵ0 · gen(M) = dec(M) = χr(M),

using additivity of χr for the first step and (♥) for the fifth. Then

ℵ0 ·gen(M) < dec(M) = dec
(

Z(M)
)

·ℵ0 ·gen(M) = max{dec(Z(M)),ℵ0 ·gen(M)}

implies that the maximum on the right is dec
(

Z(M)
)

.

(2) By (♥) we have

ℵ0 · χr(M) = ℵ0 · dec(M) · gen(M),

and by (1) either the right-hand side is ℵ0 · gen(M) or dec(M) = dec
(

Z(M)
)

.

(3) Follows directly from part (2).

(4) Follows from part (3) by writing M as a direct sum of its matricial summands

and arbitrary other summands with σ-finite center.

Remark 5.2 We cited Dixmier’s book [7, Exercice I.7.3bc] for the classical fact (2.1)

that “separably-acting” is the same as “countably-generated and σ-finite”, then gave

the equation χr(M) = gen(M) · dec(M) as a generalization. The same exercises in

Dixmier also show that “separably-acting” is equivalent to “countably-generated and

having σ-finite center,” which is generalized by Proposition 5.1(2).
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Next we consider modified invariants that ignore the size of the center, at least in

terms of decomposability. If M 7→ F(M) is any cardinal invariant, its “localization”

is

F ′(M) = min
{

κ | M can be written as a direct sum of

algebras {Mα} with F(Mα) ≤ κ for all α
}

.

Lemma 5.3 Assume that a cardinal invariant F has the regularity property F(M) ≤
F(M ⊕ N) for arbitrary M and N, as all invariants in this paper do. Then for any

decomposition M =

∑⊕
Mi ,

(5.1) F ′(M) = supi F ′(Mi).

Proof For each i let Mi =
∑⊕

j∈ Ji
Mi

j be such that F ′(Mi) = sup j∈ Ji
F(Mi

j). Then

sup
i

F ′(Mi) = sup
i

sup
j∈ Ji

F(Mi
j) ≥ F ′(M),

since M is the direct sum of all the Mi
j . In the other direction, let M =

∑⊕
Mα be

such that F ′(M) = supα F(Mα). For any i0 we have

F ′(M) = sup
α

F(Mα) ≥ sup
α,i

Mα∩Mi 6=0

F(Mα∩Mi) ≥ sup
α

Mα∩Mi0
6=0

F(Mα∩Mi0
) ≥ F ′(Mi0

).

This implies F ′(M) ≥ supi F ′(Mi).

Here are some applications of invariants of this type.

1. The smallness criterion dec ′(M) ≤ ℵ0 means that M is a direct sum of σ-finite

algebras. It has implications for dimension theory ([39, Proposition 3.8], where

dec ′(M) is denoted “κM”).

2. The main content of Theorem 2.1(1) is the inequality

(5.2) χ ′
r (M) ≤ ℵ0 · gen(M).

Here is an improvement.

Proposition 5.4 For a von Neumann algebra M, we have

ℵ0 · χ
′
r (M) = ℵ0 · gen ′(M).

Thus the invariants gen ′(M) and χ ′
r (M) only differ when gen ′(M) is finite and M is

not atomic abelian.
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Proof Let M =

∑⊕
Mi be a decomposition such that gen′(M) = sup gen(Mi).

Compute

ℵ0 · χ
′
r (M) = ℵ0 · supχ ′

r (Mi) ≤ ℵ0 · sup gen(Mi) = ℵ0 · gen ′(M),

where the first two relations are justified by (5.1) and (5.2), respectively. The opposite

inequality follows from the general fact gen(N) ≤ χr(N) from (♥).

The necessary observation for the second sentence is gen ′(M) > 1 ⇒ χ ′
r (M) ≥

ℵ0 (because a summand that is not singly-generated must be infinite-dimensional

and so has infinite representation density).

Proposition 5.4 generalizes a result of Kehlet [21, Proposition 1], where it is shown

that gen ′(M) ≤ ℵ0 ⇐⇒ χ ′
r (M) ≤ ℵ0.

3. We can also generalize [21, Proposition 2], which says that if {Mn} is a countable

set of von Neumann algebras acting on a common Hilbert space, and χ ′
r (Mn) ≤ ℵ0

for each n, then χ ′
r

(

W ∗({Mn})
)

≤ ℵ0 too. The broader fact is that for any family

{Mi}i∈I on a common Hilbert space,

χ ′
r

(

W ∗({Mi})
)

≤ |I| · ℵ0 · supχ ′
r (Mi).

Here is the idea, not much different from [21] or the proof of Theorem 2.1(1) above.

For any nonzero vector ξ and index i, let Mi be decomposed into summands that

are each generated by ≤ gen ′(Mi) elements. All but countably many summands

of Mi annihilate ξ, so all but ≤ ℵ0 · gen ′(Mi) generators of Mi annihilate ξ. At most

|I|·ℵ0·sup gen ′(Mi) generators ofM fail to annihilate ξ, so the invariant subspaceMξ
has a dense set of cardinality ≤ |I| · ℵ0 · sup gen ′(Mi) (= |I| · ℵ0 · supχ ′

r (Mi) by

Proposition 5.4). The rest of the argument is the same as for Theorem 2.1(1).

6 Monotonicity and Multiplicativity of the Invariant gen(M)

We say that a cardinal invariant F is monotone if N ⊆ M entails F(N) ≤ F(M). (We

do not require that inclusions be unital.) It is obvious that dec and χr are monotone.

What about gen?

Theorem 6.1

(1) If there exists an inclusion N ⊆ M such that gen(N) > gen(M), then M is finitely

generated and N is countably-generated.

(2) The invariant s-dens is monotone.

(3) The generator problem is equivalent to deciding whether gen is monotone.

Proof (1) Suppose N ⊆ M and gen(N) > gen(M). Find nonzero σ-finite projec-

tions {ei}i∈I ⊂ Z(M) that sum to 1. Writing Mi = eiM, we have M =

∑⊕
Mi with

dec
(

Z(Mi)
)

≤ ℵ0.

For each i the algebra eiN is isomorphic to a direct summand ziN of N. Since

the inclusion N →֒ M is faithful, ∨zi = 1N. Well-order the indices and set yi =

zi(1 − ∨ j<iz j), so that
∑

yi = 1N. Let I ′ = {i ∈ I | yi 6= 0}. Writing Ni = yiN,
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we have N ≃
∑⊕

I ′ Ni , and for each i ∈ I ′ the embedding ziN →֒ Mi carries Ni

isomorphically onto a subalgebra of Mi .

By Theorem 4.1 and hypothesis,

max{logc(|I|), supi∈I gen(Mi)} = gen(M) < gen(N)

= max{logc(|I
′|), supi∈I ′ gen(Ni)}.

Since I ′ ⊆ I, the right-hand side must be supi∈I ′ gen(Ni). The inequality gen(Ni) >
gen(M) must then happen for some i = i0; we show that this entails countability of

gen(Ni0
) and finiteness of gen(M). Since Ni0

→֒ Mi0
, we get

gen(Mi0
) ≤ supi∈I gen(Mi) ≤ gen(M) < gen(Ni0

)

≤ χr(Ni0
) ≤ χr(Mi0

) ≤ ℵ0 · gen(Mi0
),

(6.1)

using Proposition 5.1(3) for the last relation. Comparing the end terms, gen(Mi0
)

must be finite, making gen(Ni0
) countable and gen(M) finite. We have shown that

gen(Ni) > gen(M) ⇒ gen(Ni) ≤ ℵ0, so gen(N) = sup gen(Ni) ≤ ℵ0.

(2) Part (1) guarantees that for any inclusion N ⊆ M, ℵ0 ·gen(N) ≤ ℵ0 ·gen(M).

Then the conclusion follows from Theorem 2.1(1).

(3) If gen is monotone, then M ⊆ B(ℓ2) ⇒ gen(M) ≤ gen
(

B(ℓ2)
)

= 1, giving

a “yes” answer to Question 1.1. A “yes” answer to Question 1.1 entails a “yes” answer

to Question 1.2 by Theorem 3.4. Finally, a “yes” answer to Question 1.2 implies that

gen must be monotone by part (1).

Corollary 6.2 Let M and N be von Neumann algebras.

(1) gen(M⊗̄N) ≤ max{gen(M), gen(N)}.

(2) If at least one of M and N is not countably-generated, then

(6.2) gen(M⊗̄N) = gen(M) · gen(N).

(3) The generator problem is equivalent to deciding whether (6.2) is universally valid,

i.e., whether gen is multiplicative on tensor products.

Proof (1) Same argument as the second-to-last paragraph of Example 4.2(2).

(2) Use part (1) and Theorem 6.1(1), noting M and N are subalgebras of M⊗̄N.

(3) A “yes” answer to Question 1.2 makes both sides of (6.2) equal 1 whenever

M and N (so also M⊗̄N) are countably-generated. A “no” answer to Question 1.2

implies the existence of M with gen(M) ∈ (1,ℵ0]. Since M ⊗ B(ℓ2) is countably-

generated and properly infinite,

(6.3) gen
(

M⊗̄B(ℓ2)
)

= 1 < gen(M) = gen(M) · gen
(

B(ℓ2)
)

.

Tensoring with B(ℓ2
κ) can either increase or decrease gen(M), depending on κ

and the answer to the generator problem. For uncountable κ, by Example 2.3 and

Corollary 6.2(2) the action is nondecreasing, and even strictly increasing when κ >
gen(M). But for countable κ, the action is nonincreasing by Corollary 6.2(1). In fact,
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if the generator problem has a negative answer, the decreasing effect gets stronger

as κ increases, until at κ = ℵ0 all countably-generated tensor products are singly-

generated. This is illustrated by two very nice results from a neglected 1972 paper of

Behncke.

Theorem 6.3 ([2, Lemma 2, Theorem 1 and subsequent remark]) Let M and N be

separably-acting von Neumann algebras.

(1) If M is generated by n self-adjoint operators, then Mk ⊗ M can be generated by

m ≥ 2 self-adjoint operators as long as m − 1 ≥ (n − 1)/k2.

(2) If M and N lack finite type I summands, then M⊗̄N is singly-generated.

From inspection of its proof, this theorem remains valid if “separably-acting” is

replaced by “countably-generated.”

The fact that gen is nonincreasing under tensoring with a matrix algebra is a hal-

lowed trick in the history of the generator problem, evolving quickly from its in-

ception in Pearcy’s 1963 paper [29]. Based on a fairly thorough survey of the liter-

ature, the author concluded that Theorem 6.3(1) is the sharpest result of this type.

It is essentially the strongest possible implication that is compatible with the contin-

gency that L(Fm) is not generated by fewer than m self-adjoint operators, because of

(and exactly matching) Voiculescu’s isomorphism L(Fm) ≃ Mk ⊗ L(F1+k2(m−1)) for

1 ≤ k < ℵ0 and 1 < m ≤ ℵ0 [43, Theorem 3.3(b)]. Notice that Shen’s invariant G(·)
scales similarly under tensoring with matrix algebras (Theorem 3.7(2)).

Special cases of Theorem 6.3(2) include properly infinite M (since then M ≃ M⊗
B(ℓ2)) and tensor products of II1 factors (later reobtained as [12, Theorem 6.2(c)]).

For completeness we observe that χr and dec are multiplicative on tensor prod-

ucts.

Proposition 6.4 If M and N are von Neumann algebras, then

χr(M⊗̄N) = χr(M) · χr(N) and dec(M⊗̄N) = dec(M) · dec(N).

Proof This is straightforward when both algebras are finite-dimensional, so assume

that at least one is infinite-dimensional.

The inclusions M,N ⊆ M⊗̄N give the relation

χr(M) · χr(N) = max{χr(M), χr(N)} ≤ χr(M⊗̄N)

by monotonicity. For the opposite inequality just note that if M acts faithfully on H

and N acts faithfully on K, then M⊗̄N acts faithfully on H ⊗ K by construction [4,

III.1.5.4].

For dec, let {pα}α<dec(M) ⊂ M and {qβ}β<dec(N) ⊂ N be families of nonzero

projections adding to 1. By [17, Theorem 2.6(i)] we may assume that all these pro-

jections are σ-finite. Then the dec(M)·dec(N) projections {pα⊗qβ}α<dec(M),β<dec(N)

are an infinite family of σ-finite nonzero projections adding to 1 as well, so again by

[17, Theorem 2.6(i)], dec(M⊗̄N) = dec(M) ·dec(N). (Comments: (1) The result in

[17, Theorem 2.6(i)] refers to cyclic projections instead of σ-finite projections. The

former concept depends on a choice of representation and the latter does not, but in
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a suitable (say, standard) representation they agree. (2) To see that the tensor prod-

uct of σ-finite projections is σ-finite, note that σ-finiteness is equivalent to being the

support of a normal state. If ϕ is supported on pα and ψ is supported on qβ , then

ϕ⊗ ψ is supported on pα ⊗ qβ [4, Proposition III.2.2.29].)

7 Some Remarks on Cardinal Invariants for Double Duals of
C∗-algebras

7.1 Double Duals of Full C∗-algebras of Free Groups

If gen(M) = κ, then M is generated by ≤ 2κ unitaries and is therefore a summand

of C∗(F2κ)∗∗. Thus C∗(F2κ)∗∗ is the “largest” von Neumann algebra generated by κ
elements. Note that one can construct a one-dimensional representation of F2κ by

sending the 2κ generators to arbitrary unit scalars. This produces c2κ
= cκ distinct

1-dimensional summands in C∗(F2κ)∗∗, which therefore has decomposability num-

ber ≥ cκ. On the other hand C∗(F2κ)∗∗ is visibly generated by κ elements. The

general relation dec(M) ≤ cgen(M) from (♥) then forces dec
(

C∗(F2κ)∗∗
)

= cκ.

While this argument does not show that gen
(

C∗(F2κ)∗∗
)

equals κ, it is not larger,

and cgen(C∗(F2κ)∗∗)
= cκ. In other words

(7.1) logc(cκ) ≤ gen
(

C∗(F2κ)∗∗
)

≤ κ.

By the same analysis, (7.1) also applies if F2κ is replaced with Fab
2κ, the free abelian

group on 2κ generators. In particular 1 < logc(cc) ≤ gen
(

C∗(Fab
c )∗∗

)

≤ c; this

phenomenon was mentioned in Remark 3.3(1). (Incidentally, each of the relations

logc(cc) = c and logc(cc) < c is consistent with ZFC. The author thanks Ilijas Farah

for explaining this to him.)

7.2 Relations to the Work of Hu and Neufang

Hu and Neufang proved many results about dec(M) in [17], [16], [25], especially for

von Neumann algebras that are second duals and/or associated to locally compact

groups. As remarked earlier, the intersection between these papers and the present

one mostly concerns (♥). Here is something interesting that follows from the union:

for G any infinite locally compact group, dec
(

L(G)
)

· dec
(

L∞(G)
)

= χr

(

L(G)
)

.

(Both quantities equal dim L2(G), by [17, Proof of Lemma 7.6] and the proof of “ℵ0 ·
χr(M) = dens(M∗)” in Theorem 2.1(2).)

In the rest of this section we apply our results to two questions raised by Hu and

Neufang.

In [17, Remark 6.7(ii)] they ask whether dec(A∗∗) = |A∗| for every infinite-

dimensional unital commutative C∗-algebra A. The answer to this question is no.

Let I be an infinite set whose cardinality satisfies |I| < |I|ℵ0 ; for example |I| could

be ℵ0 or ℵω (the latter by König’s theorem, see [18, Corollary 5.14]). Let A be the

unitization of c0(I), so that A∗∗ ≃ ℓ∞I . Then from (♥),

|A∗| = |(A∗∗)∗| = c · χr(ℓ
∞
I )ℵ0

= |I|ℵ0 > |I| = dec(ℓ∞I ) = dec(A∗∗).
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In [17, Remark 6.7(iii)] they ask for which infinite-dimensional C∗-algebras A

one has

(7.2) dec(A∗∗) = dens(A∗).

(One always has the relation “≤,” by [17, Corollary 2.7] or (♥).) Since dens(A∗) =

dens
(

(A∗∗)∗
)

= χr(A
∗∗) also by (♥), condition (7.2) says that A∗∗ is maximally

decomposable [16, Definition 3.1], the main concept of Hu’s paper [16]. Hu and

Neufang show that (7.2) holds for many classes of C∗-algebras associated to infinite

locally compact groups. Does (7.2) hold for all infinite-dimensional C∗-algebras? We

do not know, but at least it is widely enjoyed.

Proposition 7.1 If an infinite-dimensional C∗-algebra A is either type I or generated

by ≤ c elements, then (7.2) holds.

Proof We will work with a reformulation of (7.2). Since dec(A∗∗) · gen(A∗∗) =

dens(A∗) by (♥), (7.2) is equivalent to dec(A∗∗) = dec(A∗∗) · gen(A∗∗), which is in

turn equivalent to

(7.3) gen(A∗∗) ≤ dec(A∗∗).

Suppose that A is type I. Let {Jα}α∈I be a composition series for A in which

Jα+1/Jα is a continuous trace algebra for every α ∈ I [4, Corollary IV.1.4.28]. Then

(7.4) A∗∗ ≃
∑⊕

(Jα+1/Jα)∗∗.

Because dec is additive on direct sums and gen is only subadditive (Theorem 4.1), to

prove (7.3) it suffices to prove gen ≤ dec for all summands in (7.4). Thus we only

need to show (7.3) for A a continuous trace algebra. We may assume that A and A∗∗

are infinite-dimensional, since otherwise gen(A∗∗) = 1.

Continuous trace algebras are type I, so A∗∗ is a type I von Neumann algebra.

Write A∗∗ ≃
∑⊕

κ∈K B(ℓ2
κ)⊗̄Zκ, where the Zκ are abelian von Neumann algebras and

∑

Zκ = Z(A∗∗). Let κ0 = sup K. Since dec is monotone and A∗∗ contains the

algebras Z(A∗∗) and {B(ℓ2
κ)}, dec(A∗∗) dominates both dec

(

Z(A∗∗)
)

and κ0. We

are assuming that dec(A∗∗) is infinite, so

(7.5) dec(A∗∗) ≥ κ0 · dec
(

Z(A∗∗)
)

.

Working from the other direction, compute

gen(A∗∗) = logc(|K|) · sup gen
(

B(ℓ2
κ)⊗̄Zκ

)

≤ logc(|K|) · κ0 · sup gen(Zκ) = κ0 · gen
(

Z(A∗∗)
)

.

(7.6)

Here we used Theorem 4.1 for the equalities, and Corollary 6.2(1) and Example 2.3

for the inequality. Putting (7.5) and (7.6) together, (7.3) will follow if we show

gen
(

Z(A∗∗)
)

≤ dec
(

Z(A∗∗)
)

.
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Since A is continuous trace, Z(A∗∗) ≃ C0(Â)∗∗ [29, Theorem 6.3]. This means

that we only need to show (7.3) for abelian A. We write A = C0(X) for some in-

finite locally compact Hausdorff space X. For each unequal pair x, y ∈ X, there

is a function fx,y ∈ C0(X) with fx,y(x) 6= fx,y(y). By the Stone–Weierstrass the-

orem the family of |X|2 + 1 = |X| functions { fx,y} ∪ {1} generates C0(X) as a

C∗-algebra and thus C0(X)∗∗ as a von Neumann algebra, making gen
(

C0(X)∗∗
)

≤
|X|. On the other hand, the points of X give disjoint one-dimensional representations

of C0(X), which correspond to one-dimensional summands in C0(X)∗∗. This entails

dec
(

C0(X)∗∗
)

≥ |X| and completes the proof of the type I case. (The subcase just

established, that double duals of abelian C∗-algebras are maximally decomposable,

improves [17, Corollary 5.2] and its incorporation into [17, Theorem 5.5].)

Now suppose that A is generated as a C∗-algebra by ≤ c elements. This implies

that gen(A∗∗) ≤ c, and from (1) we may also assume that A is not type I. By Sakai’s

nonseparable version of Glimm’s theorem (conveniently formulated in [30, Corol-

lary 6.7.4]), there is a C∗-subalgebra B ⊆ A with ideal J ⊳ B such that B/J is

∗-isomorphic to the CAR algebra M2∞ . Powers showed that M2∞ has a continuum

of nonisomorphic factor representations [33, Section 4], each of which is then a sum-

mand of M∗∗
2∞ . From all this we deduce

A∗∗ ⊇ B∗∗ ≃ J∗∗ ⊕ (B/J)∗∗ ⊇ (B/J)∗∗ ≃ M
∗∗
2∞ ⇒ dec(A∗∗) ≥ dec(M

∗∗
2∞) ≥ c.

The parts of Proposition 7.1 can be combined to give it wider scope. Let I(A) de-

note the largest type I ideal of a C∗-algebra A [4, Section IV.1.1.12]. Then A satisfies

(7.2) whenever gen
(

(A/I(A))∗∗
)

≤ c, by applying Theorem 4.1 and Proposition 7.1

to the decomposition A∗∗ ≃ I(A)∗∗ ⊕ (A/I(A))∗∗.

8 Cardinality of a von Neumann Algebra

One of the goals of this paper is to demonstrate that many cardinal invariants for von

Neumann algebras can be expressed in terms of gen and dec, mostly based on Theo-

rem 2.1. This is true for the cardinality of the predual, but in this section we show that

it is not true for the cardinality of the algebra itself. Nonetheless the situation is not

so bad: there is a simple formula that works unless the algebra is fantastically large.

(See the third condition in Theorem 8.3(2). We mean large to an analyst, maybe not

to a set theorist.)

We will go to the trouble of determining an exact cardinal bound for this phe-

nomenon, so let us first review some notation and facts regarding cardinal arithmetic.

For a cardinal κ and ordinal ξ, κ+ξ denotes the “ξth successor of κ,” i.e., if κ = ℵα,

then κ+ξ
= ℵα+ξ . For infinite cardinals κ and λ, the value of κλ is determined by the

following iterative scheme [18, Theorem 5.20]:

• if there is µ < κ with µλ ≥ κ, then κλ = µλ (so in particular κλ = 2λ when

κ ≤ 2λ);
• otherwise cfκ > λ⇒ κλ = κ and cfκ ≤ λ⇒ κλ = κcf κ.

Here cfκ is the cofinality of κ, the least cardinality of a set of cardinals < κ that sum

to κ. From König’s theorem we always have κcf κ > κ [18, Corollary 5.14].
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We thank Ilijas Farah for initially pointing out that part (1) of the next lemma is

true.

Lemma 8.1

(1) There exist cardinals κ, λ such that κλ > 2λ · κℵ0 .

(2) If κλ > 2λ · κℵ0 , then κ ≥ (2ℵ1 )+ω1 .

Proof (1) Let {κξ}ξ<ω1
be a sequence of cardinals greater than 2ℵ1 such that κη >

κℵ0

ξ whenever η > ξ. Set κ = sup{κξ} and λ = ℵ1; from cfκ = ℵ1 we compute

κℵ1 > κ = κℵ0 > 2ℵ1 .

(2) From κλ > κℵ0 we have λ ≥ ℵ1, while from κλ > 2λ = (2λ)λ we conclude

κ > 2λ. Taking λ = ℵ1 for now, we are looking for the least κ > 2ℵ1 such that

κℵ1 > κℵ0 .

Obviously (2ℵ1 )ℵ1
= (2ℵ1 )ℵ0

= 2ℵ1 , and moreover
(

(2ℵ1 )+k
)ℵ1

=

(

(2ℵ1 )+k
)ℵ0

=

(2ℵ1 )+k for every finite k. Now
(

(2ℵ1 )+ω
)ℵ1

and
(

(2ℵ1 )+ω
)ℵ0

are larger than (2ℵ1 )+ω ,

whose cofinality is ℵ0, but they are still equal. We may continue to argue by induc-

tion that
(

(2ℵ1 )+ξ
)ℵ1

=

(

(2ℵ1 )+ξ
)ℵ0

for any countable ordinal ξ. For if ξ were the

lowest counterexample, the iterative scheme implies that cf(2ℵ1 )+ξ
= ℵ1, but this is

impossible. (If ξ is a successor ordinal, (2ℵ1 )+ξ is its own cofinality, and otherwise the

cofinality is ℵ0.)

This identifies (2ℵ1 )+ω1 as the smallest possibility for κ when λ = ℵ1. The same

argument for a larger λ shows that κ ≥ (2λ)+ξ ′ , where ξ ′ is the least ordinal of cardi-

nality λ. Writing 2ℵ1
= ℵα and 2λ = ℵα ′ , we have α ′ ≥ α and ξ ′ > ω1 as ordinals.

This entails that α ′ + ξ ′ > α + ω1. (Otherwise α ′ + ξ ′ would be isomorphic to an

initial segment of α + ω1; this would carry α ′ to an initial segment containing α, but

ξ ′ cannot embed into the remainder even as a set, having cardinality larger than ℵ1.)

We conclude that (2λ)+ξ ′ is greater than (2ℵ1 )+ω1 , so the latter is a universal strict

lower bound for κ when λ > ℵ1.

Remark 8.2 The conclusion of Lemma 8.1(2) cannot be improved in ZFC. If one

assumes the Generalized Continuum Hypothesis, or even just the Singular Cardinal

Hypothesis, then
(

(2ℵ1 )+ω1
)ℵ1

> 2ℵ1 ·
(

(2ℵ1 )+ω1
)ℵ0

[18, Theorem 5.22].

Theorem 8.3 Let M be a von Neumann algebra.

(1) We have

(8.1) |M| ≤
(

ℵ0 · gen(M)
)ℵ0·dec(M)

.

(2) The inequality (8.1) is an equality whenever any of the following conditions hold:

• M is σ-finite;
• M is a factor; or
• gen ′(M) < (2ℵ1 )+ω1 , i.e., there is κ < (2ℵ1 )+ω1 such that M can be written as a

direct sum of algebras each of which can be generated by ≤ κ elements.

(3) In general, the cardinality of M is not determined by gen(M) and dec(M).
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Proof We start with the elementary observation that |M| = |M≤1|. One justifica-

tion is as follows:

|M≤1| ≤ |M| =
∣

∣

⋃

n∈N

M≤n

∣

∣ ≤
∑

|M≤n| = ℵ0 · |M≤1| = |M≤1|.

We use this freely in the rest of the proof.

First suppose that M is σ-finite. Then there is a faithful normal state ϕ on M, and

the strong topology on M≤1 is induced by the norm ‖x‖ϕ = ϕ(x∗x)1/2 [4, Proposi-

tion III.2.2.7]. From Theorem 2.1(1), we know s-dens(M≤1) = ℵ0 ·gen(M). Arguing

just as in [22, Lemma 2], it follows that |M≤1| =
(

ℵ0 · gen(M)
)ℵ0

. The σ-finiteness

of M makes (8.1) an equality.

Next assume thatM can be written asB(ℓ2
µ)⊗̄N, whereN is σ-finite andµ is either

1 or uncountable. In particular any factor can be put in this form. By Example 2.3

and Corollary 6.2(2), gen(M) = µ·gen(N); by Proposition 6.4, dec(M) = µ·dec(N).

We also have that |M| = |N|µ: the relation ≤ follows from the fact that every element

of M can be represented as a matrix of µ2
= µ entries in N, and the relation ≥ follows

from the fact that M≤1 contains the unit ball of the diagonal algebra ℓ∞µ (N), which

has cardinality |N|µ. Using the previous paragraph, we again obtain equality in (8.1):

|M| = |N|µ =

(

ℵ0 · gen(N)
)ℵ0·dec(N)·µ

=

(

ℵ0 · µ · gen(N)
)ℵ0·dec(N)·µ

=

(

ℵ0 · gen(M)
)ℵ0·dec(M)

.

Here is the justification for changing the base expression in the third equality. If

µ ≤ ℵ0 · gen(N), the base has not changed. Otherwise µ must be uncountable, so

by σ-finiteness of N the exponent in these expressions is just µ, while the bases are

infinite cardinals ≤ µ.

Now it is a fact of dimension theory that any von Neumann algebra M can be

written as a direct sum of algebras Mi = B(ℓ2
µi

)⊗̄Ni , where the µi and Ni are as in

the previous paragraph (see, e.g., [39, Theorem 2.5]). For the left-hand side of (8.1)

we get

|M| = |M≤1| =
∏

|(Mi)≤1| =
∏
(

ℵ0 · gen(Mi)
)ℵ0·dec(Mi )

≤
∏
(

ℵ0 · sup gen(Mi)
)ℵ0·dec(Mi )

=

(

ℵ0 · sup gen(Mi)
)ℵ0·

∑
dec(Mi )

.

(8.2)

We use Theorem 4.1 to compute the right-hand side of (8.1) as follows:

(

ℵ0 · gen(M)
)ℵ0·dec(M)

=

(

ℵ0 · sup gen(Mi) · logc(|I|)
)ℵ0·

∑
dec(Mi )

=

(

ℵ0 · sup gen(Mi)
)ℵ0·

∑
dec(Mi )

.

(8.3)

The second equality is justified similarly to the end of the previous paragraph. If the

base really changed, then logc(|I|) would have to be uncountable; but then both bases

are infinite and dominated by the exponent (which is at least |I|), so the quantities
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are equal. Since (8.2) and (8.3) end with equal expressions, we obtain part (1) of the

theorem and also deduce that (8.1) is an equality whenever (8.2) is an equality.

In fact (8.2) can be a strict inequality, but then some big cardinals must be in-

volved. Set κ = gen ′(M). Write M as a direct sum of algebras each generated

by ≤ κ elements, then decompose each summand as in the previous paragraph;

thus M =

∑⊕
Mi as in the previous paragraph, with the additional condition that

gen(Mi) ≤ κ for all i. Set λ = ℵ0 ·
∑

dec(Mi) = ℵ0 · dec(M). Assuming the

inequality between the two terms in (8.2) is strict, we estimate

κλ =
∏
(

ℵ0 · sup gen(Mi)
)ℵ0·dec(Mi )

>
∏
(

ℵ0 · gen(Mi)
)ℵ0·dec(Mi )

=

[

∏
(

ℵ0 · gen(Mi)
)ℵ0·dec(Mi )

]ℵ0

·
[

∏
(

ℵ0 · gen(Mi)
)ℵ0·dec(Mi )

]

≥ κℵ0 · ℵλ0 = κℵ0 · 2λ.

From Lemma 8.1(2) this implies κ ≥ (2ℵ1 )+ω1 , finishing part (2) of the theorem.

Finally, use Lemma 8.1(1) to find κ and λ such that κλ > 2λ · κℵ0 . Let

M1 = B(ℓ2
λ)⊗̄L(Fκ), M2 = L(Fκ) ⊕ ℓ∞λ , M3 = L(Fκ) ⊕

(

B(ℓ2
λ)⊗̄L(Fλ)

)

.

From Example 2.3, Theorem 4.1, Example 4.2(1), and Corollary 6.2(2) we have

gen(M j) = κ and dec(M j) = λ. But the first part of (8.2) gives

|M1| = κλ > κℵ0 · ℵλ0 = |M2| = |M3|.

This establishes part (3) of the theorem. We exhibited both M2 and M3 because they

endow the second and third conditions in part (2) with some sharpness: equality

in (8.1) follows from dec(M) ≤ ℵ0 or dec
(

Z(M)
)

≤ 1, but it does not follow from

dec(M) ≤ ℵ1, dec ′(M) ≤ ℵ0, or dec
(

Z(M)
)

≤ 2.
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