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1. Introduction

In [2] we studied parametric #-surfaces {f, M "), where M " was a compact,
oriented, topological #-manifold and f a continuous mapping of M™* into the
real euclidean k-space R* (8 = n). A definition of bounded variation was
given and, for each surface with bounded variation and each proiection P
from R¥* to R", a signed measure:

#(Pf) = po(Pf) — n_(Pf)

was constructed. This measure was used to define a linear type of surface

integral:
1) [, 8@ dP(@),
over a ‘“‘measurable’”’ subset A of M", as the Lebesgue-Stieltjes integral:

[, efd(Pf).

In [2] we were only able to prove (except for the special case & = =) that
the integral (1)’ existed for a continuous g, by placing restrictions (in addi-
tion to bounded variation) on the surface (f, M"). For example, when
k = n + 1, it was assumed that the subset f(M™) of R"**! had zero Lebesgue
measure.

It is the purpose of this paper to remove this restriction for a special class
of surfaces. It will be shown (Theorem 3.7) that, if » = 2, M" is the euclidean
2-sphere

S?2 = {z;ze R® and ||z|} =1}

and (f, S?) is a surface in R* (¢ = 2) such that, for each projection P from
R¥ to R?, Pfhas bounded variation on S2, then any bounded, Borel-measur-
able, real-valued function g on f(5?) is integrable over (f, S?) with respect to
each projection P. The proof of this theorem depends strongly on some of
the results of [1].
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The n-dimensional surface integral studied in [2] is a linear type of inte-
gral, hence when » = 2 it reduces to

) f.[(f,Ma) g(xy, @y - - -, 3y)dx, dx;

so that (when #» = 2) it is at best a special case of the general surface integral
(2) ffs F(xly xz’ z3’ dxz’ dx3’ dxl) dx3) dxl dx2))

which has been defined by Cesari ([1], Appendix B) for every surface
S = (4, T), where A4 is an admissible subset of R?, T is a continuous mapping
of A into R® whose projections into the coordinate planes have bounded
variation and F is a continuous function on 7(4) x R3 with the property
that F(x, Au) = AF (z, ») forall A > 0. The Cesari integral has been extended
by J. Cecconi to surfaces (S2%, T'), where T is a continuous mapping of the
euclidean 2-sphere S2 into R?, whose projections have bounded variation.
The question as to whether the integral (1) is equivalent to a special case of
(2) has not yet been answered.

2. Notation

Unless otherwise stated, all concepts relating to parametric surfaces will
be as defined in [2]. The real euclidean #-space is denoted by R". If x ¢ R",
then z; denotes the j-th co-ordinate of x; (z); is thus a mapping from R"*
to K. As in [2], P, denotes the projection

P.’i(xl’ T zn+1) = (xlx R 7 B P 27 B xn+1)

of R*+linto R"and, for £ = #», the symbol £ is used to denote the collection
of all projections P of R* into R™ with the form

Py, + @) = @y, ° ) @1y Tiers ™" Tjpety Ty, " By Ty 41" 5 B)-

The interior, frontier (or boundary), closure and complement of a subset 4
of a topological space are denoted by Int (4), Fr (4), A and ~ 4, respec-
tively. @ denotes the empty set. Lebesgue measure is denoted by m.

If f is a continuous mapping of a compact Hausdorff space X into a
Hausdorff space Y, following Cesari [1], we define a maximal continuum of
constancy of fin X, to be a subset C of X such that f(C) is a single point of
Y and C is a component of f~1{f(C)}.

The collection of all maximal continua of constancy for f in X will be
denoted by I'(f, X). The members of this collection are mutually disjoint
and their union is X. Each member ¢f the collection is closed, hence compact.

3. The existence of the surface integral
Let f be a continuous mapping of S2 into R*, where £ = 2. Then (f, S?) is
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a 2-surface. For each P of #% and each point y of R?, it is evident that each
member of I'(f, S?) is either contained in a component of (Pf)~(y) or does
not intersect (Pf)—l( . For each P of &5, let Y*) denote the subset of R?
consisting of all those points y for which the components of (Pf)~!(y) are
members of I'(f, S%).

3.1. THEOREM. If for all P e P5, Pf has bounded variation on S2, then for
all PePt, R2~ YW has zero measure.

Proor. (i) When & = 2. In this case the theorem is trivial.
(i) When k& = 3. &} consists of the three projections P,, P,, P;. Consider
the unit square

Ad={uv)0=4<10=v =<1}

Let y be a continuous mapping of 4 onto S2 such that y|Int (4) is a homeo-
morphism and x{Fr (4)} is a single point of S2. Let T, T,, T; be continuous
mappings from A to R? defined by

T,= P,fy.

By II 1.10 of [2], the function ¢(T,, S?, y) is measurable on R? with respect
to y and its integral is finite. But it follows from I1 1.8 of [2] and 12.1 of [1],
that ¢(T,, S? y) is = the function N(y; T,, A), hence N(y; T,, A) has a
finite integral so that by 12.3 of [1], each T, has bounded variation in the
sense of [1]. Hence, by 16.9 (iii) of [1], there exists for each7=1,2,3 a
subset X, of R? such that R%~ X, has zero measure and, for all y ¢ X,
the components of T;1(y) are members of I'(fy, A). Now

I'(f,S%) = {x(C); Ce I'(fy, A)}

and for each y € R?, the components of (P,f)*(y) are the sets y(D), where
Disa component cf 77 (y). Hence for all y € X, the components of (P, f)~!(y)
are elements of I'(f, S2).
Thus
Xi g Y (P4)

so that R2~ Y0 has zero measure.

(iii) When £ > 3. Let P be an arbitrary fixed member of #%. We have
to show that

(1) R:~ Y

has zero measure.
Let 2 denote the collection of all those members Q of 25 for which there
exists a projection R of #% with

(2) P = RQ.
For each Qe 2, let
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(3) 7@
denote the subset of R? consisting of all those points g for which the com-

ponents of (Pf)~!(y) are members of I'(Qf, S2).
Since 2 is a finite, non-empty collection, the validity of (1) now follows
immediately from Lemmas 3.2 and 3.3, which appear below.

3.2 LEMMA.

(4) NZ@QCYy®,
Qeg

ProoF. Let y be an arbitrary point of the left hand side of (4) and C an
arbitrary component of (Pf)~1(y). It will be sufficient to prove that

(5) C e I'(f, S).

Suppose that C ¢ I'(f, S?). Then f(C) is not a single point of R, hence there
exist two points a, b of S? such that

(6) fla) # f(b).
Let 4; < 7, be positive integers such that
P(xl: xz» Tt xk) = (xiu xi,)'
Since Pf(C) = y, it follows that
{/(@)}, = {f(®)}.

for ¢ = 7;, 7,, hence by (6) there exists an #; + 7, ¢, such that

(7) {f(@)},, # {f(®)}srr
Let Q* be the projection of £ defined by
(8) Q* (xll Tt xk) = (xh’ xh’ xia)’

where j,, 75, j; are the numbers 7,, 7,, ¢; arranged in ascending order of
magnitude. Then
(9) Q*c 2
and by (7) and (8),
Q*f(a) # Q*f(b),
so that Q*f(C) is not a single point of R3. Therefore

(10) C¢ Q% 5.
But since y lies in the left-hand side of (4) it follows from (3) and (9), that
C e I'(Q*f, S2).

This contradicts (10), hence the lemma is proved.

3.3 Lemma. For all Qe 2,
R2~0 ZWQ@

has zero measure.
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Proor. Let Q' be an arbitrary fixed member of 2. (Q'f, S?) is evidently
a 2-surface in R3 and each of
P.Qf i=1,2,3
has bounded variation on S2. Therefore, if W, ( = 1, 2, 3) denotes the sub-

space of R? consisting of all points y for which the componentsof (P, Q’f)~1(y)
are members of I'(Qf, S%), it follows from (ii) that

(ll) R2 ~ Wi
has zero measure.
But by (2),
P = PiQ,

for one value of i—say 7,. Take an arbitrary point y of W, . Then

(PQ'N)~y) = (Pf)~(),
so that the components of (Pf)~1(y) are members of I'(Q’f, S?); hence, by
(3), ye ZQn,
Thus
W, C Z@,
so that, by (11), R?~ Z@) has zero measure.

3.4 THEOREM. If K is a compact subset of a metric space R, C is a component
of K and D 1s a closed subset of K that does wnot intersect C, then there exists a
closed subset H of R such that

C C Int (H)
HAanD=g
and
KnFr(H) = 2.
(The interior and frontier are taken in R).

Proor. There is no component of K that intersects both C and D. Also C
is closed. Therefore, by 3] (9.3) p. 15, there exist closed subsets F, G of K

such that

(1) CCF, DCG,

(2) FnG=g

and

(3) K=FuG.

Since a metric space is normal, there exist open sets U, V of R such that
(4) FCU, GCV
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and
(5) UnV = g.
Put
(6) H=T.
By (1), (4) and (6),

C C Int (H).
It follows from (5) and (6), that
(7) HnV =g,
hence by (1) and (4),

HnD=g.
By (4) and (6)

F ClInt (H)
and by (4) and (7)

GCR~H,

hence by (3)
KClInt (H)u (R~ H)
so that
KnFr(H)=o.
3.5. THEOREM, If. for all P e P%, Pf has bounded variation on S2, and if
U is an open set of R*, then for each P e Py, f~(U) is measurable u (Pf) and
#—(Pf).

ProoF. Let P be an arbitrary fixed member of 5. We have to show that
(1) )

is measurable u, (Pf) and u_(Pf). Throughout the proof we will denote these
two measures simply by p, and u_.

For each positive integer », denote by £, the collection of those open
squares of R? which have the form

{yh27<z<(s+ 12727 <y< (4 1)277
s;t=04+1,42,--.

Let

(2) Z={R2~Y‘P’}uGUFr(I).
By 3.1 T

(3) m(Z) =20
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Denote by 2, the collection of those (open) sets of S2 each of which is a
component of a set (Pf)~1(I), I ¢ #,, and each of which is contained in
f(U). Put

() 2-U9,

r=1
Since S? is separable, each 2, is countable, so that 2 is also countable.
Furthermore, for each D € &, there exists an » and an I € £, such that
Pf{Fr (D)} C Fr (I). Hence D is a member of the ring Z(Pf) defined in [2]
II 1.2. Thus, each D ¢ & is measurable g, and px_, so that the subset

(5) A=UD
Degp
of S? is measurable 4, and u_. Evidently
(6) 4 ¢ fU).
We will now prove that
™) FHU) 4 v (P
To prove this, let 2 be an arbitrary point of f~1(U) that is not in (Pf)~1(Z).
Then
(8) fla)eU
and
(9) Pfla) ¢ Z.
By (2) and (9), Pf(a) e Y'® so that the components of
(10) (Pf)~Pf(a)
are members of I'(f, S?). Let C be the component of (Pf)~'Pf(a) that con-
tains a.

Then f(C) = f(a); hence C does not intersect the closed set f~1(R%*~ U).
Consequently C is a component of
K = [(Pf)7{Pfa)}] v fHRE~U).
By putting D = f1(R*~ U) and applying Theorem 3.4, one can see that
there exists a closed subset H of S? such that
(11) C C Int (H),
HnfYYR:~U)= g

and

Fr (H) n [(Pf)"{Pf(a)} v fFH(R*~U)] = 2.
Then
(12) HC f1(U)

https://doi.org/10.1017/51446788700026239 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700026239

426 J. H. Michael (8]

and

(13) Pf(a) ¢ Pf{Fr (H)}.

By (13), there exists a positive integer 7’ such, that 2-"+} is less than the
distance between Pf(a) and Pf{Fr(H)}. By (9), there exists an I € .#,, with
Pf(a) eI and

(14) InP{Fr(H)} = o.

Let E be the component of (Pf)~1(I) containing a. Then E does not intersect
Fr (H), hence E C H, so that by (12),

(15) E Cf1(U).

By (15), E € 2, hence by (5), ae A.

Thus (7) is true.
It follows from (3) and [2] II 1.16 that

w{(PNHZ) = nA(P)H(2)} =0,
so that by (5), (6) and (7), f/~Y(U) is measurable u, and u_. This completes
the proof.

3.6. THEOREM. If, for all P e P, Pf has bounded variation on S2, and if
U is a Borel set of R, then for each P e %, f1(U) is measurable . (Pf) and
n—(Pf).

Proor. Let P’ be a fixed projection of #%. Denote by £, the o-ring
consisting of all those subsets of S? that are measurable u (P’f) and u_(P’f).
Let & be the collection of all those subsets A of R*, such that f~1(4) ¢ Z#.
& is a g-ring; because, if 4,, 4,, €&, then

FAUAG=USHA) €
and if 4, Be ¥ with B C=:A, then
A~ B)=fY4)~f'(B)eZ
It follows from 3.5, that every open set of R* is a member of &; hence the
Borel set U is in &; i.e. f1(U) € Z. Thus f~1(U) is measurable u, (P’f) and
u_(Pf).
3.7. THEOREM. If, for all P € %, Pf has bounded variation on S? and if

g 15 a bounded, Borel-measurable, real-valued function on f(S?), then for each
P e P, the surface integral

(1) [ o8 @4P@)
exists.

Proor. In {2] IT 2.2 the surface integral (1) is defined to be the Lebesgue-

https://doi.org/10.1017/51446788700026239 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700026239

{9) The existence of parametric surface integrals 427

Stieltjes integral

[ erdupr) = [ efin, (Pf) — [, efdu(Pf)
and it follows immediately from 3.6, that this latter integral exists.
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