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Abstract
Coastal surveillance video helps officials to obtain on-site visual information on maritime traffic situations, which
benefits building up the maritime transportation detection infrastructure. The previous ship detection methods
focused on detecting distant small ships in maritime videos, with less attention paid to the task of ship detection
from coastal surveillance video. To address this challenge, a novel framework is proposed to detect ships from
coastal maritime images in three typical traffic situations in three consecutive steps. First the Canny detector is
introduced to determine the potential ship edges in each maritime frame. Then, the self-adaptive Gaussian descriptor
is employed to accurately rule out noisy edges. Finally, the morphology operator is developed to link the detected
separated edges to connected ship contours. The model’s performance is tested under three typical maritime
traffic situations. The experimental results show that the proposed ship detector achieved satisfactory performance
(in terms of precision, accuracy and time cost) compared with other state-of-the-art algorithms. The findings of the
study offer the potential of providing real-time visual traffic information to maritime regulators, which is crucial
for the development of intelligent maritime transportation.

1. Introduction

Maritime surveillance video (MSV) provides visual and on-site information on waterway traffic to
onshore traffic management departments, and thus helps officials to employ timely control measures to
enhance maritime traffic safety (Wang et al., 2020; Yu et al., 2021). The ship detection results offer critical
visual information to maritime authorities to determine law-breaking behaviours of traffic participants,
such as overloading, violation of routing system, etc. The previous ship detection models can be classified
into three types: radar-related techniques, visible light-based models and infrared-related methods. The
first type of ship detection model, using radar, employs the echoes from objects to find ships in the
monitoring area (based on the Doppler effect). Pappas et al. (2018) employed radar super-pixel to replace
rectangular sliding windows for the purpose of obtaining better ship detection results from synthetic
aperture radar images. They found that the performance of radar-based ship detection methods is easily
degraded by sea spikes and waves, which are likely to happen in extreme weather conditions (Wang
et al., 2017a, 2017b; Nova et al., 2020). Maritime surface wave radar is commonly used to identify
ships around busy coastal areas by recognising ship echoes. More specifically, different ships’ echoes
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Table 1. Comparison of performance of ship detection techniques.

Radar Visible light Infrared technique

Ship detection mechanism Ship echoes Visual features Thermal imaging
Main advantage Visibility

insensitivity
Informative

spatial-temporal data
Large detection area

Disadvantage/interference Wooden ships Extreme weather Water clutters

vary in the maritime surface wave radar system, which helps ships’ crews to efficiently determine on-
site maritime traffic kinematic information. To solve the problem, Le Caillec et al. (2018) compared the
performance of different temporal-spatial algorithms with different high-frequency surface wave radars,
and proposed an efficient ensemble ship detection framework. Many studies have been implemented to
detect ships, using methods such as removal of sea clutter, salient yet sparse ship detection, ship wake
reduction, etc. (Yan et al., 2019; Zhao et al., 2019; Graziano, 2020).

Visible light-related models, the second type of ship detection techniques, employ edge operators to
detect intrinsic ship contours from maritime surveillance videos (shot by cameras installed on inshore
buildings and ships) (Huang et al., 2020; Liu et al., 2020b). The visible light-based techniques have
shown many successes in different fields, such as vehicle detection and tracking, pedestrian detection
and behaviour analysis (Liu and Gao, 2020; Liu et al., 2020a, 2020b), and thus demonstrated their
potential in ship detection applications. For real-time and accurate ship detection, Shao et al. (2019)
developed a saliency-aware convolution neural network-based model to extract discriminative ship
features in coastal maritime images. Shafer and Harguess (2015) suppressed ship detection outliers
by jointly combining the dictionary learning and group-sparsity model. Kim et al. (2018) proposed
a faster region-based convolutional neural network framework to recognise ships in various maritime
meteorological environments. Many studies have focused on automatic detection of ships from maritime
images by exploiting both conventional hand-crafted feature detection and deep learning models (Zhang
et al., 2017; Chen et al., 2020c; Ren et al., 2020).

Infrared technique is the third widely used ship detection framework. It is particularly good at
detecting ships under insufficient illumination (i.e., night time). Zhu and Xue (2015) and Mumtaz et al.
(2016) proposed frameworks based on salient features (including both global and local features) to
discriminate ships from the non-ship background (waves, ships’ wakes, etc.). However, the infrared-
based models are very sensitive to object edge variations, and the detection performance may be
sharply reduced (Wang et al., 2017a, 2017b). In addition, the salt-and-pepper noise (caused by sharp
image intensity variation) cannot be eliminated from infrared maritime images, and this may severely
deteriorate the detection performance of infrared-based methods. To address the issue, Min et al. (2018)
proposed a convolutional neural network-based framework to detect ships efficiently from infrared
maritime images at multi-level resolutions. Lu et al. (2006) developed a small marine target detection
framework combining an edge detector and a median filter, which showed satisfactory performance in
700 infrared images. Xie et al. (2017) proposed a novel framework for ship detection by fusing spectral
and thermal features, which suppressed cloud interference with a sematic segmentation model. It is not
easy to obtain satisfactory ship detection results considering that each type of detection technique has
both pros and cons, which are summarised in Table 1. More specifically, the radar-related techniques
employ echoes to identify ships at sea; they can obtain robust detection performance under low visibility
conditions, but may fail to detect wooden ships due to their faint ship echoes (Chen et al., 2020b). The
visible light-related techniques implement the detection task by determining a ship’s visual features from
maritime images. We can exploit significant informative spatial-temporal data with the visible light-
based models. Their performance is easily hindered, however, by extreme weather conditions (Biondi,
2017; Zhang et al., 2018). The infrared techniques obtain ship detection results via the principle of
thermal imaging. The infrared technique has a wide coverage area (i.e., it can detect ships far away
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from the infrared camera); the main disadvantage is that wave clutter may significantly deteriorate the
technique’s performance (Le Caillec et al., 2019).

The abovementioned advantages are the motivation to propose an ensemble Canny-Gaussian-
morphology framework for solving the ship detection challenge from inland surveillance videos. The
contributions of this study can be summarised as follows: (a) analysis of the cons and pros of previ-
ous studies on ship detection from varied maritime data sources (i.e., radar, infrared, and visible light
images); (b) development of a novel Canny-Gaussian-morphology ship detection framework for the pur-
pose of accurate and real-time ship detection, which involves the steps of ship edge extraction, negative
ship edge suppression, and ship contour reconstruction; (c) testing of the proposed model performance
under typical maritime traffic situations. More specifically, three maritime video clips (i.e., high and low
traffic volume, strong wave interference) were collected with cameras installed on onshore buildings. For
the purpose of model performance comparison, three ship detection models (Gaussian, support vector
machine [SVM] and mask-RCNN [regions with CNN features] models) are implemented. The experi-
mental results show that the model achieved satisfactory recall rate and precision rate with much lower
time consumption than existing methods. The findings of the study can provide visual and on-the-spot
maritime traffic information (traffic flow, traffic density, ship behaviour, etc.) to maritime authorities
and officers-on-board. Thus, the maritime authorities can release in-time traffic control measures, and
ship crew (especially the on-duty crew) can undertake early-warning sailing activities to avoid maritime
traffic accident, thus enhancing maritime traffic safety.

The specialised terms used in this study are listed and briefly explained for purpose of simplicity
and clarity. A ‘frame’ means one image from a MSV. The ‘frame rate’ is the number of images that
are scheduled to be displayed in one second, ‘frames per second’. ‘Image resolution’ (abbreviated as
resolution) refers to the amount of pixels in a maritime frame, which is also identified as image width
multiplied by height in the form of width × height. The ‘image noise’ includes salt-and-pepper noises,
video vibration, Gaussian noises, etc. ‘Image intensity’ means the grey value of a pixel, which will
not exceed 255. ‘Non-maximum suppression (NMS) mechanism’ determines the local maximal values
and discards non-maximal values. The ‘eight-neighbour connectivity rule’ determines a polygon with
eight neighbouring points. The eight-neighbour connectivity rule was used to reconstruct ship contours
in each frame. The ‘structure element’ of the morphology operator is used to remove small blobs and
re-build ship contours. The term ‘millisecond’ is abbreviated as ‘ms’ in the study. Recall rate (Re) and
precision rate (Pr) are the two statistical indicators for evaluating ship detection models.

2. Image data set

The Port of Shanghai is an important water–water transfer hub port in China; its throughput exceeded
40 million 20 ft equivalent units in 2018. Thus, it is important to enhance the management efficiency
and safety of the port with the available techniques. Ship detection can accurately provide instantaneous
traffic information and predict the traffic situation in the port surveillance area in advance, and thus
is crucial for ensuring port efficiency. To that aim, maritime video clips were collected from cameras
installed on the roof of a building located at Shanghai port. Note that the camera is robust against high-
salt and high-humidity interference. Some typical frames of the collected videos are shown in Figure 1.
To help readers easily understand this study, the definitions are briefly introduced here of three terms:
small ship, low traffic volume and high traffic volume. The term small ship is applied to the ships in
each frame whose imaging size meets one or both of the following conditions: (a) the ship image size
is less than 0·15% that of the current frame; (b) the imaging length or width of the ship is less than 13
pixels (Wei, 2009). Low traffic volume indicates that the number of non-small-ships in each frame is
not larger than five, while high traffic volume indicates the number of non-small-ships in each frame is
larger than ten.

Based on the above definitions, the test MSV clips are divided into two detection scenarios. The first
detection scenario is to verify the performance of the proposed framework under different traffic states
(low and high traffic volumes). The main challenge in the low traffic volume state is that ships in the
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(a) (b) (c)

Figure 1. Typical frames of the collected image sequences for each ship detection scenario: (a) low
traffic volume; (b) high traffic volume; (c) strong water clutter interference.

distance are quite similar to waters, and thus can be easily mis-detected, while in high traffic volume
state ships are easily sheltered by neighbouring objects (ships, buoys, etc.). The second scenario is to test
the model’s performance under the interference of water ripples and ships’ wakes. The first detection
scenario contains two image sequences which are labelled as case-a and case-b. The frame rate of the
case-a is 30 frames per second, and the resolution of each frame is 1280× 720. The frame rate and
resolution for image sequences of case-b are the same as for case-a. There are 600 frames in case-a and
720 frames in case-b. The second detection scenario is labelled as case-c. The frame rate and resolution
of case-c is identical with case-a, while the video length of case-c is 12 s.

3. Methodology

It is found that maritime images are composed of rigid and non-rigid objects. The rigid objects are the
foreground objects (i.e., ships), and the non-rigid objects are the background objects (e.g., water, sky).
Note that the contours of the rigid objects (i.e., ship contours) can be easily identified by edge descriptors.
The background objects do not have obvious extractable contours due to the intrinsic imaging features
of non-rigid objects. In that way, the edge detector will not find obvious edges from background objects
in maritime images. Therefore, the proposed ensemble ship detection framework employs the Canny
filter to detect ship contours from maritime images, and the self-adaptive Gaussian model is further
introduced to suppress potential false positive ship detection edges. Moreover, the morphology model is
used to connect the spitted ship edges (i.e., obtain a minimum bounding rectangle for each ship detection
result). The flowchart for the proposed ship detection framework is shown in Figure 2.

3.1. Ship contour extraction with Canny filter

The Canny detector is robust against wave-related imaging interference compared with the counterpart
Prewitt, Sobel and Laplacian models (Canny, 1986; Chen et al., 2019). More specifically, weak ship
contours can be successfully identified by the Canny detector, while the Prewitt, Sobel and Laplacian
models may fail to extract the contours. The Canny detector is a multi-stage algorithm optimised for fast
real-time edge detection. The advantages of using the Canny detector are as follows: (1) it is reliable
for accurate detection of existent edges; (2) it produces candidate edges which are not dominant in
their neighbourhood if the neighbourhoods are not considered to be edges – this is achieved by the
NMS mechanism; (3) it is a non-convolutional method so it will run faster than other machine learning
algorithms and does not require training data. Motivated by these advantages, in this study ship edges
are determined from MSV images with the Canny detector, and more details are presented as follows.

3.1.1. Noise suppressing in ship images
Raw ship edges are obtained via the Canny filter by the steps of imaging noise suppression, gradient
identification and non-maximum gradient removal. It is noted that light systematic interference may
result in false alarm ship detection results. To address the issue, a two-dimensional Gaussian filter is
employed to suppress potential imaging noise from maritime video clips with the help of convolution
operation [see Equation (1)]. The Gaussian kernel plays the role of weighted mask when conducting
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Figure 2. Overview of ship detection framework with the proposed Canny-Gaussian-morphology model.

convolution operation for suppressing noise in ship frames. More specifically, the convolution operation
modifies the noise pixel intensity into normal by computing an aggregated value with adjacent pixels.

𝑝(𝜔, ℎ) =
1

2𝜋𝜎2 e−
(𝜔2+ℎ2 )

2𝜎2 (1)

where 𝜔 is the distance to the x-axis, while h represents the distance to the y-axis. Parameter 𝜎 is the
standard distribution in the Gaussian kernel.

3.1.2. Finding gradient information in each ship frame
After smoothing out noises in ship frames, the Canny filter computes gradient value and direction for
every pixel in each MSV image. Two steps are implemented to obtain the gradient data: (a) constructing
the convolution masks for the x and y directions. More specifically, the convolution mask for the x-
direction is labelled as𝐶𝑥 , and𝐶𝑦 is the mask for the y-direction. The expressions of𝐶𝑥 and𝐶𝑦 are shown
in Equations (2) and (3), respectively; (b) obtaining gradient value and direction for each pixel. After
conducting the convolution operation on each pixel in each ship frame, we can obtain pixel gradient
values and directions in both x- and y-axis through Equations (4)–(7). Note that the pixel gradient
directions are denoted as angles; more details are provided by Lee et al. (2018) and Chen et al. ( 2020a).

𝐶𝑥 =

⎡⎢⎢⎢⎢⎣
−1 0 1
−2 0 2
−1 0 1

⎤⎥⎥⎥⎥⎦
(2)

𝐶𝑦 =

⎡⎢⎢⎢⎢⎣
−1 −2 −1
0 0 0
1 2 1

⎤⎥⎥⎥⎥⎦
(3)

𝑝(𝑖, 𝑗) =
−𝐼 (𝑖, 𝑗) + 𝐼 (𝑖, 𝑗 + 2) − 2𝐼 (𝑖 + 1, 𝑗)

2
+
𝐼 (𝑖 + 1, 𝑗 + 2) − 𝐼 (𝑖 + 2, 𝑗) + 𝐼 (𝑖 + 2, 𝑗 + 2)

2
(4)
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Figure 3. Edge point determination with the NMS mechanism.

𝑄(𝑖, 𝑗) =
−𝐼 (𝑖, 𝑗) − 𝐼 (𝑖, 𝑗 + 2) − 2𝐼 (𝑖, 𝑗 + 1)

2
+

2𝐼 (𝑖 + 2, 𝑗 + 1) + 𝐼 (𝑖 + 2, 𝑗) + 𝐼 (𝑖 + 2, 𝑗 + 2)
2

(5)

𝐺 (𝑖, 𝑗) =
√
𝑃2(𝑖, 𝑗) +𝑄2(𝑖, 𝑗) (6)

𝜃 (𝑖, 𝑗) = arctan
𝑄(𝑖, 𝑗)

𝑃(𝑖, 𝑗)
(7)

where 𝐼 (𝑖, 𝑗) is pixel intensity for point (𝑖, 𝑗). 𝑃(𝑖, 𝑗) and 𝑄(𝑖, 𝑗) represent gradient values for x and
y direction, respectively. 𝐺 (𝑖, 𝑗) is gradient amplitude and 𝜃 is gradient direction. For simplicity, 𝜃 is
rounded up to one of the following values (0◦, 45◦, 90◦, 135◦).

3.1.3. NMS mechanism for suppressing gradient amplitude
The outputs of the previous step provide a variety of candidates of edge points from potential ship
contours. The NMS mechanism is employed to rule out false edge points and retain actual ship edges.
As shown in Figure 3, point Pc neighbours are labelled as P1, P2, P3 and P4 for the purpose of
identifying an edge point. More specifically, the points P1 (P3) and P2 (P4) are connected into a line
which is denoted as P1P2 (P3P4). The midpoint for the line P1P2 (P3P4) is labelled as g1 (g2). In that
manner, we consider the line linking g1 and g2 as a potential gradient direction for the point Pc. Note
that the point Pc is considered as an edge point when the gradient amplitudes of the points g1 and g2
are not larger than that of the Pc, and vice versa.

3.1.4. Extraction of ship edge points
The NMS procedure provides the collection of potential ship edge points, and the Canny filter employs
the double threshold method to further smooth out false edge points, and obtain more accurate ship
edges. Given two threshold values T1 and T2 (T1> T2), T1 is the predefined strong edge threshold and
T2 is the weak edge threshold. The pixel (i, j) is deemed to be a strong edge point when its gradient
value 𝐺𝑃 [see Equation (6)] is larger than T1. The pixel is considered as a weak edge point when 𝐺𝑃

meets the condition T1>𝐺𝑃 > T2. The obtained strong edge points are recognised as true edge points
belonging to ship contours. Based on that, the strong and weak edge points are connected to form ship
contours with the eight-neighbour connectivity rule (Ke et al., 2017; Chen et al., 2021), which are the
ship detection results obtained by the Canny filter.
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3.2. Suppressing background contours with self-adaptive Gaussian model

Though we can obtain the potential ship contour collections in MSV based on the Canny filter, edges
from background objects in MSV may be wrongly extracted too. For instance, buoys in the water, aiding
ship navigation, are commonly encountered background objects in MSV. The buoys’ edges cannot be
suppressed by the Canny detector as they are not noise edges. Besides, the sea-sky line (known as
horizontal detection) is another typical challenge, which can significantly reduce the performance of
the ship detection model. It is noticed that the imaging sizes of background objects are different from
those of ships. More specifically, the size of buoys in MSV images is much smaller than that of ships,
and the length of the sea-sky line is significantly longer than a ship. The above information stimulated
the authors to employ the Gaussian related operator to rule out background edges on the obtained ship
contours. The traditional Gaussian filter removes noise by setting the standard deviation 𝜎 to a constant
value, which is infeasible for smoothing scale-varied noisy edges when detecting ships from MSV
images. Thus, the self-adaptive Gaussian filter is introduced to suppress ship edge noises adaptively.

More specifically, we can automatically set different 𝜎 values as different image local areas possess
different visual resemblance to the referred image area (Chen and Ellis, 2014). Thus, the self-adaptive
Gaussian filter can automatically remove the false detected ship edges. Previous studies have shown that
the noise-free detected ship edges 𝑆𝑝 (𝑥, 𝑦) is roughly equal to the addition of raw ship contours and
its second order derivative (Chen and Ellis, 2014). The ship contours, obtained from the previous step,
are labelled 𝑆𝑝 (𝑥, 𝑦). The formula of 𝑆𝑝 (𝑥, 𝑦) is shown in Equation (8). The self-adaptive Gaussian
filter’s performance on suppressing background edges is determined by the optimal set of parameter 𝛽
in Equation (8). However, the optimal setting of 𝛽 is obtained by finding the minimum value of E(𝛽) in
Equation (9).

𝑆𝑝 (𝑥, 𝑦) ≈ 𝑆(𝑥, 𝑦) +
𝑆′′(𝑥, 𝑦)

2
𝛽2 (8)

𝐸 (𝛽) =
∫ ∫

[(𝑆(𝑥, 𝑦) − 𝐺 (𝑥, 𝑦) ∗ 𝑆(𝑥, 𝑦))2 + 𝜆 |∇𝛽−1 |
2
] (9)

where 𝛽2 is variance of the self-adaptive Gaussian filter, and operator ∗ represents convolution operation
of gradient 𝐺 (𝑥, 𝑦) and raw ship contours 𝑆(𝑥, 𝑦). The parameter 𝜆 controls the convergence of 𝐸 (𝛽).

3.3. Reconstructing ship contours with morphology open operation

Small wave clutter-related edges can be observed from the output of the ship edge outlier removal
procedure. The morphology model can suppress negative ship contours (i.e., wave-related edges), and
thus further connect the broken edges into ship contours (i.e., ship detection results). In that manner,
ship contour reconstruction performance can be measured by the ship detection results, which are
quantitatively analysed with the two statistical indicators (i.e., Re and Pr). More details can be found in
the following section on the experiments and results.

More specifically, the open operator of the morphology method is employed to reconstruct ship
contours by connecting neighbouring detected ship edges into a rectangle (i.e., each rectangle is a
detected ship in the maritime frame). The open operator is obtained by sequentially implementing
the erosion and dilation operation, as the former operation aims to remove the clutter while the latter
reconstructs ship contours in each frame of MSV. For a given structure element B, we can obtain
morphology erosion results [see Equation (10)] by obtaining the minimum intersection pixels between
the B and the local image patches (generated by traversing through the ship frame in both left-to-right
and up-to-down directions).

The outputs of the erosion filter are considered as ship edges which may be disconnected from
neighbouring edges. The dilation operation is thus employed to connect the split edges into a closed
ship contour, which obtains the union set of pixels between the B and the local image patches. The
dilation formula is shown in Equation (11). However, the dilation outputs are the final ship detection
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results in the proposed framework. Previous studies suggested that the diamond element is efficient for
suppressing the blob noises (Harvey et al., 2010; Deng et al., 2013; Yang et al., 2016). Motivated by that,
different scales of the diamond element were tested (3× 3, 5× 5, 7× 7), and it was found that the 3× 3
structure element performs well at suppressing noise and keeping ship edges. Thus, the 3× 3 diamond
element is used as the default structure element in this study.

𝐺 𝑓 � 𝐵 = {(𝑥, 𝑦) |𝐵(𝑥, 𝑦) ∈ 𝐺 𝑓 } (10)
𝐺 𝑓 ⊕ 𝐵 = {(𝑥, 𝑦) |𝐵(𝑥, 𝑦) ∩ 𝐺 𝑓 ≠ ∅} (11)

where B is structure element and (𝑥, 𝑦) is pixel of x- and y-coordinates, respectively. 𝐺 𝑓 is the detected
ship contour set for a ship frame obtained from the previous step.

4. Experiments and results

The proposed ship detector is applied to three typical MSV clips collected for this study (i.e., case-
a, case-b and case-c mentioned above). To evaluate and compare the performance of the proposed
detector, the traditional Gaussian method (Deng and Cahill, 1993), the SVM model (Morillas et al.,
2015), and the mask-RCNN model (Nie et al., 2018) were implemented to detect ships in the same MSV
clips. The ship detection models were implemented on Windows 10 OS with setups of 8 GB RAM and
3·4 GHZ CPU. The software integrated development environment (IDE) for implementing the model
was PyCharm version 2016.3, and python version 2.7 was used for fulfilling the ship detection task. The
default sensitivity threshold for the Canny filter was set to 0·05 by implementing a series of sensitivity
analysis experiments. Note that fine-tuning details of the parameters are did not provided here due to
limitations of space. The image padding for the SVM model was set to 32 × 32, and the default scale
factor was set to 1·1. With help from members of the authors’ group, the ground truth ship positions in
each MSV image were manually labelled. The mask-RCNN was trained by following the structure in
a previous study (Zimmermann and Siems, 2019), implemented with open-source libraries (including
Keras and Tensorflow). More specifically, the mask size was set to 28 × 28, and each image was re-
sized to 1024 × 800 which was zero padded. ResNet-101 feature pyramid network (i.e., serving as a
backbone) was employed to train the mask-RCNN network in this study, with 80% of the initial ship
images as training images and the remaining 20% as testing images.

4.1. Measures of goodness of detection

The overlapping magnitude between the detected bounding box and ground truth was employed to
determine the ship detection results. More specifically, the detected bounding box is considered to be a
ship when the overlapping ratio exceeds a certain threshold. For more detailed explanation of overlapping
calculation, refer to Dasari and Gorthi (2020). Previous research suggests that Re rate and Pr rate are
two popular yet efficient metrics to measure object detection performance such as ship detection (Zhang
et al., 2020). Re demonstrates correct positive ship detection ratio of the ship detection model, while
Pr shows the ship detection accuracy. For that reason, the two indicators were employed to quantify
various models’ performance in our study. The definitions of Re and Pr are shown in Equations (12)
and (13), respectively. More specifically, Re demonstrates the proportion of the positive ship targets that
have been successfully detected by the models. The higher value of Re also represents a better detection
result for the model. The indicator Pr shows the accuracy performance of a ship detector, where higher
Pr means the ship detector misses fewer ships in a MSV frame. In addition, the time cost is employed
to measure the models’ computation complexity. In sum, higher Re and Pr indicate better performance
for a ship detector, while lower time cost shows less complexity for the ship detection model.

𝑅𝑒 =
𝑇

𝑇 + 𝑇𝐹
(12)
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Pr =
𝑇

𝑇 + 𝐹𝑇
(13)

where T is the detected true-positive ship number. Parameter 𝑇𝐹 represents detected false positive ship
number and 𝐹𝑇 is detected false-negative ship number. The Pr and Re indicators obtain their best
performance when their values reach one, and worst at zero. The ship detection model obtains better
performance when the Pr (and Re) is closer to 1, and vice versa.

4.2. Detection results and discussions

Typical ship detection results of each model for the three maritime traffic scenarios are provided in
Figure 4. Figure 4(a) demonstrates the ship detection performance of each model when the maritime
traffic volume was small. Ships with obvious contours can be successfully detected by various models
(i.e., Gaussian, SVM, mask-RCNN and CGM [Canny-Gaussian-Morphology]). The detection models
showed different performance when a ship was close to the sea-sky line (i.e., ship visual features were
ambiguous). The ship detection results for case-b and case-c [see Figure 4(b) and 4(c), respectively]
showed similar performance to those of case-a. Typical ship detection results are provided, considering
that there was no significant difference in detection performance for different ship images for each case.
More detailed explanations about the ship detection results are provided as follows.

4.2.1. Ship detection results for low traffic volume scenario
Ship detection results for each model of typical frame (second frame) under case-a were shown in
Figure 4(a), where green rectangle demonstrates the ground truth ship position and red rectangle denotes
the detected ship position. It is noticed that the traditional Gaussian model obtains many erroneous
detection results, such as a ship being wrongly detected as several ships, mis-detection of small ships,
etc. The main reason for unsatisfactory detection performance is that the Gaussian model is very sensitive
to neighbouring intensity variance between background (i.e., wave pixels) and foreground (i.e., ships).
More specifically, it is very difficult to set an appropriate threshold which helps the traditional Gaussian
model successfully suppress wave interference, and retain the ship pixels. Thus, the false alarm rate is
very high for the Gaussian model.

The SVM, mask-RCNN and CGM models show better detection performance than the traditional
Gaussian method, as the number of false detected ships is significantly smaller than the Gaussian
counterpart [see Figure 4(a)]. It is noted that the SVM model successfully detected all ships in the frame
in Figure 4. However, small ships close to the sea-sky line were not accurately detected by the SVM
model, and many ships were repeatedly detected (i.e., a small ship was wrongly detected as different
ships). The mask-RCNN, a deep learning-based method, accurately detected all ships in the MSV
image sequences, and the ships far away from the camera were successfully detected too. The high ship
detection performance of the mask-RCNN is because the hidden layers of the model sufficiently learn
and extract distinct image features of the training ship samples (at different scales, varied imaging views,
etc.). The proposed CGM method showed similar performance to the mask-RCNN [see the right-most
image of Figure 4(a)]. In sum, the SVM, mask-RCNN and CGM models can detect ships in images with
few detection mistakes, while the Gaussian model is severely degraded by background pixels.

Table 2 shows the different models’ statistical performance in case-a. The Re rate for the Gaussian
model is 0·69, which is much smaller than the other three methods. The Re value for the other three
models is higher than 0·90, indicating that over 90% of ships in the image sequences are successfully
detected. The Re value of CGM is 6·19% higher than that of SVM, and 2·02% lower than the mask-
RCNN counterpart. The Pr value shows that the four models obtain satisfactory precision performance
(as the minimum Pr is 0·91). More specifically, the Pr value of the CGM model is 0·96 which is 3·23%
higher than the counterpart SVM model. In addition, the mask-RCNN Pr value is 0·99 which is 3·12%
higher than the proposed model. The detection results for the mask-RCNN and CGM models were
carefully checked, and it was found that the mask-RCNN detects small ships near to the sea-sky line
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Figure 4. Ship detection results of typical frames in three cases.
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Table 2. Statistical performance of different methods in case-a.

Gaussian SVM Mask-RCNN CGM

Re 0·69 0·91 0·99 0·97
Pr 0·87 0·93 0·99 0·96

Table 3. Time cost for each model for three cases (ms/frame).

Gaussian SVM Mask-RCNN CGM

Time cost at case-a 10 20 70 28
Time cost at case-b 16 28 81 35
Time cost at case-c 13 23 76 33
Average time cost 13 23·67 75·67 32

very accurately. However, the proposed CGM model sometimes detects two small ships as one large
ship, and thus degrades the CGM performance. As shown in the first row of Table 3, the time cost for the
mask-RCNN model is 70 ms per frame, which was seven-fold (three-fold, two and a half) higher than
that of the Gaussian model (SVM, the proposed CGM). The main reason is that the potential candidate
ship regions are iteratively searched by convolution layers in the mask-RCNN, and this increases the
model time cost. Considering that the human naked eye may fail to recognise small ships close to the
sea-sky line, the CGM and mask-RCNN models’ detection performances are both acceptable in the low
traffic volume situation.

4.2.2. Ship detection results for case-b and case-c
Ship detection results of case-b (i.e., high traffic volume) are shown in subplot (b) of Figure 4. It was
observed that the Gaussian method obtained many false positive detected ships, which is similar to the
detection performance in the low traffic volume situation. The SVM, mask-RCNN and CGM methods
successfully detected ships with a few false alarms. The SVM model also showed better performance in
the high traffic volume scenario than in traffic volume. The main reason is that ship-related pixels in case-
b involve larger proportions of each frame, and this helped the SVM model suppress wave interference.
It is noticed that a buoy was wrongly detected as a ship by SVM, indicating that a new detection outlier
was introduced by SVM. Both CGM and mask-RCNN have successfully detected ships in the frame
without obvious detection outliers. It was found that the ship positions obtained by mask-RCNN were
closer to the ground truth data compared with those of the CGM model, which were more obviously
observed near the sea-sky line area. The main reason is that the mask-RCNN model was trained with
comprehensive ship samples, and thus the model fulfilled the ship detection task by identifying more
advanced ship features in the MVS images. Moreover, the CGM model implemented the ship detection
task by determining the salient contours, and wave pixel intensity around the ship may be wrongly
detected as ship contours. For this reason, the CGM-detected ship area is usually larger than the ground
truth ship imaging area.

The statistical performance for each model in case-b (see Table 4) showed similar results to those
of case-a. More specifically, the Gaussian and SVM models obtained 0·53 and 0·94 Re ratio in case-b,
while the mask-RCNN and CGM both achieved 0·97. The Pr indicator shows that detection results of
the four models are acceptable, as the minimal and maximal Pr values are 0·81 and 0·95, respectively.
From the perspective of time cost, the conventional Gaussian and SVM models outperformed the mask-
RCNN and proposed CGM models, which were 16, 28, 81 and 35 ms per frame (see the second row in
Table 3). In that way, the CGM computation overhead was one-fourth larger than the traditional ship
detection models (i.e., Gaussian and SVM model). But, the time cost for the proposed CGM model was
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Table 4. Statistical performance of different methods in case-b.

Gaussian SVM Mask-RCNN CGM

Re 0·53 0·94 0·97 0·97
Pr 0·81 0·87 0·95 0·93

Figure 5. Re indicator distributions for the three cases.

less than half that of the mask-RCNN model. Moreover, both the Re and Pr indicators demonstrated that
mask-RCNN and CGM obtained satisfactory detection performance (i.e., the two statistical indicators
were larger than 90%), and the mask-RCNN time cost was two-fold higher than that of the CGM model.
According to the above analysis, it is reasonable to say that the proposed ship detection model shows
reliable and real-time performance under heavy traffic situation.

The different models’ performance was also evaluated by detecting ships in MSV images with strong
ripple interference. As shown in the subplot (c) of Figure 4, there was a long, narrow ship wake generated
by the white vessel. The Gaussian model showed similar detection performance as in case-a and case-
b. More specifically, many false positive results were observed, as shown in the left-most subplot in
Figure 4(c). The wave pixels neighbouring the white vessel were wrongly detected as a ship. The SVM,
mask-RCNN and CGM models successfully suppressed the wave interference. It is noted that the SVM
model recognised wake pixels as part of the white ship, and thus in the final detection result the white
ship was significantly larger than the actual ship imaging size, while the mask-RCNN and CGM model
accurately detected the white ship without containing redundant wave pixels. For the purpose of better
readability, the distributions of the Re and Pr indicators for different ship detection models are provided
in Figures 5 and 6, respectively. From the perspective of Re distributions, the SVM outperformed the
Gaussian model under the three typical maritime situations (see Figure 5). The CGM model obtained
better ship detection performance compared with those of SVM model for the three cases, which were
quite close to mask-RCNN model performance. The Pr distributions confirmed this analysis, which can
be found in Figure 6.

The Re and Pr indicators in Table 5 verified that the mask-RCNN obtained optimal detection per-
formance, while the CGM model performance was close to that of the mask-RCNN. The time cost for
the mask-RCNN model for case-c was significantly higher than the Gaussian, SVM and CGM mod-
els, which were 76, 13, 23 and 33 ms per frame (see the third row in Table 3). Average ship detection
time cost was obtained to further quantify model performance. More specifically, the average time cost
for each model was 13, 23·67, 75·67 and 32 ms per frame for the Gaussian, SVM, mask-RCNN and
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Figure 6. Pr indicator distributions for the three cases.

Table 5. Statistical performance of different methods in case-c.

Gaussian SVM Mask-RCNN CGM

Re 0·68 0·93 0·98 0·93
Pr 0·94 0·91 0·98 0·97

CGM, which indicated that the proposed model can obtain real-time ship detection results. Based on
the above quantitative and qualitative analysis, it can be concluded that the proposed CGM is a reliable
and efficient ship detector under various challenging ship detection situations.

5. Conclusion

Ship detection from coastal MSV is considered as a bottleneck for implementing the intelligent naviga-
tion task in the smart ship era, which may face various coupled detection challenges (e.g., ship wake, sea
waves). To tackle this challenge, this paper proposed an ensemble yet efficient ship detection framework
via edge detection logic. More specifically, the proposed ship detection framework was implemented
via steps of ship edge detection, background edge removal and ship contour reconstruction. First, the
ship edge detection step employed the Canny detector to determine potential ship edges from MSV
images. Second, the background-related edges (i.e., negative positive detection results) were suppressed
in the background edge removal step with the help of the self-adaptive Gaussian filter. Third, the ship
contour reconstruction step was implemented to connect adjacent edges into close ship contours, and
thus ship detection results were obtained. The proposed ship detection model performance was verified
under three typical maritime traffic scenarios, which were further compared against three popular ship
detectors (i.e., basic Gaussian, SVM and mask-RCNN). The experimental results demonstrated that the
proposed framework obtained satisfactory performance considering that the average Re and Pr indica-
tors were both 0·95 and the average time cost was 32 ms per frame. The proposed model can help a
smart ship (i.e., unmanned ship) to be aware of on-site maritime traffic situations in real time, and thus
advance the development of the intelligent navigation era.

In future, better performance of the model can be achieved by conducting the following explorations.
First, ships to be detected in the three test scenarios were not severely overlapped by the neighbouring

https://doi.org/10.1017/S0373463321000540 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463321000540


The Journal of Navigation 1265

objects. Testing the proposed model’s performance under maritime scenarios with severe occlusions
deserves further research interests. Second, the ship detection model’s performance was not tested on
MSV clips which involved strong camera vibration. In future, the model performance can be enhanced
by integrating a background stabilisation model to tackle the ship detection task under the challenge of
strong camera vibration. Third, we note that both adverse weather and low visibility can impose negative
influence on ship detection performance. It would be interesting to develop a robust ship detection model
against weather-related interference. Fourth, considering that the deep learning model can obtain better
detection performance, merging deep learning-based models (YOLO+RCNN, inception based object
detector, etc.) to improve the model is one of the potential research works in the future. Fifth, ship edge
detection results can be further evaluated against varied filters to exploit model detection performance.
Last but not least, the model did not tackle the challenge of ship detection under strong systematic
disturbance (e.g., from seagulls). We can fulfil the task by exploiting both ship and non-ship imaging
rules under strong systematic disturbance, and thus obtain satisfactory ship detection model performance
under strong disturbance interference.
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