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Abstract

We prove Theorem 1: suppose G is a simple graph of order n having A(<?) = n - k where
k > 5 and n > max( 13, 3/c — 3). If G contains an independent set of k - 3 vertices, then the
TCC (Total Colouring Conjecture) is true. Applying Theorem 1, we also prove that the TCC is
true for any simple graph G of order n having A(G) = n - 5 . The latter result together with
some earlier results confirm that the TCC is true for all simple graphs whose maximum degree
is at most four and for all simple graphs of order n having maximum degree at least n - 5 .

1991 Mathematics subject classification (Amer. Math. Soc.): 05 C 15.
Keywords and phrases: total colouring, total chromatic number.

1. Introduction

Throughout this paper, all graphs are finite, simple and undirected. Let G be
a graph. We denote its vertex set, edge set, complementary graph, chromatic
index, the minimum degree of its vertices, and the maximum degree of its
vertices by V(G), E{G), G, xx{G), S(G), and A(<5) respectively. A well-
known theorem of Vizing says that A(G) < X\{G) < A(G) + 1. A graph G is
said to be Class 1 (respectively Class 2) if #,((?) = A(G) (respectively A(G) +
1). If x e V{G), we denote by NG(x) (or simply N(x)) the neighbourhood
of x and dG(x) (or simply d{x)) the degree of x. A vertex x of G is
called a major vertex if d(x) = A(G). A vertex y of G is called a minor
vertex if y is not a major vertex. The subgraph of G induced by all its
major vertices is called the core of G and is denoted by GA. If F c E(G),
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then G - F is the graph obtained from G by deleting F from G. If
S c V(G), then G[S] and G-S denote the subgraphs of G induced by
S and V(G)\S respectively. However, we write G[v{, v2, . . . , vk] instead
of G[{v{ ,v2, ... , vk}]. We write H < G if H is an induced subgraph
of G. A subset S of vertices of G is said to be independent (in G) if no
two vertices of 5 are adjacent in G. A graph G is maximal if for any two
nonadjacent vertices of G at least one of them is a major vertex. The null
graph of order m and the complete graph of order n are denoted by Om

and Kn respectively.
A total colouring n of a graph G is a mapping n: V(G) U E(G) ->

{ 1 , 2 , . . . } such that

(i) no two adjacent vertices or edges have the same image;
(ii) the image of each vertex x is distinct from the images of its incident

edges.

The total chromatic number #r(<7) of a graph G is the smallest integer
k such that G has a total colouring n having image set {1,2, ... , k} .

From the definition of total chromatic number, it is clear that ^r(G) >
A(G) + 1. Behzad [1] and Vizing [9, 11] independently made the following
conjecture.

TOTAL COLOURING CONJECTURE. For any graph G, xT{G) < A(G) + 2.

This conjecture was proved for complete graphs by Behzad, Chartrand and
Cooper [2]; for graphs G having A(G) < 3 by Rosenfeld [7] and Vijayaditya
[8]; for graphs G having A(G) = 4 by Kostochka [6]; for complete 3-partite
graphs, complete balanced r-partite graphs by Rosenfeld [7]; for complete r-
partite graphs by Yap [13]; for regular graphs of high degree by Chetwynd and
Hilton [5]; and for graphs of order « having A(G) > n - 4 by Yap, Wang
and Zhang [14]. The main results of this paper are stated in the abstract
above. The proof technique we use here is basically the same as that used in
[14]. However, we introduce a few new techniques in settling some special
cases when n is small.

2. Preliminary results

We shall apply the following results.

THEOREM 2.1 (Rosenfeld [7], Vijayaditya [8] and Kostochka [6]). For any
graph G having A(G) < 4, xT{G) < A(G) + 2.
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LEMMA 2.2. For any subgraph H of a graph G, XT(H) ^ XT(G) •

Lemma 2.2 requires no proof. This lemma is often applied implicitly.

LEMMA 2.3. / / GA is a forest, then G is Class 1.

Lemma 2.3 follows from some of Vizing's results (see for instance, [12,
Theorem 3.3 and Corollary 3.6]). [14, Lemma 2.2] can be restated as follows.

LEMMA 2.4. Let G be a graph of order n and let A = A(G). If G contains
an independent set S where \S\ > n - A - 1, then xT(G)<A + 2.

THEOREM 2.5 (Yap, Wang and Zhang [14]). For any graph G of order n
having A(G) >n-4, xT(G) < A(G) + 2.

THEOREM 2.6 (Chetwynd and Hilton [3]). Let G be a connected graph of
order n with three major vertices. Then G is Class 2 if and only if each of
the three major vertices is of degree n - 1 and the remaining vertices have
degree n-2.

THEOREM 2.7. Let G be a bipartite graph with bipartition (X, Y). Then
G contains a matching that saturates every vertex in X ifandonlyif\N(S)\ >
\S\ for all SCX.

(A proof of Theorem 2.7 can be found in many textbooks on graph theory.)

THEOREM 2.8 (Chetwynd and Hilton [4]). Let G be a connected graph
having four major vertices. Then G is Class 2 if and only if for some integer
n, one of the following holds (for definition of valency-list, see [12]):

(i) the valency-list of G is (2n - 2)2n~3(2n - I ) 4 ;
(ii) the valency-list of G is (2n - 2)(2n - 1)2""4(2«)4 ;
(iii) G contains a bridge e such that G-e is the union of two graphs Gx

and G2 where A(G,) < 2m — 1 for some integer m < n and the valency-list
of G2 is either (2m - 2)(2m - l)2m~4(2/n)4 or (2m - l)2m~2(2w)3.

3. Proof of main results

We shall now apply the above preliminary results to prove the main theo-
rem (Theorem 3.2). We prove a general result first.
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LEMMA 3.1. Let G be a graph of order n having A(G) = n - k, k > 5
and n>3k-4. If G is maximal and G > Ok_2, then xT(G) ^ A(<7) + 2.

PROOF. By Lemma 2.4, we can assume that G ^ Ok_i. Let T = {x{, x2,
• • • » xk-i} b e a set of independent vertices in G. Let V{ be the set of major
vertices of G. Suppose u,ve V(G)\T are not adjacent in G. Let Mx be
a matching in H = G — T satisfying

(1) all the major vertices in {u,v} are Mx-saturated;
(2) \V{MX) n FJ is maximum among all the matchings in H satisfying

We now prove that VX\T contains at most one Af,-unsaturated vertex.
Suppose otherwise. Let z{, z2 e VX\T be Afj-unsaturated. Since A(G) =
n - k, zx is adjacent to at least n — 2k + 2 vertices ax, a2, ..., an_2k+2

in H. Clearly each at is Mx -saturated. Let bt e V(H) be such that
aibi e M{, i e / = {1, 2, . . . , n - 2k + 2} . Clearly b{ / z2 for any
/ e / but bt can be a ; for some j ^ i. Suppose z2bt € E{G) for some
i ' e / . Then replacing aibi in Aft by {zxat, z2bt} we obtain a larger match-
ing M[ satisfying (1) but contradicting (2). Hence z2bi £ E(G), for all
1 6 / . (We call this argument the "Enlarge Matching Argument") Since
zx,bx,b2, ..., bn_2k+2 ^ N(z2), we have n - k = d(z2) < n - (« - 2k +
2 + 2) = 2k — 4 . Hence n = 3k - 4 , and any other vertex of G is adjacent to
z2 . Let A = {ax,a2,..., an_2k+2}, B = {bx, b2, ..., bn_2k+2} . Suppose
A ^ B. We first consider the case An B ^ 0. By symmetry, there are
vertices ci, Cj e N(z2) such that cfj e A/,. Let C be such a set of ver-
tices. By the "Enlarge Matching Argument," each bi e B\A is not adjacent
to any breB and any cs e C. It is also not adjacent to z, and z2 . Hence
d(bj) < (n — 1) — (n — 2k + I) — 4 = 2k — 6. However replacing aibi in Mx

by zxat we have another matching M[ satisfying conditions (1) and (2) and
thus bi e Vx. Now 2k - 6 > </(&,) = n-k contradicts the assumption that
n > 3k - 4 . Hence 4̂ n 5 = 0 . Now since (n - 2/c + 2) + 1 > A; - 1 and
G[bx ,b2,... , bn_2k+2, z2] > Ok_x, we have another contradiction. Hence
VX\T contains at most one A/j-unsaturated vertex, say z .

Let Gx = G - Mx, Hx = Gx-{u,v} and V2 = {h e V{Hx)\dGi{h) >
A - 1}. Since G is maximal and G[T] — Ok_2, T contains at most one
minor vertex. Now let Y = V(G)\(TU{u, v}). For any S C T where
S consists of only major vertices, let s = \S\ and r = \N(S) n Y\. Then
s{n — k — 2) < r(k - 2) from which it follows that r >s. Hence by Theorem
2.7, Hx contains a matching M2 satisfying

(3) z and all the major vertices in T are M2-saturated;
(4) | F ( A f 2 ) n ^ | is maximum among all matchings in Hx satisfying (3).
We now show that V2 contains at most two Af2-unsaturated vertices. Sup-
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pose otherwise. Let wl, w2, tu3 e V2 be Af2-unsaturated. Then w{ is ad-
jacent to at least n - k - 3 vertices ax, a2, ... , an_k_3 in Hx. Clearly
each ctj is M2-saturated. Let b, e V{G) be such that aft e Af2, j s J =
{1, 2 , . . . , n - k - 3} . By the "Enlarge Matching Argument," w;2Z> • , w3bj £
E{GX) f o r a l l ; e / . T h u s n - k - l < d G (to,.) < n - ( n - k - 3 + 3) = k,
for each i = 2, 3 . Since n > 7>k - 4 and A: > 5 , we now have k = 5 and
/i = 3fc - 4 = 11. Finally, for « = 11 , 5 = dG {wt) (/ = 2 , 3) implies that
w. e ^(fl;.) for all i = 2 , 3 , j = 1, 2, 3 . If b\bj e £(G,) for some i^j,
then replacing {aibi:, cijbj) in M2 by {tw^,, ft,^, w2a^ we obtain a larger
matching M2 satisfying (3) but contradicting (4). Hence bfi: $ E{GX) for
all i, j . Since wt, bt e V2 for all i - 1 , 2 , 3 [bi e J^ because we can
replace aibi in M2 by 10,0,), it follows that wt, bt e N(u), ^(w) for all
i = l , 2 , 3 . Hence dG (u), dG (v) > 6 and so either d(u) > 7 or d(v) > 7
(because either u or v is a major vertex), which contradicts the fact that
A(G) = 1 1 - 5 = 6 . Hence V2 contains at most two Af2-unsaturated vertices,
say w and w'.

Now let G* be the graph obtained from G2 = Gx - M2 by adding a new
vertex c* and adding an edge joining c* to each vertex in V(G)\(Tu{u, v}).
Then A(G*) = n - k and G* has at most four major vertices. By Theorem
2.6 and Theorem 2.8, X\{G*) < n — k. Now any (n - fc)-edge colouring n
can be modified to yield a total colouring (p of G using (n - k) + 2 colours.
Hence XT-(G) < « - k + 2.

THEOREM 3.2. Let G be a graph of order n having A(G) — n — k, where
k > 5 and n > max(13, 3fc - 3). If G is maximal and G > Ok_3, then
XT(G)<A(G) + 2.

PROOF. Let A = A(G). By Lemma 3.1, we also assume that G ~£ Ok_2 .
Let T = {vl,v2,... , vk_3} be a set of independent vertices in G. Let Vx

be the set of major vertices of G. Since G Jf Ok_2 and d(G) = n-l-A = k-
1, we can find two pairs of nonadjacent vertices {JC( ,yt), i = 1, 2 , disjoint
from T. Since G is maximal, we may assume that xx, x2, vx, ..., vk_4

are major vertices. We first show that H — G — T contains a matching Mx

satisfying
(5) all the major vertices in {xx, yx, x2, y2} are M,-saturated;
(6) \V(MX) nVx\ is maximum among all the matchings in H satisfying

(5).
We know that each major vertex of G is of degree n-k. Hence each major

vertex in S = {xx, yx, x2, y2} is adjacent to at least (n - k) - (k - 3) - 2 =
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n-2k+l > 4 vertices in V(G)\(Tl)S). Hence, by Theorem 2.7, H contains
a matching A/, satisfying (5).

We now prove that VX\T contains at most one A/,-unsaturated vertex.
Suppose otherwise. Let ux, u2 € VX\T be two Af,-unsaturated vertices. As
in the proof of Lemma 3.1, ux is adjacent to at least n - 2k + 3 vertices in
H, w h e n c e d(u2) <n-(n — 2k + 3 + 2) = 2k-5,a c o n t r a d i c t i o n . H e n c e
VX\T contains at most one Af,-unsaturated vertex, say u, in H.

Let G, = G - M , , HX = GX- {x , , y ,} and V2 = {h e V{Hx)\dG<ih) >

A - 1} . We now show that Hx contains a matching M2 satisfying
(7) u and all the major vertices in Tu{x2, y2} are M2-saturated;
(8) \V(M2) D V2\ is maximum among all the matchings in Hl satisfying

(7).
We know that G[v{, v2, ... , vk_3, x2, y2] ~£ Ok_2 . Hence there exist in-
tegers r ^ s such that x2vr, y2vs € E{G). Now each major vertex in
T\{vr, vs} is adjacent to at least n-k-4>2k-7>k-2 vertices in
V(G)\(TUS). By Theorem 2.7, there exists a matching M'2 that saturates
all the major vertices in T\{vr ,vs} in the bipartite graph having bipartition
T\{vr, vs} and V(G)\{TuS). If u is adjacent to some vt e T\{vr, vs}
and vt is incident with an edge e of M2 , we put M2 = (M2\{e}) U {uvt} .
Otherwise since d(u) = A and A - (k - 5) - 6 > k - 4 > 1, u is adjacent to
some u e V(G)\(V(M2) US U {vr, vs}) and we can take M2 = M'2 U {UU} .

We now show that V2 contains at most one Af2-unsaturated vertex. Sup-
pose otherwise. Let zx, z2 e V2 be A/2-unsaturated. Now z, is adjacent to
at least A - 3 vertices in i / , . Thus A - l <dG (z2) < « - ( A - 3 + 2) = k+l,
from which it follows that n < 2k + 2, a contradiction. Hence V2 contains
at most one Af2-unsaturated vertex, say z .

Let G2 = Gl-M2, H2 = G2- {x2, y2} and V3 = {h e V{H2)\d^{h) >
A - 2} . We shall show that H2 contains a matching M3 satisfying

(9) e v e r y v e r t e x i n { v l t v 2 , . . . , vk_i, u , z , x l , y l } w h o s e d e g r e e i n G2

is A — 1 is A/j-saturated;
(10) |F(Af 3 )n^ | is maximum among all the matchings in H2 satisfying

(9).
W e k n o w t h a t G[v{ , v 2 , . . . , v k i , x l , y{] ~£ Ok_2 . H e n c e t h e r e e x i s t i n -
tegers r ^ s such that xxvr>, y{vs, e E(G). Now, each major vertex in
T\{vr,, vs,} is adjacent to at least (n-k-l)-4>2k-S>k-3 vertices
in V(G)\(Tl)S). Note that dG (u) = A - 1 and dG (z) = A - 1. Hence, as
before and by Theorem 2.7, H2 contains a matching Af3 satisfying (9).

We next show that V3 contains at most one A/3-unsaturated vertex. Sup-
pose otherwise. Let wx, w2 e V3 be Af3-unsaturated. As before, wx is ad-
jacent to at least A - 4 vertices ax, a2, ... , aA_4 in H2 and each a( is M2-
saturated. Let bi e V{H2) be such that aibi e M3, i = 1, 2 , . . . , A - 4. By
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t h e " E n l a r g e M a t c h i n g A r g u m e n t , " b i w 2 £ E ( G 2 ) f o r a l l i = l , 2 , ... , A -
4 . Thus dG {w2) <n-(A-4)-2 = k + 2. Now 2k-5<n-k-2 =
A-2<dG (w2) <k + 2 implies that k < 7 and n < 2k + 4 .

We consider three cases separately.
Case 1. bt £ ^ = {a,, a2, ... , aA_4} for i = 1, 2 , . . . , A - 4 .

We first note that if k = 7, then from the inequality 2 f c - 5 < A - 2 <
dG {w2) < k + 2, it follows that dG (w2) = A - 2 and thus w2 is adjacent to
every vertex in A; also if k = 6 or k = 5 (and thus n > 13), then w2 is
not adjacent to at most one vertex in A. Hence if bfij e E(G2) for some
1 < / < j < A - 4 , then replacing {aibi, &jbj} in M3 by {w2at, w{aj, bfij}
(or {w2a.j, wiai, bfij}), we obtain a larger matching Af'3 satisfying (9) but
contradicting (10). Hence G2[wl, w2, bx, b2, ... , 6A_4] = OA_2 . Since
(Mj uM2)r\E(G[w{, w2, bx, b2,... , bA_4]) is a union of paths and even cy-
cles, and A-2 = n-k-2 > 2k-5 , we have G[wx, w2, b{, b2, ... , b&_4] >
Ok_2, a contradiction to the assumption.
Case 2. bi e A and bj £ A for some 1 < i, j < A - 4 .

Suppose bx,b2€ A, that is, bt = a2 and b2 = ax, and suppose 6A_4 ^
^4. By symmetry, we also have C = {c{, c2, ... , cA_r} C iV^ (w2), {c{c2,
c3rf3, . . . , cA_4^A_4} C M3 and dA_A $ C. First suppose cA_4 = aA_4,
say. Then rfA_4 = iA_4 and by the "Enlarge Matching Argument," w{, w2,
ax, a2, c , , c2, b3, . . . , bA_5, d3,... , rfA_5 ^ ^ 2 ( * A _ 4 ) • (Note that 6,.
may be equal to dj for some i and ./ such that 3 < / < ; < A - 5 . )
Hence

2 f c - 5 < / i - f c - 2 - A - 2 < dG2{bA_A) <n- ( A - 5) - 5 = k,

from which it follows that fc = 5 and n < 12, a contradiction. Next, suppose
Cn^4 = 0 . Then the minimum order of G is attained when feA4 is the only
vertex in B = {6 , , b2,... , bA_4} such that bA_4 £ A . Thus 2 (A-5)+8 < n
(note that |{x2 ,y2,wl,w2, aA_A, bA_4, cA_4, dA_4}\ = 8 ) , from which it
follows that k = 5 and n = 12, again a contradiction.
Case 3. bj e A for j = 1, 2, . . . , A - 4 .

In this case A - 4 is even. We consider the following subcases separately.
(i) k = 7. From 18 = 3k - 3 < n < 2k + 4 = 18 we have n = 18.

However, we now also have A - 4 = n - f c - 4 = / i - l l = 7 is odd, which is
a contradiction.

(ii) 5 < k < 6. By the "Enlarge Matching Argument," dG (at) > n -
k - 2, i = 1 , 2 , . . . , A - 4 , and every at is not adjacent to any v e
V{G2)\({wx, x2, y2} U A). H e n c e G ^ t o , ,a2,a2, ... , aA_4] = ^ A _ 3 . S imi -
larly, we have G2[io2 ,cx,c2, ... , cA_4] = # A _ 3 • Thus each vertex in W —
{wl, w2} D AuC must be adjacent to both x2 and y2, and consequently
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2A — 6<dG (x2) < A — 2 from which it follows that A < 4, a contradiction.
Hence V3 has at most one A/3-unsaturated vertex.

Finally, let G* be obtained from G3 = G2-M3 by adding a new vertex c*
and adding an edge joining c* to each vertex in V(G3)\(Tl){xx, x2, yv y2}).
Then A(G*) = A - 1 , and by the choices of Mx, M2 and M3, G* has at most
four major vertices. Hence, by Theorem 2.6 and Theorem 2.8, X\ (G*) = A-1
and if n is a (A- l)-edge colouring of G*, then we can modify n to a total
colouring q> of G using (A - 1) + 3 colours. Hence ^r(G) < (A - 1) + 3 =
A + 2 .

The proof of Theorem 3.2 is complete.

We shall also require the following lemmas.

LEMMA 3.3. Let G be a graph of order 10 having A(G) = 5. If G is
maximal and G>Oi, then xT(G) ^ A(G) + 2 •

PROOF. The proof is almost identical to the proof of Lemma 3.1. Hence
we need only to modify some parts of the proof of Lemma 3.1.

In the case of showing that F, contains at most one 3/,-unsaturated
ver tex , w e let {x} = V(G)\(T u {zx, z2, a , , a2,bx, b2}) if bi £ A =
{ax, a2} . Then clearly xz2 $ E(G). Hence ax, a2 e N{z2). Also since
G[bx ,b2,zx, z2] ^ O4, we have bxb2 e E(G). Consequently, by the "En-
large Matching Argument," a{, a2 £ N(z2), a contradiction. On the other
hand, if bi e A, we let c{, c2 e NH(z2). Then by the "Enlarge Matching
Argument," a{, a2, cx, c2, z, and z2 are all adjacent to each vertex in T,
which is false. Hence Vx contains at most one Afj-unsaturated vertex, z
say.

In the case of showing that V2 contains at most two A/j-unsaturated ver-
tices, we now have n — k - 1 < dG (wt) < k for each i = 2, 3.

Again, we let {x} = V(G)\{u,v,wl,w2,w3,al,a2,bx,b2}. Then x
is Af 2 -unsa tura ted a n d xwt £ E(GX) for all / = 1 , 2 , 3 . By the "Enlarge
M a t c h i n g A r g u m e n t , " bx, b2 6 V2, a n d ax, a2 € NH(Wj), j = 2,3. H e n c e
xbx, xb2, bxb2 $ E(GX). Thus bx, b2, wl,w2,w3 6 N(u) n N(v) and
consequently either d(u) > 6 or d(v) > 6, a contradiction.

LEMMA 3.4. Let G be a graph of order n — 10, 11 or 12. Suppose
A{G) = n-5, G is maximal and G£O3. Then xT(G) < A(G) + 2.

PROOF. We shall apply the technique used in the proof of Theorem 3.2 by
explicitly constructing out the three matchings Mx, M2 and M3.
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Let M, e V(G) be such that d(ux) = S = 5{G) and let v e V(G) be such
that uxv f E(G). Thus v is a major vertex. Let N^(v) = {M, , U2, U3, U4}
a n d NG(v) = \vl,v2, ... , vn_s} . S ince G>03, G[u{ ,u2,u3, u4] = K4.
If d(ux) = 3 , then A^(«]) = {v, v{, v2, ..., vn_5} forms a clique in G,
that is, G = K4u Kn_4 . Thus #r(G) < A(G) + 2 . Hence we assume that
d(ux) = S > 4 . Let v, e # (« , ) and let v2 be such that v{v2 $ E{G).
Since 5 > 4 , we may also assume that vn_6, vn_5 £ N(ux) (note that there
is also another vertex vJf 2 < j < n - 7 , such that Vj £ N(u{) but we shall
not specifically assume which one.) Thus G[v, vn_6, vn_5] — K^.

We now consider the following cases separately.
Case 1. n= 10 or 11.

(i) Suppose v3 i N(vn_6) n N(vn_5), say v3 i N{vn_6).
For n = 10, G - {Vj, u2} has a 1-factor Mx — {u^, M3M4 , v3v , v4v5} ,

G - Mx - {v3, v 4 } has a 1-factor M2 = {utu4, u2u3} U FG[v{ ,v2,v,vs]
where F 6 [ u , ,v2,v,v5] deno tes a 1-factor in G[vx, v2, v ,v5], a n d we can
choose M 3 to be any m a x i m u m m a t c h i n g in G - {Mx U M 2 ) - { « , , v} .

For n = 11, we have G[v4, D, , v2] ^ O3, G[v4, v3, v5] ^ O3 and
G[v4, Mj, v6] ± O3. Hence by symmetry, we can assume that v4u4 £
E{G). Now G - {vlt v2} has a matching Af, — {v3ul, v4v, v5u6, M3M4}

which misses u2 , G - M{ - {v3, v5} has a matching M2 = {u{u4, u2u3} U
FG[v ,v{,v2, v4] which misses v6, and G - (Ml u M2) - {u4, v4} has a
matching M3 = {u{u2,vv6}UFG[vl, v2, v3, v5] which misses u3 .

3

By symmetry, we can also assume that v4vn_6, v4vn_5 e E(G) if n = 11.
Thus, by symmetry again, we may further assume that vn6u3, vn_5u4 f
E(G).

For n = 10, G-{v{, v2} has a 1-factor Mx - {uxu2, u3u4, v3v, v4v5} ,
G-Ml-{ul, v5} has a 1-factor M2 = {v3v4, u2u4}UFG[vl ,v2,v,u3], and
we can choose M3 to be any maximum matching in G—{Ml l)M2) — {u4, v} .

For n = 11, G - {t>,, v2} has a matching Af, = {ulu4, u2u3, v3v, v5v6}
which misses v4, G-M{ = {u3, v5} has a matching M2 = {M2W4 , v3v6} u
FG[v,, v2, v4, v] which misses M, , and G - (Ml U Af2) - {u4, u6} has a
matching Af3 = {v4i;, M,M2} U FGfv,, v2, «5 , M3] which misses v3 .
Case 2. n = \2.

This case is very similar to Case 1. Although the length of proof of Case
2 is slightly shorter than that of Case 1, the proof is very technical and thus
we omit it.

Finally, from the above results we deduce

THEOREM 3.5. For any graph G of order n having A(G) = n - 5,

XT(G)<A(G) + 2.
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PROOF. By Lemma 2.2, we can assume that G is maximal. By Lemma
3.1, if n> 11 and G > O3, then this theorem is true. By Theorem 3.2, if
n > 13, then this theorem is also true. By Theorem 2.1, this theorem is true
for n < 9. Hence we need only to consider the following remaining cases:

(i) n = 10 and G > O3 ;
(ii) n = 10, 11 or 12 and G % <93.

However, these two cases have been settled by Lemma 3.3 and Lemma 3.4.

REMARK. From the proofs of Theorem 3.2 and Theorem 3.5, we see that
the technique we apply will be extremely difficult to prove that the TCC also
holds for graphs of order n having A(G) = n - 6.
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