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Abstract

Fora > 0 let #, denote the set of functions which can be expressed

1
( )=/ —d fo I 1,
fz o A —Zoe u) for jz] <

where u is a complex-valued Borel measure on the unit circle. We show that if f is an analytic function
in A = {z € C: |z| < 1} and there are two nonparallel rays in C\ f(A) which do not meet, then f € &,
where am denotes the largest of the two angles determined by the rays. Also if the range of a function
analytic in A is contained in an angular wedge of opening am and 1 < & < 2, then f € F,.

2000 Mathematics subject classification: primary 30E20; secondary 30HOS.

1. Introduction

LetA={zeC:|z] <1}and A = {z € C: |z] = 1}, and let .# denote the set of
complex-valued Borel measures on A. For o > 0, let %, denote the set of functions
f : A — Cfor which there exists 4 € .# such that

1
1) 1@ = [ o dne) for kel <

The power function in (1) denotes the principal branch. Each function given by (1)
is analytic in A. For f € %,, let || fllg, = inf ||, where ||i|| denotes the total
variation of u, and p varies over all measures in .# for which (1) holds. This defines
a norm on .%,, and %, is a Banach space with respect to this norm. The family %,
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was first studied by Havin [2]. The general class #,, where o > 0, was introduced
in [5] and has been studied extensively. In [6] a survey is given about these so-called
fractional Cauchy transforms.

Several conditions on an analytic function f are known to be sufficient to imply
f € Z,. Mostof these conditions are analytic. Here we are concerned with geometric
conditions. The Riesz-Herglotz formula provides information of this type. It implies
that if f : A — Cis analytic and f(A) is contained in a half-plane, then f € Z,.
Another result of this kind was obtained by Bourdon and Cima in [1], namely, if
f A — Cis analytic and there are two oppositely directed rays in C\ f(A), then
f e Z.

This paper contains generalizations of the two results described above. We show
that if f(A) is contained in an angular wedge with opening ¢ and 1 < o < 2, then
f € Z,. Also if there are two nonparallel rays in C\ f(A) which do not meet and
the angles at infinity between these two rays are o and Bm, then f € #,, where
y = max{«, 8}.

If f(A) is contained in an angular wedge of opening less than &, then f € %,
but f need not belong to %, for any @, 0 < @ < 1. This holds more generally for
bounded analytic functions. To see this, let

o m

f@=3" = k<l

n=1

The function f is analytic and bounded in A. However f ¢ %, when0 < a < 1.
This is because the Taylor coefficients of f do not satisfy the condition a, = O (n"’"),
which is necessary for membership in .Z,,.

Finally we mention that if f : A — C is analytic and C\ f(A) contains a ray, then
f € % [5, Theorem 5).

2. Preliminaries

This section contains lemmas which will be used to prove the main results. The
first two lemmas are in [5, Lemma 1]. Lemma 2.3 is in [3, Theorem 2]. Lemma 2.4
is known but we give a proof.

LEMMA 2.1. Foreverya > 0, f € %, ifand only if f' € Foq).
LEMMA 2.2. If0 < & < B, then F, C F.
LEMMA 23. Ifa > 1, f € &, and the function ¢ : A — A is analytic, then the

composition f o ¢ € Z,.
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LEMMA 2.4. Suppose that f : A — C is analytic and f' belongs to Hardy
space H'. Then f € Z, for every a > 0.

PROOF. Suppose that f' € H' and let g = f'. Let{ = €. Then
G(§) = lim g(r¢)

exists for almost all 8 in [—m, 7] and G(e®) € L'([—m, 7]). Also g is represented
by the Cauchy formula

1 G
@ =5 [ Z2d p<t
A& —
Equation (2) yields (1), where d it (¢) = (G(¢)/2mif)d and hence g = f' € #|. By
Lemma2.2, f' € &, fora > 1. Lemma 2.1 implies that f € %, foralle > 0. O

LEMMA 2.5. Suppose that the function g is analytic in a neighbourhood of A. Let
N be a positive integer and suppose that |{,} = 1, o, > Oforn =1,2,..., N, and
Cn # &m forn #=m. Let

g(z)
3) fo=—S% <t
T = e

Then f € %,, wherea = max{a, : 1 <n < N}.

PROOF. We give the proof for the case N = 2. A similar argument can be given
for other values of N.

Suppose that |¢| = {o| =1,¢ # 0, 8 > 0,and y > 0. Suppose that the function
g is analytic in a neighborhood of A and let

g(2)
(=0 —0o)’

We shall show that f € %,, where @ = max{8, y}.
The function z — g(z)/(z — o)? is analytic at z = ¢, and hence

810 _ Zam(z —or,

(z—o)

lz] < 1.

S f@)=

for z in some neighbourhood of . Let p be the least integer such that p > f and let
s = p — B. Then

p—1

5) f(Z)=Z(aW'+'(Z_§)Ah(Z)

m=0

https://doi.org/10.1017/51446788700014075 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700014075

370 R. A. Hibschweiler and T. H. MacGregor 4]

where the function £ is analytic in some neighbourhood of ¢. Suppose that 8 is not
an integer. Then

d
L= 0r@] =@~ +5c - @),

Since (z — ¢)° is bounded in A \ {¢}, this implies that there is a positive constant A
such that

= AIZ - ;ly_ls

6 !i[ —&)h
(6) p (SRl (2]

forz € A, znear ¢, and z # ¢. Likewise if y is not an integer, g is the least integer
suchthatg > y and t = ¢ — y, then

g-1

b
7 )=y ————+(z—0)k(2),
) f@ ::;o(z—oy—m (z - 0)'k()
where k is a function analytic in some neighbourhoodof ¢ and b,, in =0, 1,...,4—1)

are suitable constants. Thus

= B|Z _UI’_I~

d !
8) ‘E[(z - 0)'k(2)]

for z € A, z near o, and z # o, where B is a positive constant.
Forz € A\ {¢, 0}, let

p—1 q-1
Am bm
( ) r(Z) f(z) ot (Z _ é-)ﬂ-m — (Z — or))/-m

The relations (5), (6) and (9) imply that there is a constant C such that
(10) '@ < Clz ~ &',

for z € A, z near Z,and z # ¢. Likewise (7)—9) imply that

(11) IF'(2)] < Dlz ~ o,

for z € A, z near o, and z # &, where D is a positive constant.

The function z — (z — 7)“ belongs to H' when |t} = 1 and ¥ > —1. Hence
the inequalities (10) and (11) and the fact that r’ is analytic in A \ {¢, o} imply that
r' € H'. This proves that r' € H' when g and y are not integers. A similar argument
shows that r' € H' when only one of the numbers 8 and y is not an integer. If both
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B and y are integers then r = 0. Therefore, in general, r' € H'. Lemma 2.4 yields
r € %; for every 8§ > 0.
Equation (9) gives

(12) f=hH+f+r

where

p~1 g-—1 b
fild) = Z )ﬂm and fz(Z)=Z(Z—_‘(‘;ﬁ-

m= m=0

The function z — 1/(z — ¢)* belongs to fﬂ when 0<é= ﬂ and hence fl € F;.
Likewise f; € #,. Lemma 2.2 yields f, € %, and f; € . Since r € %, (12)
implies that f € 3{,. O

Lemma 2.5 contrasts with the following result obtained in [5, Lemma 1].

THEOREM 2.6. If f € F,and g € Fpthen f - g € Forp-

Since the function g in Lemma 2.5 is analytic in A, g is a multiplier of Z; for every
3 > 0 [4, Theorem 3.5]. This fact and Theorem 2.6 imply that the function f in (3)
belongs to %,., where o’ = Z::l a,. Lemma 2.5 is clearly an improvement of this
result. The assumptionthat¢, # &, forn % miscriticalin Lemma2.5. To see how this
isreflected in our argument, suppose that the numbers £, (n = 1, 2, ..., N)are distinct,
g2 — {1, and the numbers o, are fixed. Suppose that @ = max{«,, o3, ..., ay}. Then
the norm || f| #, of the corresponding function in (3) goes to infinity as &, — &;.

3. The main results

Let f be analytic in A. In this section we give two geometric conditions on f(A)
sufficient to imply that f € .%,.

THEOREM 3.1. Suppose that the function f : A — C is analytic and let & =
C\ f().
(a) Suppose that @ contains nvo nonparallel rays. Let amw and B denote the angles
at oo between these two rays, where a > B. If o < 2, then [ € Z,.
(b) If ® contains a ray then [ € %,.

PROOF. First assume that ¢ contains two nonparallel rays. Since o 4+ 8 = 2, the
assumptions imply that 1 < o < 2. We may assume that the rays do not intersect.
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Let F denote a conformal mapping of A onto the complement of the two rays. The
Schwarz-Christoffel formula gives

To(w=d)(w— &)
(13) F(2)=b dw + c,
o (W~ &) (w— &)
where ¢, &, &, and &, are distinct points on A, and 6 and ¢ are suitable complex
numbers. Hence

g(2)
(w — &)t (w — &)’

where g is a quadratic polynomial. Since 3—a < o+ 1, Lemma2.5 yields F' € #,,,.
Hence Lemma 2.1 implies F € %,.

Since f(A) C F(A) and F is univalent, the function ¢ = F~' o f is analytic in A
and maps A into A. Since F € #, anda > 1, Lemma 2.3 yields f = Fo¢ € %,.
This proves the first assertion.

The second assertion can be proved in a similar way. The conformal mapping of A
onto the complement of a ray has the form F(z) = P(z)/(z — ¢)?, where P is a
guadratic polynomial and ¢} = 1. This yields F € #; and hence Lemma 2.3 yields
f €% O

F'(z) =

THEOREM 3.2. Suppose that f is analytic in A. If f(A) is contained in an angular
wedge of opening am and | < o < 2, then f € %,.

PROOF. The function z — [{1 + z)/(1 — 2)]* maps A one-to-one onto the wedge
{w: |argw| < an/2}. Hence there are complex numbers b and c¢ such that the
function defined by F(z) = b[(1 + z)/(1 — 2)]* + ¢ maps A one-to-one onto the
angular wedge containing f(A). The function z — 1/(1 — z)* belongs to Z,. Let
h(z) = (1 + 2)*. Since @ > 1, k' is bounded. Thus A’ € H' and it follows that i
is a multiplier of %, for every 8 > O [4, Theorem 3.5]. Therefore F' € F.. Since
f(A) C F(A)and F is univalent, we have f = F oy, where the functiong : A — A
is analytic. Since F € %, and @ > 1, Lemma 2.3 gives f € %,. o
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