
FINITE LINEAR GROUPS OF DEGREE SEVEN. I 

DAVID B. WALES 

1. This paper is the second in a series of papers discussing linear groups of 
prime degree, the first being (8). In this paper we discuss only linear groups of 
degree 7. Thus, G is a finite group with a faithful irreducible complex rep­
resentation X of degree 7 which is unimodular and primitive. The character 
of X is x- The notation of (8) is used except here p = 7. Thus P is a 7-Sylow 
group of G. In §§ 2 and 3 some general theorems about the 3-Sylow group and 
5-Sylow group are given. In § 4 the statement of the results when G has a 
non-abelian 7-Sylow group is given. This corresponds to the case \P\ = 73 or 
\P\ = 74. The proof is given in §§ 5 and 6. In a subsequent paper the results 
when P is abelian will be given. These correspond to the case that |P | = 7 or 
\P\ = 72. In § 6 characters are denoted by xu their degrees by xt. Set 
\G\ = g = 7a7-5a*-3a3-2fl2. By (3, 3E), a5 ^ 7, a3 S 8, a2 ^ 10. By (8, 
Theorem 2.2), a7 è 4. 

Acknowledgment. I wish to thank Professor R. Brauer for his help. 

2. Some properties of P 5 . We begin with a discussion of the 5-Sylow group 
Ph of G showing first that it is abelian. This extends (8, Theorem 5.1). 

THEOREM 2.1. A 5-Sylow group P 5 of G is abelian. 

Proof. If P$ is not abelian, then X\P5 has a 5-dimensional constituent and 
two linear ones. A suitable element Q in Z(P5) r\P$ has five eigenvalues 
X = e^i/b a n ( j £W0 eigenvalues l.f We will show in a series of lemmas that 
this is impossible. We will also need the lemmas later. 

LEMMA 2.2. Suppose that H has a faithful representation Y of degree 2, not 
necessarily unimodular. Suppose, further, that H has two 5-elements Qi and Q2 

which do not commute. Then there is an element T in any commutator of H such 
that Y(T) has eigenvalues {—X2, —X3} where X = e

2wi/d. Furthermore, Hf = H" 
is the unimodular subgroup of Y{H). Furthermore, there is an involution J in 
Z{H') such that 

F(J) = (~J _?) and H'/{J)^Ab. 

Received November 28, 1967. This work was part of the author's Ph.D. thesis at Harvard 
University in 1967 under the supervision of Professor R. Brauer. The research was supported 
by a Canadian National Research Council Special Scholarship. 

f in (8, Theorem 5.1), the same method for ç = 7 gave an element contradicting Blichfeldt's 
theorem. However, since 360/5 > 60, this is not true here, and other methods are needed. 
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Proof. Identify H with Y(H). Let c* = dety(Qt), i = 1, 2. Adjoin to Y(H) 
the matrices ± {^/ct)~

lI. Let K be the new group. Let 5 be the subgroup of K 
consisting of unimodular matrices. There are scalar multiples of Y(Qi), 
i = 1, 2, in 5 which do not commute, and hence S contains two 5-elements 
which do not commute. As a 5-Sylow group is abelian, it is not normal in S. 
The group S/Z(S) must be one of the linear groups in two variables all of 
which are listed in (1). The only possibility is S/Z(S) = A5 as this is the only 
one in which the 5-Sylow group is not normal. Let S0 = 5 H H. Clearly, 
So 0 S and S/So is abelian. We have S t> So t> Z(S0) ï> e. Since 5 has a 
composition factor A 5 and S/So and Z(S0) are abelian, we have S0/Z(So) = A&. 
Here Z(S0) can contain only ± 7 . Since A5 has no representation of degree 2, 
we see that Z(S0) = ± 7 . Furthermore, So' = So. We have H \> S0 with 
i7/So abelian. This shows that H' = S0 = i ? " = i 7 w . In So an element T 
of order 5 has eigenvalues {X2, X3} for an appropriate power of T. Multiplying 
by (~~o - I ) we obtain an element with eigenvalues {—X2, —X3}. The proof 
is complete. 

LEMMA 2.3. Let H be the group generated by two non-commuting elements Qi 
and Qo of order 5. Suppose that there is a faithful representation Y of H of 
degree 4 which has a two-dimensional invariant subspace. Furthermore, Y(Qi) 
and Y(Q2) have eigenvalues {1, 1, X, X} or {.1,1, X, X}. Then there is an element 
T in H such that Y(T) has eigenvalues {1, 1, —X2, —X3} or 

{-X2, -X2 , -X3 , -X 3 } . 
Here X = e^llK 

Proof. Let Y = Y\ 0 F2, where Fx and F2 are 2-dimensional. Identify H 
with Y(H). Adjoin to H the matrices XT, r = 1, 2, 3, 4. Let K be this new 
group. Let S be the subgroup of K such that Fi is unimodular. There is a 
scalar multiple \rI of F(Çi) in S and a scalar multiple of Y(Q2) in S. This means 
that S contains at least two non-commuting elements of order 5. Call these 
Ri and R2. Clearly, Yt(Ri) and Yt{R2) cannot commute for both i = 1 and 2. 
If Yi(R1) and Yi(R2) do commute, the group ( F ^ J R I ) , Yt(R2)) is commutative. 
Applying Lemma 2.2 to a commutator of (Ri, R2) yields an element with eigen­
values {1, 1, -X2 , -X 3 } . 

We can therefore assume that Yi(R{) and Yt(R2) do not commute for 
i = 1,2. I t follows easily that S = (Ri, R2). By Lemma 2.2, Sf = S and thus 
det Y2(S) = 1. Let Q = Ru i = 1, 2. We can assume that Yi(Q) and Y2(Q) 
have eigenvalues {X2, X3}. For if not, Qi or Q2 cannot be written as a scalar 
multiple of any non-identity power of Q as the eigenvalues for such a scalar 
multiple are {c\, c\2, cX3, cX4}. This means that Yi(Q) and Y2(Q) have 
eigenvalues {X2, X3} and Y(QJ) has eigenvalues {—X2, —X3, —X2, —X3}, where 
J is the involution in Z(S). This completes the proof of the lemma. 

LEMMA 2.4. Suppose that H has a faithful representation Y of degree 3. 
Suppose also that H is generated by two non-commuting 5-elements Qu i = 1,2, 
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such that Y(Qi) has eigenvalues {au au 0*}. There is then an element T in any 
commutator of H such that Y(T) has eigenvalues {1, —X2, — \z}. Again \ = e2iri/5. 

Proof. Y(Qi), i = 1, 2, has a 2-dimensional invariant subspace Ui on which 
Y(Qt)\Ui is aj.. Any subspace of Ut is an invariant subspace of Y(Qt). 
Clearly, U\ P\ U2 is an invariant subspace for Y(Qi) and Y(Q2) and hence 
for Y(H). This shows that Y is not irreducible. Since H is not abelian, there 
must be a 2-dimensional component. Lemma 2.2 can be applied to H' to 
obtain an element of the desired form. 

LEMMA 2.5. There can be no element Qi in G such that X(Qi) has eigenvalues 
{X, X, X, X, X, 1, 1}. 

Proof. Suppose that X(Qi) has eigenvalues {X, X, X, X, X, 1, 1}. Since G 
cannot have a normal 5-subgroup containing Qi, there must be a conjugate 
Q2 of Qi such that Qi and Q2 do not commute. Let Uu i = 1, 2, be the sub-
spaces of the representation space V of X on which X(Qt) = XI. I t is clear 
that Ui H U2 is an invariant subspace for X(Qf)y and hence for X(H), where 
H is the group generated by Qu i = 1, 2. Clearly, U\ C\ U2 has dimension 5, 4, 
or 3. Furthermore, X(Qi)\U\C\ U2 = XI. Let W be a complementary sub-
space to Ui f^ U2 with respect to X(H). We see that W has dimension 2, 3, 
or 4. If dim W = 2, JJ\ — U2l and Ci and Ç2 commute. This is a contradiction. 
If dim W7 = 3, Lemma 2.4 gives an element T in Hf such that X{T) has 
eigenvalues {1, 1, 1, 1, 1, —X2, —X3}, contradicting Blichfeldt's theorem 
(1 or 8, § 2). This follows since X(Qt)\W must have eigenvalues {1, 1, Xj. If 
dim W = 4, the eigenvalues of X{Qt)\W are {1, 1, X, X}. As in (1, p. 143) 
there is a 2-dimensional invariant subspace and Lemma 2.3 gives an element 
T in H such that X{T) has eigenvalues contradicting Blichfeldt's theorem. 
This completes the proof of the lemma and the proof of Theorem 2.1. 

COROLLARY 2.6. / / \G\ = 7a-5&-gi, then b S 6. 

Proof. This follows from (3, 3D) or the proof of (3, 3E). 

We now show that there can be no element Q such that X(Q) has eigenvalues 
{1, 1, 1, 1, 1, X, X}, X = e27ri/b. This will be used to obtain properties of the 
5-Sylow group P 5 . The proof is fairly involved. Part of it will be given by 
means of a lemma at the end. 

THEOREM 2.7. There can be no element Q in G such that X(Q) has eigenvalues 
{ 1 , 1 , 1 , 1 , 1 , X , X } , X = e 2 ^ . 

COROLLARY 2.8. An elementary abelian subgroup of P-0 has order at most 54. 

Proof of Corollary 2.8. Suppose that there is an elementary abelian subgroup 
of order 55. A basis £i> . . . , £5 for P 5 can be chosen so that X(^) is diagonal 
and (X(Zt))ti = X, (Xti^jj = 1 for 1 ^ j ^ 5, j 9* i, (X({,)) . . = X", 
(*(f0)77 = X-<ri+1), i = 1, 2, . . . , 5. Here rt is an integer 0 g r, ^ 4. The 
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last component (X(£z-))77 is X~(r*"+1) by the unimodularity. If all of the rt are 
distinct for i = 1, 2, . . . , 5, some rt is 0. For this i, X(%t) has eigenvalues 
{1, 1, 1, 1, 1, X, X}, contradicting Theorem 2.7. This means that two rt are 
equal, say r{ = rk. Now ^(£z(£*)_1) has eigenvalues {X, X, 1, 1, 1, 1, 1}, again 
contradicting Theorem 2.7. This proves the corollary. 

Proof of Theorem 2.7. Let Qi be an element in G such that X(Qi) has eigen­
values {1, 1, 1, 1, 1, X, X}. Let Qi, (?2, . . • , Qr be all of the conjugates of Qi 
in G. The group H = (Qi, Q2l . . . , QT) is a normal subgroup of G not in the 
centre, and thus X\H must be irreducible. We will obtain a contradiction by 
showing that this is not true. 

(1) For i = 1, 2, . . . , r let Ut be the unique 5-dimensional subspace on 
which X(Qi) = I. Any subspace of Ut is an invariant subspace for X(Qt). 
For any given i, 1 ^ i ^ r, there is a j such that Qi and Qj do not commute 
since otherwise Qi G Z(H) and X\H cannot be irreducible. Assume that Qt 

and Qj do not commute. Let Utj = Ut C\ Uj. We know that Utj is an in­
variant subspace for X{Qt) and X(Qj). Let Vtj be a complementary invariant 
subspace to Uij with respect to X((Qif Qj)). Let Fi = X\Uij, Y2 = X\Vij. 
If Fz;- is 2-dimensional, F2(Ç*) and Y2(Qj) have eigenvalues {X, X}. Since Qt 

and Ç; do not commute, Y2(Q{) and Y2(Qj) do not commute and thus 
Lemma 2.2 gives an element T such that X(T) has eigenvalues, contradicting 
Blichfeldt's theorem. This means that V^ has dimension 3 or 4. 

Suppose now that V\j has dimension 4, or, equivalently Uij has dimension 
3. In this case, Y2{Qt) and Y2(Qj) have eigenvalues {1, 1, X, X}. We will show 
that this is impossible. To do this, the following lemma is needed. The lemma 
will be proved at the end of the proof of this theorem. We state the lemma 
here for convenience. 

LEMMA 2.9. Let i\, . . . , is be a set of integers 1 ^ i\ < i2 < . . . < is S f 
and set H^ u = (Qn, . . . , Qu). Suppose that U is a ^-dimensional invariant 
subspace for X(Htl ia). Let X(Hilt,..tîa) = F © Fi, where 

Y = X(Htl,...,u)\U. 

Further, we assume that Y(Qh),. . . , Y(QU) has eigenvalues {1, 1, X, X} and Fi 
is the identity. Then Y must be reducible. 

Proof, Lemma 2.9 will be proved after the proof of Theorem 2.7. 
This lemma applies to Vtj since the eigenvalues of Y2(Qt) are {1, 1, X, X}. 

It shows that F2 must be reducible. If F2 has a 2-dimensional invariant sub-
space, Lemma 2.3 gives an element in (Qu Qj) contradicting Blichfeldt's 
theorem. This means that there must be a 3-dimensional subspace. Let 
F2 = F3 © F4, where F3 is 3-dimensional. 

Suppose that F3((?t-) has eigenvalues {1, 1, X}. In {Qu Qj) there is a conjugate 
R of Qi which does not commute with Qt. If this were not so, Qt would be in 
all 5-Sylow groups of (Qu Qj), and thus Qi and Qj would commute since a 
5 Sylow group must be abelian. Applying Lemma 2.4 to (Qt, R)f yields an 
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element contradicting Blichfeldt's theorem. This shows that F3 (().), and 
similarly YziQj) have eigenvalues {1, X, X}. Consequently, Y^(Qt) = 
YA(QJ) = 1. This means that Ui C\ Uj is 4-dimensional and thus Vtj is 
3-dimensional, contrary to our assumption. 

We have shown that if Qi and Qj do not commute, Ui O Uj is 4-dimensional, 
or equivalently Vtj is 3-dimensional. Furthermore, F2 must be irreducible 
otherwise Lemma 2.2 yields an element contradicting Blichfeldt's theorem. 
Let e\l be an eigenvector of X(Qt) with eigenvalue X. Similarly, let e^\ e\j, e%3 

be appropriate eigenvectors of X{Qt) and X(Qj). Since F2 is irreducible 
and Vij is 3-dimensional, we see that Vij = Sp{e%i, e\*, e\j, e^}, where 
Sp{z>i, . . . , vs} is the linear span of the vectors vly . . . , vs. 

(2) Suppose that Qk is a second element which does not commute with Qf. 
We can define V ik as above and show again that Vik is 3-dimensional. We 
will showT that in fact Vij = Vik. Suppose then that Vtj ^ Vik. 

Let V = Sp{ Vij, Vik}. Define e\k and e%k as we did e\j and e^j. Clearly, ex* 
and e^ are in Vtj C\ Vik and, since Vtj ^ Vik, we see that Vij O F ^ has 
dimension at most two. This means that (ex*, e^) = Vtj C\ Vik. Let ej be an 
eigenvector of X(Qt) in F ^ with eigenvalue 1. A basis for V^ is {ex\ e^, e3]. 
Similarly define ek. A basis for F is {ex*, e^1, ejy ek}. 

We will show now that F is an invariant subspace for X(Qt), X(Qj), and 
X(Qk). Certainly, F is invariant under X{Qi) as the basis is a basis of eigen­
vectors. For X(Qj), it is only necessary to show that ek is mapped into F as 
the remaining three vectors span Vij. Clearly, ej (? Ui r\ Uj as ej Ç Vtj. 
This means that Ui = Sp{ £/* H Uj, ej}. This is so since dim(£/f P\ Lr

;) = 4 
and £y G [7*. Since ek Ç 27*, we see that eA = £ + rej} r a scalar, e £ ^ H £/.,•. 
Furthermore, X{Qù)e1c = X(Qj)e + rX(Qj)ej = e + rX(Qj)ej. Clearly, e G F 
and X{Qj)ej 6 F. This shows that F is invariant under X(Qj). Similarly F 
is invariant under X(Qk). 

Let Hijk = (Ci, Çy, Qfc), if,, = (Qif (?,), and Hik = (Ç2-, Çfc). Furthermore, 
define X ( i J ^ ) | F = F. The eigenvalues for Y(Qt), Y(Qj), and F(Q,) are 
{1, 1, X, X}. Lemma 2.9 shows that Y is reducible. Since Y(HtJ) has an 
irreducible constituent of degree 3, we see that Y = F4 © F5, where F5 has 
degree 3 and F4 is linear. Clearly, Yb{Hij) is similar to X{Hij)\Vij. We see 
also that Y5(Hik) is similar to X(Hik)\ Vik. If F ' is the 3-dimensional subspace 
corresponding to F5, we see that {ex\ e^, e\j,e\~\ ex

k, exk) € V. This shows 
that F C V', and thus F cannot be 4-dimensional. We have shown that 
F = V^ = Fa . . 

(3) Now start wTith Qi and find a Q ; such that Q\ and (^ do not commute. 
Relable Qj as Q2. Inductively relable Qt after <2t-i has been picked so that Qt 

does not commute with some Qj, j < i. This will continue until a <2s is picked 
such that Qi for all i ^ s commute with all unpicked Qt. 

We know that F = Vu is an invariant subspace for X{Hi^). For any 
i S s there is a chain of integers 1 = j i < j 2 < . . . < j w = i such that ( ^ 
and Qjk+1 do not commute. We have shown that F is an invariant subspace 
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for X(Qn, QJ2)J . . . ,X(Qjm_x, Qjm). Clearly V is an invariant subspace for 
X((Qi, • • • > G.». Let Hlt2 , = <<2i, . . . , Q8). 

(4) The group (Qs+i, . . . , Qr) commutes with Hlt2 s. Call 

<GH-I, • • • , &> = #2 and H1>2 , = Hx. 

We know that X(ff{) has V as an irreducible invariant subspace. On a 
complementary invariant subspace, X{S\ ) is trivial. By Schur's lemma, 
X{H2) has V as an invariant subspace. This shows that V is an invariant 
subspace for (J3i, H2) — (Ci, . . . , Qr), giving a contradiction. 

We have completed the proof of Theorem 2.7 except for Lemma 2.9. In 
this lemma we can relable the elements Qtl1 . . . , Qia as Qi, . . . , Qs. 

LEMMA 2.9 (restatement). Let H = (Qi, . . . , Çs). Suppose that U is a 
^-dimensional invariant subspace for X(H). Let X(H) = Y ® Yh X(H)\U = Y. 
We assume that Y(Qt), i = 1, 2, . . . , s, has eigenvalues {1, 1, X, X} ; this implies 
that Yi(H) is the identity. Then Y must be reducible. 

Proof, We assume that Y is irreducible. Let \H\ = h. 
(1) Clearly 5\h. Suppose that 52 f̂ h. Applying the results of (2) we see that 

F has 5-defect 1 and Y(Qi) or a power must have eigenvalues {X, X2, X3, X4}, 
{X, X, X, X}, or {X, X, X, X}. Since \{Q\) has eigenvalues {1, 1, X, X}, this is a 
contradiction and we see that 52\h. 

(2) Since Y is irreducible, H is not abelian and thus there must be at least 
one pair i, j such that Qf and Qj do not commute. Since the 5-Sylow group is 
abelian, there are at least two 5-Sylow groups in H. Let two distinct ones be 
SO and P5. We will show that 5 5 Pi P5 = e. 

Suppose then that R £ S5 C\ P5 , R ^ e. The eigenvalues of Y(R) cannot 
all be equal as det Y(R) = 1. This means that F((55, P5)) must be reducible 
since R Ç Z((Ss, P5)). Furthermore, (55, P5) does not have a normal 5-Sylow 
group. 

Let (55, P5) = HQ. Suppose that Y(H0) has two irreducible constituents 
of degree 2. By applying Lemma 2.2, it follows that there is an involution / 
in Z(HQ) such that Y (J) = — I. The eigenvalues of Y(R), or a power, are 
{X, X, X, X} by the unimodularity. The eigenvalues of X(RJ) contradict 
Blichfeldt's theorem. Suppose that Y(H0) has a 2-dimensional invariant 
subspace and two linear ones. Lemma 2.2 yields an element contradicting 
Blichfeldt's theorem. We see then that Y(H0) splits into two constituents of 
degrees 3 and 1. The eigenvalues of Y(R) or a power are {X, X, X, X2}. There is 
a 3-dimensional invariant subspace on which Y(R) is XI. If there is a conjugate 
P i of R in H which does not commute with P , there is a 2-dimensional sub-
space on which Y(R) and F(Pi) is XP Lemma 2.2 yields an element contra­
dicting Blichfeldt's theorem. This shows that all conjugates of P in H must 
commute, and thus the group generated by these conjugates must be an 
abelian normal 5-subgroup. It is therefore in all 5-Sylow groups, and hence 
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must commute with all Qu i = 1, 2, . . . , s. I t must therefore be in the centre 
of H, contradicting the irreducibility of Y. This means that S s H P s = e. 

(3) The group H has a faithful unimodular representation Y of degree 4. 
I t is generated by elements Qt of order 5 such that Y(Qt) has trace 2 + X + X. 
Suppose that Y is not primitive. A matrix of the form 

0 0 * * 
0 0 * * 
* * 0 0 

Y(Q<) = 

* 0 0 
* 0 0 
0 * * 
0 * *. 

0 OJ 

or a 4 X 4 permutation matrix cannot have order 5. This means that Y(Qt) 
must be diagonal or 

* 
* 
0 

_0 
We see that in any case Y(H) is reducible. This means that Y is primitive. 

(4) Let h = 7&7-565-363-2&2. Since H C G, b7 g a7. By (8, Theorem 3.1), 
a7 ^ 4. By (3, 4E) there can be no element in a 7-Sylow group with three 
eigenvalues 1 if a-i ̂  3. If a7 = 1 or 2, this is also true by (3, 4A) and the 
fact that X is of full 7-defect. This means that b7 = 0. Since H C G, we see 
that 62 ^ 10. By the primitivity of F, bz g 3 + 1 = 4, since 3 | 4 in (3, 3E). 
The number of 5-Sylow groups is congruent to 1 (mod 5&5)- The only possible 
such number is 26-32 = 576. This means that h = 52-3&3-2&2, where 2 ^ bz g 4, 
and b ^b2 ^ 10. Furthermore, \H:N(P5)\ = 26-32. 

(5) Suppose that there is an element T of order 3 and an element Q of 
order 5 such that T and Q commute. Suppose also that T does not commute 
with P5 , the 5-Sylow group containing Q. Since there are no 5-Sylow inter­
section groups, T must normalize P5. If P5 is cyclic, its order must be 5 by 
(3, 3B). This is impossible and thus P$ is elementary abelian. This means 
that N(Ph)/C(Ph) is a subgroup of GL(2, 5). By taking a basis of P 5 con­
taining Q, we see T must correspond to a matrix (0 &). No such matrix has 
order 3, giving a contradiction. This means that any 3-element which cen­
tralizes an element of order 5 centralizes the whole 5-Sylow group containing it. 

(6) Let P 2 be a 2-Sylow subgroup of H. We know that 

x\p2 = 1 e 1 e 1 e Y\P2. 

Any abelian subgroup of P2 has variety at most 5 and so its order must be at 
most 24 by (3, 3D). We know that \P2\ è 26. 

If Y(P2) has two components, there is an abelian subgroup of index at 
most 22 which can be found by putting each component in monomial form and 
taking the diagonal matrices. This implies that \P2\ — 26. If Y{P2) is irre­
ducible, there is an abelian subgroup of index at most 23. Here \P2\ ^ 2. 
There must be a non-trivial element in Z(P2). Here 26- |Z(P2) | ^ 27 and 
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therefore |Z(P2) | = 2. Also |P2 | = 27. Clearly Z(P2) = Z(H). We know that 
any 2-element R centralizing Q normalizes P5 . If IP2I = 26, this is impossible. 
If |P2 | = 27, then R G Z(P2) and hence R 6 C(P5). 

This shows that if Q is a non-trivial 5-element, CH(Q) = CH(Pb), where P5 
is a 5-Sylow group containing Q. We can therefore apply the results of (4) to 
this case. 

(7) We know that 2f |iV(P5)/C(P5)| and therefore |iV(P5)/C(P5)| is 1 
or 3. Since Y\P5 is not rational, Y must have an exceptional character. We use 
the notation of (4). Let Y be in the 5-block Ba. We know that rasa = 1 or 3 
and therefore sa = 1 or 3. In either case, ba

a = 0 by (4, Eq. 4.9) and thus 
deg F = earaSa deg 6a (mod 25). This means that 4 = earasa deg 6a. Clearly 
€« = 1, rasa = 1, and deg 6a = 4. However, 6a is a representation of C(P5). 
This is impossible since 2 2 | |C(P5)|. This contradiction establishes the lemma 
and completes the proof of Theorem 2.7. 

Note added in proof. Theorem 2.7 can be shortened by using the linear 
groups of degree 4. 

3, Bounds for Sylow group orders when % is real. In this section we 
obtain bounds for the orders of the 3-Sylow group and the 5-Sylow group valid 
when % is real on these Sylow groups. This is particularly important when 
discussing the case g = 7z-go since by (8, Theorem 4.6) % is often real on 
these Sylow groups. I t is also used later for the case g = 7-go. Here P 5 is a 
o-Sylow group of G, P3 a 3-Sylow group of G. 

THEOREM 3.1. Let \G\ = g = 7a7-5a5-3a3-2fl2. / / x|Ps is real, then a5 ^ 2. 
If x\Rz ^ real, then a% ^ 5. 

Proof. (1) We first treat the case of P5 . By Theorem 2.1 we know that P 5 

is abelian. Let x|Ps = Li=i ^u where X2 is a linear character of P5. Since x is 
real we can assume that x|Ps = Xi + Xi + X2 + X2 + X3 + X3 + X4 because 
the only real linear characters are trivial. This means also that X4 = 1. We 
will show that a$ ^ 2 by showing that (a) there cannot be three independent 
elements of order 5 and (b) there cannot be two independent elements one 
of order 52 the other of order 5. This will show that a$ ^ 2 as there cannot 
be an element of order 53 (3, 3B). 

Suppose: (a) there are three independent elements £1, £2, £3 of order 5 in P5 . 
In the usual way, they can be chosen so that X*(f0 = X = e2iri/5 and \j(£i) = 1 
for i ?£ j . This contradicts Theorem 2.7 for £*. Here i = 1, 2, 3. 

Suppose: (b) there is an element £1 of order 52 and an independent element 
| 2 of order 5. We can choose £1 and £2 so that Xi(£i) = M = e2iri/2b, Xi(£2) = 1, 
X2fe) = X = e2*i/5. Suppose that X2(£i) = yi, X8(£i) = m, and X3(£2) = 773. 
These specify Xfa) and X(£2) completely. We know that 773 9e 1 or 
Theorem 2.7 is contradicted. Since £2 has order 5,773 is a fifth root of 1. Suppose 
that (T?I)5 = (T?2)

5 = 1. Then (£i)5 has eigenvalues contradicting Theorem 2.7. 
This means that at least one of 771,772 is a primitive 25th root of 1. Suppose that 
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one is only a fifth root of 1, the other a 25th root of 1. By taking £ = fife)* 
for an appropriate s and rearranging if necessary we can obtain an element £ 
such that Xx(£) = JJL, X2(£) = 77, X3(£) = 1. If 77 is a fifth root of 1, £5 has eigen­
values contradicting Blichfeldt's theorem. Therefore 77 = (/*)' for some t} 5ft. 
I t can be seen by inspection that there is a value r = 1, 2, 3, or 4 such that 
rt = - 4 , - 3 , - 2 , - 1 , 1,2, 3, or 4 (mod 25). The eigenvalues of X(£ r) contra­
dict Blichfeldt's theorem as they are all within an angle of 87r/25 of 1 on the 
unit circle and 1 occurs as an eigenvalue. Also 87r/25 < 7r/3. 

The only case remaining is that 771 and 772 have primitive 25th roots of 1. 
In this case, either /z5 is one of {(771)5, (rji)5, O72)5, or Oh)5} or (771)5 is 
{(V2)5 or O72)5}. In the first case after rearranging and multiplying by (£2)r we 
can obtain an element £ such that Xi(£) = X2(£) = /x. As in the paragraph 
above, one of £, £2, £3, £4 has eigenvalues contradicting Blichfeldt's theorem. 
In the second case we can rearrange to find new £1, £2 such that Xi(£i) = 771, 
X2(£i) = 772, X3(£i) = M, Xife) = 1, and X2(£2) = X. Here (971)5 = fe)5. This 
is the case just considered and so we have a contradiction. 

We have shown that a5 S 2. 
(2) We now treat similarly the case of P3 . There can be no element of 

order 33 by (3, 3B). If H is an abelian subgroup of P 3 again we have 
X\P3 = Xx + Xx + X2 + X2 + X3 + X3 + 1. 

If H is an abelian subgroup with three independent elements of order 3 they 
can be chosen as £1, £2, £3, where Xj(£z) = rj = e27r*/3, X (̂£ )̂ = 1 for j =é i. I t 
is clear that a fourth independent element of order 3 is impossible in H. 

Suppose that H is an abelian subgroup of type (32, 32, 3). Again we can 
pick a basis £1, £2, £3 so that Xi(£i) = /*, X2(£i) = 1, X3(£i) = m; Xi(£2) = 1, 
X2(£2) = M, X3(£2) = /x2; and Xx(£3) = X2(£3) = 1, X3(£3) = 77. Here M = e^ll\ 
77 = e2iri,z = (/z)3. If (AH)3 = 1, an element £i(£3)r has eigenvalues 
(/x, /Z, 1, 1, 1, 1, 1), contradicting Blichfeldt's theorem. If (/zi)3 9^ 1, an 
element £ = £i(£3)r has Xi(£) = /x, X2(£) = 1, X3(£) = M or /z. In either case, 
Blichfeldt's theorem is contradicted. 

These arguments show that any abelian subgroup of P 3 must have order at 
most 34 or there would be a subgroup of type (3, 3, 3, 3) or (32, 32, 3). If 
&3 ^ 6, P 3 must be non-abelian. This means that X\Pd must have a non-linear 
component U of degree 3. Clearly U cannot be real since there is an element 
T in Z(P3 /ker U) for which U(T) = 77/. This implies t h a t X | P 3 = U ® Û ® y, 
where y is linear. By putting U in monomial form we obtain an abelian sub­
group of order 35, giving a contradiction. This implies that a3 S 5 and proves 
the theorem. 

4. Statement of the results. 

THEOREM 4.1. Suppose that G has a complex irreducible representation X of 
degree 7 which is faithful, unirnodular, and primitive. If G has a non-abelian 
7-Sylow group, G is one of the following groups: 

(l) G is a uniquely determined group of order 74-48 which has a non-abelian 
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normal subgroup D of order 73 and exponent 1 such that G/D ~ SL(2, 7); 
(II) Certain subgroups of G in (I) containing D as a 7-Sylow group. 

Remarks. Let \G\ = g — 7a7-go, (7, go) = 1. If the 7-Sylow group is non-
abelian, then a7 ^ 3. By (8, Theorem 2.2) we know that a7 ^ 4. We need 
only consider a7 = 3 and a1 = 4. The case a7 = 4 is treated in § 5, the case 
a-i = 3 is treated in § 6. The results of (6 or 3, 2D) show that no prime higher 
than 7 occurs in g. 

5. The case a7 = 4. If there are non-abelian 7-Sylow intersection groups, 
then (8, Theorem 3.1) yields case (I). We will use (8, Theorem 4.2) to show 
that there are no other possibilities. We assume then that G has no (non-
abelian) 7-Sylow intersection groups. 

By (3, 6A, 6B, 7B) and our assumption about non-abelian 7-Sylow inter­
section groups, we see that the only 7-Sylow intersection groups are P and Z. 
This means that the number of 7-Sylow groups, \G:N(P)\, is congruent to 
1 (mod73). Let this number be T. Certainly H = O7'(G) has T 7-Sylow 
groups also and X\H is primitive by (8, Theorem 4.2). We will therefore 
replace G by H in our discussion and thus assume that Ov (G) = G. Let 
\G\ = g = 74-5°5-3a3-2a2. We can apply (8, Corollaries 4.3 and 4.4) to see 
that ah S 1. 

Suppose that there is an element R in G of order 3 such that R centralizes 
an element of order 7 in P. Since there are no non-trivial 7-Sylow intersection 
groups in G, R must normalize P and so R must normalize P. This means 
that R normalizes A, the unique abelian subgroup of P of order 73. Let 
K = (P, R). Clearly X\K is irreducible and can be written in monomial form. 
The only diagonal matrices are in A by (3, 4F). This means that K/A is 
isomorphic to a subgroup of 57, the symmetric group on 7 elements. There is 
a normal 7-Sylow group. The cycle structure of X{R) considered as a per­
mutation is therefore (abc)(def). Since the eigenvalues of X(Q), Q £ A, 
Q Q Z, have multiplicity at most 2 by (3, 4E), no X(Q) can commute with 
X(R). This means that there are no elements of order 21 in G, and therefore 
by (8, Corollary 4.3), a3 S 4. 

Finally, let T = 5&5-3&3-26*. We have shown that bb ^ 1, b3 ^ 4, b2 è 10. 
There are no values T of this form congruent to 1 (mod 73). In fact, the only 
such values congruent to 1 (mod 72) are 2304 and 540. None of these are 
congruent to 1 (mod 73) as a quick check shows. We have shown that there 
are no further groups with \G\ = 74g0. 

6. The case a7 = 3. In this section we treat the case g = 73 • go. If G has 
a normal 7-Sylow group, we have by (3, § 8) \N(P)\ = 73-s with s|48. This 
gives case (II) of Theorem 4.1. We will show that this is the only possibility. 
The results of (4) apply to G. 

Suppose then that G does not have a normal 7-Sylow group. We can replace 
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G by 07 '(G) and apply (8, Theorems 4.5 and 4.6). Here x on 7'-elements is 
real and thus Theorem 3.1 applies. Let g = 73-5a3-3a3-2a2. Theorem 3.1 shows 
that a5 ^ 2, a3 ^ 5. We know that a2 S 10. We show first that a2 9e 10. 

LEMMA 6.1. The value a2 is not equal to 10. 

Proof. Suppose that a2 = 10 and let P2 be a 2-Sylow group of G. Suppose 
that X\P2 has constituents at most of degree 2. There would be at most 
three such constituents. For each, there is an abelian subgroup of index two 
consisting of diagonal matrices. This means that there is an abelian subgroup 
of order 27, contradicting (3, 3D). This means that there must be an irreducible 
constituent of degree 4. Putting this constituent in monomial form yields a 
subgroup K of index at most 23 consisting of diagonal matrices on this con­
stituent. We see that there must then also be an irreducible constituent of 
degree 2 or there would be an abelian subgroup of order 27. Let X\PZ = 
Y\ © Y2 © F3. Here Y\ is of degree 4, Y2 of degree 2. We have seen that 
Y2(K) must be irreducible or there is an abelian subgroup of order 27. An 
involution Jx in K' H Z(K) has YM = I, Y2{JX) = -I, YZ{JX) = 1. 
There is a subgroup L of order 29 on which Y2 is diagonal. Again Y\(L) must 
be irreducible or there is an abelian subgroup of order 27. This means that 
there is an involution J2 such that Yi(J2) = — 7", Y2(J2) — / , YZ(J2) = 1. 
Let J = JJ2. Clearly J Ç Z(P2), X(J) = - 5 . We see that xxU) = 25. 

Let xx = 1 + y> Clearly y (J) = 24. If y is irreducible, this is impossible 
since (g/\C(J)\) (24/48) is not an algebraic integer. If y is not irreducible by 
(3, §8) we have (3, case II) and y = Z!i=i Xoj* This means that xo;(~0 = 
(24/0-48. Again (g/|C(J)|) (24/48 •*) is not an algebraic integer. This shows 
that a2 < 10. 

We now consider the different possible values T = \G:N(P)\ can have. Let 
T = 5ô5-3&3-26*. We know that b6 ^ 2, 63 è 5, b2 ^ 9. The possible values 
are 28-32, 22-33-5, 2-52, and 29-32-52. We treat each case separately. The 
results of (4) are used for G. They are described explicitly in (3, § 8). We use 
the notation of (3, § 8) along with the numbering of the equations (8.4) to 
(8.7) of (3, §8) . 

Suppose that T = 29-32-52. Let \N(P)/P\ = s. We know that s|48. Also 
\G\ = 73-52-32-29-5. The value 5 is not 1 as in (3, § 8, last paragraph). Since 
210 \ \G\ by Lemma 6.1, wre see that 5 = 3. By Schur's theorem (7), x cannot 
be rational on P 5 . This means that there is a a Ç G(K'/Q[e]), e = e2iri/1 such 
that x y* Xe- By (8, Theorem 4.6) there is a character X2 of degree 48 with 
X2 9^ (x2)(r. Equations (8.6) and (8.7) become 

1 - 48 - 48 + X 0 (16T - Ô) = 0, 

1 + 1 + 1 + 15(7)2 + (T - 5)2 = 4. 

Clearly 7 = 0, —95 — ÔXQ = 0, giving a contradiction. This means that 
T y* 29-32-52. 
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Suppose that T = 28-32. In this case s = 2, 3, 6. If s = 2, equation (8.6) 
becomes 

1 - 48 + (24T - ô)x0 = 0. 

Again (8.7) yields 7 = 0, and we have a contradiction. For the case s = 3, 
y is again 0 and we have 

1 — 48 + te — ôxo = 0. 

One of x2 or x0 must be odd and therefore must be a power 3 r . No power 3 r , 
r ^ 5 is congruent to ± 1 (mod 49). One of x2j xQ must not be divisible by 3 
and so must be a power 2r. However, no power of 2r, r S 9, is congruent to 
± 1 (mod 49). This means that x0 is a power of 2 and a power of 3, giving a 
contradiction. The case 5 = 3 is therefore impossible. If s = 6, we have: 

1 

1 - 48 + £ &«*« + *o(87 - « ) = ( > , 

1 + 1 + Z (è,)2 + 7(T)2 + (7 - 5)2 = 7. 
1 = 3 

Clearly 7 = 0, 6 / = ± 1 , I = 6; or 7 = 0, 63 = ± 2 , / = 3. As above, if 
bi = ± 1 , &iXf cannot be odd. If bz = ± 2 , bzXz cannot be odd. This means 
that ôxo must be odd. One of the xt must then be a power of 2. This is impossible 
if bf = ± 1 . If bd = 2, the only possibility is x2 = b2 = 2, which is impossible 
since P would be in the kernel of X2 by (8.4). I t is also impossible by an 
examination of the linear groups in two variables. This means that T ?± 28 • 32. 

Suppose that T = 2-52 = 50. Again by Schur's theorem (7), x is not 
rational on P\ and so by (8, Theorem 4.6) there are at least two representations 
of degree 48. In particular, 48|g. Also g = 73-2-52-s. We see that 5 = 24 or 48. 
The possibilities for xf and x0 are listed in Table A. 

If s = 48, let bo = 7 — ô. Equations (8.6) and (8.7) become 

; 1 

2 (bt)
2 = 49 and X) &<*< = 0. 

1=0 2=0 

We know that bt = xt = 1 occurs once. I t is clear from Table A that there is 
no other btXi which is odd except bt = xt = 3 and bt = xt = 5. In these cases, 
P is in the kernel of Xi by (8.4), giving a contradiction. This means that 
5 = 48 is impossible. 

We now consider the case 5 = 24. Here we have 

1 

1 + £ & < * < + (27-5)*o = 0. 
i=2 

As in the above paragraph, no btXi can be odd, and thus (27 — d)x0 must be 
odd. The only possibilities are x0 = 25, 7 = è = 1, and Xo =* 75, 7 ^=2, 5 = 1. 
The case ô = — 1 can be discarded by interchanging the exceptional characters. 
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The case x0 = 75, y = 2 is considered first. By checking Table A, it is 
clear that 52 divides all xt except xt = 48 since 96 \ g. The equations become 

i 

1 - 4 8 - 4 8 + ! > « * « + 3-75 = 0, 

4 + 1 + 1 + 1 + 1 + É (bif = 25, 

or 

£ (bt)
2 = 17. 

i=4 

If 48 occurs u more times we have 1 — 48 — 48 — 48w = 0 (mod 52) or 
2u = —5 (mod52). The only solution is u = 10. Let &4 = &5 = . . . = 
6i3 = — 1, x4 = . . . = Xi3 = 48. This leaves Yll^u (bt)

2 = 7 and 

1 - 12-48 + 225 + Y,i-ubtxt = 0. 
This last equation is ]£î=i4Ô*#* = 350. The only possible values of xt re­
maining are 50 and 100. There are two possible solutions: 

(a) 1 + 12-48- ( -1 ) + 50 + 50 + 50 + 2-100 + 3-75 = 0; 
(b) 1 + 12-48- ( - 1 ) + 7-50 + 3-75 = 0. 
Suppose that x0 = 25, 7 = 5 = 1. Again there are twelve degrees 48, as 96 

is again impossible. The equations become 
i i 

J2 btXi = 550 and X) (bt)
2 = 11. 

i=14 z=14 

The remaining degrees are 50, 100, and 150. Solutions are: 
(c) 1 + 12 -48- ( -1 ) + 3-150 + 50 + 50 + 25 = 0; 
(d) 1 + 12-48-(-1) + 50 + 50 + 50 + 2-100 + 2-100 + 25 = 0; 
(e) 1 + 12-48-(-1) + 2-100 + 7-50 + 25 = 0; 
(f) 1 + 1 2 - 4 8 - ( - l ) + 11-50 + 2 5 = 0. 
In each of these cases, 

(49)2 + É (**)2 + 2(*0)2 = 72-52-3-24, 

and thus there are no more characters in G/Z. In each case, the only possibility 
for the degree equation of ^o(3) is 1 + 49 = 50 as a quick inspection shows. 
If 7T is a 3-element and X3 is the character of degree 50 in B0(3), x* the character 
of degree 72, we have 

X3(TT) = - 1 , X * W = 1. 

If there is an element R of order 15 or 10 in G, all characters are 0 on R 
except 1 and x*- This implies that x*C^) = —1/49, a contradiction. There 
are no elements of order 7 -5 in G by (3, 4F). We see that if IT is of order 5 in G 
contained in the 5-Sylow group P5 , then C(T) = P 5 X Z. The results of (4) 
can be applied to both P 5 in G and P 5 in G. We apply them first for P 5 in G. 
Let 5* = N(P5)/C(P5),t* = 24/5*. By Sylow's theorem, 72-3-24 = s* (mod 5). 
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Since s*|24, we have s* = 2 or 12. U s = 12, two of the characters of degree 48 
are exceptional, the rest ordinary. However, 10-(2)2 > 13, giving a contra­
diction. This means that s* — 2. The degree equation must be 

1 + 48 - 49 = 0. 

We now apply the results of (4) to P5 in G. Here C = C(P5) = P*> X Z, 
H = N(Pi), \H\ = 52 -7 -2, and Z G Z(H). We use the notation of (4). By 
(4, Theorem 3A), the characters 6a are the seven linear characters of Z. In 
each case, \F{Ba):C\ = 2 = sa, ra = \H:F(6a)\ = 1. Furthermore, 52 - 1 = 
co-2 = 12-2. Here F(6a) is the inertial group of 6a in i?. Suppose that x is in 
J3(0«). This yields £ « (&f)

2 + (12 - l)(&«(a))2 + (6« - e<*)2 = 3. Clearly 
6a(«) = 0. Furthermore, (ôi)2 + (62)

2 + (e«)2 = 3, |6*| = |€a | = 1. This means 
that degx" = &< (mod 25) and deg xf = 2-e« (mod 25) by (4, 4H). None 
of these can be 7 and so there is a contradiction. This eliminates the case 
T = 52-2. 

The final case is T = 22-33-5. The possibilities for xu x0 are listed in 
Table B. The cases bt = xt are impossible since P must be in the kernel of xt 
by (8.4). Thus, in particular, bt = 3 = xt and bt = 5 = xt need not be 
considered. We distinguish the cases of different s. 

(1) 5 = 2, £ = 24. Clearly y = 0. We have x0 = 2d (mod 72). From 
Table B, x0 and x2 are even, and therefore 1 + b2x2 — ôx0 5e 0. 

(2) s = 3, t = 16. Again 7 = 0. This time x0 = 35 (mod 72). Again x0 and 
xt are even unless x0 = 3. The simple linear groups of degree 3 are known 
and do not have order \G\. 

(3) 5 = 4, t = 12. Here y = 0, x0 = U (mod 72). The only possible odd 
degree is x0 = 45. Here |G| = 72-5-33-24. All xoj are equal on all elements 
commuting with elements of P 3 as there are no elements of order 21 in G 
(3, § 8). This means that all xoj are in the same 3-block. However, this is 
impossible since the defect group is cyclic of order 3. 

(4) s = 6, £ = 8. Again 7 = 0. The only possibilities for non-trivial x0, xt 

are even and so this case is impossible. 
(5) s = 8, t = 6. Here |Y| ^ 1. The only possibility for xu Xoj to be odd is 

xQ
j = 9. Again, the x0

j are all in one 3-block of defect 1, giving a contradiction. 
(6) s = 12, t = 4. Here \y\ ^ 1 as 3-4 + 1 + 1 ' + . . . > 13. The only 

possibilities for odd xu x0 are 135 and 405. Here |G| = 72-5-34-24. A character 
of degree 135 is of 3-defect 1. They must all be in the same 3-block, giving a 
contradiction. If x0 = 405, 4-(405)2 > 72-5-34-24, giving a contradiction. 

(7) 5 = 16, / = 3. Here 7 =" 2 since 9-2 + . . . > 17. There are no odd 
possibilities for biXt or (37 — 8)x0 and therefore this case is impossible. 

(8) s = 24, t = 2. The only possibility for odd xu x0
j is x0

j = 27. Here, 
two characters of degree 27 would be in the same 3-block. However, the 
defect group is of order 3 and implies a third character of degree 27. This 
third character would lie in B0(7) for G and must be non-exceptional. This is 
impossible. 
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(9) 5 = 48, t = 1. Since t = 1, there is no difference between exceptional 
and non-exceptional characters. None of the btXi are odd and therefore this 
case is impossible. 

This completes all cases and proves the theorem. 

TABLE A 

T = 50, |G| = 73 • s • 50 

x = (72 • 52 . 2 . 48)1/2
 = 7 • 5 • 10 = 350, x|52 • 3 • 25, 

x = ± 1 , 1, 50, 48, 
x = ±2, 2, 100, 96 (96 is impossible if s = 24), 
x s ±3 , 3, 150, 
x = ±4, 4, 200. 

There are no further odd possibilities except 5, 15, 25, 75. 

TABLE B 

T = 5 • 33 • 22, |G| = 73 • s • T 

x = 7 • 32 • 23 • V 5 ^ 1160, *|5 • 34 • 26, 
x = ± 1 , 1, 540 = 5 • 33 • 22, 48, 
* = ± 2 , 2, 1080 = 5 • 33 • 23, 96, 
x s ± 3 , 3, 144, 
x s ± 4 , 4, 45, 192, 26 • 3, 
x s ± 5 , 5, 54, 240 = 5 • 3 • 24. 

There are no further odd possibilities except 
9, 135, 405, 27, 81, 15. Here 135 = - 1 2 , 
405 = 13, 27 = - 2 2 , 81 = - 1 7 , and 15 = 
15 (mod 72). 
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