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1. Introduction. Let the genus of an orientable 2-manifold M be denoted 
by y(M). The genus, 7(G), of a graph G is then the smallest of the numbers 
7(iV) for orientable 2-manifolds N in which G can be embedded. An embedding 
of G in M is called minimal if 7(G) = y(M). When each component of the 
complement of G in M is an open 2-cell, the embedding of G in M is called a 
2-cell embedding. In (3), J. W. T. Youngs has shown that each minimal embed­
ding is a 2-cell embedding. It follows from the results of (3) that for each graph 
G, there is a number d(G), called the regional number, such that for any 2-cell 
embedding of G in an orientable 2-manifold, the number of (2-cell) comple­
mentary domains of G is <d(G), with equality holding if and only if the 
embedding is minimal. 

The purpose of this paper is to study the relationship of the 1-dimensional 
Betti number /3(G) to the genus and regional number. The classical Kuratowski 
skew curves i£3)3 and K$ have Betti numbers 4 and 6 respectively. It follows 
from Kuratowski's characterization of planar graphs that if a graph G is 
non-planar (i.e. 7(G) > 1), then /3(G) > 4. It is the author's conjecture that 
this fact can be generalized to the following statement. 

CONJECTURE. If y(G) = n, then /3(G) > 4w. The irreducible graphs described 
in (4) show that equality may hold in the above. 

Simple Euler characteristic considerations yield 

(1) d(G) = 1+/3(G) - 2 7 ( G ) . 

Equation (1) and the fact that d(G) is positive imply that if 7(G) = n, then 
/3(G) > 2n. Several results are obtained that improve upon the value 2n in 
the direction of establishing the above conjecture. Note also that (1) implies 
the equivalence of the above conjecture to the following statement: If 
7(G) = n, then d(G) > 2w + 1. 

The primary tool is contained in Theorem 3.1. Here a sufficient condition 
for the non-minimality of a 2-cell embedding is given and a procedure, called 
a reduction, is described for transforming such a non-minimal embedding into 
a 2-cell embedding of the same graph in an orientable 2-manifold of lower 
genus. 
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All graphs considered will be finite, connected graphs without loops or 
multiple edges. The term 2-manifold will always mean a compact, closed, 
orientable 2-manifold. The notation G(M) will denote an embedding of the 
graph G in the 2-manifold M as well as the geometric realization of G in M. 

2. Edmonds' embedding technique. The reduction procedure mentioned 
in the Introduction is given in terms of a technique for obtaining all 2-cell 
embeddings of a given graph G due to J. R. Edmonds (2) and described in 
detail in (3, p. 313). Briefly, for each vertex x of G one chooses a cyclic per­
mutation Tx on the set V(x) of all vertices of G adjacent to x. (For simplicity, 
we assume that G has no points of order 1.) Each choice of a set of such per­
mutations, one for each vertex of G, determines a 2-cell embedding of G as 
follows. A transformation T(W) = Wis defined on the set of all ordered pairs 
of adjacent vertices of G by T((x, y)) = (y, Ty(x)). The pairs of a given orbit 
of T can be identified with the edges of some regular polygon. Performing 
identifications on the edges of the polygons thus associated with the orbits of T, 
one obtains an orientable 2-manifold M with the edges of the polygons yielding 
a 2-cell embedding G(M). It is part of the Edmonds result that for a given 
2-cell embedding G(M), each orientation on M induces a set of permutations 
that determine the embedding in question. 

(abc...) will denote the cyclic permutation that sends a into b, b into c, etc. 

3. Reduction of an embedding. The reduction procedure mentioned in 
the Introduction is described in the following theorem. 

3.1. THEOREM. Let G(M) be an arbitrary 2-cell embedding of a finite connected 
graph G in an orientable 2-manifold M with given orientation r. Let T(W) = W 
be the transformation on the set W of all ordered pairs of adjacent vertices of G 
associated with G (M) and r. If T has an orbit R of the form 

(b,y), ... , (a, b), (6, c), . . . , (d, b)(b,a), . . . , ( * , b), 

where c ^ d} then there exists a 2-cell embedding of G in an orientable 2-manifold 
of genus y(M) — 1. 

Proof. The cyclic permutation on V(b) associated with T(W) = W has the 
form Tb = (dac. . .xy. . .) . Let T\ = (dc. . .xay. . .) (c j* d, but we may have 
c = x and y = d). Let T' (W) = W be the transformation determined by the 
permutations associated with T with Tb replaced by T\. The orbits of T' are 
those of T with R replaced by three new orbits of the form 

(b,y), . . . , (a, b); (b, c), . . . , (d, b); and (b, a), . . . , (x, b). 

If G(N) is the 2-cell embedding determined by V', then the number of com­
ponents of N — G(N) exceeds that of M — G (M) by two and it follows from 
(1) that y(N) = y(M) - 1. 
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Definition. The procedure of 3.1 for transforming a given 2-cell embedding 
G(M) by altering the permutation Tb and "splitting" one orbit into three 
distinct orbits (thus replacing one open 2-cell by three new ones) will be called 
a reduction of G (M) at b. 

It can be shown that shifting a single symbol in one permutation Tb as in 
3.1 will increase or decrease the number of orbits of T by two, or leave this 
number unchanged, depending on the arrangement of the pairs involving b 
among the orbits of T. Since the set of permutations associated with a given 
2-cell embedding can be transformed into the set of permutations associated 
with any other 2-cell embedding of the same graph by a finite sequence of such 
alterations, one has 

3.2. THEOREM. If there exist 2-cell embeddings of the graph G in orientable 
2-manifolds of genera m and n, then for any integer k, m < k < n, there exists 
a 2-cell embedding of G in the orientable 2-manifold of genus k. 

Proof. LetG(M) be an arbitrary 2-cell embedding of a finite connected graph 
G in an orientable 2-manifold M with given orientation r. Let the cyclic 
permutations Tx and the transformation T(W) = W associated with G(M) 
and r be as described in the Introduction. Let q denote the number of orbits 
of T. Suppose that for some vertex b of G, Tb has the form (dac. . .xy. . .) where 
c 9e d. Let V be the subset of W consisting of the ordered pairs 

(d, b), (b, a), (a, 6), (6, c), (x, b), and {b} y). 

By the definition of T we have T((d,b)) = {b,a), T((a, b)) = (b,c), and 
T((x, b)) = (6, y). Thus the pair (d, b) is followed by (b, a) in some orbit of 
T. Similarly (a, b) is followed by (b, c) in some orbit and (x, b) is followed by 
(b,y). If T'(W) = W is the transformation obtained by replacing Tb by 
T\ = (dc. . .xay. . .), any orbit of T not containing a pair of V will also be an 
orbit of r . 

The possible distributions of the pairs of V among the orbits of T determine 
the following three cases. 

(i) Suppose all of the pairs of V appear in a single orbit Roi T.lî R has the 
form of the orbit described in Theorem 3.1, then, as was shown in the proof 
of that theorem, R is replaced by three new orbits when T is replaced by T'. 
The other orbits of T' are then precisely the remaining q — 1 orbits of T. 
Therefore T' has q + 2 orbits in all. The other possible arrangement of the 
pairs of V in R is as follows: 

(b,y), . . . , (d, ô), (6, a), . . . , (a, b), (b,c), . . . , (x, b). 

In this case the orbits of T' are the q — 1 orbits of T other than R, and a new 
orbit Rf that contains all of the pairs in R (although in a different order). 
In this case T' has q orbits. 

(ii) Suppose T has two orbits, R and 5, with R containing four of the pairs 
of F and 5 containing the remaining two. In this case the orbits of Tr are those 
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of T with R and S being replaced by two orbits Rf and Sf where two of the 
pairs of V are in R' and the remaining pairs of V are in Sf. In this case T' has 
q orbits. 

(iii) The only remaining possibility is that T has orbits R, S, and U with 
(d, b) followed by (b, a) in R, (a, b) by (b, c) in S, and (x, b) by (b, y) in U. In 
this case R, S, and U are replaced in T' by a single orbit of the form 

(b,y), . . . , (x,b), (b, a), . . . , (d, 6), (ô, c), . . . , (a, b) 

containing each of the ordered pairs appearing in R, S, or U. The remaining 
orbits of T' are the other q — 3 orbits of 7\ In this case V has g — 2 orbits. 

In general the number of orbits of T' will be q — 2, g, or g + 2. If G (TV) is 
the embedding induced by 7"', we have by (1), y(N) = y(M) — 1, y(M), or 
y(M) + 1. 

Thus shifting a single symbol in one permutation Tb will change the genus 
of the induced 2-manifold by at most one. The desired result now follows by 
observing that the cyclic permutations associated with a given 2-cell embedding 
can be transformed into the set of permutations associated with any other 
2-cell embedding of the same graph by a finite sequence of such alterations. 

4, The Betti number. Applying the reduction procedure one obtains 

4.1. THEOREM. For G an arbitrary finite connected graph, d(G) = 1 if and only 
if KG) = 0 . 

Proof. If 13(G) = 0, it follows that y(G) = 0, and hence by (1), that 
d(G) = 1. 

Suppose that d(G) = 1 and /3(G) > 0. We may then assume that G has no 
points of order one. Let G(M) be a minimal embedding of G with an orientation 
r chosen for M. The transformation T(W) = ^associated with G(M) and r 
has a single orbit R. Since G has no points of order 1, there exists a pair (a, b) 
for which 

(i) R is of the form (a, b)y T(a, b), . . . , Tm~Y{a, b) for some positive 
integer m ; 

(ii) Tk(a} b) = (b, a) for some integer k(S < k < m — 3); and 
(iii) if (x, y) = Tl{a, b) for i < k, then (y, x) = Tj(a, b) for some j , 

k < j < m. 
Letting T(a, b) = (b, c) and T1c~1(a1 b) = (d, b) we have c 9^ d by (iii). 

Also by (iii), we have (c, b) = T^a, b) for some i, k < i < m. Thus the 
embedding G (M) can be reduced at b, contradicting d(G) = 1. Hence/3(G) = 0. 

4.2. LEMMA. Let G(M) be a minimal embedding of a finite connected graph G 
with d(G) = 2. If each edge of G lies entirely in the boundary of each of the two 
components of M — G (M), then G is a simple closed curve and M is a 2-sphere. 

Proof. Let G(M) be as above. G has no points of order 1. Let an orientation r 
be chosen for M. Denote the orbits of the transformation T(W) = Wassociated 
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with G(M) and r by R\ and R2. Let (b, a) be a pair of R±. ((a, b) is then in R2.) 
Let 

r ( 6 , a) = (a, c), T - 1 (a, 5) = (e, a ) , T~i(b, a) = (y, b), 
and 

T(a,b) = (b,x). 

Suppose t ha t 13(G) > 1. (d(G) = 2 implies /3(G) ^ 0.) We may assume, 
therefore, t h a t c ^ e and x 9^ y. Let T~x(b, y) = (w, b) in R2. Since (x, &) is in 
Ri, w 9e x. Replacing Ta = (debc. . .) by T'a = (d6ec. . .) and Tb = (wyaxb. . .) 
by T\ = (wyxab. . .) one obtains a new transformation having two orbits, one 
of which can be reduced a t b. This contradicts d(G) = 2. Thus /3(G) = 1. 
Since G has no points of order 1, G is a simple closed curve and by (1) M is a 
2-sphere. 

This lemma enables us to take the results of 4.1 one step further. 

4.3. T H E O R E M . For an arbitrary finite connected graph G,d(G) = 2 if and only if 

(KG) = 1. 

Proof. If /3(G) = 1, it follows t ha t y(G) = 0, and hence by (1), t h a t 
d(G) = 2. 

Suppose d(G) = 2. I t follows t ha t /3(G) > 0. Assume G has no points of 
order 1. Let G (M) be a minimal embedding and T(W) = PFthe transformation 
associated with G(M) and some orientation for M. Denote the orbi ts of T by 
Ri and R2. Assume there exists a pair (a, 5) such t ha t (a, b) and (b, a) are 
both in R2. We may then choose an (a, 5) for which T(b, a) = (a, x) is in R2 

and (x, a) is in i?i. Let N denote the numbers of ordered pairs in R2. We may 
choose a pair (r, 5) in i?2 such t ha t 

(i) Th(a, b) = (bj a) for some integer k < N\ 
(ii) Tm(a, b) = (r, 5) and Tn(a, b) = (5, r) for some integers m and n 

with 0 < m < n < &; and 
(hi) if (e,f) = r*(a , b) for some i (m < i < n)} then either (/, e) is in i?i 

or (f, e) = Tj(a, b) for some j (0 < j < m or n < j < N). 
Lett ing T(r, s) = (s, £) and T~1(s,r) = (u,s), we have w ^ t by (iii). 

5 is not an element of any pair of the form Ti(a1 b) where n < i < N or 
0 < i < m, for otherwise we could reduce G(M) a t s. By (iii) the ordered pair 
(t, s) does not occur "between" (r, s) and (s, r ) . Thus (£, 5) is in Ri. 

Replacing Ta = (dbxc. . .) by T'a = (dxbc. . . ) , the orbits Ri and i?2 are 
replaced by new orbits R\ and R'\ where R'\ can be reduced a t s, contradict ing 
d(G) = 2. 

T h u s there exists no pair (a, b) with both (a, b) and (b, a) in R2 (or both in 
JRI) . By (1) we have /3(G) = 1. 

The results of 4.1 and 4.3 together with equation (1) yield the following 
corollaries. 
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4.3.1. COROLLARY. Let G be an arbitrary finite connected graph. If G(M) is 
an embedding of G in an orientable 2-manifold M such that M — G (M) has at 
most two components, then either M is a 2-sphere (and G is a planar graph) or 
G (M) fails to be a minimal embedding. 

4.3.2. COROLLARY. If the finite connected graph G has genus n > 0, then 
0(G) >2n + 2. 

As an application of these results we have the irreducibility of the non-
planar Kuratowski graph Kz,z, i.e. the 3 X 3 bipartite graph; cf. (4). For if G 
is the graph obtained by deleting any single edge of KZiZ, then /3(G) = 3. 
Any 2-cell embedding of G in the torus has just two complementary domains 
and such an embedding is not minimal. 

5. Conclusion. For any 2-cell embedding G(M) for which there are two or 
more complementary domains, it is possible to order the complementary 
domains so that for each one, other than the first, there is a boundary edge 
that is contained entirely in the boundary of some preceding domain. By 
deleting one such edge for each complementary domain, one obtains a subgraph 
K of G whose complement in M consists of exactly one open 2-cell. By (1), 
(3(K) = 2n. Thus each minimal embedding G(M) of a non-planar graph G 
may be thought of as an embedding of a subgraph K of G with /3(K) = 2n and 
such that the complement of K in M is connected, together with at least two 
additional edges of G, each having its end points in K. The relationship of 
/3(G) to T ( G ) conjectured in the Introduction would imply that the number 
of edges of G — K is actually at least 2n. 

It would be sufficient to prove this conjecture for the set of all w-irreducible 
graphs for each positive integer n. By (1, 4), the conjecture does hold for all 
of the known irreducible graphs, but the task of finding all of these special 
graphs is far from complete and a direct attack on the Betti number problem, 
although difficult, seems to be the most promising. 
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