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A note on a paper of E.R. Love

F. Feher

Applying a new and very elegant method of proof of the

Schur-Hardy inequality, given by E.R. Love a t the Oberwolfach

conference on Linear Spaces and Approximation (1977), norm

estimates of integral operators with homogeneous kernels are

established in the set t ing of abstract function norms.

Applications to F l e t t ' s inequality, to integral means, and to

fractional integrals are given.

Let p denote a function norm on the set f((0, °°)) of all non-

negative, Lebesgue measurable functions on (0, °°) , that is, a mapping

p : P((0, °°)) -»• [0, °°] with the properties that, for all f, g € P ,

(i) p(f) = 0 if and only if f = 0 almost everywhere,

p(X/) = Xp(/) (X > 0); p(f+g) < p(f) + p(g) ;

( i i ) f-g almost everywhere only i f p(/) 5 p(g) .

The space L of a l l measurable, rea l valued functions / with

11/11 : = P( \f\) < °° > functions which coincide almost everywhere being

identif ied, i s called the normed Kothe space generated by p , see [ 9 ,

p. 1+2]. The operator norm on L of the d i la t ion operator E , defined

by [E f){t) = fist) , s, t > 0 , i s called the indicator function h(s)

of LP , that i s , h(s) := \\E || . If ||«|| i s , in par t icular , the
S [£P] P

Lebesgue norm ||«|| , 1 5 q < °° , then h{s) = s~ ^ .

In the sequel let K(t, s) denote a nonnegative, measurable function
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68 F. Feher

of t, s > 0 , and let X be the operator defined by

.00

(1) (Kf)(t) = K(t, s)f(s)ds [t > 0, f Z LP) .
J0

THEOREM 1. Let K(t, s) be homogeneous of degree y , where

Y 2 -1 , such that

f°° /
A := K(l, s)s~a+y)h(s)ds < oo

J 0

and i')1+yf € LP . Then, if L9 is complete, Kf £ Lp , and

(2) 1 + Y

Proof. By the homogeneity of the kernel K(t, s) one has, with

s = tu ,

,00

\(Kf)(t)\ 5 K{t, tu)\fitu)\tdu
J0

= J Kil, u)t1+y\{Ej)it)\du

Kil, du .
'0

Now (2) follows on account of the monotonicity of p and the completeness

of LP .

This is essent ia l ly the method of proof of Love [£, Theorem 1.2].

That theorem follows from our Theorem 1 by taking y = -1 and

||-|| = | | ' | | 5 1 S <j < «° , (the Lebesgue norm), namely

COROLLARY 2 (Schur-Hardy inequali ty) . Let Kit, s) be homogeneous

of degree -1 such that

.CO

= Kil, s)s~1/qds < <° ,
•'0

and f € L . Then Kf € L and

(3) W\\q 2 Aq\\f\\q •

https://doi.org/10.1017/S0004972700008455 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700008455


On a p a p e r o f E.R. Love 69

A slightly modified version of Theorem 1 is possible if one proceeds

as follows: if f* denotes the nonincreasing rearrangement of f (for

definition, see for example 141), and f**(t) := il/t) f*(s)ds , then

f*(t) £ f**(t) , and [Euf)*{t) = [Euf*)(t) . Therefore

f K(l, u)\{E f]{t)\du
Jo

 u

r00

K*(l, u){E f*)(t)du
Jo "

yielding

THEOREM 1*. J / # ( t , s) i s homogeneous of degree y , where

Y - -1 , such that

A* := K*(l, s)s~(1+y'h(s)ds < oo j

h

and f a measurable function on ( 0 , °°) wit?j ( • ) '/"** f L P J then

Kf € Lp

(2*)

Hote that Theorem 1* as well as Theorem 1 include in particular the

cases when | |# | | is the Lebesgue, Lorentz, or Orlicz norm, respectively.

In the Lebesgue case, for instance, Theorem 1* reduces to

COROLLARY 2*. Let y > - 1 , 1 < q < » , and p := q/[l+q(l+y)) .

If K(t, s ) is homogeneous of degree y such that

A* := r
1 J0

f i L (equals the Lorentz space, see [4]), then Kf € L and

(3*) W\\q 5
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Evidently Corollary 2* implies [S, Theorem 2.1] by replacing y by

-r'1 , and observing that ||-| | < (p/(p-l)) ||»|| for 1 < p £ q . Our

constant A* is different from that of [S], since on the right hand side

of (3*) the Lorentz norm is used instead of the Lebesgue norm. A simple

computation shows, however, that the constant C of [£] can be estimated

by C 2 A*/r . Indeed (note that r > l) :
<7

C := \\K(1, s)s-1/q\\r - \\KHl, s)s-1/q\\r = | |K*(1, s)s-l/q\\*rr

where | | ' | |* denotes the modified Lorentz norm with f** replaced by

f* • ?q

REMARK. I t i s well known that the K-functional of Peetre with

respect to the spaces L and L^ , namely

f- L Lj := inflll/Jl^til^ll^ : f =

can be expressed in terms of f* . Indeed,

f
Therefore the assertion of Theorem 1* remains valid if (2*) is replaced by

tt
K(t, f; L Lj = f*(s)ds = */**(*) .

-1- Jn

||

With the notations of [5], in particular y = -9 , 6 5 1 , and

Theorem 1* can be reformulated in the language of interpolation theory as

follows. '

COROLLARY 3*. Under the assumptions of Theorem 1* the operator K is

a bounded operator from the interpolation space [L , £ J of L
J- —Y>P»li -J-

and L into the space Lp such that {h*) holds.

Here recall that
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(V LJ-y,p;K ::

Finally let us discuss some applications of the above theorems to

special kernels. As a first example, consider the average operator Pa ,

9 > 0 (see Boyd [2]), defined by

ft f * o i
[PRfl(t) := t"° s"-±f(s)ds (t > 0) .

D J0

This operator is obviously of type (l) with kernel

X/Q ,\ denoting the characteristic function of the interval (0, t) .

Since this kernel is homogeneous of degree y = -1 , Theorem 1 yields that

(5) "VHp-V^'p fr € L^ '
if

(6) Aa := [ s&~1h(8)ds < oo .

In par t icu lar , if 9 = 1 and ||«|| = ||-|| , q > 1 , then (5) reduces

to the c lass ica l Hardy inequality (see [7, p. 2^0] or [3] and the

l i t e r a tu r e quoted there) . For the case of Lorentz norms see also 1101.

More generally, if ||*|| i s a rearrangement-invariant norm - for

definit ion see, for example, [2 ] , [5] - then (5) is precisely the

generalized Hardy inequality in the set t ing of rearrangement-invariant

norms, as established in Butzer and Feher [3] . Let us also mention that

the constant Aa of (6) i s identical with that of [3] ; therefore (6) i su

equivalent to the index condition a < 9 , where a denotes the upper

index of p , that is to say,

a = inf (-log 7z(s)/log s)
0<s<i

(compare [5]) .

As a second example one might consider the modified operator of

fractional integration M-i , X > 0 , defined by (see
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: = t~X | {t^{l~ f(s)ds it > 0) .

As the kernel of this operator is again homogeneous of degree -1 ,

Theorems 1 and 1*, as well as the above corollaries, immediately apply to

this operator.

If, in particular, | | - | | p = INI , 1 £ p, q < <» , then his) = s"1 / p

and Theorem 1, for example, asserts that for p > 1 ,

Similarly, Flett's inequality [6 ] , namely,

( 8 ) | | ( - r B ~ l A ? V | S c o n s t . | | ( - ) " 6 " 1 / P / | | ( 3 > - D ,

is easily obtained from Corollary 2* (if i4* < °° , p > 1 ) by taking

x ( t ' s ) =xi0^s)t-x-&-1^it-s)x-1sB+1/P/rM

and replacing f (s) by s~®~lpfis) (see [S] ) .

If one chooses ||«|| = ||*|| , then Corollary 2* implies a generalized

version of F l e t t ' s inequality with respect to Lorentz norms (compare [77]).

A very important example of an integral operator the kernel of which

is homogeneous of degree y > -1 is the operator J, of fractional
A

integration of order X > 0 , in the sense of Riemann-Liouville, defined by

[Ixf}it) := j ^ y j it-s)X-1f(s)ds (t > 0) .

Since the kernel of J, is homogeneous of degree y = ^ - 1 » Corollary 2*
A

yields

COROLLARY 4*. Assume that 1 < q < °° , 0 < A < 1-1/q , and

p := q/il+Xq) . If f £ L , then If i L and
p A q

(a) M7- fii < _e_ r d - x - i / q )
t 9 ; "•'x^1^ - p - i ( / )

This corollary is in accordance with [7, Theorem 383]. The proof in
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[7] does not furnish any value of the constant in (9), although rather deep

results are used in the proof. In contrast to the very elegant method of

proof of Love, the usual way of establishing (9) makes appeal to inter-

polation theory (in particular to the Marcinkievicz interpolation theorem),

a fact which now seems understandable, if one recal ls Corollary 3*.

In case of Lorentz norms there exist quite different proofs for the

boundedness of the operator I, (compare [73]) using theorems of

A

multiplication and of convolution for Lorentz norms. This boundedness

result, namely (compare [J3, Proposition h with n - 1])

(10) < const. || (
pq rCPO

with l / p n
 = l/p + A - (a+6) and <? 5 g , can be deduced from Theorem 1

by taking ||-|| = \\'\\ > K t n e operator ( l ) with kernel

K(t, s) = X/n + ^ s ) t (t-s) s /T(X) , and replacing f(s) by s / ( s ) .

Indeed, the left side of (10) is equal to

\(-)-\f\\ II
en

= A\\(.)1 P°~1 P(-)af\\ = ABM-)af\L a^
AB^TT IK-)a/IL _

with A = r(l-X-l/<7+B)/r(l-l/<7+6) . Here use was made of the

multiplication theorem for Lorentz norms (compare [?]), namely

where 1/p = l / p 0 + 1/p-, , and B i s a suitable constant, as for example

B = {p/pn) p/(p-l) . For the particular case p = q of (10), that

is the Lebesgue case, see for example [12].
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