ON THE HOMOTOPY-COMMUTATIVITY OF
LOOP-SPACES AND SUSPENSIONS

C. S. HOO

Introduction. Let X be a space. We are interested in the homotopy-
commutativity of the loop-space X and the suspension ZX, that is, in the
question whether or not nil X = 1, conil X = 1, respectively. Let ¢: 2X X QX
— X, ¢': 2X — ZX V ZX be the commutator and co-commutator maps,
respectively. Then nil X < 1if and only if ¢ ~ *, and conil X < 1 if and only
if ¢/ >~ Our aim in this paper is to obtain factorizations ¢ >~ fifs. .. fu,
¢ ~gigs...g, of ¢, ¢ as compositions of various maps, or alternatively,
factorizations of the adjoints of ¢, ¢’. This will then give us conditions for
nil X = 1, conil X = 1, namely, whenever some combination of the factors in
the compositions is null-homotopic. We take this idea and ring various changes
on it. The maps in the compositions will be constructed from ¢, ¢’ and various
standard maps. We shall use the Hopf and co-Hopf constructions liberally,
and they will be defined briefly below in order to make this paper relatively
independent of others. This paper is motivated by Theorems 3.1 and 4.1 of (3),
but we shall not be using any explicit results from that paper.

In Theorem 1 we give a factorization of ¢, while in Theorems 2 and 3 we
give factorizations of the adjoint of ¢. In the dual situation, Theorem 4 gives a
factorization of ¢/, while Theorems 5 and 6 give factorizations of the adjoint of
¢’'. We work in the category of spaces with base point and having the homotopy
type of countable CW-complexes. For simplicity, we shall frequently use the
same symbol for a map and its homotopy class. Part of this work was done
while the author was a Fellow of the Summer Research Institute of the
Canadian Mathematical Congress in 1967.

1. Let 4 and B be spaces. We can consider

AbBLAvVvBLAXB

as a fibration, where j is the usual inclusion and 4 b B is the flat product. Then
we can find a map x: 2(4 X B) —» Q(4 V B) such that (2j)x >~ lacaxs. In
fact, we can and shall take x = Q(14p4) + Q(¢zp35), where p, and pp are the
projections of 4 X B onto the factors, and 2,: A - A V B, 13: B—A V B
are the obvious inclusions. The exact sequence of the fibration now shows that
()+ is a monomorphism, and that there exists a unique element [g] €
[@(4V B), @(4 b B)] such that lgayn = (Q)g + x(27).
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Now, for any space X and a map f: X — 4 V B, we can form the map
H(f) = g@f): @X — Q(4 b B). We shall call this the co-Hopf construction.
The element [H (f)] is the unique element of [QX, Q(4 b B)] satisfying [2f] =
Q) «H)] + xQUN] = Q)«[H()] + [Q@amaf)] + [Q@srsf)], where 4
AV B— A, mp: A V B — B are induced by the projections.

We now define the Hopf construction. We consider

AvBLaxBLAAB

as a co-fibration, where 4 A B is the smash product. In a fashion dual to the
above, we show that there exists a map p: (4 X B) — =(4 V B) such that
p(27) =~ lscavm- Infact,let py, po: 4 X B— A V B be defined by p1 = i4p4,
ps = igpp. Then we can and shall take p = V(Zp: V Zps)¢’, where ¢':
3(4 X B) > Z(4 X B) V Z(4 X B) is the usual suspension structure, and
V is the folding map. The exact sequence of the co-fibration now shows that
(Z¢)* is a monomorphism. As above, we see that there exists a unique element
[d] € [2(4 A B), 2(4 X B)]satistying lyaxs = @(2g) + (Zj)p = d(Z¢) +
2(jp1) + Z(p2)-

Given a space X and a map f: 4 X B— X, we can now define J(f) =
(Zf)d: Z2(4 N B) — 2X. We call J(f) the map obtained from f by the Hopf

construction. The element [J(f)] is the unique element satisfying
[2fl = CP*TNT + [ZFDe] = EP*ITND] + [2(fipn] + [2(fip)].

Let us now establish some standard notation. Given spaces X, ¥, we have
a bijection 7: [2X, Y] — [X, QY] given by 7(f) (x) (t) = fkx(x, t), where kx:
X X I — ZX is the projection. For any space X, the maps e: 2QX — X,
e: X — QZX shall be those given by 7(e) = lgx, 7(1zx) = €.

Suppose that we are given spaces X;, X.. Consider the projections e:
20X, — X, given by 7(e) = lgx;. Let e, = 71e: 2QX; — X; V X, es = 1qe:
20X, — X1 V X, where 71: X1 — X1 V X, 250 X1 V X, are the inclusions.
Let ¢: QX1 V X)) X QX V X,) — 2(X;: V X,) be the commutator map.
Then we can form ¢ = 77 {c(r(e1) X 7(e2))}: T(QX; X QX,) > X; V Xo. A
simple check shows that if X; = X, = X and V is the folding map, then
Ve = 771(c), where ¢: QX X QX — QX is the commutator map. If we apply
the co-Hopf construction to ¢: Z(2X; X @X.) — X; V X, in the general case,
we obtain a map H(@): QZ(QX; X QX,) - Q(X; b Xs). Let 4: X;:b X,
— X, V X, be the fibre of the inclusion j: X; V X; — X; X X, Then we
have the following lemma.

Proof. H(¢) satisfies Q¢ = (Q)H(E) + Q(41m18) + Q(daws€), where m;:
X1V Xes— Xy, mt X1 V X2 — X, are induced by the projections and 7;:
X1 — X1V Xe, 42: Xo— X1 V X, are the inclusions. Let us consider 7 (7;71¢):
QX X @X, — 2(X:1 V X,). Let ¢: @X; X @X; — QX be the loop multiplica-
tion and p: QX; — QX the loop inverse. Let v1: @X; X X, — QX be the
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projection. Then, a simple check shows that 7(i1mi¢) = (Qi1)d{d(1 X *)A
X ¢(1 X *)Au}Ayi. Since ¢(1 X *)A~1and ¢(1 X u)A =~ %, it follows that
7(i1mié) = 0. Hence, iymié = 0. Similarly, 7.me¢ = 0. Hence, Q¢ = (%) H(¢).

LemMA 2. There exists a map b: Z(QX: X QX.) > X1 b Xy such that
ib = ¢ and Qb = H (), where 1: X1 b Xy — X1 V X is the inclusion.

Proof. Let j: X3 V Xy— X1 X X, be the inclusion. Then we have that
7(j¢): QX1 X 90X, — (X1 X X,). Let K: Q(X; X X2) — QX X QX be the
homeomorphism given by K (I) = (pil, pol), where p; and p, are the projections.
Then K7(j¢) (L, bo) = (p17(j¢) (, L2), por(jé) Iy, 1s)). A simple check shows
that pi7(j6) (I, I2) (£) = ¢{é(1 X *)A X ¢(1 X *)Au}vi(ly, l2)(¢), where vi:
QX; X QX, — QX is the projection and ¢ and u give the loop structure on QX.
Hence, as above, pi7(j¢) >~ *. Similarly, psr(j¢) >~ *. Since K is a homeo-
morphism, it follows that jé = 0. Hence, from the fibration

X, szl*X1 VX2i>X1 X X,

it follows that there exists a map b with 7 = ¢. Thus, we have that (Q7) (@) =
Qc. But by Lemma 1, (2)H(¢) = Q¢. Since ()« is a monomorphism, it
follows that H(¢) = Qb.

TuEOREM 1. ¢ = Q(Vi) (Hé)e': QX X QX — QX, where ¢ is the commutator
map.

Proof. We apply Lemma 1 with X; = X, = X. We have that Q¢ = (Q)H (¢).
Hence, Q(Vé) = Q(Ve)H(¢), where V is the folding map. Since V¢ = 77 1(c)
and Q(r~1(c))e’ = ¢, we have that ¢ = (V¢)e' = Q(Vi)H(¢)e'.

Let us now again consider ¢: Z(QX; X @X,) — X1 V X, in the general case.
We have that 7(¢): 2X; X QX, — Q(X: V X:). The Hopf construction now
yields J(T(é)) 2<QX1 A QXQ) - EQ(Xl V X2) Let q: QXI X QX2~—>QX1
A QX be the projection. Then we have the following lemma.

LemMA 3. Z(7(¢)) = J(7(¢))(Zq) and hence, ¢ = eJ (7(¢)) (Zq).

Proof. The element J(7(¢)) satisfies the relation Z(7(¢)) = J((¢))(2¢)
+ Z(r(@)jp1) + Z(r(€)kps). A simple check shows that 7(¢)jp1 = (Q21)¢{(1
X #)A X ¢(1 X *)Au} Ay; =~ *, where ¢ and u give the loop structure on QX
v1: QX1 X @X, — QX is the projection and #;: X; — X; V X, is the inclusion.
Similarly, 7(¢)jps = 0. Hence, Z(r(¢)) = J(r(¢))(Zq). Since eZ(s(¢)) = ¢,
the second part of the lemma follows easily.

THEOREM 2. 771(c) = VeJ(r(¢))(2q), where c: QX X QX — QX is the
commutator map and e: ZQX V X) — X V X is the standard map.

Proof. We apply Lemma 3 with X; = X, = X to obtain ¢ = eJ(r(¢)) (Z¢q).
Since 7~ !(c) = V¢, the theorem follows.
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Now recall that by Lemma 2, we have a map b: Z(QX; X QX,) - X; b X,
such that b = ¢ Then (@b)e = 7(b): QX; X QX, — (X b X:2). The Hopf
construction yields J(7(0)): 2(QX; A QX,) — ZQ(X, b X5).

LemMA 4. Z(r (b)) = J(r(D))(Zq) and hence, b = eJ(r(D))(Zq).

Proof. J(r(b)) satisfies Z(7(0)) = J(v(0))(Zq) + Z(=(b)jp1) + Z(r(b)jp2).
Let us consider the map 7(b)jp1: QX; X QX — Q(X; b X,). We have that
Q)7 (0)jpy: X, X QX, — Q(X, V X,). Again, a simple check shows that
Q)7 (0)jp1 = (Q1)p{d(1 X *)A X ¢(1 X *)Au}Ay1, where ¢ and u give the
loop structure on ©X; and vi: @X; X QX, — QX; is the projection. Hence,
7Y (Q)7(b)jp1} = 0. Since (Q2)« is a monomorphism, we have that 7(b)jp; =
0. Similarly, 7(b)jp, = 0. Hence, Z(r (b)) = J(())(Zq). The second part of
the lemma follows from the fact that eZ(7(b)) = b.

THEOREM 3. 771(c) = Vie(ZH(E))J(¢')(Zq), where ¢: QX X QX — QX s
the commutator map, ¢': QX X QX - QZ(QX X QX),e: SQX b X) > X p X
are the standard maps, 1: X b X — X V X is theinclusion,and V: X V X — X
is the folding map.

Proof. We apply Lemma 4 with X; = X, = X and obtainb = eJ (r (D)) (Z¢q).
Hence, ¢ = b = 1eJ(r(0))(Zq). But V¢ = 77 1(¢), and hence we have that
77 1c) = Vi = VieJ (7(b))(Zq). But since Qb = H(¢) by Lemma 2, we have
that +(b) = H(¢)e'. Clearly, J(=()) = J(H(@)e') = (ZH(¢))J(¢'). This
proves the theorem.

Remark 1. Let ¢': X1 X X, > QZ(X; X X)), e: ZQ3(X; X X») — 2(X,
X X,) be the usual maps. Then e(2Z¢') = 1ls(x,xx,- This means that if
f: X1 X Xy — Yisamap, then the Hopf construction yields J (f) = (Zf)eJ(¢'):
2(X1 A Xp) — 2. Itis amusing to note the relation (2g)eJ(¢') = ls(x,axy-
Using this we can ‘“‘solve’”’ the equations in Lemmas 3 and 4 to obtain

J(1(€)) = Z(r(€))eJ (¢'), J(r (b)) = Z(r(b))eJ (¢).

2. We now dualize. Since many of the proofs of the results in this section
are exact duals of those in §1, we shall omit most of the details. Suppose that
X1 and X, are given spaces. Let ¢: X; — QZX,; be the standard maps. Let
61/ = e/pli X1 X X2 — QZXl, 62/ = e’PQZ X1 X X2 i QZXz, where 1/)1 and {)2
are the projections. Let ¢/: Z(X; X X3) = 2T (X1 X Xy) V Z(X1 X X,) be
the co-commutator map. Then, we have a map & = #{(+7'(e)’) V 771 (ey"))c'}:
X1 X X2— QX1 V 2X,). A simple check shows that if X; = X, = X,
then ¢’A = r(¢'): X - Q(ZX Vv 2X), where A is the diagonal map and ¢’:
ZX — 2X V 3X is the co-commutator map. The Hopf construction yields a
map J(&'): (X1 A X2) — ZQ(ZX: V ZX.). Dual to Lemma 1, we have the
following lemma.

LeMMmA 5. 2(&) = J(@)(Zq): (X1 X X2) — ZQ(ZX, V ZX,).
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LEMMA 6. There exist maps
(11/: X1 A Xg‘*Q(EXl \V4 ZXz), a': QE(X], A Xz) —-)Q(EXI \V4 EXz)
such that a,’ = a’¢’, ay'q = ¢ and Zay = J(&).

Proof. Consider the co-fibration

X1 VX, i>X1 X X, 1>X1 A Xo.

LetK: 2X; V ZX,— 2(X; V X,) be the obvious homeomorphism. We have
that T_I(é’j)KZ X,V 2X2—> 2X:1V ZX,. Let d)llt X1 —>ZX1 V EXl,
[11’2 EXl—)EXl and ¢2IZ EXg-—)EXz Vv EXZ, [12’! 2X2“>2X2 be the
suspension structures. Let fi = V{V(1 V #)¢)/ V u’ V(I V #)¢i'}¢:/: =X,
— ZXy, fo = V{V(x V 1)gs" V u'V(x V 1)¢s"}¢s': ZX, — ZX,. Then f; >~ *
~ f,. A simple check shows that f; V f» = 771(¢’j)K. Since K is a homeo-
morphism, it follows that ¢’j = 0. From the co-fibration, it follows that there
exists a map a1/: X1 A X2 — Q(2X; V 2X,) such that ¢’ = a,/q. The map o’
can be taken as Q(r—1(a:')). Then, clearly, a’¢’ = Q(+—1(a,’))e’ = a,’. Since
a)'q = &, we have that (Za,)(2q) = Z¢'. Since =¢' = J(¢’)(Zq) by Lemma
5, and since (2¢)* is a monomorphism, it follows that Za, = J(&).

Dual to Theorem 1, we have the following theorem.

THEOREM 4. ¢ = eJ(¢')2(qA): ZX — ZX V ZX, where ¢’ 1is the co-
commutator map.

Let us now again consider ¢': X; X X, = Q(ZX; V ZX,) in the general
case. We have that 771(¢"): Z(X: X X3) — 2X; V ZX,. The co-Hopf
construction vyields a map H(r~1(¢')): QZ(X: X X3) > (X, b =X,).
Hence, we have that (Q)H(r71(¢’)): Q2 (X1 X X2) = Q(ZX: V ZX,).

LeMMA 7. Q(+—1(&")) = (Q)H(+"1(Z")) and hence, &' = (Qu)H (r~1(¢'))e.
Dual to Theorem 2, we have the following theorem.

THEOREM 5. 7(c') = (Q)H(+~1(¢'))e' A, where ¢': TX — ZX V 22X is the
co-commutator map.

Let us now consider the maps @’ and a,’ defined above. We have the following
lemma.

LEMMA 8. o' = (Q)H (v~ (as')) and hence, i/ = (U)H (v~ 1(as))e’.

THEOREM 6. 7(c’) = (W)H(e)Q(J(Z'))eqA, where ¢': ZX — X V ZX s
the co-commutator map,

€ X NX—-Q2(X A X), e: 2Q(ZX V 2X)—> X VX
are the standard maps, and A: X — X X X is the diagonal map.
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Proof. We apply Lemma 8 with X; = X, = X and obtain
ai’ = (Q)H(r7(a1))e.

Hence, ¢ = a/q = (Q)H(r~(a,'))e'q. Since &'A = 7(¢'), we have that
7(c") = Q)H(r(a)))e'qA. Since Za, = J(¢'), we have that eJ(¢') =
e(Zay’) = r1(a,"). Hence, (') = (Q)H (e)Q(J(¢'))e qA.

Remark 2. Let e: ZQ(X; V X,) — X1 V X,
e Q(Xl vV Xg) —%QZQ(Xl vV Xz)

be the standard maps. Then we have that H(e)e': Q(X; V X2) — Q(X; b X,).
Since (Qe)e’ = lgx,vx,, it follows that if f: ¥ — X; V X, is any map, then
the co-Hopf construction vields H(f) = H(e)e' (Qf). We note that we then
have the relation H(e)e' () = lox,xyn. Using this, we can “‘solve’ the
equations in Lemmas 7 and 8 to obtain H(r~1(¢")) = H(e)e'Q(+71(¢")),
H(r'(ay')) = H(e)e'a’ and H(r1(a)'))e = H(e)e'ay .

Remark 3. Our factorizations of ¢’ reflect the well-known result that
conilX = wcatX, where wcat denotes ‘‘weak category’’.
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