
ON THE HOMOTOPY-COMMUTATIVITY OF 
LOOP-SPACES AND SUSPENSIONS 

C. S. HOO 

Introduction, Let X be a space. We are interested in the homotopy-
commutativity of the loop-space ftX and the suspension SX, that is, in the 
question whether or not nilX S 1, conil X S 1, respectively. Let c: QX X &X 
—> QX, d': SX —> SX V SX be the commutator and co-commutator maps, 
respectively. Then nil X ^ 1 if and only if c c^. *, and conil X ^ 1 if and only 
if d o^ *. Our aim in this paper is to obtain factorizations cc^f1f2 . . ,fm, 
d C^L gig2 . . . gn of c, d as compositions of various maps, or alternatively, 
factorizations of the adjoints of c, d. This will then give us conditions for 
nil X ^ 1, conil X ^ 1, namely, whenever some combination of the factors in 
the compositions is null-homotopic. We take this idea and ring various changes 
on it. The maps in the compositions will be constructed from c, d and various 
standard maps. We shall use the Hopf and co-Hopf constructions liberally, 
and they will be denned briefly below in order to make this paper relatively 
independent of others. This paper is motivated by Theorems 3.1 and 4.1 of (3), 
but we shall not be using any explicit results from that paper. 

In Theorem 1 we give a factorization of c, while in Theorems 2 and 3 we 
give factorizations of the adjoint of c. In the dual situation, Theorem 4 gives a 
factorization of d, while Theorems 5 and 6 give factorizations of the adjoint of 
d. We work in the category of spaces with base point and having the homotopy 
type of countable CW-complexes. For simplicity, we shall frequently use the 
same symbol for a map and its homotopy class. Part of this work was done 
while the author was a Fellow of the Summer Research Institute of the 
Canadian Mathematical Congress in 1967. 

1. Let A and B be spaces. We can consider 

A \?B-^A V B^A XB 

as a fibration, where j is the usual inclusion and A \? B is the flat product. Then 
we can find a map x> ®(A X B) —» to (A V B) such that (toj)x — IQUXB). In 
fact, we can and shall take % = ^(^APA) + ^ ( ^ s ) , where pA and pB are the 
projections of A X B onto the factors, and iA- A —> A V B, iB: B —> A V B 
are the obvious inclusions. The exact sequence of the fibration now shows that 
(Qi)* is a monomorphism, and that there exists a unique element [g] Ç 
[0(4 V B), ti(A \>B)] such that 1OUVB> = ®*)g + x(Q/). 
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Now, for any space Z and a map / : X —> A V B, we can form the map 
H (J) = g(Qf): 0 Z - > 0 ( , 4 b-B). We shall call this the co-Hopf construction. 
The element [H(f)] is the unique element of [S2Z, 0(^4 b 5 ) ] satisfying [Q/] = 

(Qi)*[H(fj] + [xV(jf)] = (U*').[ff(f)] + [fi(i>4f)l + P K W ) ] » where irA: 
A V JB —> A j TTB: A V B —> B are induced by the projections. 

We now define the Hopf construction. We consider 

A V B ^ A XB^A AB 

as a co-fibration, where A A B is the smash product. In a fashion dual to the 
above, we show that there exists a map p: 2(^4 X B) —> 2(^4 V B) such that 
^ ( S 7 ) c - l 2 . U v B ) . I n f a c t , l e t ^ i l ^ 2 : ^ X £ - * - 4 V B be defined by£i = iApA, 
p2 = W? s . Then we can and shall take p = V(2£i V 2£2)<//, where <£': 
S(-4 X 5 ) -> S(-4 X 5 ) V 2 ( 4 X 5 ) is the usual suspension structure, and 
V is the folding map. The exact sequence of the co-fibration now shows that 
(2g)* is a monomorphism. As above, we see that there exists a unique element 
[d] 6 [L(A A 5 ) , 2 ( 4 X 5 ) ] satisfying l s U x B ) = i ( S 3 ) + (2j)/> = d&q) + 

2(jPi) + s UP*) • 
Given a space Z and a map / : A X 5 —» Z , we can now define / ( f ) = 

(2/)J : 2 ( 4 A 5 ) - > 2 Z . We call J(f) the map obtained f rom/ by the Hopf 
construction. The element [J(J)] is the unique element satisfying 

[S/] = &q)*[J(f)] + [2 (#)*>] = (2g)*[/(/)l + [ 2 ( / # , ) ] + [S(f^ 2 ) ] . 

Let us now establish some standard notation. Given spaces Z , F, we have 
a bijection r: [2Z, F] -» [Z, 12F] given by r(f)(x)(/) = fkx(x, t), where &x: 
Z X I —» 2 Z is the projection. For any space Z , the maps e: 212Z —» Z , 
e': Z —» 0 2 Z shall be those given by r(e) = lax> ^(lsx) = #'• 

Suppose that we are given spaces Z i , Z 2 . Consider the projections e: 
212Zf —>ZZ- given by r(e) = lfiXi. Let ex = tie: 20Zi —> Z x V Z 2 , e2 = i2e: 
212Z2 —>Zi V Z 2 , where ii: Z i —* Xx V Z 2 , i2: Z i V Z 2 are the inclusions. 
Let c: Û(Zi V Z 2) X Q ( I i V Z 2) -»Û(Zi V Z 2 ) be the commutator map. 
Then we can form c = T ^ O ^ I ) X r(e2))}: 2(12Zi X 12Z2) -> Z i V Z 2 . A 
simple check shows that if Xi = Z 2 = Z and V is the folding map, then 
Vc = T - 1 ( C ) , where c: 12Z X ŒZ —» ŒZ is the commutator map. If we apply 
the co-Hopf construction to c: 2 (0Zi X 0Z2) —> Z x V Z 2 in the general case, 
we obtain a map H(c): 122(S2Zi X &Z2)-> 12(Zi b Z 2 ) . Let i: Z i b Z 2 

—» Z i V Z 2 be the fibre of the inclusion j : Xi V Z 2 —» Z i X Z 2 . Then we 
have the following lemma. 

LEMMA 1. 0c = (tti)H(c): 122(QZi X QZ2) - > 0 ( Z i V Z 2 ) . 

Proof. H(c) satisfies tic = (Qi)H(c) + Q(iiTic) + 0(i27T2c), where TTI: 
Z I V Z 2 —> Z i , x2: Z i V Z 2—>Z 2 are induced by the projections and i±: 
Xi —> Xi V Z 2 , i2: Z 2 —•» Z i V Z 2 are the inclusions. Let us consider r(iiiric) : 
12Zi X &Z2 -» 0 (Z i V Z 2 ) . Let 0: QZi X QZi -> QZi be the loop multiplica­
tion and ju: OZi —» OZi the loop inverse. Let 71: OZi X ŒZ2 —> Q,Xi be the 

https://doi.org/10.4153/CJM-1968-153-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1968-153-6


LOOP-SPACES 1533 

projection. Then , a simple check shows t h a t r(ii7ric) = (12ii)0{0(l X *)A 
X 0 ( 1 X *)A/i} A71. Since 0 ( 1 X *)A ~ 1 and 0 ( 1 X M)A ~ *, it follows t h a t 
r(ii7rië) = 0. Hence, iiwië = 0. Similarly, i2T2c = 0. Hence, 12c = (Ui)H(c). 

L E M M A 2. Tfer^ exists a map b: 2(12XX X 12X2) —> X i b X 2 sz/cfe / t o 
i& = c and 126 = H(c), where i: X\ \? X2 —• X i V X2 is the inclusion. 

Proof. Le t j : Xi V X 2 —> Xi X X 2 be the inclusion. Then we have t h a t 
T{JC)\ QXx X 12X2 -> 12(Xi X X 2 ) . Let X : 12 (Xx X X 2 ) -> 12XX X 12X2 be the 

homeomorphism given by K (/) = (pil, p2l), where pi and #>2 are the projections. 
T h e n Kr(jc)(li, l2) = {pir{jc){h, / 2 ) , p2r(jc)(li, / 2 ) ) . A simple check shows 
t h a t PIT(JC)(IU h)(t) = 0{0(1 X *)A X 0 ( 1 X * ) A M } Y I ( / I , W ( 0 , where 7 l : 

12Xi X 12X2 —> 12Xi is the projection and 0 and /x give the loop s t ructure on 12X. 
Hence, as above, pir(jc) ~ *. Similarly, p2r(jc) c^ *. Since K is a homeo­
morphism, it follows t h a t jc = 0. Hence, from the fibration 

x1\>x2
1>x1vx2^x1xx2, 

it follows t h a t there exists a m a p b with ib = c. Thus , we have t ha t (12i) (£26) = 
12c. B u t by L e m m a 1, (tii)H(c) = 12c. Since (12i)* is a monomorphism, it 
follows t h a t H(c) = 126. 

T H E O R E M 1. c = iï(Vi)(Hc)ef: 12X X 12X —> 12X, w/zcre c is the commutator 

map. 

Proof. W e apply Lemma 1 with X i = X 2 = X . W e have t h a t 12c = (tii)H(c). 

Hence, 12 (Vc) = 12(Vi)iï(c), where V is the folding map . Since Vc = T~1(C) 

and Çl(j-l{c))er = c, we have t h a t c = (Vc)c' = Q(Vi)H(c)e'. 

Let us now again consider c: 2(12Xi X 12X2) —> X i V X 2 in the general case. 
W e have t h a t r(c): 12Xi X 12X2 —>12(Xi V X 2 ) . T h e Hopf construction now 
yields J(r(c)): 2(12Xi A 12X2) -> 212(Xi V X 2 ) . Let q: 12Xi X 12X2-+12Xi 
A 12X2 be the projection. Then we have the following lemma. 

L E M M A 3. H(r(c)) = 7 ( r ( c ) ) ( 2 g ) and hence, c = eJ(T(c))(2q). 

Proof. T h e element J(T(C)) satisfies the relation 2(T(C)) = / ( r ( c ) ) ( S g ) 
+ 2(r(c)jpi) + 2 ( r ( c ) ^ 2 ) . A simple check shows t h a t r (c ) j£ i = (12ii)0{0(l 
X *)A X 0 ( 1 X *)A/x} A71 ~ *, where 0 and ju give the loop s t ruc ture on 12X, 
71: 12Xi X 12X2 —•> 12Xi is the projection and i i : X i —> X i V X 2 is the inclusion. 
Similarly, r(c)jp2 = 0. Hence, 2(T(C)) = J ( r ( c ) ) ( S g ) . Since e2(r(c)) = c, 
the second pa r t of the lemma follows easily. 

T H E O R E M 2. T'^C) = V c / ( r ( c ) ) ( 2 g ) , where c: 12X X 12X-> 12X w the 

commutator map and e: 212(X V X ) —» X V X is £&c standard map. 

Proof. W e apply Lemma 3 with X i = X 2 = X to obtain c = eJ{r(c)) (Sg) . 

Since r " 1 ^ ) = Vc, the theorem follows. 
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Now recall t h a t by L e m m a 2, we have a m a p b: 2(f iXi X ŒX2) —» X\ b X 2 

such t h a t i6 = c. T h e n (fi&y = T(b): OXi X ÛX2 -> fi(Zi b X 2 ) . T h e Hopf 
construction yields J(r(b)): S ( Q Z i A 0X 2 ) -> 2ft (Xi b X 2 ) . 

L E M M A 4. 2(r(&)) = J ( r ( ô ) ) ( 2 g ) and hence, b = eJ(r(b))(2q). 

Proof. / ( r ( 6 ) ) satisfies S ( r ( 6 ) ) = / ( r ( 6 ) ) ( S g ) + 2 ( r ( & ) # i ) + 2(r(b)jp2). 
Let us consider the m a p r(b)jpi: QXi X 12X2->12(Xi b l 2 ) . W e have t h a t 
Wr{b)jpi\ QXt X O X 2 - > Œ ( X i V X 2 ) . Again, a simple check shows t h a t 
(^i)r(b)jpi = ( ï ï i i )0{0(l X *)A X 0 ( 1 X *)A/x}A7i, where 0 and M give the 
loop s t ructure on QXi and 71: i lXi X &X2 —> fiXi is the projection. Hence, 
r_ 1{ (Çlï)r(b)jpï\ = 0. Since (Oi)* is a monomorphism, we have t h a t r(b)jpi = 
0. Similarly, r(6)j>2 = 0. Hence, S ( r ( 6 ) ) = J ( r ( 6 ) ) ( S g ) . T h e second par t of 
the lemma follows from the fact t h a t e2J(r(&)) = 6. 

T H E O R E M 3. r~l{c) = Vie(2H(c))J(d)(2q), where c: QX X fiZ -> 12X w 
/ ^ commutator map, e'\ 12X X Î2Z -> 122(OX X OX), e: 2£2(X b X ) --> X b X 
are //z£ standard maps, i: X b X —» X V X is the inclusion, and V: X V X —> X 
is the folding map. 

Proof. W e apply L e m m a 4 with X i = X 2 = X and obta in & = ej(r(b))(2q). 
Hence, c = ib = ieJ(r(b))(Xq). B u t Vc = r _ 1 ( ^ ) , and hence we have t h a t 
T _ 1 ( C ) = Vc = VieJ(r(b))(2q). B u t since 12/? = # ( c ) by L e m m a 2, we have 
t h a t r(&) = H(c)d. Clearly, 7 ( r ( 6 ) ) - J{H{c)e>) = (2H(c))J(d). Th i s 
proves the theorem. 

Remark 1. Let d: I i X l 2 ^ Œ2(Xi X X 2 ) , e: 2122(Xi X X 2 ) -> 2 ( X i 
X X 2 ) be the usual maps . T h e n e (2e r ) = l s o ^ x ^ ) - Th i s means t h a t if 

f:Xi X X 2 —•» F is a map , then the Hopf construct ion yields J (/) = (^f)eJ(d): 
2 ( X i A X 2 ) —> 2 F . I t is amusing to note the relation (Xq)eJ(d) = lz(Xl/\x2)-
Using this we can "so lve" the equat ions in Lemmas 3 and 4 to obtain 
J(r(c)) = X(r(c))eJ(e'),J(r(b)) = 2(r(b))eJ(e'). 

2. W e now dualize. Since m a n y of the proofs of the results in this section 
are exact duals of those in §1, we shall omit most of the details . Suppose t h a t 
X i and X 2 are given spaces. Le t ef : Xi —> 0 2 X * be the s tandard maps . Le t 
ex' = e'px\ X i X X 2 -> OSXi , e2' = dp2: X i X X 2 -> 122X2, where £x and p2 

are the projections. Let d: 2 (X X X X 2 ) - > 2 ( I i X X 2 ) V S ( I i X X 2 ) be 
the co-commutator map . Then , we have a m a p c! = r{{r~l{ei) V r~l(e2))d} : 
X i X X 2 - > f i ( 2 X i V 2 X 2 ) . A simple check shows t h a t if X1 = X 2 = X , 
then c'A = r ( c ' ) : X—>12(2X V 2 X ) , where A is the diagonal m a p and d: 
2 X —* 2 X V S X is the co-commutator m a p . T h e Hopf construct ion yields a 
m a p J(c')\ 2 ( X i A X 2 ) —> 212 ( 2 X i V 2 X 2 ) . Dual to L e m m a 1, we have the 
following lemma. 

L E M M A 5. 2 (c ' ) = J ( c ' ) ( 2 g ) : 2 (X X X X 2 ) -> SS2(2Xi V 2 X 2 ) . 
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LEMMA 6. There exist maps 

a / : Xi A X 2 - > Q ( 2 X i V 2X2), a': QS(Xi A X2) ->ft(2Xi V 2X2) 

such that a / = aV, a /g = c' awd 2 a / = / ( c ' ) . 

Proof. Consider the co-fibration 

Xi V X2 - t X i X X2 -2>Zx A X2. 

Let K: 2Xi V 2X2 —» 2(XX V X2) be the obvious homeomorphism. We have 
that r-l(c'j)K\ 2Xi V 2X 2 -> 2Xi V 2X2. Let 0 / : 2XX -» 2Xi V 2Xi, 
M/: 2 X I - > 2 X I and 0 / : 2X 2 -> 2X2 V 2X2, M/ : 2X 2 -> 2X2 be the 
suspension structures. Let fx = V{V(1 V *)</>/ V M/ V(l V *)0 /}0 / : 2XX 

-> 2X! , / 2 = V{V(* V 1)0 / V M2;V(* V 1 ) 0 / Î 0 / : 2X 2 -> 2X2. T h e n / x ~ * 
c^/2 . A simple check shows that / i V / 2 = T~1{C'J)K. Since Z is a homeo­
morphism, it follows that c'j = 0. From the co-fibration, it follows that there 
exists a map a / : I i A I 2 -> fi(2Xi V 2X2) such that c' = a/g. The map a' 
can be taken as Œ(T -1(a/)). Then, clearly, a'd = fi(r_1(a/))^ = a / . Since 
a/g = c', we have that (2a / ) (2g) = 2c'. Since 2c' = 7(c')(2g) by Lemma 
5, and since (2g)* is a monomorphism, it follows that 2 a / = J(cr). 

Dual to Theorem 1, we have the following theorem. 

THEOREM 4. d = e/(c')2(gA): 2X —> 2X V 2X, where d is the co-
commutator map. 

Let us now again consider c'': Xi X X2—>Œ(2Xi V 2X2) in the general 
case. We have that T'^C'): S ( I I X I 2 ) - > 2 I I V 2 I 2 . The co-Hopf 
construction yields a map H(T-1(C')): S22(Xi X X2) -> &(2Xi b 2X2) . 
Hence, we have that ( ^ ) # ( r - 1 ( c / ) ) : Q S ( X I X X2) ->fi(2Xi V 2X2) . 

LEMMA 7. û(r-1(c /)) = (^)i7(r-1(c /)) <wd toce, c' = (^ ) i? ( r - 1 (c / ) )^ . 

Dual to Theorem 2, we have the following theorem. 

THEOREM 5. r{d) = (Û^iTCr-HcOî^A, wfore c': 2X -> 2X V 2X w *Ae 
co-commutator map. 

Let us now consider the maps a' and a / defined above. We have the following 
lemma. 

LEMMA 8. a' = ($Li)H(j-l(a,i!)) and hence, a / = ( O ^ i ^ r - 1 ^ / ) ) ^ -

THEOREM 6. r(d) = (fif)iîWî2(/(c ,))^gA, wfore G': 2 X - > 2X V 2X « 
/&£ co-commutator map, 

d: X A X - > Û 2 ( X A X) , e: 2G(2X V 2X) -» 2X V 2X 

are the standard maps, and A: X —> X X X is the diagonal map. 
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Proof. We apply Lemma 8 with X\ = X2 = X and obtain 

a / = (Qi)H(T'1(a1
,))ef. 

Hence, c! = a/g = (Qi)H(r-1(ai))e'q. Since c'A = r(c'), we have that 
T(C') = (Cl^HiT-^aS^e'qA. Since 2 a / = J(c ' ) , we have that e/(c ;) = 
«(SaiO = r - 1 ^ / ) . Hence, r(c') = ^li)H{e)^l{J{c,))ef(1A. 

Remark 2. Let e: 212 (Xi V X2) -> Xx V X2, 

e': Q(Zi V X2) -> 12212 (Xi V X2) 

be the standard maps. Then we have that H(e)e'\ 12(Xi V X2) —> 12(Xi b X 2 ) . 
Since (toe)e' = loc^vxa)» ^ follows that if/: F - ^ X i V X 2 is any map, then 
the co-Hopf construction yields H (J) = H(e)e'(Qf). We note that we then 
have the relation H(e)ef(Qi) = latx-ibM- Using this, we can ''solve" the 
equations in Lemmas 7 and 8 to obtain H(T~1(C/)) = H{e)e'^{r~l{c,))1 

flXr-ifai')) = H{e)e'af and H{T-l{a^))ef = H(e)efa1\ 

Remark 3. Our factorizations of c' reflect the well-known result that 
conilX ^ wcatX, where wcat denotes "weak category". 
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