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A new model of the steady boundary layer flow around a rotating sphere is developed
that includes the widely observed collision and subsequent eruption of boundary layers
at the equator. This is derived following the Segalini & Garrett (J. Fluid Mech., vol. 818,
2017, pp. 288-318) asymptotic approach for large Reynolds numbers but replacing the
Smith & Duck (Q. J. Mech. Appl. Maths, vol. 30, issue 2, 1977, pp. 143—156) correction
with a higher-order version of the Stewartson (Grenzschichtforschung/Boundary Layer
Research, 1958, pp. 59-71. Springer) model of the equatorial flow. The Stewartson
model is then numerically solved, for the first time, via a geometric multigrid method
that solves the steady planar Navier—Stokes equations in streamfunction-vorticity form
on large rectangular domains in a quick and efficient manner. The results are then
compared with a direct numerical simulation of the full unsteady problem using the Semtex
software package where it is found that there is broad qualitative agreement, namely the
separation and reattachment of the boundary layer at the equator. However, the presence of
unobserved behaviour such as a large area of reverse flow seen at lower Reynolds numbers
than those observed in other studies, and that the absolute error increases with Reynolds
number suggest the model needs improvement to better capture the physical dynamics.
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1. Introduction

The flow around a rotating sphere in a quiescent fluid provides a useful paradigm for the
study of fundamental fluid dynamical problems, such as boundary layer collisions and

+ Email addresses for correspondence: bjsmith28 @wisc.edu, zahir.hussain @leicester.ac.uk

© The Author(s), 2024. Published by Cambridge University Press. This is an Open Access article,

distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/
licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original

article is properly cited. 984 Al15-1

L))

Check for
updates


mailto:bjsmith28@wisc.edu
mailto:zahir.hussain@leicester.ac.uk
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2024.173&domain=pdf
https://doi.org/10.1017/jfm.2024.173

https://doi.org/10.1017/jfm.2024.173 Published online by Cambridge University Press

B.J. Smith, Z. Hussain, S.A.W. Calabretto and S.J. Garrett

separations, and in other scientific fields including astrophysics. Experimental studies by
Bowden & Lord (1963), Hollerbach ef al. (2002), Calabretto et al. (2015) and Calabretto,
Denier & Levy (2019) all observe the same flow characteristics, specifically the presence
of inflow at the polar regions causing boundary layers to form on the sphere surface that
are convected towards the equator. Due to the equatorial symmetry, these are formed on
both hemispheres resulting in a boundary layer collision at the equator that then evolves
into a radial jet creating a toroidal vortex. This has also been observed in recent numerical
studies such as Calabretto et al. (2015, 2019) and Calabretto & Denier (2019), however,
these do not provide insight into the underlying physics.

The flow around a rotating sphere was first studied by Stokes (1845) who described the
behaviour of a slowly rotating sphere for small Reynolds numbers Re = a$2 /v, where
a and §2 are the radius and angular velocity of the sphere, respectively, and v is the
kinematic viscosity. Further theoretical results for small Re were obtained by Lamb (1924),
Bickley (1938), Collins (1955), Thomas & Walters (1964) and Takagi (1977); whilst for
Re ~ 0(100), Dennis, Singh & Ingham (1980) calculated series solutions of Gegenbauer
functions, but these become more difficult to obtain as Re increases due to the nonlinearity
of terms in the series. For large Re, boundary layer theory provides a suitable model of
the flow near the surface where the sphere imparts the fluid with angular momentum
(Segalini & Garrett 2017). The governing equations that describe the boundary layer flow
were initially derived by Howarth (1951) who proposed two solution methods: a solution
based on a Pohlhausen technique and a series solution based on the latitudinal angle
where the latter, at leading order, recovered the von Kiarman equations for the rotating
disk flow, emphasising the strong connection between the flow at the poles with that of the
rotating disk. Although Howarth (1951) derived the series solution, it was first solved and
utilised by Banks (1965) to obtain solutions for the boundary layer. The series solution
approximates the full numerical solution well at small latitudes (Manohar 1967; Banks
1976), however, as the equator is approached there is divergent behaviour, meaning a full
numerical solution of the equations is mandated (Garrett & Peake 2002). Furthermore,
the parabolic structure of the boundary layer equations implies that there cannot be any
latitudinal stagnation points at the equator, suggesting a collision of two boundary layers,
formed at both poles, is unavoidable, which must be described by a new elliptic structure
(Simpson & Stewartson 1982).

The boundary layer equations of Howarth (1951) model the flow well near the sphere
surface until the equator is approached where the boundary layers collide and erupt into a
radial jet. In order to model this area, Stewartson (1958) proposed that this region should be
a thin viscous structure described by the planar Navier—Stokes equations with an inviscid
outer flow at the equator-sphere junction where he further hypothesised the existence of a
small zone of recirculation. In contrast, Smith & Duck (1977), based on an analysis of a
dual layer structure of overall size ORe 3Ty x O(Re™1/?), conjectured a more extensive
recirculation region of O(Re™>/1). This is opposed to the numerical study of Dennis,
Ingham & Singh (1981) who found that this interaction zone is of O(Re™!/4); however, no
recirculation has been observed in any prior experiment or numerical simulation (Segalini
& Garrett 2017), until a recent numerical study by Calabretto et al. (2019) observed a small
area of reverse flow at significantly large Reynolds numbers, Re > 8 x 10*. Despite this,
no large structures of the kind Smith & Duck (1977) proposed were seen suggesting that
the Stewartson (1958) model of the equatorial flow may be more qualitatively correct.
Thus, around the equatorial region, the physical mechanisms and behaviour remain
ambiguous. Furthermore, work concerning the stability of the flow around a rotating
sphere by Segalini & Garrett (2017) features a model of the steady flow that incorporates
the Smith & Duck (1977) model via a correction to the velocity profiles as the equator
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is approached; and by incorporating 1/Re corrections with an inviscid outer flow, the
resultant stability calculations agreed remarkably with experiments, despite not including
the post-collisional flow. Hence, the Smith & Duck (1977) model could be negligible and
have no meaningful effect on the stability of the flow above the equator, and it is therefore
necessary to replace this part of the analysis with the model developed by Stewartson
(1958). He formulated the equations of motion for this area, which seem to be equivalent
to a streamfunction-vorticity formulation, but did not solve them; it is believed that this
is due to the presence of the small zone of recirculation where the vorticity is unknown
(Segalini & Garrett 2017; Calabretto et al. 2019).

In summary, the flow around the rotating sphere is well studied, but there still remains
some significant uncertainty. As the boundary layer approaches the equator, the parabolic
structure of the governing equations break down and do not accurately model the
separation and subsequent reattachment of the boundary layer along the equator. There
are currently two competing models that describe this behaviour: Stewartson (1958) and
Smith & Duck (1977). Both assume the flow can be described by the planar Navier—Stokes
equations, however, the higher-order analysis of Smith & Duck (1977) suggests behaviour
not seen by any experiment or numerical study. The presence of a small recirculation zone
at large Re does suggest that the model of Stewartson (1958) may be qualitatively correct;
however, the equations have not been solved (Calabretto et al. 2019). This is believed to
be due to the unknown form of the vorticity, although this can be overcome by coupling
in the vorticity that results in an additional equation that can be solved. Unfortunately,
this requires solving nonlinear Partial Differential Equations (PDEs) on large domains,
which is not trivial. Solving these PDEs is the first aim of this work and once solutions
are obtained, then this will allow further understanding of the physical mechanisms of the
flow, specifically, the behaviour around the equator.

A brief summary of the boundary layer equations and Stewartson (1958) model of the
equatorial flow is given in § 2 that is analogous to the planar Navier—Stokes equations.
In order to solve these, a numerical method utilising the geometric multigrid method is
outlined in § 3 and the results can be seen in § 4, which are then discussed in § 5.

2. Boundary layer analysis

Consider at the origin of a fixed reference frame, a rotating sphere of radius a with angular
velocity £2 immersed in an otherwise quiescent fluid. Furthermore, let the problem be
described by a spherical coordinate system, where (r, 6, ¢) denotes the radial, latitudinal
and azimuthal coordinates, respectively. Let (W, U, V) denote the velocities in the radial,
latitudinal and azimuthal directions, respectively, and let P be the pressure. Assuming
that the flow is steady and axisymmetric, then (U, V, W, P) is independent of the time
t and the azimuthal angle ¢, ie. 9;- = 0dy- =0, where 9; = 9/dr and 9y = 3/0¢.
Non-dimensionalising all physical quantities by a, §2 and the fluid density p, the steady,
incompressible, axisymmetric Navier—Stokes problem in spherical coordinates becomes

U U? + v? 1 ([, 2 2W 2U
Wo,W + —9gW — ———— = —9,P+ — | V2W — Z8yU — = — == cotd |,
r r Re 2 r2 r2
(2.1a)
U uw  Vv? 1 1 2 U
Wo,U + —dpU + — — —coth = ——3gP + — ( V2U + S0pW — ——— |,
r r r r Re r2 r2sin2 6
(2.1b)
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U WV uv 1 \%
Wo,V+ 20V 4+~ + 2L cotf = — V2V — —— ), 2.10)
r r r Re r2sin2 6
2W 1 U
oW+ — 4+ —-9gU + —cotf =0, (2.1d)
r r r

where the derivatives are expressed as before (e.g. 9, = 9/dr) and

1 1
V2. = —3,(rP )+ ————g(sinBdpy -). 22
2007 ) + B (sin 03y ) (2.2)

The boundary conditions of the system are

U=V —-sinf=W=0 atr=1, (2.3a)
U=V=W=0 asr— oo. (2.3b)

The first set of conditions (2.3a) refer to the no-slip condition on the sphere surface and
the second set (2.3b) specifies that the fluid is at rest far away from the sphere.

Equation (2.1) is highly coupled and nonlinear, and in order to solve it, a Direct
Numerical Simulation (DNS) is needed that can require huge amounts of computational
resources. To reduce this, boundary layer approximations will be made as it is expected that
the bulk behaviour of the flow is located close to the sphere surface (Segalini & Garrett
2017). Furthermore, by exploiting the spherical symmetry of the geometry, the domain
is truncated to one quadrant that then necessitates the homogenous Neumann boundary
conditions

WU =0V =0W=0 atf=0and g (2.3¢)

which represents symmetry conditions along the pole and equator.

The equations that govern the boundary layer above the equator are discussed in many
other works including Howarth (1951), Banks (1965) and, more recently, Segalini &
Garrett (2017), and so are only briefly discussed here. For convenience, the boundary layer
equations are given by

W + 39U + U cot = 0, (2.4q)
Wa,U + UdpU — V2 cotf = 9 U, (2.4b)
Wa,V + UdgV + UV cotf = 3V, (2.40)
with
_ o0
P(n,0) = —/ U, 0) + V(£ 0) dg, (2.5)
n
where W = W/e, P= PJe,
r—1
n= (2.6)
€

is the stretched radial variable that localises the flow close to the sphere surface, and € =
8/a <« 1 1is a small perturbation parameter that can be interpreted as the non-dimensional

984 Al15-4


https://doi.org/10.1017/jfm.2024.173

https://doi.org/10.1017/jfm.2024.173 Published online by Cambridge University Press

BL separation and reattachment on a rotating sphere

boundary layer thickness where the quantity § = a/+/Re is the characteristic boundary
layer thickness, i.e. € = 1/+/Re. The boundary conditions are given by

U=V —sinf=W=0 atn=0, (2.7a)
U=V=0 asn— oo, (2.7b)
0gU = gV =0gW =0 at6 =0. 2.7¢)

As discussed in other works, there is radial inflow at the poles, due to the similarity of
the geometry with the rotating disk flow, as the centrifugal effect forces the fluid outwards
along the sphere. The parabolic structure of (2.4) then drives the fluid towards the equator
where it collides with the boundary layer emanating from the other hemisphere. However,
once the equator is approached, the solutions of (2.4) cannot accurately describe the flow
effectively because information about the solution is required from both upstream and
along the equator, necessitating an elliptic structure of the equations.

Recent numerical studies suggest that the elliptic model of Stewartson (1958) describes
the flow qualitatively well (Calabretto et al. 2019), hence, following Stewartson (1958),

introduce the scaled coordinate
0—m/2
B=——", (2.8)

€
which localises the flow to the equator. The flow around the equator can be found
by considering that (U, V, W) ~ O(1), in order to facilitate the transfer of momentum
from the sphere to along the equator, and substituting P = €P (as it is expected that
P ~ O(e) following Segalini & Garrett 2017), (2.8) and (2.6) into (2.1). Subsequently,
by only considering leading-order terms, akin to taking the limit Re — oo, and using the

expansions cotf ~ —ef + O(€?) and 1/ sin?6 ~ 1 + O(€?), then (2.1) reduces to

8, W + 95U = 0, (2.9a)

Wo,U + UdpU = —edpP + € (32U + 93U (2.95)
Wo,V + UV = e (a7 + 93V (2.9¢)
Wo,W + UdsW = —ed, P+ e (02W + 03 W). (2.94)

Viscous terms with € have been retained as it is expected that they generate internal
boundary layers along the sphere surface and equatorial plane of size O(e4/€). At first
glance, this may seem unintuitive, however, by neglecting these viscous terms Stewartson
(1958) found that U(n = 0, B) x f(B), where f(B) is any function such that f(8) =0
for B =0 and as § — —oo, which can only resolve the condition U(0, 8) = 0 if it is
neutralised by an internal boundary layer. The pressure gradients have also been retained
in order to calculate the pressure and to keep the number of unknowns and equations the
same, although, they can be easily discarded as seen later. Note that Stewartson (1958)
discarded these terms but they have been retained for the reasons outlined prior; hence, it
is considered that (2.9) is a higher-order model. The boundary conditions are

U=V—-1=W=0 atn=0, (2.10a)
U=08,V=0,W=0 asn— oo, (2.10b)
U=o0V=0W=0 atf=0, (2.10¢)
U—-Up(n) =V —=Vp(n) =W=0 asf — —o0, (2.10d)
984 A15-5
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where Upy, and Vpy, are the inflow velocities from the boundary layer solution and sin§ ~
1 + O(€?). The condition (2.10a) is the no-slip condition on the sphere surface, (2.10d)
refers to the inlet whilst (2.10b) is a Neumann condition for the outflow, as the radial
jet will be established, and (2.10¢) is a symmetry condition due to the similarity of the
two hemispheres where U = 0 is imposed to facilitate the pure radial planar flow of the
boundary layer. These are the same set of equations proposed in Segalini & Garrett (2017)
but with the introduction of the Neumann conditions for the equator, following Dennis
et al. (1981) who found that the radial velocity does not vanish along the equator. The
reason for introducing (2.100) is because the flow should only vary noticeably at the r ~
O(1) scale.

First, it is useful to note that the azimuthal component (2.9¢) is uncoupled from
(2.9) reducing it to a linear system of one less dimension. Furthermore, as n and
localise the flow to a small region at the equator-sphere junction, it can be assumed
that the sphere curvature is locally flat. These two observations effectively reduce (2.9)
to solving the planar incompressible Navier—Stokes equations, the difference being that
Re™! — € = 1/+/Re, and a linear advection—diffusion equation (2.9¢) for the azimuthal
velocity V. A streamfunction v can be introduced via the relations

W=0g¢y and U= —0,¥, (2.11a,b)
eliminating the continuity equation (2.9a). By introducing the local vorticity,
w = 0,U — 9gW, (2.12)

(2.9) can be rewritten in streamfunction-vorticity form by calculating 0,[(2.9d)]—
08[(2.9b)] to obtain

—w =AY, (2.13a)
(0pY) 0w — (O, ¥)0pw = € Aw, (2.13b)
(0pY) 0,V — (0y¥)0V = €AV, (2.13¢)
with the pressure determined by solving
eAP =2 ((3,W)3gU — (3gW)d,U), (2.14)
where A- = 8,% . +8§ - is the local Laplacian operator. The boundary conditions for the

pressure are

P(n, B — —o00)=Ppr(n), 9P=0 atf=0, 0,P=0 atn=0andasn— oo,
(2.15)

where Ppr(n) is the boundary layer solution (2.5). The first condition refers to a matching
condition from the upstream boundary layer, the second refers to the symmetry condition
along the equator, the third is a Neumann condition for solid walls and the final condition
represents that the solution should be constant at this scale, i.e. O(¢€).

A similar form to (2.13) was discussed by Stewartson (1958), namely the separation
of the azimuthal component and the vorticity equation (2.13a), but not the inclusion of
the higher-order viscous terms. Consequently, Stewartson’s model represents an inviscid
model of the equatorial flow, while broadly true for the flow outside the boundary layer
as investigated by Segalini & Garrett (2017), the necessity of introducing an internal
boundary layer and (2.13b) allows a solution to be obtained. This explains why no
solutions, analytical or numerical, have been procured as the vorticity, w, was unknown.
Furthermore, as (2.9) has been transformed to (2.13), the boundary conditions (2.10) also
need to be transformed, which can be seen in Appendix A.

984 A15-6
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3. Numerical methods

First, it is pertinent to note that the boundary data Uy, Vpr and Pp; for the inlet condition
(2.10d) is obtained by solving (2.4) subject to (2.7) for the boundary layer upstream of the
equator via the Newton space-marching method outlined in Segalini & Garrett (2017). It
should also be noted that the symmetry condition (2.7¢) at the pole is abandoned as the
flow at this point is obtained by a disk-based model whereas Segalini & Garrett (2017) use
the Banks (1965) series solution upto fifteenth order to initialise the solution; it is deemed
that the first-order solution, which is equivalent to the rotating disk, is adequate enough as
the correction terms of the series solution are negligible at the poles.

In order to solve (2.13) subject to the boundary conditions (A2)-(A10), nonlinear
methods need to be considered. Typically, a Newton method is used although the resulting
Jacobian would be too vast (~O(4N?)) to be realistically applicable, hence, another
strategy is required that is more computationally efficient. An excellent candidate is the
multigrid class of methods that do not require huge amounts of computational resources
as the main idea of these methods is to spend the majority of computing time on
smaller/coarser grids. This uses fewer nodes and theoretically speeds up the solution
process by relying on error correction and obtaining accurate solutions on the coarsest
grids (Henson 2003). The key aspect is that it is assumed that these solutions can be
approximated at this level very accurately via a ‘smoothing’ stage that, in general, is
a nonlinear iterative scheme where large errors are quickly damped. As the solution is
restricted to a coarser grid, the small errors are amplified and the smoother quickly damps
them. Continuing in this fashion allows the computation of an accurate solution on the
coarsest grid that can be interpolated back to the finest grid.

The Full Multigrid—Full Approximation Storage (FMG-FAS) algorithm, outlined in
Smith (2023), will be used to obtain solutions to (2.13), but first, (2.13a) and (2.13b) need
to be discretised to generate a finite system of equations. Finite difference schemes will be
implemented in order to be consistent with the Newton space-marching method used to
obtain the boundary data (2.10d). Second-order centred differences will be utilised for all
terms except the convective terms where a second-order upwind scheme will be employed
of the form

3wij — 4wi-1,j + wi-2,j Vij+1 — Yij-1

> 0,
[9y0]]; = ; 2h 2h (3.1a)
_3oij = A0t o2 Vi — Vi1
2h ’ 2h '
3wij — 4wij—1 + wjj-1 Vi — Vi 0
h 2h ’ 2h -
Pphy = 3w —Awin oy iy~ Yicl 0 G10)
2h ' 2h '

and the nonlinear function Af.’ I R2 — RR? can be defined as

wij+ Ay} ) o)

Al =A"Wij, o)) = (
Y [0p9 1) {9,012, — [0y9 1] [9pe]); — e[ Al

where [-]f’ ; denotes the finite difference approximation with grid spacing /4 at the point
(ni, Bj). A solution of Af.’ ;= 01is sought and due to the nature of the upwind scheme and
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the finite size of the domain, points outside the boundary are needed. This is achieved
using a three point Lagrange interpolant to obtain the following extrapolation formula:

fo1j=3fo; = 3f1; + 1 (3.3)

It should be noted that if a Neumann condition is used then the extrapolated point can be
determined by f_ ; = f1; via a centred difference.

The iterative smoother utilises both the Gauss—Seidel and Newton methods to produce a
small, invertible, linear system that can be solved inexpensively and iterated over the whole
grid multiple times. Note that as the viscosity is constant, then the Newton method will
reduce to the Picard method as the chosen discretisation of the ¥ derivatives yield linear
terms on any given node; this is in preparation for future work where viscous nonlinearities
will be present. Thus, the following linear system is solved,

—4/n* 1 N
( 0 XZ,') Sij = Ai,j’ (3.4)

where the 2 x 2 matrix is the Jacobian of Af.‘ I and

4e
) +75>0. (3.5)

3
7/ h h
xt = = (|1opwtty| + 10,01,

At each node (3.4) is solved for the corrections s;; and the solutions (¥ j, w; ;) are then

updated via
Vi Vij .
<a)i,j o) T G0

where « € (0, 1] is an under-relaxation parameter; in this study o = 0.9 unless otherwise
stated. The boundary conditions and extrapolated points are then updated; it should be
noted that on the outflow boundary (n — 00), (A9) and (A10) are solved instead of (3.4).

The restriction operator I%h is derived from a linear interpolant and can be interpreted as
the weighted average of the surrounding points. A point on a coarser grid can be obtained
by

1
o h h h h
Vij = 176 Wai-1j-1 T V2101 F V21201 F Vi1 2j40)

h
1 V2i,0f
h h h h i.2j
+ g(vzi,zj—l + Vi1 0 T Voig 05 T Vai0j1) T 7 3.7
whilst an ‘injection’ is used on the boundary, i.e. vlzj’ = vé’i 2 Similarly, the interpolation
operator lgh is derived likewise,
ho . 2h
V2i2; = Vij»
h _ 1 (. 2h 2h
V212 = 2 (vi,j + vi+1,j) ,
h 1 (. 2h 2h (3-8)
V2i2j+1 = 2 (Ui,j + Ui,j+1) ,
h _ 1 (. 2h 2h 2h 2h
V2it1.2741 = 7 (”i,j + VG vt vi+1,j+1) :

The whole algorithm used to obtain solutions of (2.13a) and (2.13b) for the flow in the
impinging region is displayed in figure 1; for more details about the FMG-FAS method,

see Smith (2023).
984 A15-8
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Initialise
A —

Smooth (6 iterations)

Yes No
h = hstart?
Restrict: v < I2wh
Smooth (3 iterations)
h=h?
No l
Correct: V' < v/ + ¢!
Yes
Solve on coarse grid for u" Interpolate error: e/ «— [4,e%"
Interpolate: v/ < I5,u®" Determine error: e/ = u! — v/ [«
Smooth (3 iterations) Solve on coarse grid for u
[
\) Yes
No .
Restrict: v/ « [ h=h?
No
Yes
No
Yes

Figure 1. Flow chart of the FMG-FAS algorithm. (Adapted from Smith 2023).

The solution is initialised on the fine grid via an initial guess; typically zero but a
solution at a lower Re could be used to provide a better initial guess to aid convergence,
as it should already capture the main behaviours of the solution. The 1 and 8 domains

are discretised on a grid spacing Ay with § — —oo set to —ceil(Ré/ 4) (i.e. the smallest
integer bigger than R;/ 4), following the findings of Dennis et al. (1981) on the size of
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the interaction zone. The boundary at infinity, n — 00, is set to 30 in order to match
the boundary layer flow of Segalini & Garrett (2017); and the boundary conditions
(A2)-(A10) and extrapolated points (3.3) are assigned. On the coarse grid (h = hy), the
solution (u" = (wi}"j, a)lh j)) is obtained by using the smoothing operator (30 iterations) with

o = 0.95. The residual is defined as #* = fh — Al(vM), where v = (I/Ifj, a)ffj) denotes

the current guess for the solution u”. If /= max{r"} > tol, where tol = 107> is a
prescribed tolerance, then the FAS part of the algorithm is initiated where the new
problem A2y = A% (v2h) + 1 s solved instead. The simulation parameters, such
as the number of iterations and the under-relaxation parameter, were chosen after much
experimentation. Once the solutions 1//,.}”1. and a)? ;are obtained, the original flow variables
are recovered via (2.11a,b) using second-order central finite differences except on the
boundaries where second-order backwards differences are used.

It should be noted that this algorithm is not always guaranteed to converge, in the
sense that rfnax < tol, due to the typical problems that accompany nonlinear problems
such as relying on a good initial guess, and over/under-shooting resulting in either cyclic
or divergent behaviour (Smith 2023). In order to test the numerical method outlined
above and in Smith (2023), recall that (2.13a) and (2.13b) are analogous to the planar
Navier—Stokes equations in streamfunction-vorticity form but with Re¢ = € = Re™!/2,
where Re¢ denotes the computational Reynolds number. Hence, the lid driven cavity test
case was used to probe the accuracy and robustness of the method in Appendix B where
results were compared with similar solutions by Ghia, Ghia & Shin (1982). It is deemed
that the numerical method provides accurate and consistent solutions reasonably quickly
although there seems to be issues with convergence once Re¢ > 700, in contrast to Smith
(2023) who found difficulties arose when Re¢ ~ 1000. However, it is stated that this issue
is problem dependent, meaning this value changes with the physical problem considered,
for example, at higher Re¢ the number of nodes on coarse grids may be insufficient to
accurately capture the solution behaviour when interpolating to a finer grid Ghia et al.
(1982) such as is the case when trying to resolve thin boundary layers.

Once the flow variables U;; and W; ; are obtained, then the azimuthal velocity V and
pressure P can be determined. The uncoupled, linear equation (2.9¢) for V is solved
similarly with the same interpolation and restriction operators but the smoothing stage
is replaced with only the Gauss—Seidel method to solve linear equations, and utilising
recursive V-cycles instead of the FMG-FAS algorithm. (2.9¢) is discretised in the same
manner using centred differences for the diffusive terms and backwards differences of
the form (3.1) for the convective terms. The solution is smoothed (5 iterations) before
being restricted to the coarse grid and is solved (20 iterations of Gauss—Seidel) before it is
interpolated upwards to a finer grid where it is corrected and post-smoothed (3 iterations)
repeating until the residual is less than 107>, The pressure can be found by solving the
Poisson equation (2.14) that is discretised using second-order centred differences creating
a large sparse linear system. These types of problems can be easily handled by specialist
linear algebra software such as MATLAB through the use of sparse matrices. For more
information concerning these methods, see Smith (2023).

Lastly, in order to verify that the Stewartson (1958) model of the impinging region is
consistent with other studies, the numerical simulation of the full Navier—Stokes problem
(2.1) is needed. This is performed via a DNS using the Semtex software package developed
by Blackburn er al. (2019) that can solve the incompressible Navier—Stokes equations
in cartesian and cylindrical coordinate systems using the spectral element method, a
combination of finite element and spectral methods, to exploit the geometric flexibility
and higher accuracy of both respective methods. In two dimensions, Semtex uses standard
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finite element techniques to map the domain to two-dimensional quadrilateral elements,
the Gauss—Lobatto—Legendre nodal shape function basis to achieve high spectral accuracy
and continuous Galerkin projections. If the solution is sought in three dimensions, then
this can be achieved by using Fourier expansions in an orthogonal direction but only if the
solution is expected to be periodic, i.e. 2% dimensional. These qualities make Semtex an
ideal choice as the flexibility of geometry combined with a robust, accurate DNS solver
allows the symmetry of the sphere problem to be exploited to obtain reasonably high
resolution solutions at considerably larger Reynolds numbers.

Following Calabretto et al. (2015, 2019) the computational domain consists of a large
cylinder filled with fluid except at the origin (the centre of the cylinder) where a sphere,
of radius one, rotates in the azimuthal direction with angular velocity £2. This choice of
the domain allows the exploitation of the axial symmetry of the sphere, and reduces the
problem to a cylindrical coordinate system that is readily achieved in Semtex. Furthermore,
as Semtex only solves the unsteady Navier—Stokes problem via backwards time integration
schemes, then results may feature turbulent behaviour especially as Re increases that may
make comparisons difficult. However, following the findings of Calabretto et al. (2019),
using a spin-up time of #; = 0.05 and a time step Az = 2.5 x 1074, it is expected that the
times ¢ € [10, 15] present steady flows close to the sphere surface, as the temporal variance
of the velocity components vanished within this range. The computational model is
described in more detail in Calabretto et al. (2015) and Smith (2023) where the cylindrical
domain is discretised into 3872 quadrilateral elements each consisting of 10 x 10 Lagrange
knot points where more elements are located close towards the sphere surface and along
the equator in order to accurately capture the boundary layer dynamics. It should be noted
that although the computational model is the same as described by Calabretto et al. (2015),
these simulations were independently computed using the ALICE supercomputer based at
the University of Leicester, and it is believed these results build upon both their work and
the work of Calabretto ef al. (2019) and Dennis et al. (1981).

4. Results

The numerical methods outlined in §3 enable the analysis of the solutions of
(2.9), and subsequently the flow around the equator. Results for Re = 10* can be
seen in figure 2 on a fine grid of spacing h=2"* corresponding to N, = 481
and Ng =1+ ceil(Re'/*)/h = 161 nodes in each respective direction. Recall that the
B — —oo boundary data for the inflow velocities Upy, and Vpr, and the pressure Ppy is
obtained by solving (2.4) for the boundary layer upstream of the equator first. Rearranging
(2.8) for 6 and recalling that the § — —oo boundary is set to —ceil(Re'/*), then
0; = —eceil(Re'/*) + 1/2, and the inflow boundary conditions can be easily set, for
example, Upr(n) = UpL(n, 0p).

There is a smooth transfer of momentum seen in figures 2(a) and 2(b) corresponding to
the separation and reattachment of the boundary layer along the equator. This is driven by
an increase in pressure seen in figure 2(c) that creates an unfavourable pressure gradient
that forces the boundary layer separation from the sphere. Note that this increase is not
seen at the sphere surface in the DNS plot in figure 3(a) suggesting that the homogenous
Neumann condition at n = 0 in (2.15) is not appropriate. This could have been inferred
from (2.5), which implies that above the equator 0,P = 0,P = V2 =sin’0 ~ 1 at n=0.
This is further supported by figure 3(b) that also shows that the behaviour of the pressure
at the sphere surface is more complicated as it does not tend to 1 like V2 but to a
small variation of this; although setting the condition 9,P =1 at n = 0 seems like a
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Figure 2. The higher-order Stewartson (1958) model of the equatorial flow at Re = 10*. Results are shown
for (a) VW2 + U, (b) Y (n, B), (¢c) P = €P(n, B), (d) V(1, B).

(a) (b)
10.0 1.04;
75
B 5.0 1.02}
2.5 B,P
0 510 15 20 25 30 1.00
S o
-0.015 —0.010 —0.005 0  0.005 0.010 0.98 ‘ ‘ ‘ : :
' ‘ : : : 0 2 4 6 8 10

Figure 3. Semtex results for the pressure P at the equator. (a) Plot of P at Re = 10%. (b) Profiles of the
pressure wall gradient.

good approximation that improves as Re increases. The azimuthal velocity V can be
seen in figure 2(d) where it is advected downstream along the equator by the reattached
boundary layer forming the widely observed toroidal vortex around the equator. This is not
surprising as this is the core behaviour of the advection—diffusion equation (2.9¢), since it
is uncoupled and there is no momentum transfer to facilitate any other behaviour.

By plotting only the positive radial flow, i.e. W > 0, pockets of reverse flow can be
seen in figure 4 where white areas denote where W < 0. The Semtex simulations can
be seen in figure 4(b) and how the boundary layer reattaches along the equator after
the separation experienced upstream. It is clear that the boundary layer experiences an
acceleration that turns it into a radial jet that traverses along the equator forming a toroidal
vortex that surrounds the equatorial region of the sphere. As Re increases, a small region
of reverse flow can be seen at § ~ —2 on the sphere surface that seems to grow in size
with Re. The pressure distribution for Re = 10* can be seen in figure 3(a) where a large
increase in pressure generates an unfavourable pressure gradient forcing the boundary layer
to separate from the sphere in a similar manner to figure 2(c). The Stewartson (1958)
model can be seen in figure 4(a) where notably at the equator-sphere junction reverse
flow is observed at Re = 10* that expands with increasing Re. This is not observed in the
Semtex simulations in figure 4(b) and has not been observed in any numerical studies for
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Figure 4. Heatmaps of the positive radial velocity W > 0. White areas denote areas where W < 0, i.e. radial
inflow. (a) Stewartson (1958) model. () Semtex simulations.

such a small Re suggesting that the Stewartson (1958) model is inconsistent compared
with current numerics. This is amplified by noting that the shape of the boundary layer
‘tail’ is, qualitatively speaking, not the same compared with the DNS plots in figure 4(b).
Additionally, a key trait of the equatorial flow is that once the boundary layer reattaches it
accelerates and forms a radial jet. However, this acceleration is not observed in figure 4(a)
for the Stewartson (1958) model. This is not surprising because in (2.9) there is no
external forcing or coupling to the azimuthal momentum equation (2.9¢), thus, momentum
cannot be gained or lost resulting in the lack of speed experienced by the boundary layer.
Nevertheless, this transfer of momentum is the core physical behaviour hypothesised by
Stewartson (1958) and observed in Calabretto et al. (2019) before the boundary layer
transitions into the radial jet.

Furthermore, figure 4 seems to suggest that in the flow dictated by the higher-order
Stewartson (1958) model, the boundary layer reattaches further downstream compared
with the Semtex simulations. This is supported by figure 5(a) where at Re = 10* the
boundary layer in the DNS has reattached by n = 5 whereas in the Stewartson (1958)
model it does not reattach until n ~ 10 such that reattachment is defined as the n point
where W ~ 0.15, as this is the maximum velocity attained by the boundary layer before
separation, in the neighbourhood of 8 = 0. Similarly, at Re = 103, the boundary layer from
the Semtex simulations has reattached by n = 10 but the boundary layer dictated by the
Stewartson (1958) model has not yet reattached by this point. This is most likely due to the
presence of the reverse flow at the equator-sphere junction in the Stewartson (1958) model
that is absent in the DNS results. Finally, it is interesting to note that figure 5(a) displays
another flaw of the model: the maximum of W does not lie on the line 8 = 0 in contrast to
the Semtex simulations and other numerical studies (Dennis ef al. 1981; Calabretto et al.
2019).

As Re increases, it is expected that the area of reverse flow seen at the equator-sphere
junction enlarges and in figure 4(a) plots of the positive radial velocity (W > 0) can be
seen for Re = 8 x 10* and 10°, corresponding to the same Re that were simulated by
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Figure 5. Profiles of the radial velocity W close to the sphere surface (n = 0). (a) Profiles along g at stations
of n. (b) Profiles along B at stations of 7.

Calabretto et al. (2019). As Re increases, the pocket of reverse flow at the equator-sphere
junction grows considerably larger, although this is unobserved in any of the simulations
in figure 4(b) further suggesting that this model is unsuitable. However, a smaller pocket of
reverse flow can be noticed to emerge from the sphere surface at B ~ —6 in figures 4(a ii)
and 4(a iii) consistent with Calabretto et al. (2019); although the results in figures 4(b) and
5 place this pocket at § ~ —1.5. It does suggest that Stewartson (1958) is modelling an
important characteristic of the flow that has been observed in simulations, but other issues
remain including the qualitatively different shape of the ‘tail’ of the reattached boundary
layer and that the maximum of W is not always on the line B = 0. These are clues that the
current iteration of the model is not describing the flow reasonably accurately.

The vorticity at Re = 107 can be seen in figure 6(a) that unsurprisingly varies greatly
along the boundary layer trajectory due to the variation of the streamwise velocity causing
local rotation into the boundary layer. Interestingly, on the sphere surface a small region of
positive vorticity is observed. This suggests anti-clockwise flow, hinting at the presence of
a small vortex at the equator-sphere junction that was hypothesised to occur by Stewartson
(1958). This is further implied by figure 6(b) depicting the azimuthal velocity V' that
is advected further along the equator by the reattached boundary layer as Re increases.
Hence, expanding the reach and strength of the toroidal vortex where V ~ 0.7 as n — 00
compared with V ~ 0.5 for Re = 10* as seen in figure 7(a). Around the equator, there is a
small area ([0, 5] x [0, 5]), where V is smaller in magnitude than expected, meaning that
one would expect a strict monotonic decrease of V in a similar fashion as the Re = 10* case
as depicted in figures 2(d) and 7. However, as can be seen in figure 7(a), there is a small
domain where V is constant suggesting a small vortex where the higher strength swirl is
advected upwards whereas the relatively weaker swirl is advected downwards creating this
disparity around the equator.

The presence of a vortex at the equator-sphere junction can be confirmed by plotting the
radial reverse flow (W < 0) and vector field in figure 8(a) and the latitudinal skin friction,
Re™1/23,U = 0,U at n = 0 in figure 9. Due to the difference in magnitude of the reverse
flow, as it is much smaller than the streamwise flow, it is difficult to visualise the vector
fields in figure 8. However, as the latitudinal skin friction is negative, then this must imply
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Figure 6. The higher-order Stewartson (1958) model of the equatorial flow at Re = 10°.
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Figure 8. Heatmaps of the negative radial velocity W < 0 and the vector field of the planar motion at Re =
10°. The blue region refers to positive radial flow (W > 0) with respect to figure 4. (a) Stewartson (1958)
model. (b) Semtex simulations.
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Figure 9. Profiles of the latitudinal skin friction Re~!/23,U = 9, U.

U < 0 near the sphere surface due to the no-slip condition U = 0. Hence, there must be
a vortex at the equator-sphere junction for the Stewartson (1958) model as hypothesised.
However, it is clear that this argument does not apply to the Semtex simulations where
d,U > 0, meaning that U > 0 even at larger Re and, thus, no vortex can exist. Therefore,
one must conclude that this vortex is not physical.

5. Discussion

A new model of the steady flow around the equator for the rotating sphere has been
obtained that features a higher-order version of the Stewartson (1958) model. The main
characteristics of the flow are modelled well, namely the separation and subsequent
reattachment of the boundary layer through the smooth transfer of momentum driven by an
increase in pressure at the equator leading to an unfavourable pressure gradient. Also, there
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Figure 10. Absolute errors of the velocity components. Here Upys denotes the DNS solution and Upyp

denotes the higher-order Stewartson (1958) solution for the equatorial flow. Results are shown for (a) Re = 10%.
(b) Re = 10°.

is a small pocket of reverse flow that grows with increasing Re that eventually turns into
a small vortex at the equator-sphere junction. This is not seen in other numerical studies
or the simulations computed here and, thus, it is deemed that this vortex is not physical,
but there is a smaller pocket of reverse flow that has been observed at corresponding Re
by Calabretto et al. (2019) of approximately the same magnitude. On the other hand,
there are significant issues: the qualitative shape of the ‘tail’ of the radial velocity, W,
does not match with those seen in the DNS solutions in figure 4(b); the boundary layer
reattaches along the equator much earlier, with respect to n; the maximum of W is not on
the line § = 0 as was found by Dennis et al. (1981); and most importantly, the presence
of behaviour not seen in other DNS studies, i.e. a large pocket of reverse flow that forms
a small vortex with increasing Re, suggesting that the model is not reasonably accurate.
These problems are exemplified by the obvious differences with the DNS velocity profiles
seen throughout, for example, in figure 5, both the positions of reattachment and reverse
flow are different as well as the fact that the maximum of W does not lic on 8 = 0. This
is confirmed in figure 10(b) where the absolute errors of each component are presented
for Re = 10* and Re = 10°. It is expected that the error decreases with increasing Re
due to the asymptotic nature of the derivation of the model, however, disconcertingly,
the error for the U and V components increases, whilst only slightly decreasing for the W
component. Additionally, the magnitudes of the errors are of the same order as the velocity
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Re 1000 2000 2500 5000 8000 10 2x10* 25x10% 4x10* 8x10* 100

0,V
v/ Re

Table 1. Direct numerical simulation values of the azimuthal skin friction at & = 7t/2 for various Re.

0.135 0.115 0.1094 0.092 0.0828 0.0790 0.0662  0.0628  0.0559  0.0458 0.044

components themselves, which is extremely concerning. The error of the radial velocity,
W, can be attributed to the lack of speed gained by the boundary layer. This is most likely
due to the dismissal of apparent negligible terms in the derivation of (2.9) that are in
fact important as discussed later. This again suggests that the model is not tremendously
accurate, especially considering the significant size of the error of the azimuthal velocity.
Nevertheless, a small pocket of reverse flow is seen at larger Reynolds numbers that does
suggest that the model needs slight modifications.

It should be noted that as the Semtex simulations are unsteady, and the flow is
intrinsically unsteady, then to open discussion to unsteady behaviour is natural. As first
discussed by Banks & Zaturska (1979), then subsequently by Stewartson & Simpson
(1982), Dennis & Duck (1988), Van Dommelen (1990) and Calabretto et al. (2015, 2019),
the presence of a finite-time singularity in the unsteady boundary layer equations provides
the mechanism for the initial separation of the boundary layer. Physically, this singularity is
observed as the radial jet (Calabretto ef al. 2015). As this study is primarily concerned with
the post-collisonal flow, in other words the flow post-singularity, in order to investigate the
dynamics at large Reynolds numbers, then comparison to prior unsteady studies shall not
be conducted. Nevertheless, it would be interesting to compare the early time dynamics
of the numerical simulations to these other studies, in particular Van Dommelen (1990) to
test their more accurate Lagrangian approach.

It is clear that the model of the flow at the equator-sphere junction models the core
qualitative behaviour well: the separation and subsequent reattachment of the boundary
layer, and presence of a small region of reverse radial flow. However, it also possesses
various issues including the size and location of said reverse flow; the development of
a small unphysical vortex at the equator-sphere junction, hypothesised by Stewartson
(1958); and the shape and size of the magnitude of the radial velocity. These can be
observed by the DNS simulations where the velocity profiles behave differently compared
with the Stewartson (1958) model, and the absolute errors of each velocity component
seem to increase with Re instead of decreasing. Nevertheless, the equations proposed by
Stewartson (1958) have been solved for the first time despite these problems using the novel
multigrid method of Smith (2023). It is also clear that the model, despite its problems,
must be similar to a more consummate model due to the nature of its derivation and
the appearance of a small pocket of reverse flow seen at the correct Reynolds numbers.
It is hypothesised that terms dismissed in the derivation must be more influential than
first thought. All current models of the equatorial flow assume a totally flat space, i.e. no
curvature; however, at the equator one can visualise the geometry akin to a cylinder. Hence,
it is postulated that perhaps azimuthal curvature terms in (2.1) are significant.

This is readily seen by considering that the planar velocity components, U and W, are
of equal order €, to facilitate the separation and reattachment of the boundary layer. By
assuming U = €” U and W = €W, and keeping the same scaling assumptions, i.e. P ~
O(e) and V ~ O(1), then the radial momentum equation (2.1a) at leading order reduces to

Wo, W + UdpW — €' 2 V2 = —! =29, P + €'V (92W + 93 W). (5.1)
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Figure 11. Values of the azimuthal skin friction —9,V/+/Re at 0 = 1/2. (a) A log-log plot of —9,V/+/Re.

(b) Relative error (%).

Noticeably, the additional term —V? appears, and by increasing y from 0 it is clear that this
additional term and the pressure gradient become more influential, both becoming of O(1)
at y = 1/2. This adds coupling to (2.9¢) and provides a mechanism to allow momentum
transfer allowing the reattached boundary layer to gain speed and transition into a radial
jet. It is interesting to note that the additional term is also present in the Navier—Stokes
equations when expressed in a cylindrical coordinate system, further suggesting that
azimuthal curvature is important. This aspect will be one of the focus points of another
paper that is currently in preparation that builds much on the content presented here where
results are greatly improved and many of the discrepancies of the Stewartson (1958) model
discussed disappear.

Lastly, a major discussion point in Dennis et al. (1981) was the apparent discrepancy
between the size of the interaction zone at the equator-sphere junction hypothesised by
Smith & Duck (1977). Smith & Duck (1977) posit a large region of size O(Re™3/1%)
corresponding to an azimuthal skin friction, 3,V /+/Re ~ O(Re~>/"); whilst Dennis ef al.
(1981), through numerical simulations, find a correlation of ~O(Re~ /%), Both scalings are
relatively close, thus, results at higher Re are needed to observe any reasonable deviation.
By calculating 3,V/+/R. at the equator for various Re and combining with results of
Dennis et al. (1981) provide the figures in table 1. As Re increases, the magnitude of the
skin friction decreases; this is not unexpected as the influence of viscosity decreases with
an increase in Re. Dividing the figures in table 1 by the proposed scaling and taking the
average yields an approximation for the coefficients to obtain 8,V /+/Re ~ 1.0883Re2/7
and 8,V /~/Re ~ 0.779Re~'/*. Note that the coefficient for the Re /4 scaling is the same
calculated by Dennis ef al. (1981) up to two decimal places. A log-log plot of these
lines with both the results of the higher-order Stewartson (1958) model and DNS can

be seen in figure 11(a). The DNS results correlate well with the Re~!/# scaling compared
with the Re=%/7 scaling, although it is still rather close between the two, whereas the
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higher-order Stewartson (1958) model is wildly off correlation, increasing for larger Re
and further highlighting the lack of reasonable accuracy of the model. Additionally, the
relative error between the DNS results and the proposed scalings yields figure 11(b). The

—2/7 increases with Re whereas the error of the scaling Re™!/*

error of the scaling Re
—1/4 gcaling is less than

seems to decrease, albeit slowly. Furthermore, the error of the Re
5% whereas, for the Re~%/7 scaling, the error is rarely below this threshold. Note that the
relative error for the higher-order Stewartson (1958) model was > 100 % for Re > 8 X 10%.

Hence, figure 11 suggests that 8,V /~/Re ~ 0.779Re™'/4, consistent with Dennis ef al.
(1981), and it is deemed that the interaction zone is of size O(Re~!/*).
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Appendix A. Boundary conditions for streamfunction-vorticity formulation

The streamfunction i is defined up to a constant, so the no-slip condition (2.10a) W =
dg¥ = 0 implies that v is constant along n = 0, which can be set to 0. If dgy = 0 then
agw = 0 along n = 0, thus, (2.13a) becomes v = —831// along n = 0. In order to obtain
a boundary condition for w, the following Taylor approximation of ¥ can be made:

h2
v(n+h B)=vm p)+hyy(n, B) + ?@”nn(’?v B) + O(). (AD)

Here v, = 0,% and ), = agw. Upon recognising that ¥, = —w and ¥, = U =
0 along n =0, then substituting these into and rearranging (A1) whilst neglecting
higher-order corrections, it is possible to obtain

20, ) =y (h, B)) _2w(h, B)
h? B h?

In a similar manner to above it is possible to obtain an expression for the 8 — —o0
boundary. Let S denote a finite value for 8 — oo then

_ 20 =¥ (@, oo — h))

with ¥ (0, B) = 0. (A2)

w(0, B) =

w1 () - + Uy, (A3)
with
Yi(n) = — /On UpL (1) di. (A4)
The equatorial boundary (8 = 0) is achieved by simply setting
v(,0) =w(®,0=0 (AS5)
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as dgW = Béxp =0 and U = -9,y =0 along B =0. Finally, the outlet boundary
condition ( — o0) can be obtained by considering the following Taylor expansions:

v(n—h,B+h)=vm,B)+hven B) — ¥y, B)]
h2
+ ?W”"("’ B) — 2Ump(n. B) + ¥ps(n. B)1 + O(hY), (A6)

v —h,p—=h =y, B)—hlvsn. B) + ¥, B)]

h2
+ 5 W (0, B) + 24 (1, B) + Yipp (1. B + o). (A7)

If 3,W =0 as n — oo, then 9,5 = 0, and upon adding the two expressions above, we
obtain

which can be arranged for the vorticity as

2y, ) -y —hp+h) —db(—hp—h n 2U(. B)

o, B) = - S (A9)
and v (n, B) can be determined by solving
—Vn(n, B) — Ve (1, B)
_ @B -V —h )Y —h -1 n 2Un. B) (A10)

h? h

Appendix B. Lid driven cavity test case

Consider the square domain (x,y) = [0, 1] x [0, 1] such that the top wall (y =1)
moves horizontally with uniform velocity 1. The planar Navier—Stokes equations, in
streamfunction-vorticity form, are then given by

—0 =07y + Y, (Bla)

1
@0 — @)Y = o (5 + 07v), (B1b)
where Re = LU, /v is the Reynolds number based on the square length d and lid speed Uy,
Y is the streamfunction determined via
u=0oyw, v=-—0y, (B2a,b)

such that (u, v) denotes the respective horizontal and vertical velocity components of the
fluid velocity u; and w is the vorticity defined by

® = 0xV — Oylt. (B3)
The boundary conditions are given by
Y =0onx=0,landy =0, 1, (B4a)
v (h,y) Y(l—h,y) ¥ (x, h)
Y, 1 —h 2
a)(x, 1) = —ZT - E, (B4C)
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Re Ghia et al. (1982) Smith (2023)

v 2 x y 14 ® x y

100 —0.1034 —-3.1665 0.6172 0.7344 —-0.1035 —3.1813 0.6172 0.7383
400 —0.1139  —2.2947 0.5547 0.6055 —0.1140 —2.2968 0.5547 0.6055
1000 —0.1179 —2.0497 0.5313 0.5625 —0.1190 —2.0735 0.5313 0.5664

Table 2. Values at the centre of the primary vortex for the lid driven cavity problem.

where & < 1 is a small parameter that will represent the grid size defined in § 3. The
vorticity boundary conditions (B4b) and (B4c) are derived using Taylor expansions,
substituting (B2a,b) and (B3), and then rearranging for w. Note that (B4c) has an added
factor of —2/h due to the no-slip condition, u(x, 1) = 1, on the moving wall.

Equation (B1) is discretised to produce an N x N grid using finite differences in
the exact same manner as discussed in § 3, and thus, points outside the boundary are
again required. For the vorticity, the Lagrange interpolant (3.3) is used, but for the
streamfunction, centred differences are used to approximate (B2a,b) on the walls and upon
rearranging,

Vo=V, YN+ =YNn—1j Yi-1=Vi1, Yine1 =¥in—1+2h (BSa-d)

The discretised version of (B1) is solved using the FMG-FAS algorithm of Smith (2023)
outlined in § 3 using a coarse grid spacing #; = 0.5 and a fine grid spacing hy =278
corresponding to N = 257 nodes to produce the results seen in table 2 and figure 12 for
Re = 100, 400, 1000. It should be noted that the current parameters, such as the number
of iterations, give convergence for Re < 400. However, numerical experiments suggest
that as Re increases, the number of smoothing iterations should also be increased in order
to aid convergence. For example, for Re < 700, there was convergence if the number of
smoothing iterations was increased to 12, 15 and 10 with respect to figure 1 where the
number of iterations on the coarsest grid were kept the same, but it does seem that these
parameters are problem dependent. Once Re > 700, the method did not seem to converge
for reasons discussed in Smith (2023), although results for Re = 1000 can be obtained if
ay =l and a, = 0.6, where ay, and «,, are the under-relaxation parameters for the ¥ and
w corrections, respectively, in (3.6), but this seems to be an exception.

In table 2 values at the centre of the primary vortex, such as position (x, y), can be
seen comparing the results obtained using the FMG-FAS method of Smith (2023) to those
of Ghia et al. (1982). There is good agreement between both data sets, particularly the
data for Re = 400, which demonstrates that the FMG-FAS method produces consistent
results compared with previous numerical studies. Furthermore, it is expected that the
larger discrepancies seen for Re = 100, 1000 are due to the different grid sizes used for
the fine grid with Ghia et al. (1982) using N = 129 nodes compared with N = 257 nodes
used in this study.

This agreement is further observed in figure 12, where the solutions at fixed stations are
compared. There is excellent agreement between both sets of solutions further supporting
the accuracy and consistency of the FMG-FAS method. However, there seems to be an
anomaly in figure 12(b) for v(x, 0.5) at x ~ 0.9, nevertheless this is expected to be an
error due to Ghia et al. (1982) rather than the FMG-FAS method. This is because the point
is considerably askew from the other points surrounding it.
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Figure 12. Lid driven cavity solutions at various Re of Ghia ez al. (1982) (‘x’) against the FMG-FAS method
of Smith (2023) (red line). Results are shown for (a) Re = 100, (b) Re = 400, (¢) Re = 1000.
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Although these results are not an exhaustive comparison, it is believed that the
FMG-FAS method produces reasonably accurate solutions to the planar Navier—Stokes
equations and can be used to obtain other steady two-dimensional flows.
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