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A sequence algebra

associated with distributions

G.M. Petersen

If A = [a ) is a regular summability matrix, the sequence
771 j Yl

s = {s } is said to toe A uniformly distributed (see

L. Kuipers, H. Niederreiter, Uniform distribution of sequences,

p. 221, John Wiley & Sons, Hew York, London, Sydney, Toronto,

197*0, i f

l i m V a e x - p [ 2 n i h s 1 = 0
t- m,n v^ n>

(h = 1, 2, ...) . In this paper we examine sequences belonging

to A* , where t € A* if and only if t is bounded and s + t

is A uniformly distributed whenever s is A uniformly

distributed. By A' are denoted those members t of A* such

that at € A* for every real a . The members of A' form a

Banach algebra, A* is not connected under the sup norm, but

A' is a component.

1 .

In this paper we shall write e(x) for e If A = [a ) is a

regular summability matrix, the sequence s = {s } is said to be A

uniformly distributed [/], if1

Received 18 May 1978.

1 All summation in this paper is over n = 1 to °° , unless otherwise
indicated.
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4 0 G.M. Petersen

(1) l i m y a e{hs 1 = 0
m,n

(.h = 1, 2, ...) . By A- we denote the bounded sequences limited to zero

by A and write E, £ A if £ is bounded and ^c E A for all x £ A. .

It is easy to show that A is a Banach algebra; see [3]. In this paper

we shall discuss sequences belonging to A* , where t £ A* if and only if

t is bounded and s + t is A uniformly distributed whenever s is A

uniformly distributed. Such sequences are called admissible sequences.

It is easy to show [3] that

A* 3 A° .

Also, if the sequences t {k = 1, 2, ...) , belong to A* and

lim \\t -t\\ = 0

[where ||x|| = sup |x | ) , then

h\s +t^X\-e{h[s +t 1) I = \e[hs ) e\htk)-e[ht )

e\h

for a suitable choice of t . It is now clear that t is admissible and

A* is closed.

We now prove:

T H E O R E M 1 . I f O s t £ B < 1 a n d 0 < M M S 6 < 1 ( n = 1 , 2 , . . . ) ,

a n d t € A * , u € A * t h e n u t € A * .

Proof. In the first place, if t £ A* , 2t £ h* and in general

kt £ A* {k = 1, 2, ...) . Hence

l i m y a e(kt)e[s 1 = 0 ,

and the same is t rue for any trigonometric polynomial, • Moreover
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i f f is continuous on (0, 6) , f may be approximated uniformly by such
a polynomial, so that

where

\f(x)-pk(x)\ < e ,

x e (o , 6) .

From th is we conclude that

lim y a f[t )e{s ) = 0 ,*-• m,n K w v n'

if t € A* and f i s continuous on (0, 6) . Hence

lim y a tre [s ) = 0
- rmn ^ n> •

( r = 1 , 2 , . . . ) .

I f M € A* , t h e n

lim y a t e[s +ku } = 0

( r , fe = 1 , 2 , . . . ) , and s o

lim V a trv. [u 1 e [s ) = 0 .u rm rfk^ n' K n>

lim y a t ue [ s ) = 0 .

I t then follows that

(2)

If g(x) i s a polynomial,

l im y a g[t u )e[s ) = 0
^ m,n K n nJ K n>

so that, using the Stone-Weierstrass Theorem,

y a [g[t u )-e[t u ))e{s )
y- m,nK• K n nJ *• n nJ' K w

From this it follows that

S z y \aa \
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(3) lim T a e{s +t u ) = 0

Criterion (l) indicates that if {s } is A uniformly distributed so

are the sequences {hs } (h = 1, 2, . . . ) . Taking this into account and

making a slight adjustment to our previous arguments,

^£v /<< e Kv> = 0 '
and so as in (3),

lim T a e[hs +ht u ) = 0 .^^^ ^ m,n K n n"nJ

T h i s i m p l i e s t h a t s + ut i s A u n i f o r m l y d i s t r i b u t e d , ut t h* .

T h i s p r o o f b r e a k s down f o r t h e i n t e r v a l O S x < l o r 0 5 x 5 1 .

2 .

It turns out there are two types of admissible sequences. If there

exists an a , 0 < a 2 1 , such that at is admissible and

0 < at 5 p < 1 (n = 1, 2, . . . ) , then t is said to be non-singular; if

no such a exists then t is said to be singular.

THEOREM 2. If w and t are non-singular admissible sequences,

then wt is a non-singular admissible sequence.

Proof. Since there exists an a , 0 < a - 1 , such that at is

admissible, and 0 £ at 5 p < 1 , from Theorem 1 (all constant sequences

are admissible), i t follows that 3at is admissible for any 8 ,

0 5 3 5 1 . Hence yt is admissible, 0 5 y 5 a . Moreover, if w and

t are non-singular, y'w is admissible, 0 £ y' 5 a' , and yy'wt is

admissible 0 £ yy1 - a a ' • Since wt is bounded, there exists an integer

k such that l/k < aa' , and wt/k is admissible. By adding this k

times we have wt is admissible, and of course non-singular.

This proof can also be used to show r\t and rfb)t are admissible,

0 5 n 5 1 .

We shall write t € A' if there exiscs a positive constant 6 such

that t + 6 is non-singular.
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For any 3 such that 0 5 6 5 a , 0 5 6(t +6) 5 a ( t +6) 5 p < 1 ,

and i f 3 i s chosen so that 0 5 &[t +y) 5 p as well , then

3(t+y) = 3(t+6) + g(u-S) i s admissible. This implies tha t (t+u) i s non-

singular for y > 6 .

THEOREM 3. A' is a Banaeh algebra.

Proof. If t, u € A1 , there exist positive constant sequences 6, 6'

such that t + 6 and u + 6' are non-singular. Choose 3 so that

0 5 Bt +36 5 % , 0 5 3u +36' 5 h {n = 1, 2, . . . ) . Then

0 5 3(t +u +6+6') 5 % i s admissible. This implies that t + u + 6 + 6 '

i s non-singular and that t+u € A1 .

Examination of the rea l and imaginary parts of ( l ) shows that i f s

is A uniformly dis t r ibuted, -s i s A uniformly dis t r ibuted, and

subsequently if t € A* , then - t € A* . If t € A' , our remarks a t the

end of Theorem 2 show r\t € A' for 0 5 r| 5 1 , and hence r\t £ A' for

a l l positive rea l r| . Choose 6 so that 6 - t i s a posit ive sequence

and 6 so that 0 5 6 , 0 5 &{&-t ) 5 p < 1 . Then 66 is admissible,

-6t i s admissible, 8(6-£) i s admissible and 6 - t i s non-singular. I t

follows that x\t i A' for a l l rea l r\ .

If t , u € A1 , then i f 6, 6' are chosen as before,

(t+6)(w+6() i A1 . However ut = (u+6')U+6) - fc'fc - ku - kk' , and since

a l l four terms are in A' , our l inear i ty condition implies ut € A' .

The unit sequence belongs to A' . We have already seen that A* is

closed. Suppose

lim | | t n - t | | = 0 ,

where tn € A' ; then t 6 A* and is admissible. Also, at" € A' for

all real a . Hence

lim ||afcw-a*|| = 0 ,

and at € A* for all real a . A few easy steps now show that t € A'

and A' is a Banaeh algebra.
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We have seen that

A° c A' c A" ,

where A and A' are Banach algebras. Of course A* is not an algebra.

In fact, if t € A*\A' (we shall continue to call these sequences

singular) there are only finitely many a , 0 < a 5 1 , such that at is

admissible. Otherwise, a, and ou could be found such that

0 £ a1~
a2 < £ f ° r a n y £ > ° a n d s i n c e (a

1-
ao)t would be admissible,

would in fact belong to A' . Also these a must be rational, for

na - [net] is dense in the unit interval, and if at is admissible, so is

(na-[na])t . For a finite set of fractions there is always a fraction p/q

such that all of the members of the set are integral multiples of p/q .

Also p/q is either a member of the set or can be obtained from the set by

linear operations. Thus, if t is singular, there exists a t' such that

at' is not admissible, 0 < a < 1 , and nt' (n = 1 , 2, ...) includes

(indeed comprises) all of the admissible multiples of t .

We now see:

THEOREM 4 . If B c A* is an algebra that -includes the constant

sequences, B c A ' .

Indeed we have just seen that no member of A*\A ' can be part of such

an algebra containing all of the constant sequences.

3.

If there are no A uniformly distributed sequences, then A* has no

meaning.

THEOREM 5. If there is at least one A uniformly distributed

sequence then A*\A' is non-empty.

Proof. We can clearly assume that s is A uniformly distributed

and bounded. Moreover, all sequences of l's and O's belong to A* .

If all of these belong to A' , then all linear combinations or all

sequences with finitely many values are in A' (or A* ). Since such

sequences are dense in the bounded sequences and A* is closed then all

bounded sequences including -s are in A* . This is a contradiction and

our assertion is proved.
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If A = [a ) s a t i s f i e s
*• m,n'

l i m V l a - a , 1 = 0 ,
m ' n m'n+1

for example, a l l well dis tr ibuted sequences are A uniformly dis t r ibuted;

see [ / ] .

THEOREM 6. A* is non-connected; one of its components is a maximum

subalgebra A' .

Proof. We f i r s t show that A*\A' i s a closed se t . We already know

that if t € A* and

lim \\tk-t\\ = 0 ,

then t € A* . Suppose

kQ
lit - t | | < 1/10 ;

ko ko
then x (. A1 , where x = t - t . If at £ A* , 0 S a 2 3 < 1 , then

ko
since a t = a t + ax , a t £ A" (ax € A*) . Hence t £ A*\A' . Both

A*\A' and A' are non-empty, A1 is closed. This shows that A* is

non-connected.

Since x € A' implies ax € A' for a l l rea l a , i t i s easy to show

that A' i s connected.

4 .

Suppose A = [a ) sa t i s f ies CO; then i t i s said to be strongly

regular. A sequence {s } i s said to be well distributed i f

- ! , 2, . . .

has limit zero uniformly in p . The well dis tr ibuted sequences consist of

precisely those which are A uniformly distr ibuted for a l l strongly

regular A ; see [ 7 ] .

Admissible sequences for well distr ibuted sequences may be defined;
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we shall denote these by C* . In [4], the following theorem is proved:

THEOREM 7. If l^-^-J 2 % (n = 1, 2, ...) , *?zen £ € C* i/

-z/f

n+p
(5) -TT Z I* -* J

uniformly in p (that is, is almost convergent to zero).

A sequence {s } is said to be thin with respect to the matrix

A = [a ) i f s = 0 , n k. E , w h e r e

l im 7 la 1 = 0 .

» * n f f i m'n

We shall prove:

THEOREM 8. If A = [a ) is a regular matrix, a > 0

(m, « = 1, 2, ...) j which satisfies (k), then if \t -t ,| « %

(n = 1, 2, . . .) j t ? A1* onZ-y if t = u + u ̂  where u (. C* and z) is

Proof- The matrix A = (a ) may be adjusted by multiplying the row

elements so that

without affecting its other properties.

As in [4], we see that if (5) is not satisfied, there is a sequence

n. and a 6 such that t - t -,>6 ( i = l , 2, . . . ) . We shall
i n. n.-l

suppose that [t } is not thin. Then we choose the well distributed
i

sequences x and y , and construct z as follows:

V . i f « € (r .) ,

(6)
x. (mod %) - t if n € (M.) ,

% + x. (mod %) - t if M € (n.-l) ,
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where [r .) = Z\[{n.) u (n .-l)) . The above construction is identical with

that in [4], pp. 151*, 155, where i t is also shown that z i s well

distributed but z + t is not. This is done by showing that if I,. -<

is the characteristic function for (0, 6) , then

J ( 0 , 6 ) ( V + t J = J ( 0 , 6 ) ( V - l + t
V l ) = ° U = 1. 2, . . . ) .

It then followed that z + t was not well distributed, and so t f C* . We

denote [n.) u (n .-l) by [gv] . If A satisfies (It), then since z is

well distributed it is also A uniformly distributed; see [/]. Let us

choose m so that

k=l v'a

(v = 1, 2, ...) ; then

=°
(v = 1, 2, ...) , and z + t will not be A uniformly distributed,

unless

(8)
3

lim T a Iln . Jz +t ) = 6 .
/-- m ,r . (0,6)v r . v .'

However it is also clear that

lim sup Y a I, , ̂  [z +t ) t 0

for all intervals (a, b) , \b-a\ = 6 , as otherwise a simple addition of

finitely many characteristic functions would contradict (7). But then, it

is clear from the proof of Theorem 7 in [4] that we can construct z' such

that z' = s and z' = z + a , where a is some constant; and z'
V3 r3 gk 9k

will be well distributed. We can choose this constant a so that

lim sup Y a
k=l m
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From (8) and (9) , i t then follows that

l i m Y a I f n r \ [ z + t ) ? 6 ,
^ m,n ( 0 , 6 ) *• n n>

and t is not admissible.

In [4] it is remarked that if t is admissible, then by translation

and addition of integer sequences to t , we obtain t' such that

11'—t' | 5 % . The same may be said for members of A* and we have

THEOREM 9. If A = [a ) is a positive regular matrix satisfying

(k), then t £ A* only if t = u + v , where u € C* and v is thin.

It is also easy to show that if (5) is satisfied then t = u + V ,

where

(10) lim|Mn-Mn+1| = 0

and v is thin, so that if t € A* , \t -t \ £ h (n = 1, 2, ...) ,

then t = u + v , where u satisfies (10) and u is thin.

Of course A1 c A* , but if t E A' , then there exists a t' € Ar ,

|t'-t' | £ % obtained from t by algebraic operations. From this it

follows:

THEOREM 10. If A = [a ) is positive, regular, and satisfies (**),

then t { A' only if t = u + v , where u satisfies (10) and v is

thin.
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