HEAT CONDUCTION IN THINNING ICE SHEETS

By D. JenssEN and U. RADoOK
(Meteorology Department, University of Melbourne, Australia)

ApsTrRACT. A numerical treatment of the heat conduction in ice sheets subject to vertical shrinking,
geothermal and frictional heating from below, and surface accumulation or ablation, is outlined and
illustrated with results computed for an arbitrary ice thickness profile. The movement of the ice is found to
increase its basal temperature when the ice is thick, and to decrease it in the fringe zone where the ice

becomes thin. The treatment seems capable of extension to cover both the thermal and dynamic aspects of
ice motion.

RisuMmE. Une analyse numérique est donnée pour la conduction de la chaleur dans les “ice-sheets” qui
sont sujets au tassement vertical, au flux géothermique et a la chaleur dégagée par frottement, et a
I'accumulation ou ablation superficielle. La méthode est illustrée par des résultats calculés a partir de
profils arbitraires de I’épaisseur. On trouve que le mouvement de la glace éléve la température de la base
quand la glace est épaisse, et I'abaisse au bord de la calotte glaciaire quand la glace s’amincit. La méthode
semble étre utilisable pour traiter les aspects thermodynamique et dynamique du mouvement glaciaire.

ZUsAMMENFASSUNG. Eine numerische Behandlung des Wiirmeleitungsprozesses in grossen Eisdecken, die
einer Dickenabnahme, dem Einfluss der geothermischen und der Reibungs-Wirme am Boden, sowie einem
Massenzuwachs oder -abtrag an der Oberfliche unterliegen, wird entwickelt und mit Rechnungsergebnissen
fiir ein belichiges Eisdickenprofil erliutert, Die Bewegung des Eises erhéht die Temperatur an der
Gletschersohle, wenn das Eis dick ist, sie erniedrigt sie hingegen in der Randzone, wo das Eis diinn wird.
Das Verfahren sollte sich auf die gleichzeitige Erfassung der Thermodynamik und der Dynamik der
Eisbewegung ausdehnen lassen.

1. INTRODUCTION

The way to the understanding of temperature conditions in large ice masses was opened
by Robin’s (1955) discovery of the thermal effects of ice motion, but the complexity of the
problem has delayed its complete solution. Most analytical studies had to impose the
restriction of steady-state conditions (Bogoslovskiy, 1958; Wexler, 1959) or to disregard the
finite ice thickness and the decrease with depth in the vertical velocity of the ice (Radok,
1959; Wexler, 1961). The first attack on the problem by digital computer methods ( Jenssen
and Radok, 1961) allowed for variations in thermal diffusivity, for the effects of surface
warming and accumulation, and for the geothermal heat flux into the ice from below, but
had to disregard the steady reduction with time in the ice thickness. This “shrinkage’ is the
direct cause of the surface warming in what might be termed the “Robin process” and must
be included in any satisfactory treatment of the thermal conditions in large ice sheets.

The new treatment presented here starts from an arbitrary ice thickness profile and
prescribed rates of surface accumulation as a function of the horizontal coordinate. The
horizontal motion of a vertical ice column (assumed to remain vertical throughout) is then
governed by mass-continuity considerations. The ice velocity in turn determines the rate of
thinning (and hence the rate of surface warming), the frictional heat which must be added to
the geothermal heat flux, and finally the temperature profile of the ice as function of time or

distance. An alternative sequence of steps which has greater physical interest will be indicated
in the final section.

2, THEORY

For block flow in a moving coordinate system with the z-axis pointing downward and the
x-axis pointing horizontally down-stream, the equation of heat conduction in an ice sheet
has the form

x &*T R, oT oT
258 T 2z ez @ ” (1)
where v, is the vertical velocity of the ice and K, is the thermal diffusivity (—=k/pc, where &
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is the conductivity, p the density, and ¢ the specific heat, 0-49 cal./g. ° C.), at depth z below
the surface. The finite difference equivalent of (1) which can be made computationally
stable and hence suitable for numerical integration of (1) was shown (Jenssen and Radok,

1961) to be
Tz+1.£*2 Tz.t"i' Tz—x,t) Kzn *Kz—x : Tz+1.z— Tz—x,t Tz.c 1 Tz.t
K ( (dz)? = & _"z)( ¥ P e S o
For computational stability the time increment 4¢ and grid interval 4z must satisfy the
relation
(42)*
<

At T QKZIII!IX’ (3)
which, for K, ~ 40 m.%[yr., can be written

Az = g(4db)t, (3a)

The vertical velocity v, will be assumed to vary linearly between the surface (strictly the
level of annual mean temperature), where it has its largest value v, and the lower ice
boundary, where it is zero. The magnitude of v, is determined by the rate of surface accumu-
lation or ablation 4 (m.[yr., positive for accumulation), the surface slope of the ice &, and
the horizontal velocity U (assumed constant with depth), as

Ly T U‘EO 7AJ
while the horizontal velocity, the ice thickness H, and the accumulation are related by the
continuity equation
d(HU)[dt = UA. (4)
If basal melting at the rate M (m./yr.) is taking place in addition to the surface accumulation
A4 (m.[yr.) equation (4) must be modified to
d(HU)|dt = U(A—M) = UA*, (4a)

In the earlier computer treatment of the heat conduction in ice sheets, a constant surface

warming rate was used, with the implication that

dH|dt = U dH|dx = f = constant. (5)
It is shown in an appendix to this paper that (5) and (4) together imply a definite thickness
profile of the ice sheet, viz.

H = H, (1 —Ax|UpH,) 14, (6)
where U, and H, are the horizontal velocity and thickness at t=x=o. Equation (6) in general
corresponds to a concave shape of the surface of the ice sheet and the condition therefore
cannot be used for other than short horizontal distances.

The present treatment starts from an arbitrary realistic thickness profile H(x) for which
the derivative dH/dx and hence, from (4), the horizontal velocity U(x) and the shrinkage
rate dH(x)/dt=U dH(x)|/dx can be computed at any time step, given their values at the
previous time step. The shrinkage rate when multiplied by the vertical temperature gradient
along the surface of the ice sheet (taken throughout as 1° C./100 m.) gives the surface
warming rate. Following Robin (1955), the velocity U provides a direct measure of the basal
heating due to friction, which equals the geothermal heat flux (assumed constant at
38 cal./em.? yr.) for each 18 m./yr. of horizontal velocity (assuming a basal shear stress of
0-88 bar).

For the results presented in section 4 the bottom of the ice has been assumed to be a plane
horizontal surface and the ice thickness to be given by the parabolic relation

H* = {(L—X), (7)
where L is the total length of the ice sheet and { is related to its surface slope £ by
[ = 2H &, (8)
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so that for x—o

{
go = 2H, (9)

Given the values of [, U, and £ at time -1 the following quantities have to be computed for
time ¢ before the temperature profile can be determined by means of equation (2):
(1) The ice thickness

Hy = Hyy— \fr llUfﬂA!- (IO)
(i1) 'The surface temperature
Toa = Top—+ (s —He (e=1°0.[ro0 mu). (11)
(iii) The horizontal velocity (cl. equation (4))
U, = Up(Hs_+A*40)[H;. (12)
(v) The horizontal coordinate
X = xp_+UAL (13)
(2) 'The surface slope
€& = {[2H;. (14)

(vi) The temperature at the lower ice boundary, T, is determined by the condition
that the vertical temperature gradient there must correspond to the combined
geothermal and frictional heat fluxes, or,

y = I'(1+U/18), (15)
where I' (=1° C./44 m.) is the average temperature gradient associated with the
geothermal heat flux. However, the level where Ty and y apply is moving all the
time towards the ice sheet surface at a rate which depends not merely on the
shrinkage rate dH/d! but also on the occurrence or non-occurrence of basal melting.
The lower boundary in fact represents the hard core of the present problem and its
treatment is the subject of the next section.

3. Tue Lower Ice BouNpary

In order to establish the temperature at the lower boundary of the ice sheet, the bottom
section of the temperature profile is replaced by a fourth order polynomial. Originally this
polynomial was made to agrec with the temperatures of the two lowest intact grid points,
with the slopes of the temperature profile at these grid points, and with the gradient y (of
cquation (15)) at the actual boundary level (for the effects of melting cf. below). However,
with this procedure computational instability occurred whenever the boundary moved
sufficiently close to a grid point for the stability criterion (3) to be violated. The presence of
this region of instability was not detected for some time; it became manifest only when the
shrinkage rate was low enough to produce instability over three or four time steps.

The difficulty was finally overcome by fitting the polynomial to an auxiliary set of grid
points located one and two grid intervals above the momentary boundary level. This
arrangement is shown schematically in Figure 1 where the unprimed symbols refer to the
fixed grid and the primed symbols to the auxiliary grid, with the boundary a fraction £ of one
grid interval below the lowest intact grid point.

The fourth order polynomial

4
T = 3 arz? (16)
r=o0
is fitted to the temperatures 7', and 7', so as to have the slopes o and B at the
corresponding depths and slope y as given by (15) at the lower boundary. With the
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origin at the level of T's_; and a,=a/dz" the following set of equations results from (16):
T'p-, = ag—ar+a:—a3+ay,
T gy = do,

T = dotar+a:t+a3;+ay,

> )
adz = ai—2a:-+3a;—4ay, (17
Bdz: = a,
Y = ax+2az+gﬂ3+4a4.

TEMPERATURE >

LOWER BOUNDARY

Fig. 1. The determination of the temperature at the lower ice boundary. For details see fext

Eliminating the a, and solving for T p yields

Tp = 3(T'py+2T'p—T'p3+2ydz), (18)
where the gradients « and § have been replaced by their finite difference forms
a = (T'p-y—T'p-3)[2dz, B=(Tp—T'p-.)[24z. (19)

The primed temperatures in (18) are found from the unprimed temperatures by a linear
interpolation of the form
T’B—r = TB—r—:+’1(TB—r'“TB—r—x): (20)
and the heat conduction equation (2) is then applied to the points (B—1)’, (B—2)’, and
(B—3)', giving the corresponding temperatures and, by (18), the temperature at the lower
boundary, Tp.
Whenever the boundary temperature 7p rises above the melting point* an additional

* For simplicity all temperatures are referred to the pressure melting point as origin; the change of the latter
with ice thickness / is not taken into consideration but it would not be difficult to do so.
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calculation becomes necessary. This is illustrated schematically in Figure 2, where the heat
conduction during the time step just completed has moved the temperature 7p across the
zero isotherm. The heat Q which must be used for melting is proportional to the shaded area
I which can be approximated either by
Fj(hdz—8)Ts = §T5M, (21 a)
or by
F~3Tp'dz/(Tp—Tp-)- (21 b)

TEMPERATURE

~ T <

0° C LOWER  BOUNDARY

Fig. 2. The determination of the melt rate at the lower ice boundary. For details see text

Here the first expression which slightly underestimates the heat available for melting will be
used. Then
Q = $cT8’[y,

where ¢ is the specific heat of ice (0-49 cal.[g. © C.), and on division by the heat of fusion
(80 cal./g.) the melt rate M’ (m./time step) is obtained as

M' = Q [Bo=Tg*[327y. (22)
In the machine calculation the boundary temperature 7 is then restored to zero. This leads
to a modified boundary temperature gradient 3’ which will be larger or smaller than y
depending broadly on whether M’ exceeds, or remains less than (h4z—38). Thus the heat
flux into the ice from below is modified by the amount of melting during the previous time
step and this in turn will effect a change in the next melt rate. In this way the proper balance
is established between the proportions of geothermal and frictional heat used for melting and
conduction upward into the ice, respectively.
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4. SoMe Tyricar REsuLTs

The calculations outlined in the preceding sections have been programmed and per-
formed on CSIRAC, a single-address binary digital computer with a command time of
2-2 msec. and a high-speed storage capacity of 768 words each containing 20 digits. The
speed actually achieved corresponded to 15-5 (4¢/n) > 103 yr. of heat conduction per hour of
computation, where A¢ is the length of the time step in years and 7 is the average number of
grid points used. With a time step of 25 yr. computational stability required a grid spacing of
50 m. (cl. equation (3 a)); hence one hour of computation for an ice sheet initially 3,000 m.
thick covered 7,800 yr. of heat conduction. For Ho=1,000 m. and a time step of 5 yr.
(corresponding to fringe conditions), 3,700 yr. of conduction could be achieved in one hour.

For the first case to be presented here a parabolic profile of the form

H* = 0-003 (3,000 —x)km.? (23)
was used. The calculation was started with 6o grid points (59 grid intervals of 50 m. each);
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Fig. 3. Surface profile and ice velocities for different accumulation rales—ceniral ice sheet. Each velocily curve carries the
appropriate time scale (in thousands of vears)

this gave an initial thickness of 2,950 m., corresponding to initial values of x~ 100 km. and
{ = 5-08 x 1074 The initial velocity U, was assumed arbitrarily as 20 m./yr. in all cases.
Figure 3 shows a portion of the ice sheet surface (23) together with the horizontal velocity
profiles resulting from different surface accumulation rates in view of equation (4 a), which
allows for basal melting. The time scale for each accumulation rate is indicated along its
velocity curve. It is seen that the combined effects of shrinkage and melting accomplish in
10,000 yr. with a surface accumulation of 80 cm./yr. the same as almost 40,000 yr. of
conduction with an accumulation rate of 5 em./yr. The former accumulation figure is of the
right order of magnitude for central Greenland and the latter for the interior of Antarctica.

The ice temperature profiles for the three accumulation rates are shown in Figure 4.
For greater clarity all the surface temperatures fall on a common axis: the lower end of each
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temperature profile refers to the bottom of the ice at the time in question. In each case the
starting temperatures correspond to steady-state heat conduction and were determined
numerically, with Robin’s (1955) theoretical steady-state solution for constant thermal
diffusivity as initial guess. The main result of the ice motion is the familiar negative temper-
ature gradient near the surface; in the case of the lowest accumulation rate this takes
30,000 yr. of movement to form. In this case basal melting occurs under steady-state
conditions and is accentuated by the movement. For the larger accumulation rates melting
sets in after a few thousand years of motion, although the steady-state profiles have temper-
atures well below the melting point at the lower ice boundary. Thus basal melting can occur
under less stringent conditions of ice thickness and accumulation than have been employed
hitherto (Wexler, 1961; Zotikov, 1961). It will be seen below that close to the edge of an ice
sheet the motion of the ice appears to have the opposite efect.

TEMPERATURE (90) e
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Fig. 4. Ice lemperature profiles for the ice sheet and accumulation rates in Figure 3. The initial temperature profiles (broken
curves) correspond lo steady-state heat conduction

The melt rate can be found from equation (4 a) as
M = A— d(HU)|dx. (24)

For the case of 80 cm. annual accumulation the melt rate ranged from zero after 4,000 yr.
(when the melting point was reached at the lower boundary) to an average rate of 12 cm./yr.
during the final thousand years of the calculation (from 10,000 to 11,000 yr.). For the case of
5 cm. annual accumulation the maximum melt rate was found to be 7-3 mm./yr. (average
for the 5,000 yr. from 35,000 to 40,000 yr.). The smaller of these estimates is in good agreement
with Zotikov’s (1961) estimate for steady-state conduction in the central part of Antarctica.
In both cases the melt rate remains a small fraction of the surface accumulation.*

* In the case of A=0-8 m./yr. the total thickness melted in 7,000 yr. is 190 m. as compared with 5,600 m.
accumulation; for 4=o0-05 m./yr. the corresponding figures are 204 m. and 2.000 m. in 40.000 yr.
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The second case to be discussed corresponds to conditions near the edge ol'an ice sheet and

uses a surface profile of the form
H* = 0-02 (50—x)km.’ (25)

with a thickness of 10,000 m. and a slope of 10-% at x =0, 50 km. from the end of the ice sheet.
Figure 5 shows the shape of the latter together with velocity profiles for the three accumu-
lation rates previously used and for the case of ablation at the rate of 20 cm./yr. following an
accumulation of 5 cm./yr. during the initial 200 yr. of movement. The last combination is
broadly representative of conditions in the Mawson region (Mellor, 1959) and brings out the
marked effect of ablation on the terminal velocity of the ice.
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Fig. 5. Surface profile and ice velocities for different accumulation rates—edge of ice sheet. Each velocily curve carries the
appropriate time scale (in hundreds of vears)

The temperature profiles for the different accumulation rates are shown in Figures 6 and
7, where the initial temperatures again correspond to steady-state heat conduction. Evidently
this assumption is not as good an initial condition here as in the central regions of an ice
sheet, and a variety of other starting profiles remain to be tried at the edge. Figures 6 and 7
show that at the edge of the ice sheet motion tends to lower the basal temperature, except for
the highest accumulation rate where T g remains constant. Evidently the temperatures of the
ice as a whole show an increasing lag to the surface temperature, which rises rapidly during
this final stage of the ice motion.

The effect of ablation is brought out by the unbroken curves in Figure 7, where for
comparison the temperature profiles for 4=0-05 m.[yr. are also reproduced; the initial
temperatures in this case are given by the 200 yr. profile in Figure 6, A—o0-05 m./yr. Itis
clear that the ablation temperature profiles are in better accord with observations (e.g.
Shumskiy, 1960); nevertheless in regions with large accumulation right down to sea-level
the curves of Figure 6 must be broadly valid.
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5. ConcrusioNn AND OUTLOOK

The motion of ice sheets represents only one of the processes affecting their temperatures;
the analysis of its effects serves for explaining observed temperatures or for deciding as to
whether climatic changes must be invoked in addition to the Robin process to explain the
observations. Beyond this direct application, the numerical modelling of the heat conduction
in thinning ice sheets opens the way to the combined treatment of thermal and dynamic
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Fig. 6. Ice temperature profiles for the ice sheel and accumulation rates in Figure 5. The initial temperature prafiles (broken
curves) correspond lo steady-stale heal conduction

processes of the ice sheet. In place of starting from a given thickness profile, one might base
the calculations on a flow law for the ice, together with suitable initial temperatures and
accumulation values as functions of distance. The parameters in the flow law will be functions
of temperature so that in this case the horizontal velocity must be derived at the end of each
time step affer the temperature profile has been computed. Continuity considerations would
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then give the increments of surface slope and thickness and hence the boundary values needed
for the next step in the heat conduction process. In this way both the temperatures and the
thickness profile of the ice sheet would be obtained as results of the calculations.

Evidently this approach will require a variety of flow laws which might be judged in the
light of the thickness profiles they produce. The demand on the computer will be rather larger
than that made by the more schematic calculation here presented ; however, with the represen-
tation of the thinning process now available, no major difficulties are anticipated in this next
stage, even though it presents a task of a different order of magnitude.

TEMPERATURE (°C) ——=

Lo

<«——— DEPTH (m,)

900

1000-

Fig. 7. The effect of ablation on the temperature profile. The initial profile (broken curve) is that for 200 yr., 0-05 m.[yr.,
in Fig. 6, the intermediate curves show the profiles after 6% 10* yr. of ablation or accumulation and the final curves
(marked 1o) show the profiles after ro > 10* yr.

A further extension of the present treatment is needed to cope with the very important
case of ice shelves. The thinning of these probably can be handled as in section 3, but the
heat flux into the ice from below no longer depends on the ice motion but must be established
from oceanographic arguments (Wexler, 1960). The temperature of an ice shelf appears to
play an even more crucial role (Robin, 1958) than is the case for land-based ice sheets, and
the study of the relevant heat conduction processes can therefore be expected to contribute
much to the understanding of ice shelves and their réle in the Antarctic mass balance.
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APPENDIX

THE Ice ThickNEss PROFILE FOR A ConsTANT TmnNING RaTe
Mass continuity implies (cf. equation (4) of this paper) that
d(HU)
= AU, 1
5 (1)
where H and U are the thickness and horizontal velocity respectively (both functions of x) and A is a constant
accumulation rate.

If H=H,—f1, so that dH|dl— —f, a constant, then from (1)

H du
Ta
so that
d o e .
a(ln U) = 7 (2)
Integrating
H, vhALS
W= (Hﬂ—ﬂ) b
or
. H\ 1+4lf
U - (Jg (ﬁ) 3 (3)
Now (1) may be written as
d
o T— Ay —
= (HU—Ax) = o,

or
HU-—Ax = constant = H,U,,
from which

HU—H,U,
X = —

y (4)
Substituting for U from (3)
- HU, H")*"f (5)
il 5
Rearranging we find that
Ax —fiA
= — 6
# (—1,77) &
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