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ABSTRACT. A numerical treatment of the heat conduction in ice sheets subject to vertical shrinking, 
geo thermal and fri c tional heating from below, and surface accumulation o r abla tion, is outlined and 
illustrated with results com puted for an a rbitrary ice thickness profi le. The movement of the ice is fo und to 
increase its basal tempera ture when the ice is thick, and to d ecrease it in the fringe zone where the ice 
becomes thin. The treatm ent seems capa ble of ex tension to cover both the thermal and dynamic aspec ts of 
ice motion. 

RESUME. Une a nalyse num erique es t d onn ee pour la conduction de la chaleur d a ns les " ice-sheets" qui 
sont sujets a u tassement verti cal, au flux g eothermique e t a la chaleur degagee par frottement, e t a 
l'accumulation ou ablation superficiell e. La methode es t illustree par des resulta ts ca lcules a partir d e 
profils a rbitraires de l'epaisseur. On trouve que le mouvement d e la g lace elCve la tempera ture de la base 
quancl la glace es t epaisse, e t l'abaisse a u bord de la calolle g laciaire quand la g lace s'amincit. La m e thode 
semble etre uti lisable pour tra iler les aspects thermodynamiquc e l dynamiquc du m ouvement glaciaire. 

Z USA MM ENFASSUNG. Eine numerische Behandlung des Warmeleilungsprozesses in gross en Eisdeckcn , die 
einer Dickenabna hme, d em EinAuss der geothermischen und d er R eibungs-Warme am Boden, sowie e inem 
Massenzuwachs od er -abtrag an der Oberflache unlerii egen, wird entwickelt und mit Rechnungsergcbnissen 
flir ein beliebiges Eisdickenprofil erIauter t. Die Bewegung des Eises crh oht die T emperatur a n d er 
Gle tschersohle, wcnn d as Eis dick ist, sie erniedrigt sie hingegen in del' R a ndzone, wo das Eis dlinn wird. 
Das Verfahren sollte si ch a uf die gleichzeitige Erfassung d er Thermodynamik und der Dyna mik d er 
Eisbewegung ausdehnen lassen. 

I. INTRODUCTION 

The way to the understanding of tempera ture conditions in large ice masses was opened 
by Robin's (1955) discovery of the therma l effects of ice motion, but the complexity of the 
problem has delayed its complete solu tion. Most analytical stud ies had to impose the 
restriction of steady-sta te conditions (Bogoslovskiy, 1958 ; Wexler, 1959) or to disregard the 
finite ice thickness and the decrease with depth in the vertical velocity of the ice (Radok, 
1959; Wexler, 1961 ). The first attack on the problem b y digital computer methods (Jenssen 
and R adok, 1961 ) a llowed for variations in thermal diffusivity, for the effects of surface 
warming and accumulation, and for the geothermal heat flux into the ice from below, but 
had to disregard the steady reduction with time in the ice thickness. This "shrinkage" is the 
direct cause of the surface warming in wha t might be termed the " Robin process" and must 
be included in any satisfactory treatment of the thermal conditions in large ice sheets. 

The new trea tment presented here starts from an arbitrary ice thickness profile and 
prescribed ra tes of surface accumula tion as a function of the horizontal coordinate. The 
horizontal motion of a vertical ice column (assumed to remain vertical throughout) is then 
governed by mass-continuity considerations. The ice velocity in turn determines the rate of 
thinning (and hence the rate of surface warming), the frictional heat which must be added to 
the geothermal heat flux, a nd finally the temperature profile of the ice as function of time or 
distance. An alternative sequence of steps which has greater physical interest will be indicated 
111 the final section. 

2. THEORY 

For block flow in a moving coordinate system with the z-axis pointing downward and the 
x-axis pointing horizontally down-stream, the equation of heat conduction in an ice sheet 
has the form 

8'T ( 8Kz ) 8T aT 
K z 8z2 + 2 7iZ - Vz aZ - at = 0, 

where Uz is the vertical velocity of the ice and Kz is the thermal diffusivity (=k/pc, where k 
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is the conductivity, p the density, and c the specific heat, 0 ' 49 cal. /g . ° C. ), at depth <: below 
the surface. The finite difference equivalent of ( I) which can be made computation ally 
stable and hence suitable for numerical integration of (I) was shown (Jenssen and Radok, 
1961 ) to be 

(
T Z+ I.t - 2 T z.t+ T z- "t) (KZ+ 1- K z- , _ ) (Tz+ [,t - TZ- I,t) _ Tz,t+[- T z, t _ 

K z , (LI <:) 2 + LI <: Vz 2L1 <: LIt - o. (2) 

For computational stability the time increment LIt and grid interval LI <: must satisfy the 
relation 

which, for K Z m ax '" 40 m .2 /yr., can be written 

LI <: ~ 9 (Llt) ~. 

The vertical velocity Vz will be assumed to vary linearly between the surface (strictly the 
level of annual mean temperature), where it has its largest value Vo and the lower ice 
boundary, where it is zero. The magnitude of Vo is determined by the rate of surface accumu­
lation or ablation A (m. /yr., positive for accumulation), the surface slope of the ice go, and 
the horizontal velocity U (assumed constant with depth), as 

Do = U go - A, 

while the horizontal velocity, the ice thickness H, and the accumulation are related by the 
continuity equation 

d(H U )/dt = UA. 

If basal melting at the rate M (m. /yr. ) is taking place in addition to the surface accumulation 
A (m. /yr. ) equation (4) must be modified to 

d(H U )/dt = U (A - M ) = UA *. (4 a) 
In the earlier computer treatment of the hea t conduction in ice sheets, a constant surface 

warming rate was used, with the implication that 

dH/dt = U dH/dx = f = constant. (5) 
It is shown in an appendix to this paper that (5) and (4) together imply a definite thickness 
profile of the ice sheet, viz. 

(6) 
where Uo and Ho are the horizontal velocity and thickness at t = x = o. Equation (6) in general 
corresponds to a concave shape of the surface of the ice sheet and the condition therefore 
cannot be used for other than short horizontal distances. 

The present treatment starts from an arbitrary realistic thickness profile H (x ) for which 
the derivative dH/dx and hence, from (4), the horizontal velocity U(x) and the shrinkage 
rate dH(x)/dt = U dH(x)/dx can be computed at any time step, given their values at the 
previous time step. The shrinkage rate when multiplied by the vertical temperature gradient 
along the surface of the ice sheet (taken throughout as 1° C. / 100 m. ) gives the surface 
warming rate. Following Robin (1955), the velocity U provides a direct measure of the basal 
heating due to friction, which equals the geothermal heat flux (assumed constant at 
38 cal. /cm. 2 yr. ) for each 18 m. /yr. of horizonta l velocity (assuming a basal shear stress of 
0·88 bar). 

For the results presented in section 4 the bottom of the ice has been assumed to be a plane 
horizontal surface and the ice thickness to be given by the parabolic relation 

H2 = ' (L - X ), (7) 
where L is the total length of the ice sheet and , is related to its surface slope g by 

, = 2Hx gx (8) 
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so that for x= o 

(9) 

G iven the values of H, U, and t at time I- I the following quantities have to be computed for 
time I before the temperature profile can be determined by means of equation (2) : 

(i ) The ice thickness 
H t = Ht- I- !tt- l !Vt- ,LlI. 

(ii ) The surface temperature 

To,t = To,t - ,+(Ht - , - Ht )E (E= loC.! roo m. ). 

(iii ) The horizontal velocity (cr. equation (4)) 

Ut = Ut - I (Ht - I+ A*Llt )jHt. 

(iv) The horizon tal coordinate 

(v) The surface slope 

( 10) 

(vi ) The temperature at the lower ice boundary, TB , is determined by the condition 
that the vertical temperature gradient there must correspond to the combined 
geothermal and frictional heat fluxes, or . 

y = r (1 + Ut/18 ), 

where r (= 1 ° C. !44 m. ) is the average temperature gradient associated with the 
geothermal heat flux. However, the level where TB and y apply is moving a ll the 
time towards the ice sheet surface at a rate which depends not merely on the 
shrinkage rate dHjdt but a lso on the occurrence or non-occurrence of basal melting. 
The lower boundary in fact represents the hard core of the present problem and its 
treatment is the subject o f the next section. 

3. TI-IE LOWER ICE BOUNDARY 

In order to establish the temperature at the lower boundary of the ice sheet, the bottom 
section of the temperature profi le is replaced by a fourth order polynomial. Originally this 
polynomial was made to agree with the temperatures of the two lowest -intact grid points, 
with the slopes of the temperature profile at these grid points, and with the gradient y (of 
equation ( IS)) at the actual boundary level (for the effects of melting cf. below). However, 
with this procedure computational instability occurred whenever the boundary moved 
sufficiently close to a grid point for the stability criterion (3) to be violated. The presence of 
this region of instability was not detected for some time; it became manifest only when the 
shrinkage rate was low enough to produce instability over three or four time steps. 

The difficulty was finally overcome by fitting the polynomial to an auxiliary set of grid 
points located one and two grid intervals above the momentary boundary level. This 
arrangement is shown schematically in Figure I where the unprimed symbols refer to the 
fixed grid and the primed symbols to the auxiliary grid , with the boundary a fraction Iz of one 
grid interval below the lowest intact grid point. 

The fourth order polynomial 
4 

( 16) 
r = o 

is fitted to the temperatures T' B - 1 and T' B- 2 so as to have the slopes (J. and f3 at the 
corresponding depths and slope ')' as given by ( r S) at the lower boundary. With the 
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origin at the level of T'B- r and ar = a;LJ z r the following set of equations results from (16) : 

T'B- 2 = aO - aI + a2 - a3+ a4, 

T'B- r = ao, 

TB = ao + ar + a2+ a3+ a4, 

exLJ z = ar - 2a2 + 3a3-4a4, 

f3Ll z = ar, 

y = al + 2a2+ 3a3+ 4a4' 

TEMPERATURE 

1 

___ ___ T~_~ , ~,c{ 

__ TB- 2 

T 1!.,~ ____ ____ ____________ !i!._ !'.~ 

LOWER BOUNDARY 

Fig. [. The determillatioll of the temperature at the lower ice boulldary. For details see tex t 

Eliminating the ar and solving for TB yields 

TB = t(T'B- r+ 2T'B-2- T'B-3+ 2yLl z) , (18) 
where the gradients ex and {3 have been replaced by their finite difference forms 

ex = (T'B-I- T'B-3)!2LJ Z, (3 =( TB - T'B-z)!2LJ z . (19) 
The primed temperatures in ( 18) are found from the unprimed temperatures by a linear 

interpolation of the form 
T'B- r = TB- r- I+ h( TB- r- TB- r- I), (20 ) 

and the heat conduction equation (2) is then applied to the points (B - 1)', (B - 2)', and 
(B - 3)', giving the corresponding temperatures and, by (18), the temperature at the lower 
boundary, TB. 

Whenever the boundary temperature TB rises above the melting point* an additional 

* For simplicity all temperatures are referred to the pressure melting point as origin ; the change of the latter 
with ice thickness H is not taken into consideration but it would not be difficult to do so. 
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calculation becomes necessary. This is illustrated schematicalIy in Figure 2, where the heat 
conduction during the time step just completed has moved the temperature TB across the 
zero isotherm. The heat Q which must be used [or melting is proportional to the shaded area 
F which can be approxima ted either by 

or by 
F~ HhL1 ;;; - 8 ) TB = zTB' /y, (21 a ) 

TEMPERATURE 

_~,J -- r---
f, 

____ 1 ____ _ 

~ 

o· c. 
~~_TB 

LOWER BOUNDARY 

Fig. 2. The determination oJ the melt rate at the lower ice boundary. For details see text 

(2 I b) 

Here the first expression which slightly underestimates the heat available [or melting will be 
used. Then 

Q = tcTn' /Y, 
where c is the specific heat of ice (0' 49 cal. /g. 0 C.), and on division by the heat o[ fusion 
(80 cal. /g. ) the melt rate M' (m. /time step) is obtained as 

M' = Q /80 = TB' /3 27Y. (22 ) 

In the machine calcu lation the boundary temperature TB is then restored to zero. This leads 
to a modified boundary temperature grad ient Y' which will be larger or smaller than y 
depending broad ly on whether M' exceeds, or remains less than (hLl z - 8). Thus the heat 
flux into the ice from below is modified by the amount o[ melting during the previous time 
step and this in turn will effect a change in the next melt rate. In this way the proper balance 
is established between the proportions o[ geothermal and frictional heat used [or melting and 
conduction upward into the ice, respectively. 
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4. SOME TYPICAL RESULTS 

The calculations outlined in the preceding sections have been programmed and per­
formed on CSIRAC, a single-address binary digital computer with a command time of 
2' 2 msec. and a high-speed storage capacity of 768 words each containing 20 digits. The 
speed actually achieved corresponded to 15' 5 (LJ tin) X 103 yr. of heat conduction per hour of 
computation, where LJt is the length of the time step in years and n is the average number of 
grid points used. With a time step of 25 yr. computational stability required a grid spacing of 
50 m. (cf. equation (3 a)) ; hence one hour of computation for an ice sheet initially 3,000 m. 
thick covered 7,800 yr. of heat conduction. For Ho = I,OOO m . and a time step of 5 yr. 
(corresponding to fringe conditions) , 3,700 yr. of conduction could be achieved in one hour. 

For the first case to be presented here a parabolic profile of the form 

H 2 = 0'003 (3,000 - x)km.' (23 ) 

was used . The calculation was started with 60 grid points (59 grid intervals of 50 m. each); 
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Fig. 3. Surface profile and ice velocities for dijfermt accumulation rates- celltral ice sheet. Each velocity Cl/rve carries the 
appropriate time scale (in thol/sallds of years ) 

this gave an initial thickness of 2,950 m., corresponding to initial values of x~ 100 km. and 
, = 5' 08 X 10- 4. The initial velocity Uo was assumed arbitrarily as 20 m ./yr. in all cases. 
Figure 3 shows a portion of the ice sheet surface (23) together with the horizontal velocity 
profiles resulting from different surface accumulation rates in view of equation (4-a ) , which 
allows for basal melting. The time scale for each accumulation rate is indicated along its 
velocity curve. It is seen that the combined effects of shrinkage and melting accomplish in 
ro,ooo yr. with a surface accumulation of 80 cm./Yr. the same as almost 40,000 yr. of 
conduction with an accumulation rate of 5 cm. /yr. The former accumulation figure is of the 
right order of magnitude for central Greenland and the latter for the interior of Antarctica. 

The ice temperature profiles for the three accumulation rates are shown in Figure 4. 
For greater clarity a ll the surface temperatures fall on a common axis; the lower end of each 
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temperature profi le refers to the bo ttom of the ice at the time in question . In each case the 
sta rting temperatures correspond to steady-sta te h eat conduction and were d eter m ined 
numerically, with R obin's (1955) theoretical stead y-state solu tion for consta nt thermal 
diffusivity as in itia l guess . T he m ain resul t of the ice m otion is the familiar negative temper­
a tu re g radient near the surface; in the case of the lowest accumulation rate this takes 
30,000 yr. of m ovem ent to form. In this case basal melting occurs under stead y-sta te 
conditions and is accentuated by the m ovemen t. For the la rger accumulation ra tes melting 
sets in a fter a few thousand years of m otion, a lthough the steady-state p rofi les have temper­
a tures well below the m elting point a t the lower ice boundary. T hus b asal melting can occur 
under less stringen t conditions of ice thickness and accumula tion tha n have been employed 
hitherto (Wexler, 196 I ; Zotikov, J 96 J). It will be seen below tha t close to the edge o f an ice 
sheet the motion of the ice appears to have the opposite effect. 
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A = 20 cmJ yr. 
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, 10 , 
' 0 

'~ '~, 
Fig. 4. Jce temperature jJrojiles Jor the ice sheet and accumulalion rales in Figure 3. The initial lemperature projiles (broken 

curves ) corresjJond 10 steady-stale heat condllctioll 

T he melt ra te can be found from equa tion (4 a ) as 

M = A - d(H U )/dx. 

For the case of 80 cm . a nnual accumulation the melt ra te ranged from zero a fter 4,000 yr. 
(when the melting poin t was reached a t the lower boundary) to an average ra te of 1 2 cm ./yr . 
during the fina l thousand years of the calculation (from 10,000 to J 1,000 yr. ) . For the case of 
5 cm . a nnual accumulation the m aximum melt rate was found to be 7 ·3 mm. /yr . (average 
for the 5,000 yr. [i-om 35,000 to 40,000 yr. ). T hc sm a ller of these estimates is in good agreem ent 
with Zotikov's ( 196 I ) es tima te for stead y-sta te conduction in the centra l par t of Anta rctica. 
In both cases the m elt ra te remains a small fraction of the surface accumula tion. * 

* ] n the case o r A = 0·8 m. /yr. the total th ickness mel ted in 7,000 yr. is Igo 1l1. as compared w ith 5,600 m . 
accull1u la tion ; ror A = 0 · 05 m ./yr. the corresponding figu res a re 204 1l1. and 2.000 1l1 . in 40,000 yr. 
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The second case to be discussed corresponds to conditions near the edge or an ice sheet and 
uses a surface profile of the form 

H' = 0'02 (50 - x)km. ' 

with a thickness of 10,000 m. and a slope of 10- ' at x = 0, 50 km. from the end of the ice sheet. 
Figure 5 shows the shape of the latter together with velocity profiles for the three accumu­
lation rates previously used and for the case of ablation at the rate of 20 cm. /yr . following an 
accumulation of 5 cm. /yr. during the initial 200 yr. of movement. The last combination is 
broadly representative of conditions in the Mawson region (MelIor, 1959) and brings out the 
marked effect of ablation on the terminal velocity of the ice. 

too 

1 ~oo 
::: ... 
z 

" .., 
" ~ 400 

VELOC.ITY 

.-

DISTANCE (kmJ 

Fig. 5. Surface profile and ice velocities for different accumulation rates-edge of ice sheet. Each velocity curve carries the 
appropriate time scale (in hundreds of years) 

The temperature profiles for the different accumulation rates are shown in Figures 6 and 
7, where the initial temperatures again correspond to steady-state heat conduction. Evidently 
this assumption is not as good an initial condition here as in the central regions of an ice 
sheet, and a variety of other starting profiles remain to be tried at the edge. Figures 6 and 7 
show that at the edge of the ice sheet motion tends to lower the basal temperature, except for 
the highest accumulation rate where TB remains constant. Evidently the temperatures of the 
ice as a whole show an increasing lag to the surface temperature, which rises rapidly during 
this final stage of the ice motion. 

The effect of ablation is brought out by the unbroken curves in Figure 7, where for 
comparison the temperature profiles for A = 0' 05 m. /yr. are also reproduced; the initial 
temperatures in this case are given by the 200 yr. profile in Figure 6, A = 0' 05 m. /yr. It is 
clear that the ablation temperature profiles are in better accord with observations (e.g. 
Shumskiy, 1960) ; nevertheless in regions with large accumulation right down to sea-level 
the curves of Figure 6 must be broadly valid. 
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5. CONC LUSION AND OUTLOOK 

The motion of ice sheets represents only one of the processes affecting their temperatures; 
the analysis of its effects serves for explaining observed temperatures or for deciding as to 
whether climatic changes must be invoked in addition to the Robin process to explain the 
observations. Beyond this direct application, the numerical modelling of the heat conduction 
in thinning ice sheets opens the way to the combined treatment of thermal and dynamic 
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Fig. 6. Ice temperature profiles Jor the ice sheet alld accumulation rates in Figure 5. The initial temperature profiles (broken 
cl/rues) correspond to steady-state heat conduction 

processes of the ice sheet. In place of starting from a given thickness profile, one might base 
the calculations on a flow law for the ice, together with suitable initial temperatures and 
accumulation values as functions of distance. The parameters in the flow law will be functions 
of temperature so that in this case the horizontal velocity must be derived at the end of each 
time step after the temperature profile has been computed. Continuity considerations would 
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then give the increments of surface slope and thickness and hence the boundary values needed 
for the next step in the heat conduction process. In this way both the temperatures and the 
thickness profile of the ice sheet would be obtained as results of the calculations. 

Evidently this approach will require a variety of flow laws which might be judged in the 
light of the thickness profiles they produce. The demand on the computer will be rather larger 
than that made by the more schematic calculation here presented; however, with the represen­
tation of the thinning process now available, no major difficulties are anticipated in this next 
stage, even though it presents a task of a different order of magnitude. 
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Fig. 7. The effect of ablation on the temperature profile. The initial profile (broken curve ) is that for 200 y r., o· 05 m. /yr., 
in Fig. 6, the intermediate curves show the profiles after 6 X /0' yr. of ablation or accumlllation and the final curves 
(marked IO ) show the profiles after IO X IO' yr. 

A further extension of the present treatment is needed to cope with the very important 
case of ice shelves. The thinning of these probably can be handled as in section 3, but the 
heat flux into the ice from below no longer depends on the ice motion but must be established 
from oceanographic arguments (Wexler, 1960) . The temperature of an ice shelf appears to 
play an even more crucial role (Robin , 1958) than is the case for land-based ice sheets, and 
the study of the relevant heat conduction processes can therefore be expected to contribute 
much to the understanding of ice shelves and their role in the An tarctic mass balance. 
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APPENDIX 
THE I CE THICKNESS P ROFILE FOR A CONSTANT THI NNI NG R ATE 

Mass continuity implies (er. equation (4) of this papel') that 

d(H V ) 

dt 
AV, 

where H and V are the thickness and hori zonta l veloci ty respectively (both fun ct ions of x) and A is a constan t 
acculllulation rate . 

If H = H o- ft , so that dHjdt = - J, a constant, then from ( I) 

so that 

Integrat ing 

o r 

Now ( I) may be wr itten as 

o r 

from wh ich 

Substituting for V from (3) 

R earranging we find that 

!!..r!:: - f = A 
V dt ' 

d A+f 
d- (ln V ) = -H f.' t 0 - t 

_ (Ho) ,+ AI/ 
V - Vo -H f. ' 

0 - t 

(
Ho) ,+ 11 1/ 

V = Vo H . 

d Tt (H V - Ax) = 0, 

HV- kt = constant = H oVo, 

X = 

(6) 
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