
AN2IAMJ. 48(2007), 523-532

A COMPLETELY MONOTONIC FUNCTION INVOLVING THE
DIVIDED DIFFERENCE OF THE PSI FUNCTION AND AN

EQUIVALENT INEQUALITY INVOLVING SUMS
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Abstract

In this paper, a function involving the divided difference of the psi function is proved to be
completely monotonic, a class of inequalities involving sums is found, and an equivalent
relation between complete monotonicity and one of the class of inequalities is established.
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1. Introduction

It is well known that the classical Euler's gamma function T(x) is one of the most
important special functions and has extensive applications in many fields of science,
for example, in statistics, physics, engineering and the mathematical sciences. The
logarithmic derivative of V(x), denoted by \]/(x) = r'(x)/V(x), is called the psi or
digamma function, and the derivatives \JsM(x) for i e M of the psi function iff(x) are
known as the polygamma or multigamma functions.

A function / is said to be completely monotonic on an interval / if / has derivatives
of all orders on / and 0 < (-l)nfM(x) < oo for x e I and n > 0 [11]. A positive
function / is called logarithmically completely monotonic on an interval / if / has
derivatives of all orders on / and its logarithm In / satisfies 0 < (— l)*[ln f(x)](k) < oo
for all k e N on / . The set of the completely monotonic functions on / is denoted
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by &U] and the set of the logarithmically completely monotonic functions on /
is denoted by i f [ / ] . It is proved in [3,11,13,16] that i f [ / ] c if[/]. The well-
known Bernstein's Theorem [17, page 161] states that / 6 ^[(0, oo)] if and only if
f{x) = /0°° e~" dn(s), where /x is a nonnegative measure on [0, oo) such that the
integral converges for all x > 0. This expresses that / e ^[(0, oo)] is a Laplace
transform of the measure /z. In [3, Theorem 1.1] and [8,15] it is pointed out that the
logarithmically completely monotonic functions on (0, oo) can be characterized as
the infinitely divisible completely monotonic functions. In the recent past, numerous
functions, which are defined in terms of the gamma, polygamma, and other special
functions, have been proved to be (logarithmically) completely monotonic and this
fact is used to derive many interesting new inequalities (see, for example, [1,3-
6,8,11,14-16] and the references therein).

Kershaw's inequality [9] states that

for 0 < s < 1 and x > 1, which improved the corresponding result in [7]. In
[4,6,10,14], in order to obtain the best upper and lower bounds for the double
inequality (1.1), the monotonicity and convexity properties of the function

-x (1.2)

in* e (—a, oo) are verified, where s and t are nonnegative numbers and a = min{s, t}.
In [4,6,10,14], in order to prove the monotonicity and convexity of (1.2), the function

8s,,(x) ={ ' S , j
xfr'(x+s) • s = t

x + s 2{x + s)1

in x e (—a, oo), involving the divided difference of the psi function, is derived.
Recently, the positivity of the function 80,o{x) = \(r'(x) — l/x — \/2x2 was proved in
[2,5,12] respectively.

The first aim of this paper is to prove the complete monotonicity property of the
function 8s,(x).

THEOREM 1.1. Let s and t be nonnegative numbers and a = mm{s, t). Then the
functions 8SJ(x) for \t — s\ < land—8SJ(x)for\t — s\ > 1 are completely monotonic
in x e (—a, oo).
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The second aim of this paper is to found a class of inequalities involving sums.

THEOREM 1.2. Let k be a nonnegative integer and 9 > 0 a constant.
If a > 0 and b > 0, then

I
0)*- '+ ' +E

1 1

j ^ (a
(1.3)

holds for b — a > —9 and the inequality is reversed for b — a < —9.
If a < —9 and b < —9, then the inequalities

2k

(a

2k {

f ? ai+lb2k-i+l >

2k

i = 0

and
2k+i

E
24+1 2A+1

.=o
•\2k-i+2 ' £—1 ni+\f,2k-i+2

i=0 i = 0

(1.4)

(1.5)

hold for b — a > —9 and the reverse holds for b — a < —9.
If —9 < a < 0 and —9<b<0, then inequality (1.4) holds and inequality (1.5)

is valid for a + b + 9 > 0 and is reversed for a + b + 9 < 0.
If a < —9 and b > 0, then inequality (1.4) holds and inequality (1.5) is valid for

a + b + 9 > 0 and is reversed for a + b + 6 < 0.
Ifa>0 and b < —9, then inequality (1.4) is reversed and inequality (1.5) holds

for a + b + 9 < 0 and reverses for a + b + 9 > 0.
Ifb = a — 6, then inequalities (1.3), (1.4) and (1.5) become equalities.

REMARK 1. The shaded areas in the diagram below describe the domains on the
plane a Ob on which Theorem 1.2 is valid.

b

-e

{-9, -6)

o

-e
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REMARK 2. Hinted at by Theorem 1.2, the following open problem is posed: Let k
be a nonnegative integer and 6 a positive constant. Discuss the validity of the inequality

(a + b)k ja + b + W)k 2ja+b + 6)k •

ak+\bk+i + (a + 9)k+i(b + 0)k+l > (a + 9)k+lbk+i

or its reverse for a, b g {0, —8).

The final aim of this article is to establish an equivalent relationship between
Theorem 1.1 and inequality (1.3) for positive numbers a and b.

THEOREM 1.3. Inequality (1.3) for positive a andb is equivalent to Theorem 1.1.

2. Proofs of theorems

The following lemma is fundamental to this paper.

LEMMA 2.1. Let fix) be defined on an infinite interval I. If lim*-,^ f{x) = 0 and
fix) — f{x + e) > Ofor any given s > 0, then f{x) > 0 on I.

PROOF. By induction, for any x € / , we have

/(*) > f(x + e) > fix + Is) > • • • > f{x + ke)^0

as k -> co. The proof of Lemma 2.1 is complete. •

PROOF OF THEOREM 1.1. (1) Case SStS(x). We only need to prove that the function
8Ctoix) = \jf'ix) — l/x — \/2x2 is completely monotonic on (0, oo).

Successive differentiation of the function S00(x) with respect to x > 0 yields

for a nonnegative integer k.
It is well known that the polygamma functions ^(n)(;c) can be expressed as

= (-1)"+1 / e~"dt fo rneN, and (2.2)
Jo 1 - «"'

tr-xe-"dt for x > 0 and r > 0. (2.3)

Applying formulae (2.2) and (2.3) in (2.1) yields

0 '*-" dt > 0.
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Thus the function 80%0(x) is completely monotonic in (0, oo).
(2) Case Ss,(x)for s ^ t. The function Ssl(x) can be rewritten as

t-sjs 2 |_\ t-sj x + t \ t-s

so, for nonnegative integer k,

+ u)du
1 f

t-s) {x + tf+i \ t-s) {x+s)'+l

Since l i m ^ c S^Ot) = 0 from (2.2), by Lemma 2.1, to show ( - l ) * ^ * ) ^ 0, it is
sufficient to verify ( - l)k[S^(x) - S^(x + 1)] ^ 0.

Taking the logarithm of the difference equation F (JC+1) = xF(x) and consecutively
differentiating yields

(2.4)

for i e N and x > 0.
In the following, for convenience and simplicity, denote p = x + s > 0 and

^ = x + r > 0, when there is no confusion in the context.
Using formulae (2.3) and (2.4), we obtain

II) -= —̂̂ - f [

t - s Js (x + u)k+2 " 2 I L t - s \ [ qk+l

\ [
[ l

L1 + ^ J IP1^
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1- *: I (\ 1

D * + 1 ~ V~ ^ ) ( D * + 1 ~ V + ~ Z )

) A dz

=̂  r
2 Jo

r i ez _ i

- I tanh ±1 rfz.
z 2J

tanh ^ ^ i - I tanh ±1 rfz. (2.5)
2 2J

Since the function [tanh(y/2)]/>' is even in (—oo, oo) and decreasing in (0, oo), then

z
tanh - — ^ - .

(q-p)z 2 < z 2
is valid for \q - p\ = \t - s\ ^ 1. This reveals that {-\)k[8?}\x) - 8?){x + 1)] ^ 0
for \t — s\ ^ 1, which implies (— \)kSf](x) ^ 0 for |/ — s\ ^ 1.

In conclusion, the function Ssl(x) is completely monotonic if \t — s\ < 1 and
—8s,(x) is completely monotonic if \t - s\ > 1. The proof of Theorem 1.1 is
complete. •

PROOF OF THEOREM 1.2. For real numbers p,q g {0, —1}, denote the function in
the pair of braces in the ninth and tenth lines of (2.5) by Tk(p, q). Then

= [ 1 " { q ~

< ^ ^
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X

ST t p'-'i' -
^ ^ 1=0 \r • / i , _ 0

= [1 - (q - /?)]

* 1
+ L- p'+iqk-'+i ~2Z-.(p+ \y+\qk-i+i j • ( Z 6 )

(1) For p > 0 and q > 0, formula (2.5) tells us that r t (p , <?) ^ 0 for |g - p\ ^ 1.
Considering (2.6), it is concluded that if p > 0 and <? > 0 then the inequality

k j * 1 * 1

^ + ^ 2 ( 2 7 )

holds for ^ — p > — 1 and reverses for q — p < — 1.
(2) For p < —\ and g < — 1, utilizing (2.3) reveals

^ J [ ( D]t+1 ~ V\ q ~ P) (~q)k+l I

= ^^L zkr~ePZ+~q-^P~
£

q - p

ez - 1 1 e(i-p)z - 1 I

ez + 1 (q - p)z e<i-P» + 1 \

1 "I

1 \
( i \k /*oo^~ I I /

x tanh tanh - dz.
l(q-p)z 2 z 2]

Thus (—l)kTk(p, q) ^ 0 for |^ — p\ ^ 1. On combining this with (2.6), we deduce
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that if p < — 1 and q < — 1, then the inequalities

2k Ik , 2k

2 Z^ (̂  + ly+i^+i < -(p + l ) ( ? + l) p q ^ (^
and

2*+l 2/t+l , 2*+l ,

hold for q — p > — 1 and are reversed for q — /? < — 1.
(3) For —1 < p < 0 and —1 < g < 0, by using (2.3), we have

= | 1 + _L >* i . / i M-»
(/? + 1)*+1 \q - p ) (-p)k+l

"(1 + — )r•? ) *

If A; is even, then ^ ( p , 9) > 0 and inequality (2.8) holds for all - 1 < p < 0 and
- 1 < q < 0. If fc is odd, then Tk(p, q) ^ 0 for p + q + 1 ̂  0, and inequality (2.9)
is valid for p + q + 1 > 0 and is reversed for p + q + 1 < 0.

(4) For /? < — 1 and q > 0, using (2.3) shows

V

= ^ I
k\ Jo q-p

If /c is even, then rt(/7, 9) < 0 and inequality (2.8) holds for all p < — 1 and <? > 0
by (2.6). If & is odd, then Tk(p, q) ^ 0 for p + 4 + 1 ^ 0, and inequality (2.9) holds
for p + q + 1 > 0 and reverses for p + q + 1 < 0.

(5) For p > 0 and g < — 1, by using (2.3), we obtain

Tk(p, q) = "

1 u M ( 1 ) 6 1
q-pj (-q)k+l

-1 1
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If k is even, then Tk{p, q) < 0 and inequality (2.8) is reversed for all p > 0 and
q < —1. If A: is odd, Tk{p, q) ^ 0 for p + q + 1 sg 0, and then the inequality (2.9)
holds for p + q + 1 < 0 and reverses for p + q + 1 > 0.

(6) Letting 9 > 0 and substituting p = a/9 and q = b/9 into (2.7) leads to

1

« <«/'

which is equivalent to (1.3).
Similarly, inequalities (1.4) and (1.5) can be deduced by substituting p = a/9 and

q = b/9 into (2.8) and (2.9).
(7) Substituting q = p — 1 into the first two lines in (2.6) leads immediately to

Tk(p, P — 1) = 0, then inequalities (2.7)-(2.9) become equalities. Hence, if b — a — 9
then inequalities (1.3)—(1.5) also become equalities. The proof of Theorem 1.2 is
complete. •

PROOF OF THEOREM 1.3. For a > 0 and b > 0, suppose inequality (1.3) holds for
b — a > —9 and reverses for b — a < —9. If we assume a = p9 and b = q9 in (1.3),
then simplifying yields that inequality (2.7) holds for q — p > — 1 and reverses for
q — p < — 1, which is equivalent to Tk(p, q) ^ 0 for \q — p\ ^ 1. This means that
(-1)*[<O*) - < O * + 1)] ^ 0 for \t -s\§ 1, which implies (-\)k8^(x) ^ 0 for
\t - s\ ^ 1. Theorem 1.1 follows.

Conversely, if Theorem 1.1 is valid, then (-\)k8?)(x) ^ 0 for \t - s\ ^ 1, which
implies the function (— l)*^*"1^*) is increasing/decreasing for \t — s\ ^ 1, and

(-l)kSf-n(x) - (-l)kSlk-l)(x + 1) = (-D'feV'to - 5u~0(* + 1)] ^ 0

for \t - s\ ^ 1, which means that {-\)k[Sf]{x) - 8^(x + 1)] ^ 0 for \t - s\ ^ 1.
Further, combining this with (2.5) and (2.6) leads to (2.7), and then (2.10). Inequality
(1.3) is proved. The proof of Theorem 1.3 is complete. •
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