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ON THE DEFICIENCIES OF COMPOSITE ENTIRE FUNCTIONS

by J. K. LANGLEY*

(Received 17th June 1991)

For any sequence (aj of complex numbers and for any p > 1/2, we construct an entire function F with the
following properties. F has order p, mean type, each at is a deficient value of F, and F is given by
F(z)=f(g(z)), where / and g are transcendental entire functions. This complements a result of Goldstein. We
also construct, for any p > 1/2, an entire function G of order p, mean type, such that
liminf_» T(r,G)/T(r,G')>l.

1991 Mathematics subject classification: 3OD35, Secondary 3ODO5, 30D20.

1. Introduction

We are concerned with the deficiencies of an entire function F given by F(z) = /(g(z))>
where / and g are transcendental entire functions. It is well-known [9, p. 53] that if F
has finite order, then / must have order zero, which implies that F has no finite Picard
value. The following was proved by Goldstein [5] (see also [6]). Here the notation is
that of [9], which we shall use throughout.

Theorem A. Suppose that f and g are transcendental entire functions such that
F(z)=f(g(z)) has finite order. Then

YdS(a,F)<l, (1.1)
a

where the sum is taken over all finite values a.

We remark that the hypothesis that F has finite order is necessary in Theorem A
because of the obvious example F = e9, which has infinite order if g is transcendental
entire. The proof of Theorem A depends heavily on results of Edrei and Fuchs f_3], and
in particular on the fact that if F is entire of finite order with maximal deficiency sum,
then each deficient value of F is an asymptotic value of F. As remarked in f_5], it is
possible to replace 1 on the right-hand-side of (1.1) by a constant slightly smaller than
1, but depending on the lower order of F (see [3]).

In the terminology of factorization theory (see [7, 17]), Theorem A states that an
entire function F of finite order with maximal deficiency sum is pseudoprime, that is, it
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has no factorization F(z)=f(g(z)), where / and g are transcendental entire. The
following question appears in [17], and is attributed to Fuchs and Song. If F is entire of
finite order with d(a,F)>0 for some finite a, must F be pseudoprime? We answer this
question in the negative, by constructing a non-pseudoprime entire function of finite
order with infinitely many deficient values.

Now the following was proved by Arakelyan [1].

Theorem B. For any sequence (aj) of finite complex numbers, and for any p > 1/2,
there exists an entire function G of order p, mean type, such that for each j , 8(aj,G)>0.

No such result is possible for p ̂  1/2 (see [9, Ch. 4]). We remark that Eremenko [4]
showed further that the function G may be constructed so as to have the finite deficient
values a,, but no other finite deficient values. Using in part methods similar to those of
Arakelyan, we shall prove the following.

Theorem 1. For any sequence (ak) (fc = 0,1, 2,...) of complex numbers, and for any a
with l/2<er<+oo, there exist transcendental entire functions f and g such that
F(z)=f(g(z)) has order a, mean type, and such that for each k, 5(ak,F)>0.

As remarked by Arakelyan in [1], it is only necessary to prove Theorem 1 for
1/2 < a ^ 1 , for otherwise we need only consider, for a suitable value of N, the function
G(z) = F(zN)=f(g(zN)), which has the same deficiencies as F. To construct a composite
entire function F of order a having <5(0,F)>0, we can take 5,p such that (l+S)p = a,
and form / as a Weierstrass product satisfying T(r,f) = 0{\ogr)1+s. The function / has
zeros of large multiplicity at the points exp(A"), where X is large and positive. We then
construct g, using a simplified version of Arakelyan's method, so that T(r,g) = 0(rp) and
so that \g(z) — exp(A")|<l in a subset of an annulus Amg|z|^lm + 1. To construct a
function F having infinitely many deficient values, we apply a transformation used in
[2] to quasiconformally modify / in successive annuli so that for each k and for
infinitely many n, /(z) — ak has a zero of large multiplicity close to exp(A"). It does not
seem possible, however, to prove by our method that the ak are the only finite deficient
values of F.

Our construction of g also has a bearing on the following problem. If / is a function
meromorphic and transcendental in the plane, it is well-known [9] that the derivative / '
satisfies

T(r,f')^(2 + o(\))T(r,f) (1.2)

at least outside a set of r of finite measure, and that 2 + o(l) may be replaced by 1 + o(l)
if / is entire. In the other direction it was recently proved by Hayman and Miles [10]
that for any transcendental meromorphic function / and for any K>1,
T(r,f)^3eKT(r,f) for r lying in a set of positive lower logarithmic density. In
particular

L(/) = liminf T(r, f)/T(r, f')^3e. (1.3)
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Now it was proved by Toppila in [16] that if / is transcendental and meromorphic of
order zero, then L(/) as defined by (1.3) is at most 1. On the other hand Toppila
constructed in [16] and [15] meromorphic functions of arbitrary finite positive order
and an entire function of order 1 such that L ( / ) > 1. Our construction of g leads to the
following.

Theorem 2. For any p with l/2<p< + co, there exists an entire function g of order p,
mean type, such that

liminf T(r,g)/T(r,g')^K{p)> I.

Again it is only necessary to prove Theorem 2 for l / 2 < p g l . In our construction,
K(p)-> 1 as p-> 1/2, which suggests the possibility that if g is transcendental entire of
order p ̂  1/2, then L{g) = 1.

2. Lemmas needed for the proofs of Theorems 1 and 2

The following Lemmas A and B are due to Keldysh and play the same role as in
Arakelyan's construction [1].

Lemma A [14]. There exist positive constants ct,c2 with the following property.
Suppose that L is a rectifiable path of length S joining the points a and b, and that e and d
are positive. Then there is a polynomial P such that

for all z such that dist{z,L}^d, and

for all z with \z-b\^d.
Here dist{z, L} = inf{|z —w|: w on L}.

Lemma B [13]. Suppose that l / 2 < p ^ l and 0<a<n — n/2p. Suppose further that H
is analytic in Re(z)^0, and satisfies Iog+|/f(z)|=0(l+|zlp) there. Then there exists an
entire function g of at most order p, mean type, such that \g(z) — H(z)\< 1/2 for all large z
satisfying |arg z\ g a.

The following lemma gives us some control over the rate at which the deficiencies
d{ak,F) tend to zero as k-+ao in Theorem 1. The idea for the proof was suggested by
the author's colleague, D. A. Burgess.

Lemma 1. Let ao,al,..., be positive real numbers such that £ t L 0
 a * < l - Then there
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are pairwise disjoint sets Tk of non-negative integers such that each Tk is an arithmetic
progression modulo pk, where pk satisfies l^pk^2/ak.

Proof. For each k we choose a positive integer ik such that I/a* ^ 2ik ^ 2/<xk, and we
set pk = 2ik. By a rearrangement if necessary, we may assume that the sequence (ik) is
non-decreasing. We set y0 = 0, and To = {np0: n = 0,1,2, . . .}.

Suppose now that disjoint sets T0,...,Tm have been chosen, such that each Tk is an
arithmetic progression modulo pk, with first term yk^pk. Now if k^m, the number of
elements of the set { l ,2 , . . . ,p m + 1 } which are congruent to yk modulo pk is pra+i/P*- So
the number of elements of the set { l , . . . ,p m + 1 } which are congruent to yk modulo pk for
some k < m is at most

So there is some y m + 1 in the set { l , . . . ,p m + 1 } which is not congruent to yk modulo pk

for any k^m, and we set Tm + 1 = {>'m + 1+npm + 1:n = 0,1,2, . . .}. In this way the sets Tk

are defined inductively. Now if k < m and the sets Tk and Tm are not disjoint, then ym is
congruent to yk modulo pk, which is impossible.

3. Construction of the function g

Our construction of the function g in the composition F(z)=f(g(z)) is based on the
following lemma, which in turn is based on Arakelyan's method in [1].

Lemma 2. Let 1/2 < p ^ 1 and 1 < 1 < + O O . Then there exist positive sequences (6k),
(ak), (nk) and (ek) with the following properties.

(i) £ «*<1 (3.1)

k = 0

(ii) ek = exp( - l/(d2xk)) for each k, (3.2)

where 52
 IS a positive constant.

(iii) If fiki „ are any constants satisfying

| | (3.3)

then there exist a positive No and an entire function g of at most order p, mean type, such
that ifn^ma.x{nk,N0}, we have

\g(z)-Pk.n\<l (3.4)
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for z satisfying

\ \ l , |argz-(-1)^1^2^. (3.5)

We remark that in Arakelyan's construction, /?*,„ = at for all k and n, and that since
the conclusion of (3.4) is weaker than that required in Arakelyan's construction, we are
able to dispense with the infinite product <y of [1, Lemma 3].

To prove Lemma 2, we take a positive a* such that

<x*<n-n/2p (3.6)

and we choose an infinite sequence (6k) satisfying

Ok<6k+l«x* (3.7)

for /c^O. We choose positive constants <xk such that 80 — 8ao>0 and such that the
intervals (6k — 8afc, dk + %ak) are disjoint, and note that (3.1) is satisfied. We form, for
/c^O and n ^ 1, regions

£*,n = {z:f A"^|z|^f An+1, |argz-(-l)"0l k |g4al k} (3.8)

and

| | \ \ . (3.9)

We note that Fk „ is contained in Ek „, and that the Ek „ are disjoint and for fixed k lie
alternately above and below the real axis.

Now let Yk „ be the boundary of Ek „. We join Yk „ to the point —An+1/2 by an arc
Lkn of the circle |z| = /l"+1/2, taking always the shortest possible such arc. Now

s,,n = length(y»,nuLk,n)<c1A" (3.10)

where cl,c2,..., henceforth denote positive constants which are independent of k and n.
Also

dist(Ft,., YKnuLkJ>c2zkk
n (3.11)

where dist(A, B) = inf{|z —w|:z in A , w in B}. We set

dk,m = S1okX' (3.12)

where dt is positive, but small compared to c2, and set

Dktn = {z:dist{z, YKn u Lk<m} <dKn). (3.13)
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Provided <5, is small enough, the Dk „ are disjoint for fixed k, and

F k . K n D k , H = <t>. (3.14)

We set

k)) (3.15)

where 82 is small and positive. We apply Lemma A with d = dkn, a = w, where u lies on
Yk „, and b=— Xn+i. We obtain functions Qk,n(u,z), each of which is for fixed u a
polynomial in l/(z + ln+i), such that for u on Yk „ and z not in Dk „,

|e*,n(«,z)-l/(U-z)|<if X-2n-2 e x p (_e t AnP ) (3 J6 )

Here we have chosen e in Lemma A to equal the right-hand-side of (3.16). Provided
n^n*(k), say, and u lies on Ykn, Qkn(u,z) is analytic in Re(z)^. — l and satisfies, for
such z,

\Qk, n(u, z)\ < exp(c3 ek l
n" exp(c4/at)) < exp(An") (3.17)

provided 52 is small enough in (3.15). By an obvious compactness argument, we can
assume that Qk,n{u,z) is piecewise constant in u.

Now suppose that the constants /?*„ satisfy

and set

*(*) = &.. forzin£k,n. (3.19)

We choose integers nk^n*(k) so large that

1 t J l/|"|2|rf"l<V2 (3.20)

and we set

k = 0 n=ni< Yk.n

= U n.m- (3.21)
k,m

nu S m § n

In addition we set

https://doi.org/10.1017/S0013091500005964 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500005964


ON THE DEFICIENCIES OF COMPOSITE ENTIRE FUNCTIONS 157

Hn(z)=(l/2ni) J h(u)Q(u,z)du, (3.22)
V n

where Q(u,z) = Qkm(u,z) for Re(z)7z — 1, u on Ykm. Here all integrals are taken in the
positive sense, and Hn is analytic in Re(z)^ — 1.

Suppose now that |z|^A^, and that m>n>N + c5. Then

| l/(u-z)du = 0

and so

U — Zj

as n->oo. (3.23)j
vm\vn

using (3.16), (3.18), (3.19) and (3.20). Thus

tt(z)=lim Hn(z)

is analytic in Re(z) ^ — 1.
Now denote by F the union of the sets Fk „, for fe^O and n^.nk. Then if z is in F, and

n is large,

j

because z lies inside precisely one Ykm, and further, using (3.16),

h(u)(Q{u,z) l-)du

Here we have used the fact that by (3.14) F does not meet any Dk „. Thus for all z in F,

\H(z)-h(z)\<l/lO. (3.24)

Now we estimate the growth of H. Assume that XN-lfL\z\^kN, and set M = N + c6. If
c6 is chosen large enough then as in the proof of (3.23), m>M gives \Hm(z) — HM{z)\<
1/471, using (3.20). Also
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\HM(z)\^(l/2n) J l / | u | 2 H max \u\2\h{u)Q{u,z)\
VM uinVM

= 0{\z\2 exp(c7^))

using (3.17) and (3.18). This gives

log+|tf(z)| = 0(l + |z|<>). (3.25)

Now using Lemma B and (3.6) and (3.7) we can choose an entire function g of at
most order p, mean type, such that \g(z) - H(z)\ < 1/2 for large z with |argz|_<x*. Now
using (3.19) and (3.24) we obtain (3.4). This completes the proof of Lemma 2.

4. Proof of Theorem 2

We choose

/3o,n = exp(eoA"") (4.1)

in (3.18). Constructing g as in Section 3, Cauchy's integral formula gives |g'(z)|<l for
large z satisfying

A":g|z| = An + 1, |argz-(-l)n0o|;gao- (4-2)

On the other hand, if n is large and z satisfies (4.2),

\g(z)-poj<l. (4-3)

For large n, and r in [A", A" + 1 ] , we denote by Lr the set of 9 in [0,27t] such that rew

satisfies (4.2). Then clearly

(1/2TT) j log+ \g(reie)\d9>c1r" (4.4)
Lr

for some positive constant c,, while Lr makes no contribution to m(r,g'). On the other
hand, if Mr = [0,2n]\Lr, then

(1/271) J log+ \g'(reie)\d6^(l/2n) j log+|g(re'fl)|d0 + m(r,f7g)=O(r"). (4.5)

Mr Mr

It follows at once that g has order p, mean type and that

= liminfT(r,g)/7Xr,g')>l.
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We remark that for the proof of Theorem 2 we do not in fact need the sets Fk „ for
/c^l . However we still need to apply Lemma B in order to obtain the entire function g
from the analytic function H. Since Lemma B restricts the angle in which we may
approximate H by g, we see that for our examples L(g) -»1 as p -* 1/2.

5. The construction of/

The entire function / required for the proof of Theorem 2 will be constructed using
the following lemma.

Lemma 3. Let ao,a1,... be any complex numbers. Let 0<(5^1, and let k>\ be such
that k* is an integer and

Aa<(A*-l)(l+<5). (5.1)

In addition, let To, Tl5... be pairwise disjoint infinite sets of non-negative integers. Then
there exists an entire function f with the following properties.

(i) logM(r,/) = 0(logr)1+*. (5.2)

(ii) There exist positive constants c and n* and a sequence (Bn) satisfying

| log |Bn | - l n |<l (5.3)

for n^n*, and such that if n^n* and n is in Tk and A"^log+ \ak\, we have

log | / (z ) -a t |< -cA"< 1 + " (5.4)

for all z with \z — Bn\ < 1.

Proof. We set

n = 0

Now if exp(An)Sr<exp(l"+1), the number of zeros of h in |z|gr is 1+AS + ---+VS

which is less than ki(Xi—\)~l {\ogr)}. Hence the counting function n(r, l/h) of the zeros
of h satisfies

n{rMh)<Xi{ka-\)-l{\o%r)i (5.6)

for all positive r. Thus by [9, p. 28] we see that log M(r, h) = 0(log r)2. For a more
precise estimate, it follows from a result of Hayman [8] that for r outside a set of finite
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logarithmic measure, log M{r, h) ~ T(r, h) - N(r, l//i) + 0(1) so that for some d with
0<d< 1 and for all large r we have, using (5.1) and (5.6),

logM(r,/i)«*(logr)1+<!. (5.7)

Now suppose that \z—exp(A")| = (l/4)exp(An), with n large. Then (5.7) gives

l o g \ h ( z ) ( z i \

for some positive c. Consequently if

log|z-exp(2")|<cA'1 (5.8)

we have

log|/j(z)|<-7cA"(1+*). (5.9)

Now consider, for R > 0 and \a\ ^ R/2, the transformation

R2(

which maps |z|^/? one-to-one onto |w|^/?, such that w(0) = a and wR(z) = z when |z| = /?.
(This transformation is used, for example, in [2].) Also

\wJwz\ = \aw/R2\^\a\/R (5.11)

and

|w(z)-a|g4|z| (5.12)

for |z|</?. We modify / using the transformations (5.10). If n^n0 for some large «0, we
certainly have, by [8],

| | = «n (5.13)

on

|z-exPa")| = i exp(n (5.14)

Suppose that n^n0, that n is in the set Tk, and that J?B^|at|
2. Then in the open disc

https://doi.org/10.1017/S0013091500005964 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500005964


ON THE DEFICIENCIES OF COMPOSITE ENTIRE FUNCTIONS 161

Dn = {z:|z-exp(A")|<iexp(A")} (5.15)

we set

H{z) = *2MzHak)
R2

n+h(z)ak

if |/j(z)|^/?n, and H(z) = h(z) otherwise. If n<n0 or if /?n<|a t |
2 or if n lies in none of the

sets Tk, or if z lies outside the union of the discs Dn, we just set H(z) = h(z).
It follows that H is continuous in the plane and is analytic outside the union of the

discs Dn, while in Dn H is quasiregular with complex dilatation bounded by R~l/2 =
exp( — X"). Also for n large with n in Tk and Rn^|ak |2 ,

log|z-exp(/ln)|<c/ln (5.17)

implies that

| | * (5.18)

using (5.9) and (5.12).
Let a(z) = Hi/Hz be the complex dilatation of H, which exists almost everywhere (see

[2] or [11]), and is zero outside the union of the discs Dn. Now <x(z) = 0(l/|z|) as z-»oo,
by the construction of H, so that J|2|>i (r(z)/\z\2dxdy<oo. Proceeding as in [2], the
Teichmiiller-Belinskii theorem [11, p. 227] implies that there is a solution A of the
Beltrami equation

Af=<7(z)Az

which is a quasiconformal homeomorphism of the extended plane onto itself such that
A(0) = 0, A(oo) = oo, and

A(z) = z( l + o(l)) a sz -K» . (5.19)

Denoting by J = A~l the inverse function of A, we note that f(z) = H{J(z)) is almost
everywhere conformal and so entire.

Now define Bn by

Bn = A(exp(A")) (5.21)

so that (5.3) follows at once for n sufficiently large, using (5.19). We consider now the
distortion properties of J = A'i. Now J(Bn) = exp(A"), and J{z) = z(l +o(l)), so for n
large set

Jn(z)=(J(Bn + i |Bn|z) - ex") exp( - A"). (5.22)
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Now each Jn maps \z\ < 1 into itself, with Jn(0) = 0. Further, in terms of the real
dilatation, Jn is Kn quasiconformal, where Kn = (\ + «:„)/( 1 — «:„), and Kn = 0(l/|Bn|).
Distortion theorems (see, for example, [12, p. 6]) give the following. If |z|<4/|Bn| then
we have |Jn(z)|^c1(l/|Bn|)1/K" where citc2 henceforth denote positive absolute constants,
so that

for such z. Thus \z — Bn\ < 1 gives

\ \ (5.23)

if n is large. Now (5.17), (5.18) and (5.23) imply that if n^n*, say, if n is in the set Tk

and if A"^log+ \ak\, then \z — Bn\< 1 gives

which proves (5.4).
To estimate the growth of / we just note that if n is large then in

exp(An+1), we have H(z) = h(z). So for 3exp(A")g|z|^exp(An+1), we have

which proves (5.2), and completes the proof of Lemma 3.

6. Proof of Theorem 1

Given a with 1 /2<<T^1, we first choose p and 8 with l /2<p<l and 0<<5<l and
p(l+<5) = <7. We choose A>1 so that Xs is an integer, and such that (5.1) is satisfied.
Now let the sequences (9k), (ak), (nk) and (ek) be as in the statement of Lemma 2. Since
(3.1) is satisfied, we can, by Lemma 1, find pairwise disjoint infinite sets Tk of
non-negative integers such that each Tk is an arithmetic progression modulo pk, where
pk^2/ock. We now apply Lemma 3, to construct an entire function / such that (5.2)
holds, and such that for some sequence (Bn) satisfying (5.3) the following holds. If n^.n*,
if n is in Tk and A"^log+ \ak\, then (5.4) holds for all z with \z-Bn\ < 1.

Now we define the constants pk „ as follows. Given fc^O and n^n*, let m be the
largest member of Tk such that

Xm + \^ekk
ni', (6.1)

and set jikn = Bm. If no such m exists, or if fc^O and 0^«<«*, we set pkn = 0. Using
Lemma 2 we construct an entire function g of at most order p, mean type, such that if
n^.max{nk,N0} we have
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| j r (z)-&,n |<l (6.2)

for

A n ^ | z |SA" + 1
) | a rgz - ( - l ) B 0 k |S2a t . (6.3)

We set F(z)=/(g(z)). It follows at once, using (5.2), that

T(r,F) = 0(i*). (6.4)

Now suppose that k ̂  0, and that n is large compared to k. Then for z satisfying (6.3),
we have \g(z) — Bm\<l, where m is as defined by (6.1). Now (5.4) gives, for such z,
provided n is large enough,

log|F(z)-ak |<-cAm ( 1 + < 5 ) . (6.5)

But Tk is an arithmetic progression modulo pk, so that if n is large enough,

Denoting by dl,d2,.-. positive constants which do not depend on n or Ac, (6.5) now
gives, for z satisfying (6.3),

- log|F(z) - ak\ > d, An"(1 +>){ek)
d2r

Thus F has order a, mean type, each ak is a deficient value for F, and, using (3.2),

F ) ) - 1 ^ " * . (6.6)

Concluding Remarks. The estimate (6.6) shows that the deficiencies tend to zero at a
rate comparable to that in Arakelyan's construction [1], this rate being essentially only
determined by (3.1).

It does not seem possible to prove by the present method that the ak are the only
finite deficient values. In Eremenko's extension of Theorem B (which also uses the
Teichmiiller-Belinskii theorem) it is shown that the function G may be constructed with
the following property. There exist arbitrarily large circles on which, with the exception
of a set of arbitrarily small angular measure, G is either large or is close to one of the
ak. For our problem, if A is not one of the ak, we would need to estimate the proximity
of F to A in terms of the proximity of g to the roots of f(w) = A.
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