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SCHUR PROPERTY AND {p ISOMORPHIC COPIES IN
MUSIELAK-ORLICZ SEQUENCE SPACES

B. ZLATANOV

The author shows that if the dual of a Musielak-Orlicz sequence space £p is a stabi-
lized asymptotic £ space with respect to the unit vector basis, then £g is saturated
with complemented copies of ¢; and has the Schur property. A sufficient condition
is found for the isomorphic embedding of ¢, spaces into Musielak-Orlicz sequence
spaces.

1. INTRODUCTION

The notion of asymptotic £, spaces first appeared in [14], where the collection of
spaces that are now known as stabilised asymptotic ¢, spaces were introduced. Later in
[13] more general collection of spaces, known as asymptotic ¢, spaces, were introduced.
Characterisation of the stabilised asymptotic £,, Musielak-Orlicz sequence space was
given in [4].

A Banach space X is said to have the Schur property if every weakly null sequence is
norm null. It is well known that ¢, has the Schur property and it’s dual £, is obviously a
stabilised asymptotic £, space with respect to the unit vector basis. A characterisation of
the Musielak-Orlicz sequence spaces £4 possessing the Schur property, as well as sufficient
conditions for €3 and weighted Orlicz sequence spaces £ps(w) to have the Schur property
were found in [8]. Using an idea from [1] we find that if the dual of a Musielak-Orlicz
sequence space is a stabilised asymptotic £, space then it is saturated with complemented
copies of £; and has the Schur property. While simple necessary conditions for embedding
of ¢, spaces into Musielak-Orlicz spaces £y were found in [16], the problem of finding
analogous sufficient conditions, as it is done in [11] for Orlicz £)s, appeared more difficult.
We find a sufficient condition for the existence of an £, copy in {3 in Paragraph 4.
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2. PRELIMINARIES

We use the standard Banach space terminology from [11]. Let us recall that an Orlicz
function M is even, continuous, non-decreasing convex function such that M(0) = 0 and
tlcl’lg M(t) = co. We say that M is a non-degenerate Orlicz function if M (t) > 0 for every
t > 0. A sequence & = {®,;}32, of Orlicz functions is called a Musielak-Orlicz function.

The Musielak-Orlicz sequence space £g, generated by a Musielak—Orlicz function ®
is the set of all real sequences {z;}, such that i@i(/\l‘i) < oo for some A > 0. The
Luxemburg’s norm is defined by =t

zlle = inf{r >0: ZQ,-(z:,—/r) < 1}.
i=1
We denote by he the closed linear sﬁbspace of £5, generated by all x € £g, such that
3" ®i(Az;) < oo for every A > 0.
i=1

If the Musielak—Orlicz function ® consists of one and the same function M one
obtains the Orlicz sequence spaces £p; and hy,.

Let 1 € p;, i € N be a sequence of reals. The Musielak-Orlicz sequence space fs,
where & = {tPi}2, is called a Nakano sequence space and is denoted by £(,;. In (3]
it was proved that two Nakano sequence spaces {5}, {{4;} are isomorphic if and only if
there exists 0 < C < 1 such that

o0
Z CYIPi-%l < o .

i=1

An extensive study of Orlicz and Musielak—Orlicz spaces can be found in [11, 15,
6, 9).

DEFINITION 2.1: We say that the Musielak-Orlicz function ® satisfies the §, con-
dition at zero if there exist constants K, 8 > 0 and a non—negative sequence {c,}32, € ¢,
such that for every n € N

®,(2t) < K®p(t) + o
provided t € [0, ®;1(8)].

The spaces ¢g and hg coincide if and only if @ has the §; condition at zero.

Recall that given Musielak—Orlicz functions ® and ¥ the spaces £ and £y coincide
with equivalence of norms if and only if ® is equivalent to ¥, that is there exist constants
K,B > 0 and a non-negative sequence {c,}3, € #;, such that for every n € N the
inequalities

&, (Kt) < Up(t) +¢cn and P, (Kt) < Du(t) +¢p

hold for every t € [O, min(®;(8), \II;I(B))].
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Throughout this paper M will always denote an Orlicz function while ® is an
Musielak—Orlicz function. As the properties we are dealing with are preserved by iso-
morphisms without loss of generality we may assume that ® consists entirely of non-
degenerate Orlicz functions, such that for every ¢ € N the Orlicz function ®; is differ-
entiable, ®;(0) = 0 and ®;(1) = 1. Indeed, we can always choose a sequence {c;},

o]
such that o; < 1/2,i1 € N, ®;(e4) < oo and consider the sequence of functions

wilt) = /0 (¥i(s)/s) ds, where =

Obviously the Musielak-Orlicz function ¢ = {;}2, consists of differentiable functions
and ¢;(0) = 0 for every i € N.
For every t € [0, ;] we have ¢;(a;) = ((I>,~(a,~))/2 and

o) = [ ) g, [ COpRE TGO

2 7
a; 20

For every t > a; we have

wi(t) = /00-' i) sds + /t @iis) ds = Pi(os) + /t ®;(s) ds |

a? 2 )

i i

By the convexity of ®; follows that

. (I),' o
1) ei(t) < 299 g
for every t > 0.

In order to get the opposite inequality we consider separately three cases:
(I) Let a; <t/2 then

N s 1C)]
wilt) = s ds+/

a;
> ®;(oy) + ¢ ®;(s)
2 ¢/2 3

t/2 . t .
i)y, [* B,
S t/2 S

+®;(/2).

‘I>,-(a,-)
>
ds > 5

(I) Let t/2 € a; <t then
. . t . a; X
oty = 2@ +/ cI"(s)ds—/ ils) 4
t t

2
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(II1) Let t < o then

0 4 2o
Thus
@) q’i(;/?) S(’ot_(t)_*_@i(26¥i)

for every t > 0. By (1) and (2) it follows that ¢ ~ ® and thus £, = ¢3. To complete the
proof, it is enough to normalise the functions y; by considering ¢ = {<p,- / cp,-(l)}fio.

DEFINITION 2.2: For an Orlicz function M, such that %irr& M(t)/t = 0 the function
—
N(z) = sup{tjz| — M(t) : t > 0},

is called the function complementary to M.
DEFINITION 2.3: The Musielak-Orlicz function ¥ = {¥;}%,, defined by

¥;i(z) =sup{t|x| —®;(t):t > 0},j =1,2,...,n,...
is called complementary to ®.

Let us note that the condition %gr(} M(t)/t = 0 ensures that the complementary
function N is always non-degenerate. Observe that if N is function complementary toc M,
then M is complementary to N and if the Musielak—Orlicz function ¥ is complementary
to the Musielak—Orlicz function @, then @ is function complementary to ¥. Throughout
this paper the function complementary to the Musielak—Orlicz function ® is denoted by
.

It is well known that h}; = ¢y and hy = £y. The equivalent norm in £ is the Orlicz

norm o0 o
llg = sup{zxjy,- - S W0 < 1},
j:l

j=1
which satisfies the inequalities (see for example,[7])

-lle < I1- 119 <20l lle-

o0
We shall use the Holder’s inequality: Y |z;y;| < ||z/|$llyllw, which holds for every
=

= {z;}2, € ls and y = {y;}{2, € £y, where ® and ¥ are complementary Musielak-
Orlicz functions.
By {e;}32, and {e}}32, we denote the unit vector basis in hs and hy respectively. For

o
a Banach space X with a basis {v;}{2, and element z € X, z = }_ z;v; we define supp z

i=1
= {i € N:z; # 0}. We write n < z if n < min{suppz} and z < y if max{suppz}
< min{suppy}. We say that z is a block vector with respect to the basis {v;}{2, if

q
z = Y z;u; for some finite p and ¢ and we say that z is a normalised block vector if it is

i=p
a block vector and ||zf| = 1.
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DEFINITION 2.4: A Banach space X is said to be stabilised asymptotic £, with
respect to a basis {v;}{2,, if there exists a constant C > 1, such that for every n € N
there exists N € N, so that whenever N < z; < --- < z, are successive normalised block
vectors, then {z;}, are C—equivalent to the unit vector basis of £ ; that is,

E :a"lzl

<€ C max |ay|.
oy igign

C l<s<n

The following characterisation of the stabilised asymptotic £, Musielak—Orlicz se-
quence spaces is due to Dew:

PROPOSITION 2.1. ([4, Proposition 4.5.1]) Let ® = {®;}%2, be a Musielak-
Orlicz function. Then the following are equivalent:

(i) he is stabilised asymptotic £ (With respect to its natural basis {e;}2,);

(i1) there exists A > 1 such that for all n € N, there exists N € N such that
q
whenever N < p < ¢ and z ®;(aj) < 1, then

Z(I) (ai/A) <

Let X be a Banach space. By Y — X we denote that Y is isomorphic to a subspace
of X.

=|»~

3. MUSIELAK-ORLICZ SPACES WITH STABILISED ASYMPTOTIC {,, DUAL WITH
RESPECT TO THE UNIT VECTOR BASIS

We start with the following

LEMMA 3.1. Let ® have the 4, condition at zero and hy, generated by the
Musielak-Orlicz function ¥, complementary to ®, be stabilised asymptotic £, with re-
spect to the unit vector basis {€;}%2;. Then every normalised block basis {z™}%, of
the unit vector basis in €s contains a subsequence {z(™)}%2, such that:

(a) {z™)}, is equivalent to the unit vector basis of £,;

(b) The closed subspace [z(")]22, generated by {z(™)}2, is complemented in
¢» by means of a projection of norm less then or equal to 4\, where A is
the constant from Proposition 2.1.

PROOF (a) Let {z™}%, be a normalised block basis of ¢, where z(™

Mn4
= Z :1:(") e;, and {m,} is a strictly increasing sequence of naturals. For every n € N
J=ma+l
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o0
there exists y™ = Y y§-")e; € hy such that
i=1

=~
Z\Ilj(yj('n)) 1 and E (n) (n) >1/2.

Jj=1

Without loss of generality we may assume that supp 3™ = supp z(™). We claim that

y] ) Mn+1 _
i 3 u(50) - 3 w() -
._m,.
where A > 1 is the constant from Proposition 2.1.
Indeed, by assumption hy is stabilised asymptotic £, space and according to Propo-

sition 2.1 there exists A > 1 such that for every m € N there is N € N so, that whenever
Mn41
> N the inequality holds Z \If (y‘s")/)\) < 1/m. Thus lim Y ¥; (y§-")/ A)=0.
N0 j=m,+1

._m,.

Now passing to a subsequence we get a sequence {y(™}ien, y(™) = Z ("") :
]—Pnk
such that

an (ne)
k=1 j=pn,
0
Denote y = Y y™ = Z ( > ("")e;). Obviously y € £y and |lyllg € A. Thus
k=1

k=1 \j=psi
Iyl < 2llylle < 2.
Let now a = {ax}2, € ¢;. Then

oo dng
(ne) (ma) 7m0 1 ey )
z Z T Z Z GkY; | > 3 Hay
k: i=p =1 J_Pnk
1 o0 qn,,
— (k) ("k) 2
> g St 35 > 2 = Rl
——
o0
Obviously || Y axz™)|| < |lall; and thus {z(™)}2 is equivalent to the unit vector
k=1 d

basis of ¢;.
(b) Define now for each k € N the functional Fy : £ — R by

Qny

("k)
Iny ("'k) (”k) Z

J=Pny J J=Pn;

Fi(z) =

and the map P : fp = &. by P(z) = EFk(z )z{m). Then for every k € N, ||Fx||

< 2ly™|ly < 2(1 + Z W, ( ("")) < 4. Furthermore P is a projection of £ onto
J=Pn;
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[ J32, with

() Gng y("k) ] oo Gny
J=Pny, 73
IPll = sup T 2 el <2 sup D07 ly(nk) ‘
lizlle<1 k—l j=pn;, Jj ":"0S1k 1 j=pn,

< 2 sup Z|y,:1:]| 2 SUP ”yJ”\II lzlle <

llzlle <t 525 lizlle <1

The following two theorems are simple corollaries of Lemma 3.1.

THEOREM 1. Let & have the &, condition at zero and hy, genmerated by the
Musielak-Orlicz function ¥, complementary to ®, be stabilised asymptotic £, with re-
spect to the unit vector basis {e}}32,. Then £y has the Schur property.

PROOF: The proof is an easy consequence of the Kaminska, Mastylo characterisation
of Musielak-Orlicz spaces possessing Schur property ([8, Theorem 4. 4] Consider a ®-
convex block of @, that is, a sequence of convex functions {Mi(t) Z d; (taJ)} ,

j=ni+ i=1
where n; is a strongly increasing sequence in N and {a;}R, is a sequence of positive
Nit1

numbers such that 3~ ®;(a;) = 1 for each i € N. It is easy to observe that the sequence
Jj=n;+1

nig1 oo )

{u,- = > aJe,} is a normalised block-basis of the unit vector basis of {5. Lemma
j=ni+l =1

3.1 now implies that the closed linear span [u;,]32, for appropriate subsequence {u;, }$2,

is isomorphic to £;. On the other hand [u; |f2, is obviously isometrically isomorphic to
the Musielak—Orlicz space Z(M_.k), generated by the subsequence {M;,} of the given ®-
convex block. Thus every $-convex block contains a subsequence equivalent to a linear
function and therefore £ has the Schur property. 0

THEOREM 2. Let ® have the 8, condition at zero and hy, generated by the
Musielak-Orlicz function ¥, complementary to ®, be stabilised asymptotic ¢, with re-
spect to the unit vector basis {€;}$2,. Then every subspaceY of €4 contains an isomorphic
copy of €; which is complemented in {s.

PROOF: According to a well known result of Bessaga and Pelczinski [2] every infinite
dimensional closed subspace Y of {3 has a subspace Z isomorphic to a subspace of £3,
generated by a normalised block basis of the unit vector basis of 3. Now to finish the
proof it is enough to observe that by Lemma 3.1 the space Z contains a complemented
subspace of £y, which is isomorphic to ¢,. 0
REMARK. It is well known ([18]) that every subspace of Musielak-Orlicz sequence space
¢y with & satisfying the J; condition, contains ¢, for some p € [1,00]. If g has in
addition the Schur property, as no £,,p # 1 has the Schur property, it follows that {s is
¢, saturated.
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4. {, COPIES IN MUSIELAK-ORLICZ SEQUENCE SPACES

Let & be a Musielak—Orlicz function consisting of differentiable Orlicz functions.
Denote:

a(®,) = sup{p >0:p<g ; (I (0, 1]}

. , z<1>n(z)
b(®,) = 1nf{q >0:q2 T(z)’z € (0, 1]} .

The following indexes, introduced by Yamamuro ([17])
a(®) = liminfa(®,) , b(®) = limsup b(d,)
n—co n—00

appear to be useful in the study of Musielak-Orlicz sequence spaces (see for example
(11, 16, 8, 12]). Obviously 1 £ a(®) < b(®) £ oo. By the results of Woo ([18]) and
Katirtzoglou ([9]) it follows that an Musielak-Orlicz function & satisfies the &, condi-
tion at zero if and only if b(®) < oo. Analogously to the case of the classical Orlicz
sequence spaces if £,, ,p 2 1 or ¢g for p = oo is isomorphic to a subspace of he, then
p € [a(®),b(®)] (see 16, 18]). However, the converse fails to be true in general (see
{16]) for Musielak-Orlicz sequence spaces, which confirms their more complex structure.
Sufficient conditions for the isomorphical embedding of ¢,, ,p > 1 in hg are given by the
following.

THEOREM 3. Let® = {®;}32, be a Musielak-Orlicz function and p € [a(®), b(®)].
If there exist sequences {7;}32,, {y;}32,, {€;}{2, and constants 0 < k < 1 < K such that:
(1) 20,0<y;<1 0<7j<1foreveryj€N;
(2) hm 7, =0;

(3) j;%(yj) = 00
(4) ktsi (Qj(tyj))/(t”d)j(yj)) < K(1/t)% for every te [r;,1];

00
(5) Y. C'¢% < oo forsome 0<C<1,
j=1
then £, — hg.

PROOF: The condition (5) obviously implies lim ¢; =0.
J—00
We may assume that 7; < 1/2 for every j. Indeed, by (2) we easily get 7; < 1/2,
j < jo for some jo and can consider the Musielak-Orlicz sequence space h{(p).);;jo = hy.

Consider first the case: §{j € N: ®(y;) > 1/2} < oo. For the same reason as above
we may assume that ®(y;) < 1/2 for every j € N.

Find sequence of naturals {k,}3%, , ki = 0, such that for every n € N:

1 knt1-1 knt1—-1
5 Z @ (yJ 1 an+l(ykn+l) ; l - Z Q](yJ) .
Fi=kn+1 j=kn+1
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Put
kn+1-1
enlt) = D B5(ust) + Pors (Froput) »
j=kn+1 .
where
kn+1_1
(3) Z q’j(yj) + (I)kn+1(yk,,+1) =1.
j=kn+1
Obviously
kn+1 3
4 ) hd
(4) Z d(y;) < 2
J=kn+1
. kn41—1
and 0 < %y, ., < Yk,4- Let us note that u, = 37 yje; + G, €k = 1,2,...
y=kn+1

represents a normalised block basis of the unit vector basis of hg. Obviously the Musielak—
Orlicz sequence space hg, generated by the sequence {y,} is isometrically isomorphic to
[n]3%,, which in turn is isomorphic to a subspace of he. Further we find a sequence of
{nm}%_;, such that 7; < 1/m? for j > ky,,,. Following [11, 10] we easily check that the
functions ¢, , m =1,2,... are equi—continuous in [0,1/2]. Indeed, from

<D]'(t) —_ At (I);(t)dt = ‘/;2 q);(t)dt P ';-tq)_,(t/2)

it follows immediately

Q](ﬂtl) _ QJ(/("';;)' s 'tl — tzlﬂ_-i#/_) S ZItl - tgl
J

(w) 2 D;(1)

for every 0 < t,%2 < 1/2 and any u > 0. Now it is enough to apply the last inequality
to the functions ¢, _, taking into account (3). The functions ¢, ,m = 1,2,... are

also uniformly bounded in [0,1/2]. Using the Arzela-Ascoli theorem by passing to a
subsequence if necessary, which in order to simplify the notations we denote {¢n,.}%_,
too, we have that {¢n, }3-; converges uniformly to a function ¢ on [0,1/2], satisfying
the inequalities ||@n,, — ©llo < 1/2™ for every m € N. Obviously ¢ is an Orlicz function
on [0,1/2] as uniform limit of Orlicz functions and the Musielak-Orlicz sequence space
P{n,} i isomorphic to the Orlicz space h,, when ¢ is non-degenerated. If we take into
account that hy,, } is isometrically isomorphic to [u,,, )%, to finish the proofit is enough
to show that h,, and £, consist of the same sequences. Before starting the last part of the
proof we mention that according to the result from [3], mentioned in the preliminaries,
the condition (5) implies that the Nakano spaces €{p4.;e; )=, are isomorphic to £, for every
choice of the sequence of signs {v; = £1}3,.
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Define the sets:

m={j €Nk, +1<j<kn,,,,7j > m}
and
m={/ EN:kn, +1<j<kn,,,,7j < Om}
It is obvious that A, N By, = 0 and AnUBy, = {kn,, +1,...,kq.,.}. Let 6 =max{sj-

kn, +1 < j € kn,,,}. Then {8,}%_, is a subsequence of {e]}J , and thus by (5) w
obtain f C'/%m < co. So the Nakano spaces £(p.,.s,} consist of the same sequences as
¢, for e'(rle=rly choice of the signs {1/,,. = +1}.

Let now {0}, € ¢, that is, Z of < 0o. We may assume that a; < 1/2 for every j € N.

j=
Now we can write the chain of mequa.htles

00 [- ) k"m+1‘1
> nnlam) = 2 D Blan)+ O, (onbi, )
m=1

m=1 Nj=knm +1
k"m-H
< Z Z ®i(amy;) < Z Z ?;(amy;) +Z Z ®;(amy;)
m;l] =kny,+1 I, m=1j€Am m=1j€Bn,
< DD Bi(may) + ) Y Kby
m=1jEAm m=1j€Bm
00 k"m+l 1 knm+1—l
SZ Z 7;® y,+KZa"""‘ Z ®;(y;)
m—l]_ko,gn+l J=knm+1
AR A
m=1 m=1

where we used that 0 < ¥, < Yx,,, for the second and (4) for the last inequality.
Let now o = {0}, € {yy,,.} » that is,

-1

k"m+l
S onlon) =3 (3 #i0n) +00,, (@b, ) <0

m=1 Nj=knp,+1

It is not difficult to check that for every m € N the estimate holds:

— 1 _ ~
(5) lam[PHon e, Uk,,,,) < r—n—gq)k"mﬂ (Uknpr ) T Phapy, (OmTr, ) -
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Denote Al, = A \ {nm+1} and B), = B \ {tm41} Now taking into account (3), (4) and
(5) we can write the chain of inequalities:

o o knmyy =1
> lanPt = 3 lanP (¥ aw)+ontn.,)
m=1 J=knm +1
< 5 (o (Z o0 3 o00)
JEAL, jE€BL,
1 _ _
+W¢k..m+1 (yknm+l )+ q)""'“ (amyk"m‘“ ))
o0
<Y ( D (1P @s(y) + D lamlon;(y;)
m=1 JEA' j€By,
-i-;ﬁq)k,.m+1 ('-:’71:..,,,“) + q)knmﬂ (a’"yk"mn ))
21
< Z 'T'n—2< Z ®;(y;) + k., (yk"m-i-l ))
m=1 jEAin
1 00
+E Z ( Z ®;(amy;) + q)"ﬂmﬂ (amyk"m-f-l ))
j€Bn,
1
< E(Z—_-'-Z‘p""' am) <o,
m=1

which concludes the proof.
Let now 1/2 < ®(y;,) < 1 for some increasing sequence of naturals {jx}52,. Passing
o0
to a subsequence if necessary we may assume that 3 7;, < co. Then
k=1
p+E; k p+e€j
®;, (t) > (I)]'k (tyjk) 2 ktPTon Qik (yjk) 2 Et o
for every t € [r;,,1]. Consequently
D+Ej < 2@
(6) U & % i (1) + 75,
holds for every u € [0,1]. Similarly

e t\P-¢;
(I)J'k (t/2) < q’ik(tyjk) <2 ‘n:K(a) Jk(pik(yjk)

for every t € [r;,,1]. Thus
®j, (u) < KyuP™o

holds for every u € [1;,/2,1/2], where K, = 2?K. So

(7) ®;, (u) € KyuP™o + 75,
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holds for every u € [0,1/2]. Consequently by (6) and (7) it follows that £, = £, )
> g

REMARK. If the conditions in Theorem 3 hold for a subsequence {®,, }{2, then
é,, — K{an} —> &p.

COROLLARY 4.1. Let & = {®;}%2, be a Musielak-Orlicz function and
(®;(ty;))/(®;(y;)) converge uniformly to t* on [0,1] for some sequence {y;}52, such

oo

that, 0 <y; <1, ) ®;(y;) = oo and p € [a(®), b(®)]. Then £, — hy.
=1

ProoF: Pick a decreasing sequence {§;}32,, such that klim or = 0. There exists
—00
j(k) such that for every j > j(k) the inequalities hold.

D,(ty;)
8 P < L2 P 4§
®) £ 2(y;) *

for every t € [0,1]. Thus (8) implies

®;(ty;)

1/2)t° <1 — 6 /tP < =220 < 14 6/t7 < 2(1/8)°

172 /P < AL < dfe <20/
for every t € [(26;)'/?,1] and for every j > j(k). We define inductively sequences
{r(k)} and {s(k)} in the following way. We put r(1) = j(1) and choose s(1) with
r(1)+s(1)

> ®;(y;) > 1/2. If r(k), s(k) are already chosen we put r(k + 1) = max(r(k)
J=r(1) r(k+1)+s(k+1)
+5(k), j(k+1)) and choose s(k+1) such that 3 ®,(y;) > 1/2. Now we can apply
j—_-r(k+l)
Theorem 3 for the subsequence {®;,,}5o-; and the sequences {ep, = 0}, {Tm = (26,n)/7},
k=1

m € N, where for every m the index j, is of the form j,, = 3 s(i) + p for some k € N

and p with 1 € p < s(k), while e, =0, 6, = &&. =1 a
REMARK. In particular if the sequence of Orlicz functions ® = {®;}%2, converges uni-
formly on [0,1] to ¢* for some p € [a(®), b(®)] then £, ~ hq.
An easy to apply form of Theorem 3 is given by the following
COROLLARY 4.2. Let ® = {&;}2, be a Musielak-Orlicz function and
p € [a(®),b(®)]. If there exist sequences {z;}52,, {y;}2,, {€;}52, such that:
(1) €20,0<z;<y;<1 foreveryjeN;
() lim z/y; = 0;

(3) 35@;() = oo;
i=1

4 p-¢ < (u@}(u))/(fb,-(u)) <p+e; forevery ue€(zj,yl;
(5) icl/€i<oo for some 0 <C <1,
i=1
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then ¢, — hg.

For the proof it is enough to rewrite the inequalities from (4) in the form:

ty; ®;(ty;)
@;(ty;)

After integration in (9) we easily get for every n € N:

9) p—€; < <p+e; forevery telz;/y;1].

(10) P ®,(y;) < ®5(ty;) < P 9;5(y;)

for every t € [z;/y;,1]. Now we can apply Theorem 3 with 7; = z,/y;. 0

We shall illustrate some applications of Theorem 3 and the necessity of some of the
conditions in it by the following four examples. By examples (1) and (2) we show that
conditions (2) and (3) in Theorem 3 could not be omitted.

The next example represents a convex analog to an example from [16]

EXAMPLE 1. Let )
T if z21/n
falz) = .
n?z? if z€[0,1/n?.
Obviously
falz) 1 if z21/n?
g | n% if ze€ [0,1/n?]

is an increasing function and therefore

1
T—--— if z>1/n?

O, (z) = /0 ’ th(t—)dt = 2’

n? , : 2
5 if z€l[0,1/n%.
is an Orlicz function.
It is easy to check that
oa(t/n%) _
129,(1/n?)
for every n € N and every ¢t € [0,1]. Therefore for the sequences {y, = 1/n?}%,,
{en = 0}, and any arbitrary sequence {7,}3%, such that 7, \, 0 all the conditions
o0 o
of Theorem 3 hold except for the condition (3) (Z yn = 3. 1/nt < oo). Nonetheless
n=1

n=1
¢y o £y because the inequalities

1
®,(z) <z and z € B,(z) + ot for every z € [0, +00).
imply £, = {3.
Then for the next two examples k, = 2n(l1 — \/1-(1/n)), by = 1 - ky,
o, =1— /1 -(1/n),n € N. It is easy to see that 1/2n € a, < 1/n.
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ExaAMPLE 2. Consider the functions
knz+b, if z2a,
®,(z) = { nz? if z€ [(an/2),an)

”‘2’".7,- if ze0(an/2)].
Obviously by the choice of the sequences k,, b, and o, it follows that ®, are Orlicz
functions.
It is easily to check that
b, (tay) -1
23, (oy)

for every n € N and for every t € [1/2,1]. Obviously i O.(an) = i n.a? = oo.
Therefore for the sequences {y, = an},, {en» = 0};,’°=:l_;nd {m = 1"/_21};,";1 all the
conditions of Theorem3 hold except for the condition (2) ("1520 7n = 0). Nonetheless
€y > €y, because ) = lp.

Indeed consider now the Nakano sequence space £(p,}, where p, = 1 + (1/Inn?).
According to (3] & = £,,}. It is easy to check that zP» < ®,(z) < z, for every z € [0, 1],
because the solutions of the equation: nz? = zP» are z; = 0 and ; = (1/n)}/?-?=) and
Z2 < 1/(4n) < an/2. Thus ¢; = £y which in turn implies £, ¥ £y, .

Similar calculations can be done in Examples (1) and (2) to show that conditions
(2) and (3) in Corollary 4.2 do not hold.

The next example shows that the indexes

ap =liminfag,, Pp =limsupfy,,
n—oo n—00

where as, and Bs, are the Boyd indexes of ®, (see for example, [11, p. 143]) are irrelevant
when embedding of ¢, - spaces into {g is investigated. This fact is not surprising taking
into account that among the Musielak-Orlicz functions ¥ equivalent to a given Musielak-
Orlicz function ® there exist such with ay = B¢ =1 ([18]).

EXAMPLE 3. Let {t,}32, be a sequence such that lim ¢, = 0 and t, < 1/2 for every
n-o0
n € N. Define the functions

knx+b, if z2a,
®,(z) = { nz? if z€ [(t,./n),a,.]
taz if ze [o, (t,,/n)],

Obviously by the choice of the sequences ky,, b, and a, follows that @, are Orlicz
functions which are differentiable for every z € [0, 1] except for z = t,/n and = = ay,.

https://doi.org/10.1017/50004972700039137 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700039137

(15) Musielak-Orlicz sequence spaces 207

It easy to see that £, = l(g,.) <> o because ®s(z) < z < P (z) + az» and

o0
3 g < 00

n=1

The conditions (u®,(u))/(®a(u)) = 2 for every u € [(ta/n), an), §:¢I>,.(a,,) = 00
and le (tn)/(nay) = 0 ensure that by Corollary 4.2 £; — £g. n=t

%ooj:alculate the Boyd indexes we have to observe that the functions ®,, are linear
for t € [0,t,/n] and thus 1 = ap = Bs.

We have that (u®,(u))/(®a(u)) = 1 for every u € [0,t,/n]. So we obtain that
1 = a(®) < b(®) = 2. Thus there exists a Musielak—Orlicz sequence space £g such that
?; — Uy and 2 € [cs, Ba).

Following [5] we shall construct an example of a weighted Orlicz sequence space
which contains an isomorphic copy of ¢;.

EXAMPLE 4. Let the sequences {d,}?2, and {a,}3, be such that d, < dn41,
(=]

an € Gnyy, lim dp/dpy; = 0, lim a, = oo, li_’m an(dp/dns1) = 0and Y C* < oo
n—oo n—o0 n—o0 el

for some 0 < C < 1. Define the Orlicz function

{x2 if 0<zg1

M(z) =
() Az + B, 1f ’dnSl‘Sdn.H,

where A, = dyy1 + dn, Bn = —dpi1dy.
Let the sequence w = {w,}32, be defined by w, = 1/(®(dn+1)) = 1/(d2,,). Then
o(w) = (o}, where B,(z) = (B(dns12))/(®(dns1)).
Thus , ,
P, (z) _ 2dni1(®n(dn+12))/(Pn(dn+1)) _  zdnyiAn
Dn(z) (®4(dn+12))/(®Pn(dn41))  Tdny1An + By
for dp/dny1 € s < 1.
After easy calculations we obtain the inequalities:

1 L4+ dp <:c<1)n(:c)<1+ 1

1- <
a, —1 dns1 - ®n(7) an — 1

for every an(dp/dn+1) € z < 1.
o0 [+
Thus Y C%~! =1/C Y C* < oo and we can apply Corollary 4.2 with y, = 1,

n=1

n=1
Tn = Gn(dn/dn41), €n = 1/(an — 1) to show that &, — le(w) = o,

REMARK. If
(11) D (da)/(dnsr) < 1/2

it is proved in [5] that ¢; = £y(w).
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REMARK. By choosing the sequences {d, =n!}3, and {a, = logn?}2, in Example 4
we get a weighted Orlicz sequence space £)s(w) generated by an Orlicz function M which
does not satisfy the A,—condition at infinity and a weight sequence

1 0o
w= {w" - m}n=l’

but containing an isomorphic copy of ¢;. Indeed (M(2n!)/M(n!)) = 3 +n and thus M
does not satisfy the A;—condition at oo. The sequences {d,}3%, and {a,}32, satisfy the
conditions imposed on them in Example 4 and thus ¢ — &) (w).

Following [4] we define a sequence of real numbers {‘w,\(j)}?;l by
¥a(j) = inf{@;())/®;(t) : ¢ > 0}.

PROPOSITION 4.1. ([4, Proposition 4.5.3]) Let ® = {®;}%2, be a Musielak-
Orlicz function. Suppose that for some A > 1, lim ¥»{j) = oo, then hy is stabilised
j—oo

asymptotic £.

Let us mention that in the proof of Proposition 4.1, a; were chosen such that
fq_j ®(a;) < 1. Thus the function ¥(j) = inf{®;(At)/®;(t) : t > 0} can be replaced
by
Pa(4) = inf{®;(At)/®;(t) : 0 <t < 1}.

COROLLARY 4.3. Let ® has 4, condition at zero and hy, generated by the
Musielak-Orlicz function ¥, complementary to ® If there exist sequences: {z;}32,,
{y;}32, and {g;}2, satisfying:

(') €>0,0<z;<y;<1foreveryjeN,;
1]
(2') jllfg(x]/y]) =0;

(3" § ®;(y;) =

(4) b(tI>) — &5 < (u®j(u))/(®;(v)) < b(®) +¢; for any u € [z},y;5);
(5") E C'¢i < 0o for some 0 < C < 1. and €y is ¢, saturated, then holds:
i

(a) (@) =b(®) = 1;
(b) hy is stabilised asymptotic £, respect to the basis {€;}32,.

PROOF: (a) By [16] it follows that if £; <+ £5 then 1 € [a(®),b(®)] and thus
a(®) = 1. Let a(®) # b(®). By Corollary 4.2 follows that £ys) — fo, which is a
contradiction. Thus 1 = a(®) = b(®).

(b) By (a) we have a(®) = b(®) = 1. So we have jliglo a(®;) = jlirg, b(®;) = 1. Then
using the well known connections 1/a(®;) +1/b(¥;) =1 and 1/a(¥;) + 1/b(P;) = 1 (see
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(8]) it follows that jli’r{.xo a(¥;) = jl_if{.lc> b(¥;) = oo. Then by the definition of the indices
a(¥;) and b(¥;) there is € > 0, such that for every p;, ¢;: 0 < a(¥;) — € < p; < a(¥;)
and b(¥,) < g; < b(¥;) +¢
20(¥3)=¢ < 9P < (20 < 29 < 2X(¥i)+e,
¥;(t)
Thus ,(20)
jllﬂ(mf{—\lll;ﬂ t> 0}) > jll'rg?” = o0,

and by Propositon 4.1 it follows that hy is stabilised asymptotic £, with respect to the
basis {ej}52,. 0
REMARK. Kaminska and Mastylo have given some sufficient and some necessary condi-
tions for the Schur property in terms of the generating Musielak—-Orlicz function ¢ [8].
Sometimes we know only the complementary function ¥. For example let the Musielak—
Orlicz function ¥ = {¥;}%, be defined by ¥; = e®e~(2)/(=l) where J_li'xgxo a; = oo and

0 < c¢;. Then ¢y is stabilised asymptotic £ with respect to the unit vector basis {e;}32,

because
lim inf{ ¥;(22) :0<z < 1} = lim inf{ %@ -1/(2%11%) . g £z< 1}
j—roo \Ilj(.’l:) j—roo
= lim €% (®7-1/2Y) = o,
j—oo

Thus we conclude that £ has the Schur property without considering the functions &,
neN

REFERENCES

(1] J. Alexopoulos, ‘On subspaces of non—reflexive Orlicz spaces’, Quaestiones Math. 21
(1998), 161-175.

[2] C. Bessaga and A. Pelczynski, ‘On bases and unconditional convergence of series in
Banach Spaces’, Studia Math. 17 (1958); 165-174.

(8] O. Blasco and P. Gregori, ‘Type and cotype in Nakano sequence spaces {(,.})’s
(preprint).

[4] N. Dew, Asymptotic sructure of Banach spaces, (Ph.D. Thesis) (St. John’s College
University of Oxford, Oxford, 2002).

[5] F. Fuentes and F. Hernandez, ‘On weighted Orlicz sequence spaces and their subspaces’,
Rocky Mountain J. Math. 18 (1988), 585-599.

(6] H. Hudzik and A. Kaminska, ‘On uniformly convex and B-convex Musielak-Orlicz
spaces’, Comment. Math. Prace Mat. 25 (1985), 59-75.

(7] H. Hudzik and L. Maligranda, ‘Amemiya norm equals Orlicz norm in general’, Indag.
Math. 11 (2000), 573-585.

[8] A. Kaminska and M. Mastylo, “The Schur and (weak) Dunford-Pettis property in Ba-
nach lattices’, J. Austral. Math. Soc. 73 (2002), 251-278.

https://doi.org/10.1017/50004972700039137 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700039137

210

(9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17)

(18]

B. Zlatanov (18]

E. Katirtzoglou, ‘Type and cotype in Musielak-Orlicz’, J. Math. Anal. Appl. 226 (1998),
431-455.

K. Kircev and S. Troyanski, ‘On Orlicz spaces associated to Orlicz functions not satis-
fying the Aj—condition’, Serdica 1 (1975}, 88-95.

J. Lindenstrauss and L. Tzafriri, Classical Banach spaces I, sequence spaces
(Springer—Verlag, Berlin, 1977).

L. Maligranda, ‘Indices and inerpolation’, Dissertationes Rozprawy Mat. 234 (1985),
49.

B. Maurey, V.D. Milman and N. Tomczak-Jaegermann, ‘Asymptotic infi-
nite—~dimensional theory of Banach spaces’, Oper. Theory Adv. Appl. 77T (1995), 149-175.

V.D. Milman and N. Tomczak-Jaegermann, ‘Asymptotic ¢, spaces and bounded dis-
tortions’, Contemp. Math. 144 (1992), 173-195.

J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Mathematics 1034
(Springer—Verlag, Berlin, 1983).

V. Peirats and C. Ruiz, ‘On #~copies in Musielak—Orlicz sequence spaces’, Arch. Math.
Basel 58 (1992), 164-173.

S. Yamamuro, ‘Modulared sequence spaces’, J. Fasc. Sci. Hokkaido Univ. Ser. I 13
(1954), 1-12.

J. Woo, ‘On modular sequence spaces’, Studia Math. 48 (1973), 271-289.

Department of Mathematics and Informatics
Plovdiv University

24 “Tzar Assen” str

Plovdiv, 4000

Bulgaria

https://doi.org/10.1017/50004972700039137 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700039137

