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DISCRETE COPIES OF RINGS OF SETS IN GROUPS 
AND ORLICZ-PETTIS THEOREMS 

IWO LABUDA 

1. Introduction. The Orlicz-Pettis type theorems are essentially statements 
about the equivalence of strong and weak subseries convergence of series in 
topological groups. The corresponding problem of the equivalence of subfamily 
summability for summable families was examined for instance in [2] and (16). 
We give here another uncountable generalization of the Orlicz-Pettis theorem 
in the sense that we assume less than subfamily summability and obtain 
straightforward generalizations of the classical case, which include or imply in 
a trivial manner—at least for polar topologies on groups—all known theo­
rems "from weak to strong cr-additivity". This is attained by considering addi­
tive set functions acting from rings (generalizing J^ (N) and <^(N)) over an 
arbitrary set T, and by using concepts of a discrete copy of a ring of sets in a 
group and those of an almost ^-concentrated on T or ^-exhaustive additive set 
function. 

In the last decade a huge number of papers on exhaustive (= strongly 
bounded) additive set functions appeared. The Orlicz-Pettis type theorems 
"from weak to strong exhaustivity" are available (see e.g. [8]). This phe­
nomenon seems to be a consequence (comp. [11]) of a remarkable result of 
Drewnowski [3] linking exhaustivity and cr-additivity in metrizable groups. An 
uncountable analogue of Drewnowski's Theorem is also obtained in our ap­
proach (Theorem 3.2 below). 

2. Preliminaries. X will be a Hausdorff topological commutative group 
throughout. T denotes an infinite set of arbitrary but fixed cardinality 99Î, 5ft 
denotes an infinite cardinal number. J ^ T ) is the ring of finite subsets of I \ 
SP{Y)— the power set of T. More generally, ûm (T) = &yi(W) = 
{E C T: card E < ïït} where card E denotes the cardinality of E. If / is a real 
function on Y then supp / = {y £ T: f(y) ^ 0}. Cardinals are identified with 
initial ordinals. 

Le t s / (T ) be a ring of subsets of T containing points. We denote by S(T) or 
more precisely S(r,s/) the set of s/{T)-simple functions with integer-valued 
coefficients, i.e. the set of functions of the form 

n 
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where Ei £ s$ (V), Etr\ Ej = 0 if i j* j and &* are the integers. For instance, 
if j / ( T ) = 0>{T) then S ( r , ^ ) = Sœ(T) is the space of all integer-valued 
bounded functions over I\ 

s/(T) being fixed, for any N £ N we denote by SN(T) = SN(T, se) the set 
of functions in S(T) which are of the form 

È k*Bi, \kt\ ^N,0Sn^2N. 

We equip Sœ(T) with the supremum norm topology and consider all subsets 
of Sœ(T) with the induced topology. We note that for all s/ (T) we have 
5(T, se) C •S'oo(r) and that, in other terms, Sœ(T) has the discrete topology 
given by the 0 — 1 metric. 

Having an additive set function x(:) : s/(T) —>X, we will denote by / 
and call the integral extension (of x(: ) to 5(T)) the homorphism defined by the 
usual formula 

( n \ n 

S kiXsi) = ]C kix(Ei). 
2.1. Definition. Let T be a subset of 5 ( T , J / ) and # : S ( I \ J / ) -> X a homo-

morphism. We say that H\T is an isomorphism (onto its image) if there exists 
a neighborhood W of zero in X such that 

(«) / , « € T,f?*g=*H(f)-H(g) <Z W. 

This denomination is justified by the fact that the condition (<5) means also 
that the topology of X induces on H(T) the discrete topology and H\ T is a 
homeomorphism (onto its image). 

2.2. Definition. We say that X contains an isomorphic copy of T if there exist 
a homomorphism i7: 5( T, s/) —> X such that H\ T is an isomorphism. 

An additive set function may always be treated as the restriction of its 
integral extension so, according to definitions 1 and 2, we have the following. 

2.3. Definition. An additive set function x(:): s/(T) —> X is called an 
isomorphism if 

E, F e s/(T), E^ F => x(E) - x(F) g W 

and we say that X contains an isomorphic copy or a discrete copy of a ring 
s/(T) if there exists an isomorphism x(:) transforming s/(T) into X. 

2.4 Remark. We note that the following conditions are equivalent: 
(i) For a n y / e S i ( r ) , / ^ 0 => / ( / ) t W. 

(ii) I: 5 i ( r ) —> X is an isomorphism, 
(iii) x( :) : s/ (T) —> X is an isomorphism. 

Indeed, (i) ^ (ii) is obvious. Take E, F e s/(V), E ^ F. Then by (ii) 
x(E) - x(F) = x(E\F) - x(F\E) = I (X^\F - XF\E) £ W since X ^ F -
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XF\E * 0. Hence (ii) => (iii). Take / G S i ( r ) , / ^ 0. Then f = XE - XF 

where E, F G s/{Y) and are disjoint. Consequently, / ( / ) = x(E) — x(F) G W 
by (iii). Hence (iii) => (ii). 

Let A C r be given and let T = T(Y) be a subset of 5 œ ( r ) . We denote 

T(A) = { /€ r ( r ) : s u p p / C A } . 

2.5. Definition. Let # ( : ) : J a / ( r ) —» X be an addit ive set function. x(:) is said 
to be almost ^{-concentrated on T if it satisfies the following condit ion: 

V V3 A e û<si(W) V B £s/(T),Br\A = 0 = > * ( £ ) G F 

where F is a neighborhood of zero in X. 

2.6. Definition [13]. Let x ( : ) : Ja / (T) —» X be an addit ive set function. x{\) is 
said to be ^-exhaus t ive if 

V F V (Ei)i,IC^(Y)JEi^Ej = 0if* ^ j , 

card {i G 7: a (E<) g 7} < 9Î 

where F is a neighborhood of zero in X. 

Let J7" and j ^ 7 be two group topologies on X. W e say t h a t 3T is 5^-polar if 
J^~ has a base of J^-closed neighborhoods of zero. 

2.7. LEMMA. Let 3?~, £f be two Hausdorff group topologies on X such that ^f~ is 
5f-polar. Let x(:): <$/(Y) —» (X, Sf) be an additive set function almost ^-con­
centrated on Y. Assume that for some 3^~-neighborhood U of zero in X the set 
A = {7 G T: x({y}) G U] is of the same cardinality as Y. Then there exists 
Y1 C A with card Ti = card F such that 

is an isomorphism [i.e. (X, J/~) contains a discrete copy ofJzf(Yi)]. 

Proof. If a is an ordinal number , then Pa will denote the set of all ordinals 
less than a. Let /x be the (least) ordinal number a with card Pa = 9DÎ = card V. 
For each a < JU we denote Fa = {f3: a ^ 0 < /x}. 

T h e fact t h a t x ( : ) : s/(T) —> (X, 5 0 is almost 99?-concentrated on T implies 
in the present s i tuat ion: 

(1) V H « < M V £ G ^ ( r ) , E £ Fa=ï x(E) G F 

where F denotes an ^ - n e i g h b o r h o o d of zero in X. I t is clear, in view of the very 
definition of 5 i ( T ) , t h a t (1) implies 

(2) V F 3 a < M Vf G 5i(F«) f / ( / ) G F . 

Since ^ ~ is j ^ - p o l a r we can choose an j/^-closed balanced ^"-neighborhood W 
of zero in W such t h a t IF C U. Hence 

(3) x({y}) $ W for 7 G T. 
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We claim that the following holds: 

(4) For any a Ç T there exists a(a), a < a(a) < ju 

such that I ({a} + /) g W for any/ G 5i(F„w). 

Indeed, assume that (4) does not hold for some a G T. Then, given any 
^ - n e i g h b o r h o o d of zero in G, V say, we can find an a so large tha t for some 
feSriFa) 

(5) /({*} + f)ew 

(6) /(/) e v. 
This means tha t I({o-}) is in the j^-c losure of W, hence in W—a contradic­
tion with (3). 

W is balanced, hence having I ({a} + / ) (? T^ as in (4), by the definition of 
/ , / ( - { * } + / ) = - / ( { * } - / ) (Z PF. Thus 

(7) For any a G r there exists a (or), cr < a (a) < /x, such tha t for any 

/ ^ , ( F „ W ) J ( ± W + / ) <Z IF. 

We shall define an increasing transfinite sequence (y(a)) on T (with terms 
in r ) such tha t 

I(±v(a)+f) £W if / 6 5 1 ( { i ? ( 7 ) : a < 7 < M } ) . 

We pu t ??(0) = 0. Suppose tha t a has no predecessor, a < /x, and tha t we have 
already defined all the terms 77(7), where y < a, 77(71) < 77(72) if 71 < 72 < « 
and J ( ± T K Y ) + f) (I W for all / G Si (/%(«)). Then choose r for which (7) 
holds (with 0- = a ) such tha t 77(7) < r for all 7 < a. If a has the predecessor 
a — 1 we choose r according to (7) with a = 77(0: — 1). Then we set r = 17(a). 

By the definition for (77(a)) = I \ we have card I \ = card T (since I \ is 
increasing) and 

(8) For every a G I \ , J(±{er} + / ) g W if / G S i ( I \ H F,+i) 

which means obviously tha t taking a n y / G S\(Yi),f 3^ 0, we have / ( / ) $ IF. 
This implies the result in view of Remark 1. 

Consider the following property of s/(T): 

(K) For each family (Ba)a(zr of disjoint elements of s/(Y) the set 

OJacsBa) e s/(Y) for any E G s/(T). 

Denote 31 = sup {card E: E G se'(Y)} i.e., the least cardinal number 31 
such t h a t for each E G S$ {Y) card £ < 5R. A moment ' s reflection shows t ha t 
if (K) is satisfied, S$(Y) must be 9î-complete for disjoint elements as a subring 
of &{Y). The lat ter implies clearly tha t se{Y) contains all sets E C Y with 
card E < 31 as we have assumed t h a t s / ( Y ) contains the points. Consequently, 
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j / ( T ) = ûw{Wl) which justifies the restriction to the rings ûyi(Wl) in the 
following lemma. 

2.8. LEMMA. Let 3T, $f be two Hausdorff group topologies on X such that 
3T is ¥-polar. Let x(:) ûwOffl) —•> (X, Sf) be an additive set function almost 
yR-concentrated on T. If (X, 3?~) contains no discrete copy of ûyi(Siït) then 
*( : ) : @K{W) -> (X, T) is ^-exhaustive. 

Proof. If x(\) is not 2ft-exhaustive we can find 2ft disjoint sets (By)yer such 
that By G ^R(9ft) and x(By) Q V. Identifying each By with the point y in T 
and putting 

y(E) =x( U By) , Ee 0n(T), 

we define an additive set function y(:): ûw(T) —» X such that ^({7}) (? F for 
each 7 Ç T. 

It is easy to see that y(:): ûw(ffll) —> (X, <5̂ ) is almost 2ft-concentrated on 
T. Hence by Lemma 2.7 (X, Jr) contains a discrete copy of ^gt(2ft). This 
contradicts the assumption of the lemma. 

2.9. Remark. The proofs of Lemmas 2.7 and 2.8 involve no essentially new 
techniques. Similar methods were already employed in [4; 5; 6; 9; and 13]. 

2.10. PROPOSITION. An ^-exhaustive additive set function x(:): ûmOOl) —> 
X, 31 ^ 2ft, is almost Wl-concentrated on T. 

Proof. If x (: ) is not almost 2ft-concentrated on T then we can find inductively 
2ft disjoint sets Et in ^9? (2ft) such that x(E*) g V for some F, thus contra­
dicting the 2ft-exhaustivity of x(:) . 

2.11. Remark. If 2? > 2ft i.e., if Û^(SSR) = ^ ( L ) , an 2ft-exhaustive additive 
set function need not be almost 2ft-concentrated. Indeed, it is well known that 
for 2ft = Ko x(:): &(N) —» R may be bounded (= Xo-exhaustive) and not 
(7-additive (= almost Xo-concentrated on N). 

2.12. PROPOSITION. An almost Wl-concentrated additive set function x(:): 
^9?(2ft) —* X is Wt-exhaustive. 

Proof. Let V and A as appearing in Definition 2.5 be given. Take a 
family S of 2ft-disjoint elements of ^9? (2ft). Since card A < 2ft, card 
{E e ^ : E H A ^ ct>} < W. This implies the result. 

2.13. PROPOSITION. Let x(:): 0SR(3R) —> X be an almost 31-concentrated addi­
tive set function, 21 ^ 2ft. Let A C T , card A = 21 and A H é?9î(2ft) &<? directed 
by inclusion. Then {x(E): E Ç A P\ ^^(2ft)} is a Cauchy net. 

Proof. By assumption o n x ( : ) V F ] i G ^ ( 2 f t ) H A V-5 G ûm(2ft) H A, 
i H 5 = M x(J3) 6 F. Hence, taking F, G D A we have x(F) - x(G) = 
x(F\G) - x(G\F) £ V - V. 
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With the assumption of the lemma, let 3l+ = card rj where r\ = inf {7: 7 is 
an ordinal such that card 7 > 31}. Assume X is complete and define x( :) : 
ÛK+(W)-+Xby 

x(:) | ûn(M) =x(:) 

and, if A e 0n+W)\un(m) then x(A) = lim {x(E): £ G A H ÛK(W)\. 

By the definition, (1) x(\) is additive, and (2) x(:) is almost ^-concentrated 
on T. 

Now, let x( :) : &(V) —» X be an 9W-exhaustive additive set function. The 
restriction x(:)\ ûwi(3Jl) is almost 9Jî-concentrated on T by 2.10. We can 
therefore define 

by putting x'{:) = x(:). We note that (3) z(:) = (x — x') (:) is 93?-exhaustive, 
and (4) s'(:) = 0 [since z(:) = 0 on ^a»(2W)]. 

An additive $ft-exhaustive set function having property (4) will be called 
purely 3R-exhaustive. 

2.14. PROPOSITION. Let X be complete. An 3R-exhaustive additive set function 
x (:): <^(r ) —* X may be uniquely represented in the form 

*(:) =y ( : )+z ( : ) 

where y(\) is almost ^-concentrated and z{:) is purely 3Jl-exhaustive. Conse-
sequently y{\) = x '(:) . 

Proof. Let x = u + w be another such representation. Then (z — w)(:) = 
O - y)(:) and (2 - «/)'(:) = 0. Hence (u - y)'(:) = 0 but (w - ?) ' ( : ) = 
(u - y)(:), thus «(:) = y(:). 

3. Main resu l t s . 

3.1. THEOREM (Orlicz-Pettis Theorem). Let &~, y be two Hausdorff group 
topologies on X such that either 

A. J~ is y-polar, or 
B. (X, ^~) is complete, metrizable, and 5^ C ^-

Let x( :) : 0yi{3R) —> (X, £f) be an additive set function almost 3Jt-concentrated 
on T. If (X, 3T) contains no discrete copy of ûssi{3R) then x( : ) : 0ft($R) —> 
(X, ^~) is almost 3R-concentrated on Y. 

Proof. A. ^ is ̂ -polar . Using [1, II § 3, no 3, Prop. 7], and [12, Lemma 2.3] 
we may assume that y C ^~ and (X, J^~) is complete. By 2.10 only the case 
of x(:) on & (Y) needs proof. Applying 2.14 it is sufficient to show that the 
purely Sft-exhaustive part z(:) of x(:) is identically zero. This follows from the 
fact that s ( : ) : &(Y) —> (X, £f) is simultaneously purely 2ft-exhaustive and 
almost 9J?-concentrated on Y. 
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B. (X, 3T) is complete, metrizable and S? C !F. Let iV be the strongest 
group topology on X such t h a t W_Ç_ J and x ( : ) : 0m(Wl) -> (X, IV) is 
almost 9J£-concentrated on V. Let iV be the topology with a base of neigh­
borhoods of zero formed by ^ - c l o s u r e s of ^"-ne ighborhoods of zero. Suppose 
t ha t W is strictly stronger than i¥. Then x ( : ) into (X, W) cannot be almost 
^ - c o n c e n t r a t e d on I \ As W is ^ - p o l a r we can apply pa r t A to get an iso­
morphism into (X, W) hence into (X, ,^~) thus contradict ing the assumption 
of the theorem. Consequently W = W. This means also t h a t the ident i ty 
operator j : (X, W) —» (X, 3?~) is almost continuous. Hence W = 3~ by the 
Closed Graph Theorem [10, p. 213] which proves the result. 

3.2. T H E O R E M (comp. Drewnowski [3]). Assume X has a base i^ = (Va)a^A 

of neighborhoods of 0 with card A :g 9)1. Let x ( : ) : &(T) —> X be an Wl-exhans-
tive additive set function. Then there exists A with card A = card Y such that 
x ( : ) | 0>(A) = x ' ( : ) | 0>(A). In particular, x ( : ) : ^ ( A ) -> X is almost W-con-
centrated on A. 

Proof. I) Assume tha t x ( : ) is purely ^ - e x h a u s t i v e . By a theorem or Sier-
pinski and Tarski [15, p. 448] there is a family ^ of subsets in T such t h a t 
card & > m, for any Ta G &, card Ta = 2», and card ( r a H I » < 2ft if 
r a f i> G ^ , r a ^ i y 

Given any F a G ^ we claim t h a t 

(*) card { A G ^ : 3 x(A') G F« f < 2ft. 
V A'cA / 

Otherwise we can produce $ft disjoint sets A7 for which x(A7) G Va, thus 
obtaining a contradict ion to the Sft-exhaustivity of x ( : ) . Indeed, let AT, 
7 < 8 < 2ft be already defined. Since 5 < 2ft we find A^ G ^ A^ ^ A7 for 
7 < <5 such t h a t x ( A / ) G F« for some A / C A^. As x ( : ) : is purely ^ - e x h a u s ­
tive, card Ap = 2ft. Fur thermore , card { U 7 < Ô A T H A / ) < <5 card (A^ H A7) < 
2ft. Define Aô = A / 3

/ \ { U 7 < Ô A 7 P\ A / } . Applying once more the fact t ha t x ( : ) is 
purely 2ft-exhaustive, x(Aô) = x ( A / ) G Va. This finishes the inductive defini­
tion of (A7) and proves (*). 

Now, as card & > 2ft, card A ^ 2ft and (*) holds, there mus t be (at least 
2ft+ by the way) sets A G ^ s u c h t h a t x ( ^ (A ) = 0. 

I I ) If x ( : ) is not purely 2ft-exhaustive then by 2.14 x ( : ) = xf (:) + z ( : ) . 
Applying the reasoning above we find A G ^ such t h a t z(A) = 0. Hence 
x ( : ) = x ' ( : ) on ^ ( A ) . This finishes the proof. 

3.3. Remarks. 1) T h e proof above is completely different from the original 
one of Drewnowski. I am indebted to Z. Lipecki for discussions concerning the 
relevance of Sierpinski-Tarski Theorem for the proof of Drewnowski 's results. 

2) T h e countable case of 3.1 is implicitly contained already in [5] and was 
applied in [14]. The typical application of 3.IB is as follows. 
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Assume tha t the character of density of X is a t most Sft. Then X cannot 

contain any discrete copy of ^(93?) and therefore any # ( : ) : SP{Y) —> X which 

is almost 9W-concentrated on V for some Hausdorff group topology weaker 

than the original one on X is almost SW-concentrated on T (for the original 

topology on X). In particular, if X is separable the subseries convergence 

coincide for all Hausdorff topologies weaker than the original one on X (Kal ton 

[7]) ; if SO? is uncountable, then, since the topology of X has a countable base of 

neighborhoods of zero, there is A C r with card A < 9ft such tha t x(:)\^(T\A) 

= 0, i.e., x ( : ) is concentrated on &(A). 

For further results in the same direction, see the supplement to this paper 

which will appear in Bull. Acad. Polon. Sci. 
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