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Anatomically, an organ is defined as a series of tissues which jointly perform one or more
interconnected functions. The adipose organ qualifies for this definition as it is made up of two
tissue types, the white and brown adipose tissues, which collaborate in partitioning the energy
contained in lipids between thermogenesis and the other metabolic functions. In rats and mice the
adipose organ consists of several subcutaneous and visceral depots. Some areas of these depots
are brown and correspond to brown adipose tissue, while many are white and correspond to white
adipose tissue. The number of brown adipocytes found in white areas varies with age, strain of
animal and environmental conditions. Brown and white adipocyte precursors are morphologically
dissimilar. Together with a rich vascular supply, brown areas receive abundant noradrenergic
parenchymal innervation. The gross anatomy and histology of the organ vary considerably in
different physiological (cold acclimation, warm acclimation, fasting) and pathological conditions
such as obesity; many important genes, such as leptin and uncoupling protein-1, are also expressed
very differently in the two cell types. These basic mechanisms should be taken into account when
addressing the physiopathology of obesity and its treatment.

Adipose organ: Adipose tissues: Morphology: Adipocytes

The concept of the ‘adipose organ’ was introduced 60 years
ago (Wells, 1940), but was only used as a new definition of
white adipose tissue (WAT). The concept proposed here is
totally new and starts from the minimum requirement for
definition of an organ: the presence of two distinct tissues,
WAT and brown adipose tissue (BAT). Another important
aspect of this concept is that the organ is considered as a
single structure with the unitary function of sharing energy
contained in food (mainly lipids) between thermogenesis
and other metabolic needs of the body. This unitary function
implies the plasticity of the organ and, specifically, that
interconversion of its two tissues is possible. Indeed, recent
experimental evidence corroborates this hypothesis. Such
interconversion can be induced also by drugs and genetic
manipulations, and could serve as a means of treating
obesity in the future.

Materials and methods
Animals

Dissections for the purpose of describing the gross anatomy
of the organ were performed on C57BL/KS-db/+ mice aged
43 weeks. Mice and rats were housed in animal quarters and
provided with food and water ad /ibitum. The animals were
kept at 20°C; some animals were subsequently exposed
(several hours) or acclimated (several days) at low temper-
ature (4°C), while some animals were acclimated at warm
temperature (34°C). Care of the animals was in accordance
with institutional guidelines, and the experimental protocols
were approved by the local Animal Care Ethical Committee.

The animals were anaesthetised with ketamine (Ketaset;
Bristol-Myers, Syracuse, NY, USA; 100mg/kg, intraperito-
neally) in combination with xylazine (Rompum, Haver,
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Mobey Corp., Shawnee, KS, USA; 10mg/kg intraperito-
neally). They were perfused intra-aortically with a
paraformaldehyde solution (40ml/l 0-1M-phosphate buffer,
pH 7-4).

Techniques

For light microscopy, tissues were postfixed overnight in the
same fixative by immersion, washed, dehydrated in ethanol
and embedded in paraffin. Sections (3um thick) were
stained with haematoxylin and eosin or processed for immu-
nohistochemistry according to the avidin—biotin—peroxidase
method (Hsu et al. 1981). The primary antibodies were as
follows: polyclonal sheep anti-uncoupling protein (UCP)-1
(generously provided by Dr D Ricquier), and as no cross-
reaction was observed in samples of liver, kidney, skeletal
muscle and white adipose tissue, which are known to
contain UCP2 and/or UCP3 (Boss et al. 1997; Fleury et al.
1997), our antibody can be considered specific for UCP;
polyclonal rabbit anti-tyrosine hydroxylase (TH; Chemicon,
Temecula, CA, USA); polyclonal rabbit anti-neuropeptide
Y (NPY; Amersham International plc, Amersham, Bucks.,
UK); polyclonal rabbit anti-calcitonin gene-related peptide
(CGRP; Amersham International plc); polyclonal rabbit
anti-substance P (SP; Amersham International plc); poly-
clonal rabbit anti-NO synthase isoforms (Biomol, Plymouth,
PA, USA); polyclonal rabbit anti-haem oxygenase
(StressGen, Victoria, B.C., Canada); polyclonal rabbit anti-
leptin, raised against the NH,-terminal and the COOH-
terminal peptides (made by Dr RC Frederich and purchased
from Santa Cruz Biotechnology, Santa Cruz, CA, USA).

Negative controls were obtained in each instance by
omitting the primary antibody and using preimmune serum
instead of the primary antiserum. When the antigen was
available, adsorption tests were performed. To test the
specificity of the antisera, immunohistochemical reactions
were performed in parallel on tissues known to express
those antigens.

For transmission electron microscopy, fragments of about
Imm? were immersed in glutaraldehyde and paraformal-
dehyde (20ml/l1 0-1 M-phosphate buffer, pH 7-4 in each
case), at 4°C for 3h. Specimens were then washed, postfixed
in OsOy4 (10g/1), dehydrated in ethanol and embedded in an
Epon—Araldite mixture. Thin sections were obtained with a
Reichert Ultracut E (Reichert, Vienna, Austria), stained with
lead citrate and examined with a Philips CM10 Electron
Microscope (Philips, Eindhoven, The Netherlands).

Results and discussion
Lean 20°C

The adipose organ consists of several depots, which in small
mammals are mainly represented by the dermic, sub-
cutaneous (upper and lower), mediastinic, mesenteric,
perigonadal, perirenal and retroperitoneal depots (Girardier
& Stock, 1983; Trayhurn & Nicholls, 1986; Cinti, 1999). In
mice and rats maintained at 20°C most of these depots have
a white-yellowish colour but, especially in young animals,
some areas in the upper (interscapular, subscapular, axillary
and cervical) and lower (inguinal) subcutaneous depots, and
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Fig. 1. Gross anatomy of the adipose organs of adult mice kept at
20°C and at 4°C. (Reproduced with permission from Cinti, 1999.)

the perirenal and mediastinic depots are brown in colour
(Fig. 1).

Brown areas consist of BAT, with the typical multi-
locular adipocytes rich in characteristic mitochondria (large
and with numerous cristae; Fig. 2) expressing the UCPI,
which is responsible for the thermogenic activity of this
tissue (Cannon et al. 1982; Cinti et al. 1989b; Klaus et al.
1991b).

The vascular and nerve supply is very rich, especially in
the interscapular area (Nnodim & Lever, 1988), where large
and mainly myelinated, and small and mainly amyelinated,
nerves reach the tissue. The small nerves are intensely
immunoreactive (ir) for TH, an enzyme marker of noradren-
ergic fibres, while the large nerves have many fibres ir for
neuropeptides, such as the CGRP and SP (Norman et al.
1988), which are usually found in sensitive afferent fibres
(Gibson et al. 1984; Skofitsch & Jacobowitz, 1985;
Terenghi et al. 1985; Lee et al. 1986). Other NPY- and TH-
ir nerve fibres reach the BAT via the peri-arterial plexus
(Cannon et al. 1986). Brown adipocytes are electrically
coupled by gap junctions (Schneider-Picard et al. 1980).

Two arteries reach the lateral ends of the interscapular
BAT, and two veins drain the blood in the middle plane. The
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Fig. 2. Transmission electron microscopy. (A) Brown adipocyte of a neonatal rat filled with numerous
small lipid droplets and typical mitochondria packed with cristae. Go, Golgi apparatus; CAP, capillary.
Magnification x8700. (B) High magnification of a typical brown adipocyte mitochondrion. L, lipid droplet;
SER, smooth endoplasmic reticulum. Magnification x80000.

capillaries have some peculiar characteristics, i.e. they can
be completely surrounded by a single adipocyte, and a
single endothelial cell can line the whole lumen of the
capillary. Furthermore, electron microscopic evidence that
endothelial cells are often hypertrophic and occlude the
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lumen suggests their involvement in the control of the blood
flow. In this context, brown adipocytes contain NO synthase
(Nisoli et al. 1997) and haem oxygenase (Giordano et al.
2000), the enzymes synthesising NO and CO respectively.
Thus, they contribute to the control of the perfusion rate
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Fig. 3. Transmission electron microscopy. Interscapular brown adipose tissue of a 10-d-old rat. Two brown adipocyte precursors (P) containing
some lipid droplets (L) are located in close apposition to a capillary (CAP). Compare the typical mitochondria (M) of a mature brown adipocyte
with pretypical mitochondria (m) of a brown precursor cell. END, endothelial cell. Magnification x11200.

through the tissue by producing these two novel gaseous
mediators (Moncada & Higgs, 1993), whose production
increases after noradrenergic stimulation, probably in order
to match thermogenesis in BAT with its perfusion.

The precursors of brown adipocytes already show
specific morphological features in the early phases of devel-
opment (Fig. 3; Cinti et al. 1984, 1986, 1987; Sbarbati et al.
1987). In primary cultures these cells acquire both the
morphological (Cigolini et al. 1985, 1986) and the
molecular (Rehnmark er al. 1989; Klaus et al. 1991a)
characteristics of brown adipocytes in vivo.

The white areas of the organ consist of unilocular
adipocytes, filled with mitochondria very different from
those found in brown adipocytes (Fig. 4). These cells
produce leptin (Zhang et al. 1994; Frederich et al. 1995), a
hormone which acts both on peripheral targets (Cinti et al.
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1997b; De Matteis et al. 1998a) and on hypothalamic and
extrahypothalamic centres (De Matteis & Cinti, 1998). Its
main function is to inform the brain of the individual’s nutri-
tional state, thus controlling energy intake and distribution
to the other tissues in the intervals between meals (Flier,
1995), but it is also involved in fertility regulation and
reproductive functions (Casanueva & Dieguez, 1999).

The vascular supply of WAT is extremely important on
account of the functional relationships between endothelial
cells and adipocytes and, according to several researchers,
the origin of adipocytes, but capillary:adipocyte is lower
than that in BAT tissues (Fawcett, 1952; Crandall et al.
1997).

White depots are reached by numerous nerves, but a
varying amount of their collateral branches innervate these
depots. Parenchymal fibres ir for TH (noradrenergic) and
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(B) - RN
Fig. 4. Transmission electron microscopy. (A) Epidydimal white adipose tissue of a 12-d-old rat. Mag-
nification x3300. (B) Enlargement of the framed area in A, showing the cytoplasm of a white adipocyte
containing few and small mitochondria (M) with randomly-oriented cristae. PV, pinocytosis vesicles;
SER, smooth endoplasmic reticulum; L, lipid droplet. N, nucleus. Magnification x32000.

CGRP occur in all white depots, and in the periovarian is very similar to that of the interscapular depot: TH, NPY,
depot of adult rats, specifically, the ir pattern of nerve fibres CGRP, SP (Giordano et al. 1996).
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Fig. 5. Transmission electron microscopy. (A) Epidydimal white adipose tissue of a 12-d-old rat.
Magnification x3300. (B) Enlargement of the framed area in A, showing a white adipocyte precursor (P).
L, lipid droplet; CAP, capillary. Magnification x8700.

The precursors of white adipocytes have a characteristic brown adipocyte precursors (Fig. 5; Cinti et al. 1989q;
electron microscopic morphology distinct from that of Barbatelli et al. 1993). In primary cultures these precursors
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develop into cells with the morphological and molecular
features of the unilocular cells of WAT (Cinti ef al. 1985;
Ailhaud et al. 1992; Maffei et al. 1995).

Most white depots in young (15- to 30-d-old) rats and
some white depots (parametrial, periovarian and retroperi-
toneal) in adult rats show areas made up of multilocular
adipocytes ir for UCP1 (Young ef al. 1984; Loncar, 1991;
Cousin et al. 1992). In these areas (mainly in young
animals) adipocyte precursors can be found. In their less-
differentiated stages these cells are similar to brown
adipocyte precursors, but in the later stages of differenti-
ation they show an ultrastructure intermediate between that
of white and brown adipocytes.

Cold-acclimated animals

In cold-acclimated (4°C) animals the brown areas increase
in number (Fig. 1) mainly due to the development and
proliferation of brown adipocyte precursors (Geloen et al.
1992), via the noradrenergic pathway (Lafontan & Berlan,
1993), that also influence the functional activation of the
brown fat cells (Arch & Kaumann, 1993; Giacobino, 1995).

In the interscapular area of old (2years) rats, the number
of brown adipocytes increases threefold in 4 weeks
(Sbarbati et al. 1991; Morroni et al. 1995). Also the
morphology of mature adipocytes appears modified, mostly
because mitochondria increase in number, size, cristae
density and UCP1 content. Noradrenergic parenchymal
fibres become denser (De Matteis et al. 1998b) and gap
junctions become larger (Barbatelli er al. 1994).

Among the WAT depots, the periovarian adipose tissue
has a high preadipocyte content and is particularly reactive
to cold (Cousin ef al. 1993); when rats are kept in thermo-
neutral conditions it contains rare brown adipocytes
scattered into lobules of white fat, but in cold-acclimated
animals their number increases, and brown fat areas appear
in the periovarian fat lobules (Cousin et al. 1992). The peri-
ovarian brown adipocyte increase following cold
acclimation is matched by a major increase in noradrenergic
and peptidergic nerves (Giordano et al. 1996). To ascertain
whether periovarian fat is provided with sensory nerves, and
whether any relationship exists between such nerves (in
particular, the CGRP-containing fibres found in close asso-
ciation with brown adipocytes) and brown fat recruitment,
we have studied the effect of capsaicin desensitization
on neuropeptide-containing nerves and brown adipocyte
density in the periovarian adipose tissue of rats kept at 20°C
and on a group acclimated to 4°C for 14d. In both groups
capsaicin, a neurotoxin acting specifically on a subpopu-
lation of primary afferent nerves (Caterina et al. 1997),
considerably reduced the expression of SP and CGRP in
vascular-nerve bundles and parenchyma, thus confirming
that these nerves are sensory peptidergic nerves (Holzer,
1988). In addition, in cold-acclimated rats the increase in
brown adipocyte density was significantly (P<0-01)
checked by capsaicin pretreatment (i.e. sensory dener-
vation). Finally, ultrastructural investigation showed the
occurrence of brown adipocyte precursors filled with aggre-
gates of glycogen and poorly-differentiated multilocular
adipocytes (with large lipid droplets, abundant aggregates
of glycogen and smaller often elongated mitochondria
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with few cristae) in capsaicin-treated cold-acclimated
rats. On the whole, these data suggest that sensory nerves
and/or neuropeptides play a role in the recruitment and
differentiation of visceral brown adipocytes (Giordano et al.
1998).

Multilocular mitochondria-rich adipocytes appear in the
WAT of rats treated with the B3;-adrenoceptor agonist, CL
316,243. The use of bromodeoxyuridine to identify cells
which have undergone mitosis during this treatment has
shown that most multilocular cells are derived from pre-
existing cells. Electron microscopy has confirmed that at
least a subpopulation of unilocular adipocytes underwent
conversion to multilocular mitochondria-rich adipocytes
(Himms-Hagen et al. 2000).

Not all brown adipocytes in the interscapular area and in
the brown areas of white depots stain for UCP1. This
phenomenon, which we have called Harlequin’s secret, is
particularly evident in older animals and in conditions of
prolonged cold stimulation, and is not observed in warm-
acclimated animals (Cinti et al. 1997a).

Warm-acclimated animals

In warm-acclimated (34°C) animals the brown areas are less
coloured and their histology is profoundly modified. Brown
adipocytes are mainly unilocular, even though they are still
ir for UCP1. The mitochondria are smaller with less-
developed cristae. These cells express both leptin (which is
not expressed in multilocular brown adipocytes of cold-
acclimated animals) and its mRNA. These data suggest that
UCP1 and leptin genes are reciprocally regulated by temper-
ature (Cancello ef al. 1998).

Obese animals

In obese animals the organ increases in volume due to white
adipocyte hyperplasia and hypertrophy (Himms-Hagen,
1979; Rothwell & Stock, 1979; Lowell et al. 1993). These
phenomena are differently regulated in the various depots,
and the subcutaneous deposits are those that undergo the
more conspicuous enlargement.

The brown areas appear less coloured and, as in warm-
acclimated animals, their histology evolves into unilocular
cells still ir for UCP1. These brown adipocytes are also ir for
leptin (Cinti et al. 1997¢).

Fasted animals

In fasting conditions the volume of the adipose organ dimin-
ishes as a function of duration of fasting and environmental
temperature. After fasting for 48h at 19°C volume dimin-
ishes to about one-third of that of animals maintained in the
same fasting conditions at 28°C (R de Matteis and S Cinti,
unpublished results), suggesting that a greater amount of
fuel (lipids) has been mobilised than that required to
maintain the body temperature. Accordingly, the typical
morphological aspect of brown adipocytes in the inter-
scapular area is clearly suppressed (unilocularity with small
mitochondria containing few cristae) in warm-acclimated
fasting animals. These brown adipocytes are UCP 1-positive,
but leptin-negative (Cinti et al. 1997¢).
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The ‘slimmed’ white adipocytes are eclongated with
numerous irregular cytoplasmic projections and the cell
surface is particularly rich in pinocytotic vesicles. The
tannic acid technique (Blanchette-Mackie & Scow, 1981,
1983) allows visualisation of many myelinic structures
which have been interpreted as fatty acids leaving the cell.
These myelinic structures can be seen either in association
with the internal membranes of adipocytes (endoplasmic
reticulum, mitochondria, pinocytotic vesicles) or apparently
free in the cytosol and in interstitial spaces. Capillaries
appear in greater number, in agreement with the increased
blood flow observed in this condition (Crandall ef al. 1997).

Conclusion

WAT and BAT are organised into a real organ, with a
complex diffuse multi-depot organisation. Each depot has
its own discrete vascular and nerve supply. The character-
istics of the organ can be adapted to the functional
requirements, mainly in relation to the energy balance of the
whole organism.

The two tissues seem to derive from precursors with
different morphological and functional characteristics that
are defined early, but with clear possibilities of reciprocal
conversion, with an important role played by the nervous
system. Both cytotypes produce a series of molecular factors
that can influence the tissue pattern, adapting it to the func-
tional needs.

These basic concepts of functional anatomy seem
necessary for a better understanding of the pathophysiology
of obesity.
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