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Introduction

Let U; denote the icosahedral group and let $ be the normalizer of a
Sylow 5-subgroup of Us. Then the index of $ in U; equals six. Let us represent
A; as a permutation group A on the set of residue classes of $ with respect
to As.  Then it is clear that A is doubly transitive of degree 6 and order 60
=2+5+6. Since s is simple, A does not contain a regular normal subgroup.

Next let SL(2, 8) denote the two-dimensional special linear group over the
field GF(8) of eight elements, and let s be the automorphism of GF(8) of order
three such that s(x) = x® for every element x of GF(8). Then s can be con-
sidered in a usual way as an automorphism of SL(2, 8). Let SL*(2,8) be the
splitting extension of SL(2, 8) by the group generated by s. Moreover let
be the normalizer of a Sylow 3-group of SL*(2, 8). Then it is easy to see
that the index of $ in SL*(2, 8) equals twenty eight. Let us represent SL*(2,
8) as a permutation group S on the set of residue classes of $ with respect
to SL*(2, 8). Then it is easy to check that S is doubly transitive of degree
28 and order 1,512 =2.27.28. Since SL(2, 8) is simple, S does not contain a
regular normal subgroup.

The purpose of this paper is to prove the converse of these facts, namely

to prove the following

THEOREM. Let Q be the set of symbols 1,2, ... ,n. Let & be a doubly
transitive group on 2 of order 2(n—1)n not containing a regular normal sub-
group. Then & is isomorbhic to either A or S.

1. Let 9 be the stabilizer of the symbol 1 and let & be the stabilizer of
the set of symbols 1 and 2. Then & is of order 2 and it is generated by an
involution K whose cycle structure has the form (1)(2). ... Since ® is doubly
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transitive on @, it contains an involution I with the cycle structure (12). ...

Then we have the following decomposition of & :
G=9+919.

Since I is contained in the normalizer Ns® of & in @ and since & has order
two, I and K are commutative with each other. Hence for each permutation
H of 9 the residue class HIH contains just two involutions, namely H 'IH and
H 'KIH. Let g(2) and %(2) denote the numbers of involutions in & and 9,
respectively. Then the following equality is obtained :

(1) g(2)=h2) +2(n—1).

2. Let ® keep i (=2) symbols of 2, say 1,2, ..., i unchanged. Put
S={1,2,...,i). Then by a theorem of Witt ((4), Theorem 9.4) Ns®/& can
be considered as a doubly transitive permutation group on J. Since every
permutation of Nsft/f distinct from & leaves by the definition of & at most
one symbol of & fixed, Ns&/8 is a complete Frobenius group on 3. Therefore
i equals a power of a prime number, say »™, and the order of N Ns®/® is
equal to 7—1. Since the order of & is two, Ns& coincides with the centralizer
of 8 in .  Therefore there exist (2 —1)2/( ~1)7 involutions in @ each of
which is conjugate to K.

At first, let us assume that # is odd. Let #*(2) be the number of involu-
tions in 9 leaving only the symbol 1 fixed. Then from (1) and the above
argument the following equality is obtained :

) Fu+ #-Dnr/G-1Di=(n-1)/G—-1)+r*©2) +2(rn-1).

Since i is less than #, it follows from (2) that A*(2)<1. Thus two cases
are to be distinguished: (A) %*(2) =1 and (B) #*(2) =0. The following equa-
lities are obtained from (2) for cases (A) and (B), respectively:

(2. A) n=4=p" (p : odd).
and
(2. B) n=i2:i—1) =p"@2p"—-1), (p : odd).

Next let us assume that # is even. Let g*(2) be the number of involutions
in @ leaving no symbol of £ fixed. Then corresponding to (2) the following
equality is obtained from (1) :
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3 )+ @r-Dn/G—-Di=#n-1/G—-1) +2@x=—1).

Let J be an involution in @ leaving no symbol of 2 fixed. Let CsJ be the
centralizer of Jin @. Assume that the order of CsJ is divisible by a prime factor
g of #—1. Then CsJ contains a permutation @ of order q. Since #—1, and
therefore ¢, is odd, @ must leave just one symbol of 2 fixed. But this shows
that @ cannot be commutative with J. This contradiction implies that g*(2)
is a multiple of #—1. Now it follows from (3) that g*(2) <z — 1. Thus again
two cases are to be distinguished: (C) g*(2) =%#—1 and (D) g“(2) =0. The

following equalities are obtained from (3) for cases (C) and (D), respectively :

(3.0) n=i"=2°"
and
(3.D) n=i(2i—1) =2m@m1 1),

3. Case (A). Let T be a Sylow p-subgroup of Ns®. Let NsP' and CsP’
denote the normalizer and the centralizer of %’ in &, respectively. Then, since
NsR®/8 is a Frobenius group of degree p™, P’ is elementary abelian of order
?™ and normal in Ns®. Thus CsP' contains 8. Now let P be a Sylow p-
subgroup of NsP'. Then it follows from an elementary property of p-groups
that P is greater than P’. This implies that Cs{' is greater than S&P'. In
fact, if CsP' = 8P', then, since KPP’ is a direct product of & and P', & would
be normal in NsP' and it would follow that P=L'. Let ¢ (%2, p) be a prime
factor of the order of CsP' and let @ be a permutation of CsP' of order q.
Then ¢ must divide 2 —1 and hence @ must leave just one symbol of 2 fixed.
But P’ does not leave any symbol of £ fixed and therefore @ cannot belong to
CsP. Assume that the order of CsP' is divisible by four. Let & be a Sylow
2-subgroup of CsP'. Then & leaves just one symbol of 2 fixed. This, as above,
shows that & cannot be contained in Cs®’. Thus the order of Cs§’ must be
of the form 2 ™™ with m=m'>0.

Now let P be a Sylow p-subgroup of CsP'. Then clearly P is normal
in Nsf'. Let B be a Sylow p-complement of Ns®, which is a stabilizer in Ns®
of a symbol of 3. Then decompose all the permutations (1) of P” into B-
conjugate classes. If P=1 is a permutation of P and if CsP denotes the cen-

tralizer of P in @, then it can be seen, as before, that the order of BN CsP
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equals at most two. Thus every B-conjugate class contains either ™ —1 or

2(p™—1) permutations and the following equality is obtained:
P —1=x(p" - 1).
This implies in turn that;

%=1 (mod. p™) and x>1; x=yp"+1 and y>0;
PT=(y—-D(p"=1)+p™; y=1 and finally »' =m.

Thus P is a Sylow p-subgroup of &.

Now since the order of Ns® equals 2(p™ —1)p™, & is not contained in the
center of any Sylow 2-subgroup of &. But obviously Nsf® contains a central
element of some Sylow 2-subgroup of . Let J be such a ‘“‘central” involution
in Ns§ (and of Ns®"). Then J leaves just one symbol of 2 fixed and therefore,
as before, J is not commutative with any permutation (1) of P”. Thus P
must be abelian. By assumption P cannot be normal in & Let D be a
maximal intersection of two distinct Sylow p-subgroups of ®&, one of which
may be assumed to be SB"’. Assume that D=1 and let NsD and Cs® denote
the normalizer and the centralizer of ® in &, respectively. Then, as it is well
known, any Sylow p-subgroup of Ns® cannot be normal in it. On the other
hand, since P" is abelian, it is contained in Cs®. Moreover, as before, the
prime to p part of the order of Cs® is at most two. This implies that P is
normal in Ns®. Thus it must hold that ®=1. Using Sylow’s theorem the

following equality is now obtained :
2(n—1n/xn=yn+1.

This implies that y=1, x=1 and #=3.
Thus there exists no group satisfying the conditions of the theorem in Case
(A).

4. Case (B). Likewise in Case (A) let B be a Sylow p-subgroup of NsR.
Then, as before, P is elementary abelian of order p»™ and normal in Nsf.
Since, however, #=p"(2 ™ —1) in this case, P is a Sylow p-subgroup of ©.
Let NsB and CsP denote the normalizer and the centralizer of P in @, res-
pectively. Let the orders of NsP and CsP be 2 (" —1)p"x and 2 p™y, res-
pectively. If x=1, then from Sylow’s theorem it should hold that (2™ —1)
(2p™+1) =1 (mod. p), which, since p is odd, is a contradiction. Thus x is
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greater than one. If y=1, then & would be normal in NsP, and this would
imply that x=1. Thus y is greater than one. Now y is prime to 2p. In
fact, y is obviously prime to p. If y is even, then let & be a Sylow 2-subgroup
of CsB. Since then the order of & must be greater than two, € leaves just
one symbol of £ fixed. Hence & cannot be contained in CsP. Thus y must
be odd. Therefore by a theorem of Zassenhaus ((5), p. 125) CsP contains a
normal subgroup 9 of order y. %) is normal even in NsT.

Now likewise in Case (A) let B be a Sylow p-complement of Ns® and let
us consider the subgroup 9B. Since ) is a subgroup of CsB, any permutation
(x1) of 9 does not leave any symbol of 2 fixed. In particular, every prime
factor of the order of 9 must divide 2p™ —1. Since p”—1 and 2p™ -1 are
relatively prime, it follows that every permutation (=1) of ¥ is not com-
mutative with any permutation (%1) of 9. This implies that y is not less
than 2p™ - 1. Thus it follows that y=2p™ —1 and that all the permutations
(%1) of 9 are conjugate under B. Therefore 2™ —1 must be equal to a
power of a prime, say q’, and 9) must be an elementary abelian g-group. Let
Ns?) and Cs% denote the normalizer and the centralizer of 9 in ®, respectively.
Then it can be easily seen that Cs%)=%. Hence Ns% is contained in NsP
and therefore we obtain that Ns% = NsP. On the other hand, it is easily seen
that the index of NsP in @ is equal to 2p™+1. But then we must have that
2p™+1=2 (mod ¢), which contradicts the theorem of Sylow.

Thus there exists no group satisfying the conditions of the theorem in
Case (B).

5. Case (C). Since z=2""", $ contains a normal subgroup Il of order 2 — 1.
Let B be a Sylow 2-complement of Ns$ leaving the symbol 1 fixed. Then B
is contained in . Since Nsf/8& is a complete Frobenius group of degree 2",
all the Sylow subgroups of B are cyclic. Let I be the least prime factor of
the order of B. Let { be a Sylow /-subgroup of B. Let NsQ and Cs denote
the normalizer and the centralizer of € in 8. Then R is cyclic and clearly
leaves only the symbol 1 fixed. Hence NsQ is contained in . Because CsQ
contains &, using Sylow’s theorem, we obtain that NsQ= CsQ(Nsf N NsQ) =
CsQ(RV N NsQ). Then it is easily seen that Ns¢ = CsQ. By the splitting theorem
of Burnside @ has the normal /-complement. Continuing in the similar way,

it can be shown that @ has the normal subgroup €, which is a complement
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of B. In particular, SN U=9D is a normal subgroup of U, which is a comple-
ment of B and has order 2”7+ 1. Consider the subgroup ®R®. Then since every
permutation (1) of ® leaves just one symbol of £ fixed, K is not commutative
with any permutation (1) of ®, and therefore D is abelian. & is the product
of ® and a Sylow 2-subgroup of . Hence &, and therefore &, is solvable
((3)). Then @ must contain a regular normal subgroup.

Thus there exists no group satisfying the conditions of the theorem in
Case (C).

6. Case (D). If m=1, then it can be easily checked that & = A. Hence it
will be assumed hereafter that s is greater than one.

Let € be a Sylow 2-subgroup of Ns® of order 2”*'. Then, since n=
2™(2™"1 ~1) in this case, S is a Sylow 2-subgroup of . Let B be a Sylow 2-
complement of Ns® of order 2” — 1. Then, since Nsf®/8 is a complete Frobenius
group of degree 2", €/K is elementary abelian and normal in Ns®/®. Fur-
thermore, all the elements (1) of S/® are conjugate under BRK/R. Since I
and K are commutative involutions, & contains an involution S distinct from
K. Thus every permutation (%1) of € can be represented uniquely in the
form either V'SV or V™' SVK, where V is any permutation of 8. In fact,
assume that V7SV = V*'SV*K, where V and V* are permutations of .
Then it follows that V*V7'SVV*'=SK and (V*V™)2S(VV*1)*=S. But
VV*7 has an odd order, and this implies that V= V* and K=1. Thisis a
contradiction. Therefore € is elementary abelian.

Let NsS denote the normalizer of € in @.  All the involutions of & are
conjugate in @ because of g*(2) =0. Hence they are conjugate already in Ns3
((5), p. 133). Since NsS contains Ns®, it follows that the index of Ns® in
NsS equals 2"*'—1. Let U be a Sylow 2-complement of NsS of order (2™** —1)
(2™~ 1). Then it follows that SB=&S(ANSB). By a theorem of Zassenhaus
((5), p. 126) B and A N B are conjugate in SB. Hence we can assume that
B is contained in A. Now every permutation (1) of B leaves just one symbol
of 2 fixed, and all the Sylow subgroups of ¥ are cyclic. Therefore likewise
in Case (C) it can be shown that % has the normal subgroup B of order 2™** —1.
Every permutation (%1) of B leaves no symbol of 2 fixed, hence it is not
commutative with any permutation (1) of 8. Let B be a permutation of B

of a prime order, say q. Then all the permutations (1) of B are conjugate
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to either B or B™* under ®. This implies that % is an elementary abelian ¢-
group of order, say q”. Then it follows that 2™"'—1=¢’. This implies that
b=1 and B is cyclic of order q. Hence B is also cyclic.

Let NsB denote the normalizer of B in . Noticing that 2" - 1= -21~(q -1),

let the order of NsB be equal to %x(q ~1)q. Since n= —;q(q+1), B cannot
be transitive on 2, and hence it cannot be normal in &. Therefore x is less
than (q+1)(¢g+2). Now using the theorem of Sylow we obtain the following

congruence :

(@g+D(g+2)/x=1 (mod. ¢@).

This implies that (g+1)(g+2) = x(yg+1), where, since # is less than (g+1)
(g+2), y is positive. Then we obtain that x = zq + 2, where z, since ¢ is greater
than two, is non-negative. Finally we obtain that (¢ +1)(g+2) = (2q+2) (yq
+1). This implies that z is not greater than one. If z=1, then the order
of NsB equals —% (g—1Dgq(g+2). Hence there will be a permutation X(=1)
of order dividing g + 2, which belongs to the centralizer of 3. But X leaves
just one symbol of £ fixed. Then X cannot be contained in the centralizer of
B. This contradiction implies that z=0, ¥ =2 and y= %7 (g+3). Inparticular,
B coincides with is own centralizer, and the order of Ns®B equals (g— 1)q.

If ® is solvable, then @ must have a regular normal subgroup, which is
an elementary abelian group of a prime-power order. Since %= %~q(q+ 1), it
is impossible. Thus & must be nonsolvable.

Let M be the least normal subgroup of & such that &/N is solvable. Then
since M is transitive on 2, N contains B and an involution. Since all the
involutions of & are conjugate, M contains ©. Using Sylow’s theorem, we
obtain that @ = (NsB)RN. Therefore the order of M is divisible by ¢+2. Let
the order of M be equal to xq(g+1)(g+2). Then the order of NN NsB is
equal to 2 xg. Thus the number of Sylow g-subgroups of N is equal to %q(q
+3)+1. On the other hand, since the order of B equals ¢, it can be easily
shown that M is a simple group. Therefore by a theorem of Brauer (@) ¢
is isomorphic to the two-dimensional special linear group LF (2, ¢+1) over

the field of g+ 1=2"'" elements. In particular, it follows that x= 1.
Using Sylow’s theorem, we obtain that & = M(NsN). Therefore there exist
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q+2 distinct Sylow 2-subgroups in . Let I' be the set of all the Sylow 2-
subgroups of §&. Then, in a usual manner, we represent & as a permutation
group on I As it is well known, R, and therefore @, is triply transitive on
I. Let % be the stabilizer of some two symbols of 7. Then the order of 8
is equal to %(\q—l)q, and hence a Sylow g-subgroup of % is normal in it.
Therefore we can assume that =9%U. Thus B is the stabilizer of some three
symbols of I. Let B*(=1) be any subgroup of B, and put &* = NL*. Then
®* is triply transitive on I', and B* is the stabilizer of the above three symbols
of " in ®* Let f be the number of symbols in the subset 4 of ", each symbol
of which is left fixed by B* Then by a theorem of Witt ((4), Theorem 9.4)
®* N NsB* is triply transitive on 4. Therefore U N §*NsB* has an orbit in 4
of length f—2. But we already know that AN NsB*=B. Thus it follows
that % N &* > NsB* = B* This implies that =3 and that NsB*/%B is isomorphic
to the symmetric group of degree three.

Now let 11 be the Sylow 2-complement of § of order % (@g—1)(g+2). Then
we can assume that B is contained in . Since m is greater than one, it fol-
lows that ¢=2""'~1 is not less than seven. Hence the order qg+2 of N U
is divisible by 3. Since M N1 is cyclic, it contains only subgroup ¥ of order
three. ¥ is normal in 1. On the other hand, since %(q —1) is odd, ¥ is con-
tained in the centralizer of 8., Thus it follows that U N NsB*=B8F. If g+2
has a prime factor [ distinct from 3, then let & be the Sylow [-subgroup of
NN U of order, say . Then I° is not greater that (¢+2)/3. Now the above
argument shows that I°—1 is a multiple of % (g—1). This contradiction im-
plies that g+ 2 is equal to a power of 3, say, 3°. Thus finally we obtain the

following equality :
g+2=2""_1=3%

This implies that ¢=2, m=2 and ¢q=7. Then it is easy to check that @ is

isomorphic to S.

Remark. Holyoke ((2)) proved a special case of the theorem: if 9 is a

dihedral group, then @ is isomorphic to A.
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