ON A THEOREM OF PRIVALOFF
P.S. Bullen

(received January 9, 1967)

1. It is the object of this note to extend to general harmoric
structures a theorem due to Privaloff [412] concerning the definitior
of harmonic functions. The notation is that of |5, 9, 10], where
many of the definitions not given here will be found.

The work on this paper was done in part while the author
was at the Mathematics Research Centre, United States Army,
Madison, Wisconsin.

2. Let X be a2 locally compact space with a harmonic
structure in the sense of Boboc [3], Constantinescu [4] and
Cornea [5]. That is to say the following five axioms are satisfied.

I. For all non-empty open subsets U of X there exists
a subspace, H(U), of the real continuous functions, such that
U - H(U) is a sheaf. These are the harmonic functions on U .

II. There is a base of regular sets.

III. For all xe X, there exists an h; harmonic at x and
such that h(x)> 0 .

IV. The MP (called MPO sets in [3]) sets cover X .
Hence there is a base of regular MP sets denoted by X; if
Ve Y, and VC U, U a non-empty open set, V is said to be
regular in U . Such sets will always be denoted by V , V', V1
etc.

V. If A is a non-empty set of functions harmonic on U,

directed by < and with sup A finite on a dense set then
sup A ¢ H(U) .

The explanation of the terms in these axioms and of the
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axioms themselves will be found in the above references.
Let us suppose a further axiom to hold [8].

VI. There exists a locally strongly hypoharmonic function

on X, p, thatis p\;-summable for all VEX and all xeV .

Then [8] a differential operator can be introduced by de-

fining
- v
N - DF(x) = lim sup %—E—Eﬁj—v—% ,
N(x) P
where

ZF(x;V)=ITI¥‘ (x) - F(x) = f* deZ-F(x),

N(x) = the filter of sections of a fundamental
system of regular MP neighbourhoods of x,

Ap(x;V) = H;’(x> - px) .

This is the upper derivative and by replacing lim sup by
lim inf and A by A , a lower derivative can be defined. If
both exist and are equal the common value is called the derivative
of F at x, N- DF(x). Remark that A F(x;V) and A F(x;V)

v
exist, are equal and are finite if F is B -summable, in par-

ticular if F is hyperharmonic and finite on a dense set, that is
if F is superharmonic. If there is no ambiguity the prefix N
will be omitted. We write FeH*(U) for F hyperharmonic in U .

It is easily seen that we have

THEOREM 1 [8] If feH*(X) then for any N for which
N - Df(x) is defined, N - Df(x)< 0 .

The result to be proved follows from a general converse of
theorem 1. Such a converse has been given in [9] and in [10], but
neither is general enough to include Privaloff's theorem in the

classical case.

Loosely, the converse says if the derivative of a lower
semi-continuous (l.s.c.) function is finite except possibly on a
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set where hyperharmonic functions can be infinite, and is there
infinite not because f is too large or too small, and if then the
derivative is non-positive except possibly on a set where deriva-
tives of hypoharmonic functions can be infinite, then the function
is hyperharmonic.

3. A set E is said to be polar if there exists a ue H¥(X) ,
finite on a dense set, with EC {u =} .

A set Z is called a Z-set [8] if there exists a real non-
negative ue H¥(U) suchthat ZC {Du=-0} . (In[8] u was
required to be continuous, but this was for the purpose of de--
fining a Perron integral.).

A function f will be said to be lower smooth at x if
lim inf Af(x;V)< 0 . Remark thatif f is l.s.c., bounded be-
N(x)
low and lower smooth then lim inf - Af(x;V) = 0, and that if f is
N(x)
real and continuous f is lower smooth [1] .

4. THEOREM 2. If f is a numerical l.s.c. function on
X and if for some N (a) N- Df(x)< 0, xeX~Z, Z a Z-set,
(b) N - Df(x)< w0, xe X~E, E polar (c) f is lower smooth
on E, then fe H¥(X). If E is closed (c) can be replaced by
(c') f(x) > - 0 for xe¢ E .

Proof. We will assume, with no loss of generality, that
N(x) consists of all regular MP sets containing x . Itis also
immediate that (b) and (c) imply that for all x A f(x;V) + 0, at
least for small enough V . Hence we can assume that > -0
- in all cases, by (c').

I f # H#*(X) then it follows that there exists an X, and
V1 )X, V1 , and an h1e C('\71) such that
(i) the restriction of h1 to V1 is harmonic in V1 R

(ii) for all =ze Vﬁi , hi(z) < f(z),

) h f )

(iii) (X1)> (X1) v

In fact we can take h'1 to be ¢ on VZ'-‘ and H ! in V1 for
@

some suitable ¢e¢ C(V"i‘) . Further by axiom III we can assume
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that there exists hze C(\—f'l) , with the restriction of h2 to V'1

harmonic in V1 and h2 > 0 . Throughout the proof X V1 )
h'1 ) h2 will be used in this way.
(«) Suppose first that for all x, Df(x)< 0.
Put g=f-h and g' =& . Then (i) g' is l.s.c.,
1 h2
(i1) g'> -, (iii) g'(z)> 0 for all zeV'1 ,  (iv) g'(x'l) <0,

(v) Dg(x)< 0 for all er1

Hence g' assumes a finite negative minimum at some
point X, € V1 . Consider thena V such that X, ¢ vcVc V1 )

v
o = 1 d _ 1 J . = .
Ag (XZ,V) f* g h2 pxz g (XZ)hZ(XZ) >g (xz)AhZ(x,V) 0

Thus Dg(xz) > 0, which contradicts the above property (v) .

(B) Suppose now that Df(x) < 0 for all xeX . Then,

Dif - By<pr-Lco.
- n - - n
So, bv (o), f —'Ee H¥(x) , for all n. Hence

Af(x;V)

IA

e - 2y b .
Al - 2)esv) + 4 (R)esv)
< % Ap(x;V), forall n, V, xeV ,

Hence Af(x;V)< 0 for all V, xeV , which implies that feH¥(X) .

(y) Now let f satisfy the hypotheses of Theorem 2 with
E=¢ . That is to say Df(x)<w for all xeX and
Df(x)< 0 f xX~Z, Z a Z-set.

Then let ueH*(X), 0<u< o, ZC{Du=-o} . Put

z=f+eu, €>0. Then we can choose ¢ small enough so that

if x1 , V'1 R h1 are as above we still have that for all =ze V’}i ,
hi(z) < g(z) and h’l(x'l) > g(x1) . So g#H*(X) ; but

A g(x;V) < A (V) + e A u(xV) .
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So Dg(x) < 0 for all xeX ; which is a contradiction by (B) .

If then E is closed the argument to this point has shown
that feH*(X~ E) and herce since f is l.s.c. and locally
bounded below on X and E is polar, it follows [7] that feH*(X) .

(6) Consider now the general case. Let uelP*(X), finite
on a dense set, and EC {u=w} .

Put u_=f+~. Thenfor all xeX~Z, Du (x)<0 and so

by (v), une B (X) .

So if u, = lim u , u_ is nearly hyperharmonic on X,
n=> 0 n o
and its regularization 4 e H¥(X), [7]. Further,[7], Go >f,
° 2
and
~ * A% * A%
= i d =1
uo(x) lim f u o dp im f f dp.x

N(x) N(x)

v
since Mo is not supported by the points where u is infinite [2].
Hence, since f is lower smooth, ﬁo = f , which completes the

proof.

COROLLARY 3. If f is a real continuous function on X
and if for some N, (a) N- Df(x) < 0< N- Df(x) , xe X~ Z,
Z a Z-set, (b) N-Df(x)< o, N- Df(x)> -0, xe XoE, E a
polar set, then feH(X) .

Proof. This is immediate from Theorem 2 since as has
been remarked real continuous functions are lower smooth.

This corollary is a generalization and an extension of
Privaloff's result. In the classical case Z-sets are sets of
Lebesgue measure zero and in Privaloff's theorem the polar
set E is replaced by a closed set of zero capacity, which is of
course polar [6].

COROLLARY 4. If f is l.s.c. and E is a polar set
on which f is lower smooth then sup N - Df(x) = sup N - Df(x) .
xe X xe X~vE
Proof. Let A =sup Df(x), \ = sup Df(x) then since
xeX xe XnE
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A >\ the result follows if X\ = w. To prove equality if -w< \ <o
it suffices to prove that, for all finite o, A < o implies A < oa.
Further it is sufficient to consider the case « =0 ; since if a:]: 0
we can consider f - op . By Theorem 2 if X< 0, feH¥(X) and
hence, by Theorem 1, A <0 .

This generalized a result due to Denjoy and shows that
polar sets are possible E-sets in the theory in [10].

COROLLARY 5. If a numerical function f attains a
finite non-positive local minimum at x then N - Df(x) > 0 .

Proof. This is just part («) of the proof of Theorem 2.

Thus the differential operator satisfies what Dynkin [11]
calls the minimum principle.

5. If X =R then Theorem 2 is not completely satisfactory
since in most examples the only polar set is the empty set. (If

n .
X =R , n>1, thenin most examples enumerable sets are
polar sets). Thus Theorem 2 does not cover the classical result
[13] on convex functions.

However, we have proved [8]:

THEOREM 6. If f is l.s.c. on X and for some N
(a) N-Df(x)<0, xeXnZ, Z a Z-set,
(b) N - Df(x)< o, X~E, E countable

(c) lim inf éﬁgﬁ’% < 0 for all xe¢E then feH¥(X).

Since X = R the axioms in [8] are satisfied and the above
notation, explained in [8], reduces as follows.

1]

v

v
x " % %%h TPr ik %n PO

Jx-h, x+k[, h, k>0,

nn

M

and ¢ the unit mass at z,
z

p(x;V) =a, h + Bkk ,

h

A(x; V) = oy f(x-h) + ﬁkf(x+k) - f(x) .

358

https://doi.org/10.4153/CMB-1967-032-9 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1967-032-9

Then, as explained in [9], this theorem includes the classical
result on convex functions.

10.

11.

12.

13.
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