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THE STRUCTURE OF SEMISIMPLE SYMMETRIC SPACES 

W. ROSSMANN 

1. I n t r o d u c t i o n . A semisimple symmetric space can be defined as a homo­
geneous space G/H, where G is a semisimple Lie group, H an open subgroup of 
the fixed point group of an involutive automorphism of G. These spaces can 
also be characterized as the affine symmetric spaces or pseudo-Riemannian 
symmetric spaces or symmetric spaces in the sense of Loos [4] with semisimple 
automorphism groups [3, 4]. The connected semisimple symmetric spaces are 
all known: they have been classified by Berger [2] on the basis of Car tan ' s 
classification of the Riemannian symmetric spaces. However, the list of these 
spaces is much too long to make a detailed case by case s tudy feasible. In order 
to do analysis on semisimple symmetric spaces, for example, one needs a 
general s t ructure theory, jus t as in the case of Riemannian symmetric spaces 
and semisimple Lie groups. The results of this paper should go some way to 
serve this purpose. For orientation and motivat ion I mention some special cases 
which have already been studied in detail: 

(a) Riemannian spaces. A connected semisimple symmetric space G/H is 
Riemannian if and only if H is compact (presupposing tha t G acts effectively 
on G/H). T h e basic s t ructural facts concerning these spaces are contained in 
three decomposition theorems: root space decomposition, Car tan decomposi­
tion, Iwasawa decomposition. The results of this paper show tha t all three of 
them can be generalized to arbi t rary semisimple symmetric spaces. 

(b) Lie groups. A Lie group Go is in one-to-one correspondence with a 
homogeneous space G/H, where G = Go X Go and H is the diagonal in G (via 
G/H —-> Go, (gi, gi) —> gig<Tl)> In this way a semisimple Lie group can be 
regarded as a semisimple symmetric space (the involution of G being given by 
(&i> gi) -^ fe, g i ) ) . A large par t of the s t ructure theory of semisimple Lie 
groups can actually be interpreted solely in terms of their symmetr ic space 
s tructure. A case in point is the Bruha t decomposition: it will become clear t ha t 
the Bruha t decomposition plays exactly the same role for Lie groups (regarded 
as symmetr ic spaces) which the Iwasawa decomposition plays for Riemannian 
spaces. 

(c) Real hyperbolic spaces: 0(p, q)/0(p, q — 1). These homogeneous spaces 
are semisimple symmetric spaces and can be realized as hypersurfaces 
{x Ç Kp+q: — Xi2 — . . . — xp

2 + . . . + xp+q
2 = 1}. They are Riemannian only 

if p = 0 (spheres) or q — 1 (non-Euclidean geometries). For hyperbolic 
spaces the general s t ructure theory has an immediate geometric meaning and 
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can be used to give an intrinsic interpretat ion ( independent of the embedding 
in Rp+Q) of the analysis on these spaces developed in [6]. 

There are three major results in this paper. The first one (Theorem 5) shows 
how a semisimple symmetr ic space (or more precisely, a semisimple Lie algebra 
with an involution) gives rise to a root system and identifies its Weyl group. 
This root system by itself does not determine the space uniquely, bu t does 
contain some impor tan t information. For example, the root system is trivial 
if and only if the space is compact . Both in the Riemannian case and in the 
Lie group case this root system is the usual system of restricted roots of a semi-
simple real Lie algebra. 

The second result (Theorem 10) gives the decomposition of a semisimple 
symmetr ic space G/H into orbits of a maximal compact subgroup K of G. 
Both in the Riemannian case and in the Lie group case this decomposition 
reduces essentially to the Car tan decomposition K\G/K = W\A ; in the case 
of the real hyperbolic spaces it reduces to the na tura l spherical coordinate 
decomposition of the hypersurface 

{x Ç R*+«: - X!2 - . . . - xp
2 + . . . + xp+Q

2 = 1} 

as the product space 5P"~1 X S^1 X Rp o s • 
The third result (Theorem 12) describes the decomposition of G/H into a 

finite number of orbits of a parabolic subgroup P of G and identifies the open 
orbits of P. I t turns out t ha t the orbits of P in G/H are in one-to-one correspon­
dence with a certain finite symmetr ic space WG/H ( " symmetr ic" in the sense of 
Loos [4]), which plays the role of the Weyl group in a Bruha t decomposition 
of a semisimple Lie group. In fact, if GBH = Go " i s " a semisimple Lie group 
(example (b) above) , then the decomposition of G/H under P is essentially a 
Bruha t decomposition of Go, and WG/H is essentially the Weyl group of Go. 
In the Riemannian case the decomposition of G/H under P reduces to an 
Iwasawa decomposition of G; for the real hyperbolic spaces it reduces to the 
decomposition of the hypersurface 

{x e Rp+Q: - X!2 - . . . - xp
2 + . . . + xp+Q> = 1} 

obtained by intersecting it with a hyperplane tangent to its asymptot ic cone 
{x (j Rp+q: — Xi2 — . . . — xp

2 + . . . + Xp+q2 = 0}. Another special case (G 
complex, H a real form of G) has been t reated by Wolf in [10]. T h e fact t h a t 
P\G/H is always finite is also proved in [11]. 

T h e way the s t ructure theory developed here can be applied to the analysis 
on semisimple symmetr ic spaces can be seen from the special cases (a) , (b) , (c) 
mentioned above: the fundamental role of the decomposition theorems of 
Car tan , Iwasawa, and Bruha t in the analysis on Riemannian symmetr ic spaces 
and on semisimple Lie groups is well known; the use of the analogous decompo­
sitions of the real hyperbolic spaces is i l lustrated in [6]. I hope to give further 
applications elsewhere. 
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2. Lie Algebras w i t h i n v o l u t i o n s . Let © be a semisimple real Lie algebra, 
a an involutive automorphism of @. a is called a Car tan involution of © if the 
bilinear form 23, defined by Ba(x, y) = B(x, a(y)) (B the Killing form of @) 
is negative definite; or equivalently if the fixed point set of a is a maximal 
compactly embedded subalgebra of @. In any case, there always is a Car tan 
involution which commutes with a, and such a Car tan involution is in fact 
unique up to conjugation by an inner automorphism of the form exp (ad (x)) , 
where x is an element of © fixed by a [4, vol. I, p. 153]. 

An abelian subalgebra 21 of © is said to (be) split (in ©) if © decomposes as 
the sum of the eigenspaces ("root spaces") of ad (21). One knows t ha t an 
abelian subalgebra 21 of © splits if and only if there is a Car tan involution of © 
which acts on 21 by multiplication by — 1. The maximal split abelian sub-
algebras of © are therefore precisely the maximal abelian algebras in the 
( — 1)-eigenspaces of Car tan involutions. I t is well known tha t any two maxi­
mal split abelian subalgebras of © are conjugate under G = In t (©). Also, if a 
is Car tan , then the astable maximal abelian subalgebras of © coincide with 
the maximal abelian algebras in the ( — l)-eigenspace of a and are all conjugate 
under the connected subgroup H of G with Lie algebra § = {x £ ©: a(x) = x}. 
This need not be the case for an arbi t rary involution. For an overview of the 
general situation fix a Çar tan involution r which commutes with a and denote 
by K the (maximal compact, connected) subgroup of G with Lie algebra 
Ë = {x G ©: r(x) = x). For any subspace © of © set 

©±* = j x ^ : a{x) = ±x} 

and for u, v = ± 1 set (BUa,VT = {x Ç ©: a(x) = ux, r(x) = vx}. Thus § = ©*, 

$ = ® r , and © = Zu,v=±i @Mcr'VT. 

T H E O R E M 1. (1) Every astable maximal split abelian subalgebra of © is H-
conjugate to a c, r-stable one. 

(2) For two a, r-stable maximal split abelian subalgebras 2Ii, 2Ï2 of © the follow­
ing conditions are equivalent: 

(a) 2li and 2t2 are H-conjugate 
(b) 2Ii and 2l2 are H C\ K-conjugate. 
(c) 21 ia and 212* are H H K-conjugate. 
(d) 2Ir<T and 2I2~^ are H C\ K-conjugate. 

Proof. (1) Let 21 be a a, r-stable maximal split abelian subalgebra of © for 
which 2I_(r is maximal split abelian in @~(r. (Such an 21 always exists: choose 
any maximal abelian algebra 21_<r in @~(r,-r and extend it to a maximal abelian 
algebra in @-T)- Set A = exp (21), A~ = exp (2I_cr) (exp = expG) . We shall 
see later t ha t G = K • A~ • H (Theorem 10). Because of the G-conjugacy of 
the maximal split abelian sub-algebras of @, any c-stable one is of the form g - 21, 
where g G G satisfies a (g) = a (g) -21 = 21, i.e. g-V(g) £ NQ(A). (Here a(g) = 
a - g - a and NG(A) is the normalizer of A in G.) So if we write g = hak with 
h G H, a Ç A-, k G K, then g-V(g) = k~la-2a(k) lies in NG(A). Using the 
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well known fact t h a t K X @~T —» G, (k} x) —> & exp (x) is a bijection and t h a t 
NG(A) = NK(A) -A we see t ha t k-la-2a(k) G iVG(i4) implies £rV(&) G 
i V , ( ^ ) a n d ^ ~ 1 a ^ G A (because ^ ^ " V ^ ) = j f e - 1 ^ ) • (k^a^k), k~l<r(k) G if, 
a(k~1a~2k) G exp (@- r ) ) . So g • 31 = hk(k~lak) • 31 = hk • SI is ff-conjugate to 
fe • 31, which is r-stable. 

(2) T h e proof of the equivalence of (a)- (d) depends on the following: 

LEMMA 2. Let © be a subset of ©~T. If g - & lies also in ®~T for some g G G, 

then there is a k G K satisfying g • x = k • x for all x G ©• 
iw particular, any two sub spaces of @~T which are conjugate under G are also 

conjugate under K. 

Proof. By assumption, © and g • © lie both in @_ r . So if x G ©, then r(g • x) 
= — g - x and also r(g - x) = r(g) - r (x ) = — r(g) • x, hence g~ l r(&) • x = x, 
i.e. g~~lr(g) G C<y(@) (the centralizer of © in G). Since C G (©) is a r-stable sub­
group of G, the decomposition G = K - exp (@~T) of G induces the decomposi­
tion CG (©) = Cjft:(©) • exp (fè@(©)~T) of C G (©) . So we can write g — kp with 
k G K and £ G exp (©- ' ) ; then f V ( g ) = p~2 G CG(@) H exp (©~T) = 
exp (S@(©) _ r ) , which gives p G exp (S@(©)""r) (because exp is one-to-one on 
&~T). Consequently, g = kp G kCG (<&>). 

Remark. The lemma obviously remains t rue if © is only reductive, provided 
one unders tands by a Car tan involution of a reductive Lie algebra © an involu­
tion whose restriction to [©, @] is Car tan . This observation will be used below. 

Returning now to the proof of Theorem 2 we first prove: 
(a) =» (c). Suppose 211 and 212 are i7-conjugate, say 211 = h • 312 with h G H. 

Since H commutes with a, 2 1 / = h • 3 1 / (and also 2Ii~(T = 3t2
_<7). T h u s 31 / and 

3Ï2<T are two / / -conjugate subspaces of § ~ r . Being r-stable, § is reductive (in ©) , 
and r | § is a Car tan involution of § . By the lemma, 31 / and 3ï2

(r are also 
H C\ i f-conjugate. 

(c) => (d) , (b) . Suppose 31 / and 312* are H C\ i f -conjugate. W e may as well 
assume 31 / = 312

<T. 31 rff and 312~a are then both maximal abelian in g® (2l/)(Tr,~~r. 
Since Ë@(2I/) a r (the fixed point set of the composite involution <JT in the 
centralizer S©(21/) of 21 / in ©) is a r-stable (hence reduct ive) subalgebra of ©, 
2Ii_<r and %2~

a are conjugate by an element m H C\ K which leaves 21 / point-
wise fixed. This element therefore also maps 2(i = 21 / + 2Ii-(T onto 212 = 
2 1 / + 2Ï2-". 

(d) => (c ) (b) . This is shown by an obvious modification of the proof of 
(c) => (d) (b). ( Interchange the roles of 21 / and 21 r a and replace S©(2l /) ( r r by 
<£®(»2-')'.) 

(b) => (a) trivially. 

COROLLARY 3. Any two astable maximal split abelian subalgebras 211, 212 0/ ® 
with the property that 21 / and %<f (resp. 2Ii_<T and 2l2"~(r) are &0/Â maximal split 
abelian in S0" (resp. in @_<r) are conjugate under H. 
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Proof. In view of part (1) of the theorem, we may assume that 211 and 212 are 
also r-stable. The hypothesis then implies that 211* and 2Ï20, (resp. 21 ra and lU~a) 
are both maximal abelian in ®(r,~T (resp. in &aT'-T = @-<T,_T). Since &a 

(resp. &ffT) is r-stable (hence reductive), 211* and 2l2a (resp. 2Ii~cr and 212"") are 
H r\ K-conjugate. Part (2) of the theorem shows that 2ti and 2l2 are then 
also H C\ i£-conjugate. 

COROLLARY 4. There is only a finite number of H-conjugacy classes of astable 
maximal split abelian subalgebras of @. 

Proof. Fix a c-stable maximal abelian algebra 21 o in @~r with the property 
that 2ïo_cr is maximal abelian in &~<r,~T. Any abelian algebra in ©_<T,~r is then 
H r\ X-conjugate to a subalgebra of 2lo~a. In view of the theorem it therefore 
suffices to show that there are only a finite number of subspaces of 2lo_<T of the 
form 2I~a for some c-stable maximal abelian 21 in @~r. 

To see this, let © = 2Z {@«: a £ Sto*} be the root space decomposition of © 
under 2lo- If 21 is c-stable, maximal abelian in @~T with 2l_cr C 2to_cr, then 

21- = n {ker (a |a 0 - ' ) : «|» H 2I0 = 0, @a ^ 0}. 

(In fact, if x G 2Io_(r and a(x) = 0 whenever a|2t P\ 21 o = 0 and ©« ^ 0, then 
[x, y] = 0 whenever y G E {©«: <*|2l H 2I0 = 0} = S©(21 H 2I0). In particular 
[x, 21] = 0, so x G 21 by the maximality property of 21. Thus x G 21 H 2lo-<7 = 
2l-cr). It follows that 2I_(J is uniquely determined by a certain set of roots of 
21 o in @, which shows that there are only finitely many such subspaces 2I-cr of 
2Io-*. 

Remark. Wolf shows in [11] that the corollary remains true if ''maximal split 
abelian" is replaced by "Cartan". His proof uses algebraic geometry and a 
reduction to special cases. The proof given here is more related to M. Sugiura's 
method [8]. One will note that the 2ïo in this proof could equally well have been 
chosen so that ÎUa is maximal abelian in &<T~T. 

Define a maximal split abelian algebra in ©_(r to be a split abelian subalgebra 
of © which lies in ©_cr and is maximal with this property. Of course, such an 
algebra need not be maximal split abelian in @, but can always be extended to 
a à-stable maximal split abelian subalgebra of ©. It follows from Corollary 3 
that any two maximal split abelian algebras in ©_<r are conjugate under H. 
Moreover, as a consequence of Theorem 1, any maximal split abelian algebra in 
©_cr is //-conjugate to a r-stable one (i.e. to a maximal abelian algebra in 
®_(r'~T) and any two r-stable ones are conjugate under H C\ K. For the re­
mainder of this section 21 denotes a fixed maximal abelian algebra in @-(r*_r. 

Since 21 splits in ®, © decomposes into root spaces of 21: © = S {©«: a G 21*}, 
where 

©a = [x G @: ad (y)x = a(y)x for all y G 21}, 

https://doi.org/10.4153/CJM-1979-017-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1979-017-6


162 W. ROSSMANN 

and in particular ®0 = S@(2I), the centralizer of 21 in ®. Set R = {a 6 21*, 
a ^ 0 and ®a ^ 0}. We shall show: 

THEOREM 5. Ris a root system in 21* w f̂e WeyZ growp W ~ NG{%)/CG{%) ~ 
A^(2t)/C*(2I). 

Before going into the proof of this theorem we need some preliminary obser­
vations. First of all, following a familiar pattern one proves: 

LEMMA 6. (a) R spans 21*. 

(b) [®af ©,] C ®a+0. 
(c) a(®a) = ®_a = r(®«). 
(d) 5(® a , ®/?) = 0 unless a = -/3. 
(e) i / x G 21 satisfies a(x) ^ O/or a//a G iî, / / ^ £©(21) - S@(x). 

One sees from (c) that the subspaces ®a + ®_a of @ are stable under a and r, 
while the root space @a themselves are stable under the composite involution 
orr. These subspaces of ® are related by 

LEMMA 7. For a?2/y a (z R and any u, v = ± 1 there are linear isomorphisms: 
(a) ®« -> (®a + ®_ a ; r and @a -> (®a + &_a)

UT given by x -» (x + «*(*)) 
andx —» (x + UT(X)), respectively. 

(b) ®/rCTr -> (®a + ®_a)
w"'rr gwe» 6y x -> (x + ua(x)) = (x + vr(x)). 

Proof, (a) From Lemma 1 (c) it is clear that x —> (x + U<J{X)) maps ®a into 
(®a + ®_a)Wcr. If x + ua(x) = 0, then x £ ®a H ®_a, which is zero for a Ç R; 
so this map is injective. Also, if x G (@a + ®_a)

Ma, say x = x+ + x_ with 
x± £ ®±a, then ua(x) = x implies that ua(x+) = x_, again because ®a P\ ®_a 

= 0. Thus x = x+ + wo-(x+) is in the image of the map ®a —* (@a + ®_a)
M(r, 

so that this map is also surjective. 
(b) follows from (a) since ®a = ®a

aT + ®a_(TT. 

The next lemma is crucial for the proof of Theorem 5 and is often a useful 
tool for computations in the Lie algebra ®. 

LEMMA 8. (a) For any x £ &a
U(TT (« £ R, u = ± 1 ) 

[x, o-(x)] = B(x, <j(x))za 

[x, T(X)] = B(x, r(x))za 

where za is the element in 2Ï satisfying 

B{za,z) = a{z) for all z Ç 21. 

(b) For any x Ç (®a + ®_a)
W(r,t,r (w, z; = ± 1 , a Ç i?) //^re is a unique 

y 6 (®« + ^-a)-^'-"7 so that for all z £ 21 

ad (s)x = a(z)y 

ad (3)3/ = a(z)x. 
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Such elements x, y satisfy 

[x,y] = -B(x,x)za = B(y,y)za. 

Proof, (a) If x Ç © / - , then [x, a(x)] G [®«, ®-«] C £©(21), <r[x, a(x)] = 
[o-(x), x] = — [x, o-(x)], and r[x, a(x)] = [r(x) , ra(x)] = [ua(x), ux] = 
— [x, o-(x)]. So [x, o-(x)] G Ë@(2ï) -cr ,_r = 31. Moreover, for any z G 21, 
B(z, fx, o-(x)]) = ^ ( [ s , x], o-(x)) = a (3 )5 (x , o-(x)), which proves the first equa­
tion. The second one follows from the first one and r (x) = tia(x). 

By Lemma 2(b) any x £ (&a + &-a)
U(T'VT can be uniquely writ ten as x = 

xa + ua(xa) = xa + ^ ( x a ) with xa Ç @a
MC(Tr. L e t ^ = xa — ua(xa) = xa — ^r(x a ) . 

Then 

y e (®« + ®_a)-Mcr '-^ and 

[x, 3;] = [x« + ua(xa), xa — ^o-(xa)] 

= — 2w[xa, o-(xa)] 

= — 2u B(xa, a(xa))za 

by (a). Also, 

B(x}x) = B(xa-\-ua(xa), xa-\-ua(xa)) = 2u B(xa, a(xa)) 

by Lemma 6(d) . Similarly 

B(y,y) = B(xa — u<r(xa), x — ua{xa)) = —2uB(xa,(r(xa)) 

This proves the last assertion in (b), and the rest is obvious. 

T h e proof of Theorem 5 can now be completed by an adapta t ion of familiar 
arguments [3, 4, 7]. First of all, it follows from Lemma 2 tha t iVG(2I) = 
NKQl). C G ( 2 I ) , so tha t iVG(2I)/CG(2I) ^ NK{%)/CK(%). This quot ient group 
can be identified with a group W of linear transformations of 21 (or of 21*, by 
dual i ty) , which clearly permutes the elements of R. To show tha t R is a root 
system with Weyl group W it suffices to show: 

(a) For each a £ R, W contains the 5-orthogonal reflection ra in aL defined 
by 

M _ _ r, B(X,Zg) 
Ta \X ) X Z D , \ Za 

n(zai za) 
(b) 2 B(za, zp)/B(za, za) is an integer for all a, /3 £ R. 
(c) W permutes the Weyl chambers of R freely. (A Weyl chamber of R is a 

connected component of {x £ 21 : a(x) ^ 0 for all a £ R).) 
In fact, it follows from (a), (b) and Lemma 6(a) t ha t R is a root system in 

21* and t ha t the Weyl group WR of R (which, by definition, is generated by the 
reflections raj a £ R) is contained in W. Since W^ acts transitively on the Weyl 
chambers, (c) gives WR = W. 

Proof of (a). Given a £ R, choose non-zero x and y as in Lemma 8(b) (for 
some choice of u, v = ± 1 ) . (This is always possible: ©a = ® a " + &a~

aT, so 
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&)a
±aT is non-zero for at least one choice of the sign.) One of them, say x, is 

in St = ©r. Then exp (tx), t Ç R, is a one parameter group of linear transforma­
tions of © which leave the negative definite form BT invariant. By Lemma 8(b) 
the plane spanned by y and za is stable, but not fixed, under exp (tx). Therefore 
exp (tox)za = — za for appropriate t0 Ç R. (Indeed, if x is normalized by 
BT(x, x) = — 1, one finds by series computations using the relations of Lemma 8 
that 

exp (tx) = cos (/||3a||)z + sin (2||£a||);y 

where ||^a||2 = B(zai za). So /0 = 7r||za||
_1 will do.) Moreover, since a(z) = 0 

implies ad (x)z = — ad (z) • x = —a(z)y = 0, a1- stays pointwise fixed under 
exp (tox). So exp (t0x) gives the desired reflection ra in a1. 

Proof of (b). Fixa £ R and set 

= 2 
B(Za,Za) 

Passing to the complexified Lie algebra @c of © we can find x Ç i&a
U(TT (for 

appropriate u = ± 1 ) satisfying J3(x, r(x)) = 2/B(za, za). Set 3/ = r(x). 
Lemma 8(a) shows that these elements x, y, z of @c satisfy 

[x, y] = z 

[z, x] = 2x 

[z,y] = -2y 

hence generate a subalgebra of ® c isomorphic with ©8(2, C). For any (3 Ç R, 
(®p)c is a n eigenspace of ad (z) with eigenvalue /3(z) = 2B (za, za)/B (za, za). So 
2B(za, Z(3)/B(za, za) corresponds to a weight of a finite dimensional representa­
tion of @8(2, C), hence is integral [7, IV-7, Thm. 4]. 

Proof of (c). Suppose w £ W maps a Weyl chamber C onto itself. The con­
vexity of C implies that it contains an element x fixed by w: one can take 
x = (y + WJ + • • • + wny)/n where y Ç C is arbitrary and ww+1 = .̂ A 
representative for w in 7V^(2() then centralizes the closure T of the one-param­
eter subgroup exp (itx), t Ç R, in Int (®c)- Since T is a torus in the compact 
connected subgroup of Int (@G) with Lie algebra @T + i&~T, the centralizer of 
T in this subgroup is connected [3, VI1-2, 2.8]. So w can be represented by 
exp (z) for an appropriate 

z G Ê©cM = (E®(*0)c-
By Lemma 6(e) this implies that z centralizes 21 so that w leaves ?[ pointwise 
fixed. This proves (b) and thereby Theorem 5. 

Extend SI to a a, r-stable maximal split abelian subalgebra 21 of ©. Then R 
consists of the restrictions to 21 oLthe roots in the root system R of 21. The Weyl 
group of R is W = N0(t)/C0(%) = NK(%)/CK($). The subgroup W* of W 
which leaves 21 = 2l_(r invariant also leaves 21er invariant (2la being the B-
orthogonal complement of 21 in 2Ï) and can be characterized as the subgroup 
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of W fixed by the automorphism of W induced by the automorphism a of G. 
The action of Wa on 21 gives a homomorphism of W* into W. This homomor-
phism is in fact surjective. (Indeed, if u Ç ^^(21) , then u-% and 21 are both 
maximal abelian in S@(2l)_r. Since S©(21) is r-stable, hence reductive (in ©) , 
r|S©(2l) is a Car tan involution; so u • 21 and 31 are conjugate under CK(2Ï), say 
21 = ^w • 21 with v (z K leaving 2Ï pointwise fixed. Then vu £ iV^(2I) and its 
action on 21 coincides with t ha t of u.) If one denotes by W% the subgroup of W 
which leaves 2Ï pointwise fixed and by Rff the roots in R fixed by a (i.e. the 
roots in R vanishing on 2l~cr = 21), then one can summarize the si tuation in two 
short exact sequences: 

(1) 0->R*-+R->R^>o 

(2) 1 - + 1 / F - + W*-*W-*l 

Remark. In view of these circumstances it seems natural to wonder whether 
R together with the involution ( — a) is a normal sigma-system of roots in the 
sense of Araki [1], i.e. whether aa + a d R tor all a 6 R. If so, Theorem 5 and 
the relations (1) and (2) above would be a consequence of general properties 
of normal sigma-systems. Unfortunately, this need not be the case (cf. example 
(b) below). 

Up to isomorphism, the root system R depends only on © and a and not on 
the choice of 21. (This is clear from the uniqueness of 21 up to conjugation by 
H.) In fact, it is easy to identify R for the involutions of simple Lie algebras 
classified in [2] from the information given there. The method is as follows: 
the decomposition ®a = @</T + &a~

ar of the root spaces of 21 into eigenspaces 
of the composite involution ar shows tha t R = R+ \J R- (not necessarily 
disjoint) , where R± = {a £ R: @«±(rr ^ 0}. R+ is clearly just the restricted 
root system of the reductive Lie algebra &aT, while R- consists of the weights 
of the representation ad@ of &aT on &~aT. So one knows R as soon as one knows 
(1) the Lie algebra &aT and (2) the representation of &aT on ®- 'T . All of this 
information can be found in [2]. 

Examples, (a) Riemannian spaces. (1) Compact-type. If ® is compact, (i.e. 
if B is negative definite) then the only Car tan involution of © is the identi ty 
and the only split abelian subalgebra is the trivial one. So in this case the root 
system R is trivial for any involution a of @. Conversely, suppose a is an involu­
tion of a semisimple Lie algebra © for which the corresponding root system R 
is trivial. Then @_cr contains no non-trivial split abelian algebra, so &-~a~T = 0 
for any Car tan involution r commuting with a. Assume further t ha t § = ©^ 
contains no non-trivial ideal of @. (Such an ideal could have been factored out 
in the first place.) Then ©ff = [@_(T, @_(7] (because the i^-orthogonal comple­
ment of [©-% ©-*] + &-a in © is an ideal which lies in ©' ) . Since © - * ' - ' = 0, 
®~J = @_cr'T so 

®* = [ @ - ^ , ®-*.r] C ®<r.r a n d 

® = ®* + ©-* c ®a>T + &~a'T = ®T. 
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This shows t h a t r must be the identi ty, hence © mus t be compact . 

(2) Non compact type. If a is itself a Car tan involution of ©, then r = a is 
the 0n/;y Car tan involution commuting with a (by the uniqueness of such 
Car tan involutions quoted earlier). So in this case 21 is maximal split abelian 
in © and R is the usual restricted root system. 

(b) Lie groups. Let ©0 be any semisimple real Lie algebra. Set © = ©0 X ©o 
and define an involution a of © by o-(xi, x2) = (x2, Xi). T h e Car tan involutions 
r commuting with a are of the form 

r(xu x2) = ( r 0 (xi ) , T 0 ( X 2 ) ) 

where r0 is a Car tan involution of @0; the maximal abelian algebras in @~<T'_r 

are 21 = {(x, — x) ; x £ 2Io} where 21 o is maximal abelian in ©0~T0. T h e root 
spaces of 21 are of the form (@o)« X (@o)a, where (@o)« is a root space of 21 o 
in ©o- The root system R of 21 in © is isomorphic with the restricted root system 
Ro of 2lo in @o. 21 = 21 o X 21 o is a cr-stable maximal split abelian subalgebra of © 
extending 21. The root system R of 21 in © is R = {(ai, a2) : «i, a2 € Ro}. <r acts 
on R by sending («i, a2) to (a2, « i ) , which shows t h a t R is (in general) not a 
normal sigma system of roots under ( — a) (nor under a itself, for t h a t m a t t e r ) . 

(c) Real forms. Suppose © is a complex Lie algebra, a the conjugation with 
respect to a real form @0 = § of @. T h e Car tan involutions r of © (© regarded 
as a real Lie algebra) are the conjugations with respect to compact real forms. 
If r commutes with o-, then ro = T |@ 0 is a Car tan involution of @0. T h e maximal 
abelian subspaces of ©~cr '_r are therefore of the form 21 = iA0 where A0 is 
maximal abelian in the maximal compact ly embedded subalgebra $ 0 = ©oTO 

of ©o^The à-stable maximal abelian algebras in ©~T extending 21 are of the 
form 21 = 21 o + iA0 with 21 o maximal abelian in Ë©0(A0)~ r . Note t ha t 21 o + A0 

is a maximally compact (" fundamenta l" ) Car tan subalgebra of ©0, and every 
maximally compact Car tan subalgebra of @0 can be obtained in this way. T h e 
root system R of 21 is the usual root system of a complex Lie algebra. Theorem 
5 shows t ha t the restriction R of R to 21 = iA0 is also a root system. (I do not 
know whether this fact has been previously observed.) 

Theorem 1 and its corollaries are also of some interest in this case. In fact, 
the (7-stable maximal split abelian subalgebras of © are in one-to-one correspon­
dence with the Car tan subalgebras of ©0 (via 21 <-> 21 °" + i%~a). T h e theorem 
and its corollaries correspond to well-known conjugacy s ta tements about real 
Car tan subalgebras: for example, Corollary 3 says t h a t there are only finitely 
many conjugacy classes of Ca r t an subalgebras in a real semisimple Lie algebra. 

(d) Pseudo-Grassmannian spaces. SO(p, q)/SO(pi, qi) X SO(p2y q2)\ 
SU(p, q)/S{U(pu qi) X U(p2, q2)}',Sp(p, q)/Sp(p1} q{) X Sp(p2, q2). This 
example is intended as an illustration of the recipe for comput ing the root 
system R given above. 
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Let F = R, C or H and © the Lie algebra of matrices with entries from F 
of the form 

P 9. 
p \ xi x2 

Xi = —Xi, X3 = — X3 . 
q Lxf x3_ 

where x* = x\ and with the additional restriction tha t T r (xi) + T r (x)2 = 0 
if 7? = C. T h u s ® = ©£)(£, g), ©U(£, g) or ©?(/>, g) according as F = 
R, C, or H. Conjugation by a diagonal matr ix of the form 

Pi 
P2 

9.1 

9* 

pi P2 9l 22 

r+i 
- 1 

+ 1 
- 1 

L J 

£i + ^2 = p,qi + q2 = g, 

defines an involution o- of ©, whose fixed point set ®* consists of matrices of 
the form 

Pi P2 0.1 qi 

Pi 

p2 

9i 

/ 

/ 

' / / / ' > 

/ / 

and is isomorphic with © D ( £ i , qx) X © D ( £ 2 , g2), @{U(£i, gi) X U(p2l g2)} or 
@^3(^i, gi) X © ^ ( ^ 2 , g2). A Cartan involution r commuting with a is defined 
by r (x) = —x*. A maximal abelian subspace of &~a'-T is given by the matrices 
of the form 

at/ = 0 if i 9^ j , and au
r £ R ; 

at/' = 0 if i 9e j , and a*/' G R. 

Pi £2 ?i 22 

£l «' 

£2 a" 

2i a'* 

« 2 a"* 
__ J 

Thus dim (31) = min (plt q2) + min (p2, gi). 
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T h e fixed point set ®aT of the composite involution ar consists of matrices 

of the form 

Pi 

/ / / / / /////, 

'/////, ' / / / / / 

/ / / / / / ' / / / / / / 

'/////, ' / / / / / / 

Q.1 

and is isomorphic with ©£)(pi , g2) X .<£>£) (£2, gi), ©{U(pi , g2) X U(p2 , gO), or 

© ^ ( p i , ^ ) X © $ ( £ 2 , (Zi). @-crT consists of matrices of the form 

Pi <h g.2 

/ / 

/ 

A 

A 
'////// 

Pi 

P2 

22 

and the representation of ©ffT on ©_(7r is equivalent to the natura l one on 
fPi+Q2 <g)R fP2+Qit As remarked above, the decomposition ® = ©*T + 05-ffT is 
stable under the adjoint action of 21. Denote by a / , a / ' the linear functionals 
on 21 defined by a/(a) = a a', a"(a) = an" for a £ 21 as above. Then the 
weights of the representation of 21 on &aT are the restricted roots of ©(rr, which 
are [4, vol. I I , pp. 109-112]: 

± a / , ± a / ± a / ' , i, j ^ min (pi, g2), i 7e j , 

i a / ' , ± a / ' =b a / ' , i, j ^ m i n (p2, #i) , i 5^ j , 

if T7 = R, and these together with 

± 2 a / , zL2a/' 

if T7 = C or H. T h e weights of the representat ion of 2Ï on ®-*T ^ p>i+«2 ® R 

/7P2+51 a r e 

±0Li ±a/',i g min (px, ç 2 ) , j ^ min (p2, <?i). 
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So the root system R is (in the notation of Ti ts) : 

Bn, if F = R 

BCn if F = C or H, 

where n = min (p1} qx) + min (£2, 22). 

3. D e c o m p o s i t i o n s of s y m m e t r i c spaces . Let G be a connected, semi-
simple, real Lie group, a an involutive automorphism of G. a is called a Cartan 
involution of G if the corresponding involution of © (also denoted by a) is 
Car tan . One knows tha t there always is a Car tan involution r of G which 
commutes with a [4, vol. I, p. 155]. I ts fixed point group K = GT is connected, 
and compact modulo the center of G. Let H be an open subgroup of the fixed 
point group Ga of a. (So H is a—necessarily closed—subgroup of G between G° 
and its identi ty component (Ga)o). According to M. Berger's generalization of 
a theorem of E. Car tan on Riemannian symmetric spaces one has [2, § 55]: 

T H E O R E M 9 (Berger-Cantan) . K\G/H ^ AdG(H P K)\®-°>-T. 

More precisely, the map K X ®~a~T X H —> G, (k, x, h) —» & exp (x)fe, is 
surjective with fiber { (kl~l, KdG (l)x, Ih): I 6 i ? H K) above k exp (x)fe. 

In terms of the symmetric space G/H, this means tha t G/H is in one-to-two 
correspondence with the vector bundle K X (^n^)® -^ ~T o v e r the compact 
symmetric space K/H P\ i£. (Of course, all of the maps involved are actually 
real analyt ic) . 

Choose a maximal abelian algebra §{ in @_ff,~r and let A = exp (SI) be the 
corresponding subgroup of G. Set WHnK = NH nK(A)/CH n K(A), which 
can be regarded as a subgroup of the Weyl group W = WK of the root system 
of 21 in ©. Since exp: SI —* 4̂ is bijective we can also think of WH n ^ as a 
transformation group of A . Wi th this understanding: 

T H E O R E M 10. K\G/H ÊË WH n *V4 . 

More precisely, the multiplication map i £ X ^ 4 X H —> G is surjective, and 
the ^4-components of any two elements in the same fiber are conjugate under 
NH C\K{A )• The map is regular a t (k, a, h) if and only if aa ^ 1 whenever 
® « " ^ 0. 

Proof. We know tha t the maximal abelian algebras in &-(T~T are H Pi K 
conjugate to SI. Since every element of © - c r '~ r lies in (at least) one of these, 
@~ff,"~~r = Ad*- (H P K) - SI. Suppose two elements x and x' of 31 are conjugate 
under H C\ K, say x = Ad (^)x' with u £ H C\ K. Then SI and Ad (u)% are 
two maximal abelian algebras in Ë®(x)" f f ,~ r = S@(x)(Tr ~ r. Since r|S@(x)crT is a 
Car tan involution of the reductive Lie algebra &®(x)aT there is an element v in 
the identity component of CG(x)ffT'T = CG(x)a'T so tha t Ad (u) -SI = Ad (v) -SI. 
So u~lv lies in H C\ K, normalizes 31, and Ad (ur~lv)x = Ad {u~l)x = x', which 
shows tha t x and %' are also conjugate under NN nK(A). In view of Theorem 9 
this proves t ha t K\G/H = WH n K\A. 
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I t remains to prove the regulari ty assertion. Since the multiplication map 
K X A X H —> G is compatible with left multiplications from K and right 
multiplications from H, it suffices to determine when its t angent map a t a 
point of the form (e, a, e) is surjective. This tangent m a p : St X SI X § —> © 
sends (x, y, z) to Ad (a)x + y + z, so its image is Ad (a)$ + 21 + § . Com­
paring dimensions one finds t ha t Ad (a)St + 31 + § = © if and only if 
Ad ( a ) $ H (St + § ) = g £ n $(Sl)- Now every element in $ can be wri t ten as 

^o + XI tfa + r(xa) 

with Xo Ç fë$(3l) and xa £ © a ; every element in SI + & as 

with y0 G SI + £s(3t ) and ya Ç ©a . So for an element in Ad (a)® H (St + $) 
one has an equation 

Ad (a)(x0 + E«^« + r(xa)) = y0 + Z ^ « + <r(ya), 

which gives 

xo = y0 

aaxa = ;ya 

a-ar(xa) = o-(y«). 

T h u s x o = yo must be in S^(SÏ) P\ (SI + S e (SI)) = Ê£ n « (SI); and if a Ç i<!, 
then 

>ya = a-a(7r(xa) = a~2a(jr{ya). 

Since the eigenvalues of ar are ± 1 this equation can be satisfied for a non-zero 
ya if and only if ®a°

T ^ 0 and aa = 1. 
As remarked earlier, i ? + = {Û; Ç i?: ©a

CTT ^ 0} is the root system of the 
reductive Lie algebra ®aT, and if H is connected, then WH n # can be identified 
with the Weyl group of this root system. In t h a t case the closure of a Weyl 
chamber of R+ in A (i.e. the closure of a connected component of {a Ç A : aa 9e 1 
for all a Ç i?+} ) provides a fundamental domain for the action of WH C\K on A, 
hence a parametr izat ion of the K — H double cosets in G. 

From Theorem 10 one gets a system of spherical coordinates on the sym­
metric space G/H: 

COROLLARY 11. The map K/CH C)K(A) X A —» G/H, (k, a) —> &ai7, w <rwr-

jective and is locally invertible (by an analytic map) at every point (k, a) for 
which aa ^ 1 whenever ©</T ^ 0. 

T h e geometry of the si tuat ion is nicely i l lustrated by the following: 

Example. Real hyperbolic spaces. SOo(p, q)/SOo(p, q — 1). G = SO0(p, q) is 
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the group of the matrices which leave the quadrat ic form 

\X} X) = Xi . . . Xp -f~ Xp-f-i "T" • • . \ Xp+q 

invariant and whose upper left hand p X p submatr ix has a positive determi­
nant . H = SO0(p, g — 1) is embedded in G as the subgroup fixing ep+Q = 
(0, . . . 0, 1) 6 Rp+ff; K = SO(p) X SO(g) as the subgroup leaving the sub-
spaces Kp+0 and R0+<7 of Kp+q (spanned by e\, . . . ev and by ep+i, . . . ep+q) in­
var iant . For A one can take the one-parameter subgroup of G consisting of the 
matrices a = at, t £ R, defined by 

a - e\ = cosh (t)e1 + sinh (t)ep+q 

a - ep+q = sinh (t)e\ + cosh (t)ep+q 

a - ei = et for i j£ 1, p + q, 

I t is easy to check tha t WK ~ Z 2 ; also WK = WH HK, except when p = 1, 
in which case WH n K is trivial. 

The symmetric space G/Z7 can be identified with 

X = {x £ R ^ : - X ! 2 - . . . - x,2 + xp+1
2 + . . . + W = 1}, 

and K/CH riK(A) with 

F = {3/ Ç R^+^: yi2 + • • • + V = 1 = ^ + i 2 + • • • + W ) 

^ 5 P ~ X X 5 e " 1 , 

except when g = 1, in which case one has to add the restriction xp+q > 0 to 
insure the connectedness of X and Y. The map K/CK(A) X 31 —> G/H, 
(kCK(A), x) -> fe exp ( x ) # , is then identified with Y X R -> X, (3/, /) -> 
cosh (0 / + sinh ( 0 y , if y = y' + y w i t h / Ç R p + 0 a n d y Ç R0 + e . If p > 1, 
this map has critical points along / = 0; if p — 1 the map is regular every­
where. This agrees with Theorem 10 and its corollary since WH n K and R+ 

are trivial precisely when p = 1. If p + g = 3 the distinction between the 
cases p = 1 and £> > 1 is geometrically obvious. 

We now go on to describe the decomposition of the symmetr ic space G/H 
into orbits of a parabolic subgroup P of G. This is equivalent to a description 
of (1) the decomposition of G into P — H double cosets, (2) the decomposition 
of the real flag manifold P\G into orbits of H, or (3) the decomposition of 
G-conjugates of P into /^-conjugates. (The last reformulation comes from the 
fact t ha t P is its own normalizer, so tha t Pg —•> g~lPg is bijection between P\G 
and the set of G-conjugates of P . ) The method used here is an extension of the 
one used by Wolf [10], who treats the special case when G is complex and H a 
real form of G. The relevant facts about parabolics can be found in [9]. We 
s tar t with the case of a minimal parabolic and observe: 

LEMMA 12. Every minimal parabolic subgroup P of G contains a <J-stable 
maximal split abelian subgroup A of G, unique up to conjugation by an element 
from H C\ N (N being the unipotent radical of P). 
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Proof. Firs t we note t h a t any two minimal parabolics P and P' have a 
maximal split abelian subgroup of G in common. In fact, in vir tue of the con-
jugacy of the minimal parabolics we can write P' = gPg"1 for some g Ç G. 
Let A be a maximal split abelian subgroup of G in P . Then G = P • NG(A ) • P, 
by the Bruha t decomposition. If g = pwpf with p, p' Ç P and ^ Ç N G(A) 
then P r\ P' = P C\ (pwPw^p-1) = p(P P wPw~l)p~\ hence P C\ P' con­
tains pAp~l, which is also maximal split abelian. In part icular , P H o-(P) con­
tains a maximal split abelian subgroup A of G. C^ {A ) is then a Levi subgroup of 
P P <r(P), hence N P or(JV) —conjugate to a ©--stable Levi subgroup of 
P Pi ©-(P) [5], which must be of the form CG(Af), where A' is a ©--stable 
N P o- (iV) - conj ugate of ^ . 

Now suppose tha t A\ and ^42 are two ©--stable maximal split abelian sub­
groups in P . By wha t has jus t been shown we can write A2 = nAïn~1 with 
n Ç N P cr(iV). Then (j(nAin~l) = n ^ l i ^ - 1 and also ©-(w/liTr"1) = 
o-(^)^42cr(^~1), which shows tha t n~la(n) £ iVG(^4). This can happen only if 
n~1a(n) = e (because of the uniqueness properties of the Bruha t decomposi­
tion G = N - NG(A) - N). T h e equation a(n) = n implies t h a t n = exp {%) 
where x Ç SJÎ P o-(9î) satisfies o-(x) = x (because of the well known fact t ha t 
exp: yi r\a(yi)->N P o-(iV) is bijective). Hence n £ H C\ N. 

Let Ja/ be the set of ©--stable maximal split abelian subgroups of G. H acts 
o n j / on the r ight: (^4)Â = h-lAh,s/ /H is finite (by Corollary 4) , and the 
lemma gives a m a p P\G/H —*s//H sending PgH to the PT-conjugacy class [A] 
of a ©--stable A in g~lPg. The fiber of this m a p above [yl] £ se /H is in one-to-
one correspondence with ITG(yl) /IT^(y4) (where WG(A) = NG(A)/CG(A) 
and IT#(^4) = NH(A)/CH(A)), because any two minimal parabolics con­
taining A are conjugate under NG(A). 

Fix a ©--stable A in P . Any other ©--stable maximal split abelian subgroup of 
G is then of the form g"lAg where g £ G satisfies a(g~1)Aa(g) = g~lAg, i.e. 
ga{g~l) £ NG(A). From the above remarks we see t ha t every P-H double 
coset has a representat ive g satisfying g©-(g_1) Ç NG(A), and t ha t g is unique 
up to left t ranslat ions from CG(A) and right t ranslat ions from H. To sum­
marize these observations, set 

N0/H(A) = {gH e G/H: ga(g~^) G NG(A)}, 

WGIH{A) = C G ( ^ ) \ i V G / i y ( ^ ) = {CG(A)gH: ga(g^) Ç- i V G ( ^ ) } , 

and denote by WG
0(A ) the subgroup of WG(A ) fixed by a (i.e. the subgroup of 

WG(A) which leaves t\±a invar ian t ) . Note the inclusions 

WH{A) C WG°(A) C WG(A) 

W0°(A)/WH(A) C WG(A)/WH(A) C WGIH(A). 

T H E O R E M 13. Let P be a minimal parabolic in G, A a astable maximal split 
abelian subgroup in P. 

(1) WG/H(A ) is finite, and there is a one-to-one correspondence 

P\G/H^W0,H(4) 
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so that 

PgH <-> CG(A)gH 

ifgvig-1) € N0(A). 
(2) The union of the open P-H double cosets is dense in G. If P • H itself is 

open, then there is a one-to-one correspondence 

(P\G/H)opeu^WG°(A)/WH(A) 

so that 

PgH^gWH{A) 

if g € NG{A) represents g £ WG
a(A). 

Remark. If P • H itself is not open, we can find g0H £ NG/H(A) so t ha t PgoH 
is open, and we can apply (2) with P replaced by go~lPgo and A replaced by 
go-1 A go to see tha t the open P-H double cosets are then in one-to-one cor­
respondence with WG

a(g0-
lAgo)/WH(go-1Ag0) so tha t PgogH <-> gWH(g0~

lAg0). 

Proof. The first par t of the theorem is a summary of the preceding obser­
vations. The fact tha t the union of the open orbits is dense is clear from the 
finiteness of P\G/H. To prove the rest we need a lemma and some more 
notat ion: 

R = the roots of 21 in ® 

R(P) = the roots of SI in $ 

= the system of positive roots for R corresponding to P 

Ra = {a G R: (T • a = a} 

Ra = {OL Ç R: a • a ^ a] 

R*(P) = R*r\R(P) 

Ra(P) = RanR(P) 

Recall t ha t if îl~a is maximal split abelian in &~a, then R^tyr* is a root system 
whose Weyl group can be identified with the quotient of WG

a(A) by the sub­
group which leaves %~a pointwise fixed. 

LEMMA 14. The following conditions on P are equivalent: 
(1) P • H is open in G. 
(2) Ifae R(P) H a • R(P), then &a C £ . 
(3) SI""* w maximal split abelian in &-* and R(P) H o P ( P ) = R"(P). 
(4) 2I_cr is maximal split abelian in &)~a and P(r(P)|2I~(r is a system of positive 

roots for Rjftr*. 

Proof (of the lemma) . Choose a Car tan involution r commuting with <J so 

tha t ?l C @~r. 
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(1) <=> (2). P • H is open in G if and only if ® = £ + $ . Moreover, 

© = ©0 + T.R ®« 

£ = ©0* + Z*(@a + ©,.«) ' 

<P = ©0 + E«(P) ©« 

so t ha t © = § + 3̂ if and only if: a G R(P) and o- • a G i ? (P ) implies 
(©« + ©, .«) - ' = 0, i.e. a G R(P) H a • P ( P ) implies ©_a C ®, i.e. « G 
R(P) H crP(P) implies ©a = r@_a C £ . 

(2) => (3). If 21— is wo* maximal abelian in ®-<r--T then there is x G ®-<r,~~T 

so tha t [21—, x] = 0 but x G SI"0". Wri te x = X X with a C i ^ U { 0 } and 
0 7^ xa G ©a . Since [21—, x] = 0, a|— = 0, i.e. a - a = a; since x G 21— a t least 
one such a is non-zero. Then a ^ 0, xa ^ 0, and x_a = r (x a ) ^ 0, so we can 
choose such an a in R(P). If so, a = a • a G R(P) ^ aR(P) and cr(xa) = 
— x^.a = — xa is a non-zero element in ®~a contradict ing (2). 

(3) => (2). Assume (3). So if a G P ( P ) H a- • R{P) then o- • a = a, hence 
a-(©«) = ©« and ©„ = ©</ + @«- . If x G ® « - , then x - r (x ) G ® - ' - and 
[2(—, x — r (x ) ] = 0 (because a|2(— = 0) , so x - r (x ) G 21— (because 21— is 
assumed to be maximal abelian in ©~c r , _ r). T h u s x Ç SI' H (®a + ®_a) = 0. 
Since x was arb i t ra ry in ®«_(T, ®«~a = 0 and @« = ®a

ff C £>. 
(3) => (4). Let > be an order in 21* so t ha t R(P) > 0 and denote the 

restriction of this order to the subspace (21*)— by the same symbol. Suppose 
a G Ra and a > 0 (i.e. a G Ra(P)). Then a- • a < 0 by (3), so «121"-' = 
i(a- a-a) > 0 (identifying (21-)* with ( 2 t * ) - via a | 2 t - = \{a - a • a)). 
Conversely, suppose a G R* and a|2I— > 0. Then \(a — a • a ) > 0, i.e. a > 
o- • a. In view of (3) this can happen only if a > 0 (and a - a < 0) . So7^(T(P)|2l~<r 

consists of the roots in Pa|2I— which are positive with respect to the order > in 
(21^)*. 

(4) => (3). Suppose a G R(P) H a • P ( P ) , i.e. a > 0 and <r • a > 0. If 
a G P<r, then (4) implies t h a t a|2f— > 0 and a • a|2f— > 0, which is impossible 
(because «121"°" = — a • a|2l—). T h u s a G P „ i.e. a G P ' . 

Returning now to the proof of the theorem, assume t h a t P • H is open, i.e. 
t ha t the conditions of the lemma are satisfied. If PgH is also open for some 
g G G, then the conditions of the lemma also hold with P replaced by P' = 
g~lPg and A replaced by a ^-stable A' in P ' . In part icular 21— and (2I/)~tr a r e 

both maximal split abelian in ®—. In view of Corollary 3 we may therefore 
assume tha t 21 = W (by replacing g by gh for some h G H). T h e theorem will 
now follow if we can show tha t the systems R(P) and R(Pf) of positive roots 
for R are WG

a(A)-related. 
By Lemma 14(4) and the remarks about the Weyl group of P ^ l — preceding 

the lemma we can find u G WG*(A) so t h a t P a ( P ' ) | 2 l - = u - P , ( P ) | 2 i - . 
Therefore 

Rff(P') = {a G P . : a|8t-* G P , ( P ' ) | 2 l - } 

= {a G P . : a |3 t - ' G u • P , ( P ) | 2 ( - } = w • P , ( P ) . 
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Also, since R<T{P') and u-Ra{P) are two systems of positive roots for Rff 

( = the system of roots of 21er in S§(2I~<r)) there is a v in the Weyl group of this 
root system (which is contained in the subgroup of WG

C(A) which leaves SI-0-

pointwise fixed) so t ha t Ra(Pf) = vu • Ra(P). Since v leaves %~a pointwise fixed 
and since Ra(P') is uniquely determined by R(J(P

f)\î\~<J we also have R(T(P/) = 
v-Ra(P') = vu'Ra(P).Thus R(P') = R*(P')URa(P') = uv'R°(P)yJuvRa(P) 
= uv-R(P), which shows tha t R(P) and R(P') are indeed WG*(A) related. 

Remarks. (1) The fact t ha t P\G/H is finite is also proved in [11]. For the 
case when G is complex and H a real form of G, the description of (P\G/H)opm 

coincides with the one given in [10]. Other special cases have of course long 
been known (cf. the examples below). 

(2) NG/H(A) = {gH e G/H: gaig-1) £ NG(A)} is a symmetric subspace of 
G/H. i.e. if g = gH G NG/H(A) then the symmetry ag : G/H —> G/H about g 
(defined by ag(g') = gv(g~l)v (gf) leaves NG/H(A) invariant. Note incidentally 
t ha t NG/H(A) can be directly characterized in terms of the symmetric space 
s t ructure of G/H: NG/H(A) consists of those points of G/H whose symmetries 
normalize A {A being regarded as a transformation group of G/H)). Note also 
tha t WG/H(A) is a finite symmetric space (in the sense of Loos [4]) with the 
symmetry aïïabout g = CG(A)gH (gaig*1) G NG(A)) defined by 

**(g') = Mr-1)*'. 
(3) I t seems natural to wonder whether in fact G = P • NG(A) • H, which 

would amount to WG/H(A) = WG(A)/WH(A). But this is false, in general. 
(I t happens if and only if the a-stable maximal split abelian subgroups of G are 
all conjugate under H.) 

The above theorem becomes particularly simple if H is the full fixed point 
set of a. In tha t case one easily checks tha t G/H can be embedded into G by 
the map gH —» gcr(g-1)- T h e image Ga of this map is jus t the connected com­
ponent of the identi ty in the set of o--symmetric elements, i.e. elements g G G 
satisfying cr{g~l) = g [4, vol. I, p. 182]. The action of G on G/H by left transla­
tions corresponds to the action of G on Ga defined by g(x) = gxa{g~l) for 
g G G and x G Ga. 

COROLLARY 15. Let P be a minimal parabolic in G, A a astable maximal split 
abelian subgroup in P. Let G act on Ga = {g0-(g-1): g G G} by g(pc) = gxa(g~1) 
and set 

N0s(A) = NG(A) H G„ CoJA) = C0(A) H G.. 

Then the following quotients of this action are isomorphic: 

(1) P\G.^Ca{A)\NaM)-

(2) / / the P-orbit of e is open in G„, then 

(P\Gc)open^C0(A)\CGc(A). 
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Proof. (1) is immediate from Theorem 13(1). (2) will follow from Theorem 
13(2) if we can show that g Ç NG(A) leaves 3l±(r invariant if and only if 
gv(g~l) ê CG(A), i.e. if and only if the action of g on A commutes with the 
action of a on A, and this is clear. 

Remark. In general, when H is a possibly proper subgroup of G\ the map 
G/H —» Ga, gH —» go-Qr"1) is a finite covering whose fibers are in one-to-one 
correspondence with Ga/H, which is a group isomorphic to a finite direct prod­
uct of cyclic groups of order two [4, vol. I, p. 171]. 

We now drop the assumption that P be minimal. HA is a cr-stable maximal 
split abelian subgroup in P, set WP(A) = NP(A)/CG(A) and WP

ff(A) = 
WP(A) H WG*(A). With this notation we have: 

COROLLARY 16. (1) P\G/H is finite for any parabolic P in G. 
(2) The union of the open P-H double cosets is dense in G. If P • H itself is 

open then there is a astable maximal split abelian subgroup A in P so that 

(PWff)open = WP'(A)\W0°(A)/WH(A). 

Proof. The fact that P\G/H is finite and that the union of the open P-H 
double cosets is dense is a trivial consequence of Theorem 13(1). 

Let P0 be a minimal parabolic contained in P. Clearly, a P-H double coset 
will be open if and only if it contains an open PQ-H double coset. If P • H 
itself is open we can choose P 0 so that P 0 • H is also open. Assume that this is 
so and choose a cr-stable A in P0 . The open Po-H double cosets are then of the 
form P0gH with g Ç NG(A) and ga(g~l) G CG(A) (by Theorem 13(2)). 
Suppose two of these, say Pogi and P0g2H, lie in the same P-H double coset: 
Pg\H = Pg2H. We have to show that P0giH = P^pgiH for some p £ NP(A). 
Replacing P by g\~lPg\ and P 0 by gr^Pogi one sees that it suffices to show that 
PogH is contained in P • H for some g G NG(A), ga{g~~l) 6 CG(A) only if 
PogH = P0pHfor some p 6 NP(A). So suppose that P0gH C PH, g G NG(A), 
and g<j(g~l) G CG{A). Write g = ph with ^ P and h G # . Then A = g^g"1 

= phAh~~lp~l, so Af = p~lAp = hAh~l lies in P and is cr-stable. After replacing 
A' by a conjugate under P P\ i J we may even assume that 1̂ and / I ' lie in a 
common ^-stable Levi subgroup M of P C\ a(P). (This follows from the fact 
that any two cr-stable Levi subgroups of P P\ v(P) are conjugate under a 
cr-stable element from the radical of P Pi cr(P), cf. the proof of Lemma 12.) 
The intersections of 31 and 31' with the center of 3)1 coincide, being the largest 
subalgebra of the center of 3Jt which splits in @; and modulo the center of 9)?, 
31 and W are maximal split abelian in 3)1 while 3I_<Tand (W)~a are maximal split 
abelian in 3Jl~a. (3l-cr and (31/)~"<T are maximal split abelian in ©_<7 (by Lemma 
14.)) Applying Corollary 3 to the (semisimple) quotient of 2)îby its center one 
gets that 31 and 21' are conjugate under M Pi H, say 31' = Ad (m) • 31 with 
m e M C\ H. Thus A = pA'p~l = pmAm~lp-\ pm C- NP(A), and P0gH = 
PopH = PopmH, as required. 
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Remark. It follows from Theorem 13 that any P-H double coset (open or not) 
has a representative g such that gv(g~l) G NG(A). However, the description of 
all such representatives of the same P-H double coset seems too complicated 
to be of much use. 

There is a class of parabolic subgroups of G which are of special significance 
for the symmetric space G/H. They are constructed as follows. Suspending 
previous conventions we now denote by 21 a maximal split abelian subalgebra 
in ©_(r and by ©a(a G R) the root spaces of 21 in ©. Choose a linear order in 21* 
and set 

5W = E ®a . 
a > 0 

From the relation [@a, ©p] C ©<*+/? it follows that 91 is a nilpotent subalgebra 
of ® normalized by ©0 = 6©(21). So ^ = S@(2l) + 91 is a subalgebra of ©. 
Similarly, the connected subgroup iV of G with Lie algebra 91 is normalized 
by CG(A), so that P = CG(A) • N is a subgroup of G with Lie algebra $. In 
fact, P is a parabolic subgroup of G, iV is its unipotent radical, and CG(A) a 
Levi subgroup. To see this, extend 21 to a cr-stable maximal split abelian sub­
algebra 21 of ©, and denote the root spaces of 21 in © by ®s(à G R). So R = 
P|2l and for any a G R, 

©* = Z\®«:à\% = a}. 

Choose a linear order in 21* compatible with the order in 21* defining 91 (i.e. 
if à G 21* and â|2I > 0, then à > 0). Set 

a > 0 

Since à > 0 implies â|2l ^ 0, 

m = Sà(2l) + 91. 

So iV C GG(yl) • N and P = CG(A) - N contains the minimal parabolic 
P = CG(A) • iV, which shows that P itself is parabolic. 

Remark. It is easy to identify P in terms of the classification of parabolic 
subgroups of G by sets of simple roots in R : P is the parabolic corresponding to 
the set 5 of simple roots vanishing on 21 = fl~a (i.e. the set of simple roots fixed 
by a). However, 21 need not coincide with the split component S1- of the center 
of Ë©(21). (21 may be properly contained in S-1.) 

Corollary 16 applies in the present situation (with A playing the role of the 
A there): 

(P \G/#) o p e n ^ W/(Â)\WG°(Â)/WH(Â). 

Now Wp (A) is precisely the (normal) subgroup of Wj(A) which leaves the 
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subspace 31 of 21 pointwise fixed. According to the discussion after the proof of 

Theorem 5 

WJ{A)/WP{A) Ç*W0(A) 

and 

WH(Â)/WP*(Â)*ÉWG(A), 

where WG(A) = NG(A)/CG(A) is the Weyl group of R and WH(A) = 
NH{A) / CH(A). So in the present si tuation Corollary 16 becomes: 

COROLLARY 17. P\G/H is finite, and there is a one-to-one correspondence 

(P\G/H)oven^WG(A)/WH(A) 

so that 

PgH^gWH(A) 

tfg 6 NG{A) represents g G W0(A). 

Remark. I t follows from Theorem 13 tha t any P-H double coset (open or 
not) has a representat ive g such t ha t ga(g~l) 6 N&(A). However, one may not 
be able to choose g so t ha t ga(g~l) £ NG(A). 

Examples, (a) Riemannian space. (1) Compact type. If G is compact then the 
only parabolic subgroup of G is G itself and the only split abelian subgroup of 
G is \e). So in this case Theorem 12 is trivial. 

(2) Non compact type. Suppose a is a Car tan involution of G so t ha t H = K 
is maximal compact modulo the center of G. T h e cr-stable maximal split abelian 
subalgebras of © are then precisely the maximal abelian algebras in (S)~a. If A 
is a cr-stable maximal split abelian subgroup of G and go-(g-1) £ NG(A) for 
some g £ G, write g = I - k with / G exp (®~T) and k £ K. Then go-G.'"1) = 
/2 G A^G4) H exp (®-T) = A, which shows tha t 

WG/K(A) = { C ^ k * : M r 1 ) € # * 0 4 ) } 

has only one element. So G = P • K for any (minimal) parabolic P of G (by 
Theorem 13). This is essentially Iwasawa's decomposition theorem. T h e 
"special" parabolics are in this case jus t the minimal ones. 

(b) Lie groups. Let Go be a connected, semisimple, real Lie group. Set G = 
Go X Go and let H be the diagonal in G. So H is the fixed point set of the 
involution a of G defined by o-(gi, g2) = (g2, gi) and the map G/H —» G0, g # —> 
gi * g2~1, is a one-to-one correspondence. T h e (minimal) parabolics of G are of 
the form P = P i X P2 where P i and P 2 are (minimal) parabolics in G. T h e 
a--stable maximal split abelian subgroups in such a parabolic P are of the form 
A = AQ X AQ where Ao is a maximal split abelian subgroup of G in P i H P 2 . 
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The bijection G/H —> G0 maps NG/H(A) onto NGo(A0) and induces a bijection 
of WG/H(A) onto W G O ^ O ) . SO the relation P\G/H ^ WG/H(A) of Theorem 
13(1) becomes Pi\Go/P2 = WGo(A0), which is essentially Bruhat ' s decomposi­
tion theorem. (Of course, this is not an independent proof of Bruha t ' s theorem, 
since tha t was used in the proof of Lemma 12.) The "special" parabolics are in 
this case of the form P = P i X Pi, where P\ and P 2 are opposite minimal 
parabolics of Go. 

(c) Real forms. Let G be a connected semisimple complex Lie group, G0 = H 
the connected real form of G defined by a conjugation a in G. (So a is an 
involutive automorphism of the real Lie group G satisfying a(ix) = — ia(x) 
for all x G ®). Let B be a minimal parabolic ( = Borel) subgroup of G, A 
a (7-stable, maximal split abelian subgroup of G in B. Then 2lo = 21er + ^2I-(r 

is a Car tan subalgebra of ©0 with split component 21er and compact com­
ponent i 2I-(r. 2I_cr is maximal split abelian in ©~a if and only if 2lo is a maxi­
mally compact Car tan subalgebra of ©0, and if this is the case then no root 
of 21 vanishes on 2t_cr [9, 1.3.3.4]. I t therefore follows from Lemma 14, (1) <=> (2), 
t ha t B • Go is open in G if and only if 21 o is a maximally compact Car tan 
subalgebra of @0; and if this is the case, then (P\G/Go)oPen == WP

ff(A)\ 
Wc/(A)/WGo(A) for any parabolic P containing B (Corollary 16). This is 
essentially Theorem 4.9 in [11]. The "special" parabolics are in this case the 
Borel subgroups of G which contain a maximally compact Car tan subgroup 
of G0. 

(d) Real hyperbolic spaces. Let G, H, and A be as in the example after 
Corollary 11. For one of the two possible choices of an order in 21* = R the 
"special" parabolic P = CG(A) • N defined above is then the subgroup of G 
which leaves the one-dimensional subspace of ~Rp+q spanned by e\ + ep+q in­
var iant (the other order corresponds to the subgroup P of G which leaves the 
subspace spanned by e\ — ep+q invar iant ) . Note t h a t P is not minimal, except 
when q = 1 (Riemannian case). We know tha t WG(A) = Z2 , and tha t WH(A) 
= WG(A) unless p = 1, in which case WH(A) is trivial. I t therefore follows 
from Corollary 17 tha t there is only one open P - i f double coset, unless p = 1 
in which case there are two. This can be seen directly as follows. Identify G/H 
with the connected component X of ep+q in the hypersurface 

{x e Rp+Q : (x, x) = - X ! 2 . . . -xp
2 + . . . +xp+Q

2 = 1). 

Suppose x G X is in the P-orbi t of ep+Q, say x = p - ep+q with p G P . Since 
p - (ei + ep+q) = c{e\ + ep+q) for some c ^ 0, p • ex = —x + c(e1 + ep+q). 
So — 1 = (p • eu P • ei) = 1 — c(^i + ^ + ç , x), i.e. (gi + ep+(?, x) = l/c ^ 0. 
Conversely, if c = (e\ + ep+g, x) ^ 0 for some x Ç X, one can find p Ç 0(/>, g) 
so t h a t >̂ • ep+q = x and p • ei = — x + c(#i + ^p+?) (because (x, x) = 1 = 
(ep+q, ep+q) and ( —x + c(ex + ep+q), —x + c(ei + ep+q) = — 1 = (ci, e i ) ) . 
Moreover, only the first and the last columns of p are determined by x, so t h a t 
one can even choose p to lie in SOo(p, g) provided p > 1. (Recall t ha t matrices 
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in SOo(p} g) must have an upper left hand p X p submatrix of positive determi-
mant.) If p = 1, one may not be able to choose p in SO0(p, q)\ for example, 
if x = —ep+g, thenc = — 1 and (p • eu p • eY) = ( - x + c(ei + ep+q), ei) = - 1 , 
thus £ must have a negative entry in the upper left hand corner. So if p = 1, 
then there are two open orbits of P on X = G/H, namely the orbits of eP+q 

and of — ev+q\ if p > 1 there is only one orbit, in agreement with the theory. 
The argument shows further that the singular orbits of P on X make up the 
intersection of X with the hyperplane {x Ç Rp+e : (x, e\ + ep+(7) = 0}. 
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