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THE STRUCTURE OF SEMISIMPLE SYMMETRIC SPACES

W. ROSSMANN

1. Introduction. A semisimple symmetric space can be defined as a homo-
geneous space G/H, where G is a semisimple Lie group, H an open subgroup of
the fixed point group of an involutive automorphism of G. These spaces can
also be characterized as the affine symmetric spaces or pseudo-Riemannian
symmetric spaces or symmetric spaces in the sense of Loos [4] with semisimple
automorphism groups [3, 4]. The connected semisimple symmetric spaces are
all known: they have been classified by Berger [2] on the basis of Cartan’s
classification of the Riemannian symmetric spaces. [However, the list of these
spaces is much too long to make a detailed case by case study feasible. In order
to do analysis on semisimple symmetric spaces, for example, one needs a
general structure theory, just as in the case of Riemannian symmetric spaces
and semisimple Lie groups. The results of this paper should go some way to
serve this purpose. For orientation and motivation I mention some special cases
which have already been studied in detail:

(a) Riemannian spaces. A connected semisimple symmetric space G/H is
Riemannian if and only if H is compact (presupposing that G acts effectively
on G/H). The basic structural facts concerning these spaces are contained in
three decomposition theorems: root space decomposition, Cartan decomposi-
tion, Iwasawa decomposition. The results of this paper show that all three of
them can be generaiized to arbitrary semisimple symmetric spaces.

(b) Lie groups. A Lie group Gy is in one-to-one correspondence with a
homogeneous space G/H, where G = Go X G and H is the diagonal in G (via
G/H — Gy, (g1, g2) — gigs"'). In this way a semisimple Lie group can be
regarded as a semisimple symmetric space (the involution of G being given by
(g1, g2) — (g2, £1)). A large part of the structure theory of semisimple Lie
groups can actually be interpreted solely in terms of their symmetric space
structure. A case in point is the Bruhat decomposition: it will become clear that
the Bruhat decomposition plays exactly the same role for Lie groups (regarded
as symmetric spaces) which the Iwasawa decomposition plays for Riemannian
spaces.

(c) Real byperbolic spaces: 0(p, ¢)/0(p, ¢ — 1). These homogeneous spaces
are semisimple symmetric spaces and can be realized as hypersurfaces
{x € RPte: —x2 — . —x,2 4 ...+ x,y,2 = 1}. They are Riemannian only
if p = 0 (spheres) or ¢ = 1 (non-Euclidean geometries). For hyperbolic
spaces the general structure theory has an immediate geometric meaning and
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can be used to give an intrinsic interpretation (independent of the embedding
in R?*) of the analysis on these spaces developed in [6].

There are three major results in this paper. The first one (Theorem 5) shows
how a semisimple symmetric space (or more precisely, a semisimple Lie algebra
with an involution) gives rise to a root system and identifies its Weyl group.
This root system by itself does not determine the space uniquely, but does
contain some important information. For example, the root system is trivial
if and only if the space is compact. Both in the Riemannian case and in the
Lie group case this root system is the usual system of restricted roots of a semi-
simple real Lie algebra.

The second result (Theorem 10) gives the decomposition of a semisimple
symmetric space G/H into orbits of a maximal compact subgroup K of G.
Both in the Riemannian case and in the Lie group case this decomposition
reduces essentially to the Cartan decomposition K\G/K = W\4; in the case
of the real hyperbolic spaces it reduces to the natural spherical coordinate
decomposition of the hypersurface

{x € RP* — w2 — L. — 2+ ..+ a2 = 1}

as the product space S*7! X S¢1 X Ry -

The third result (Theorem 12) describes the decomposition of G/H into a
finite number of orbits of a parabolic subgroup P of G and identifies the open
orbits of P. It turns out that the orbits of P in G/H are in one-to-one correspon-
dence with a certain finite symmetric space We,n (‘“‘symmetric” in the sense of
Loos [4]), which plays the role of the Weyl group in a Bruhat decomposition
of a semisimple Lie group. In fact, if GgH = G, ‘‘is” a semisimple Lie group
(example (b) above), then the decomposition of G/H under P is essentially a
Bruhat decomposition of Gy, and W,y is essentially the Weyl group of Ga.
In the Riemannian case the decomposition of G/H under P reduces to an
Iwasawa decomposition of G; for the real hyperbolic spaces it reduces to the
decomposition of the hypersurface

{fx € R — 52 — 00— x4+ . 0 x,0 2 = 1}

obtained by intersecting it with a hyperplane tangent to its asymptotic cone
{fx € RP* —x2 — .. — a2+ ... + xp4,2 = 0}]. Another special case (G
complex, H a real form of G) has been treated by Wolf in [10]. The fact that
P\G/H is always finite is also proved in [11].

The way the structure theory developed here can be applied to the analysis
on semisimple symmetric spaces can be seen from the special cases (a), (b), (c)
mentioned above: the fundamental role of the decomposition theorems of
Cartan, Iwasawa, and Bruhat in the analysis on Riemannian symmetric spaces
and on semisimple Lie groups is well known; the use of the analogous decompo-
sitions of the real hyperbolic spaces is illustrated in [6]. T hope to give further
applications elsewhere.
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2. Lie Algebras with involutions. Let & be a semisimple real Lie algebra,
¢ an involutive automorphism of ®. ¢ is called a Cartan involution of & if the
bilinear form B, defined by B,(x, y) = B(x, ¢(y)) (B the Killing form of &)
is negative definite; or equivalently if the fixed point set of ¢ is a maximal
compactly embedded subalgebra of . In any case, there always is a Cartan
involution which commutes with ¢, and such a Cartan involution is in fact
unique up to conjugation by an inner automorphism of the form exp (ad (x)),
where x is an element of ® fixed by o (4, vol. I, p. 153].

An abelian subalgebra 9 of O is said to (be) split (in &) if O decomposes as
the sum of the eigenspaces (‘‘root spaces’’) of ad (). One knows that an
abelian subalgebra A of & splits if and only if there is a Cartan involution of ®
which acts on 2 by multiplication by —1. The maximal split abelian sub-
algebras of O are therefore precisely the maximal abelian algebras in the
(—1)-eigenspaces of Cartan involutions. It is well known that any two maxi-
mal split abelian subalgebras of & are conjugate under G = Int (®). Also, if ¢
is Cartan, then the o-stable maximal abelian subalgebras of & coincide with
the maximal abelian algebras in the (—1)-eigenspace of ¢ and are all conjugate
under the connected subgroup H of G with Lie algebra = {x € ®: ¢(x) = x}.
This need not be the case for an arbitrary involution. For an overview of the
general situation fix a Cartan involution 7 which commutes with ¢ and denote
by K the (maximal compact, connected) subgroup of G with Lie algebra
£ ={x € ®: r(x) = x}. For any subspace & of & set

G = {x € O: o(x) = £ x}

and foru,v = £1set @77 = {x € S: o(x) = ux, 7(x) = vx}. Thus = O,
R =0 and ® = 3, ,_y1 G,

THEOREM 1. (1) Every g-stable maximal split abelian subalgebra of & s H-
conjugate to a o, -stable one.

(2) For two o, T-stable maximal split abelian subalgebras Ay, s of & the follow-
ing conditions are equivalent:

(a) Ay and Ay are H-conjugate

(b) Ay and Ay are H M K-conjugate.

(c) Ay and Ay’ are H M K-conjugate.

(d) Wy and Ny are H M K-conjugate.

Proof. (1) Let U be a g, 7-stable maximal split abelian subalgebra of & for
which A=’ is maximal split abelian in . (Such an U always exists: choose
any maximal abelian algebra %~ in ®——7 and extend it to a maximal abelian
algebra in &=7). Set 4 = exp (A), 4= = exp (A7) (exp = expgs). We shall
see later that G = K - A~ - H (Theorem 10). Because of the G-conjugacy of
the maximal split abelian sub-algebras of ¢, any o-stable one is of the form g - ¥,
where g € Gsatisfies o(g) = o(g) - A = A, i.e. g7lo(g) € Ng(4). (Here o (g) =
o-g-oand Ng(4) is the normalizer of 4 in G.) So if we write g = hak with
h€ H acA-, k€K, then g-la(g) = k~'a"20(k) lies in Ny(4). Using the
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well known fact that K X &~ — G, (k, x) — k exp (x) is a bijection and that
Ng(A) = Ng(d) -4 we see that k~la"%¢(k) € Ng(A) implies k1o (k) €
Ni(4) and k~'ak € A (because k~'a"20 (k) = k~la(k) - (k~'a"%k), ko (k) € K,
c(k~la=2k) € exp (0=7)).So g+ A = hk(k~'ak) - A = hk - U is H-conjugate to
k - A, which is r-stable.

(2) The proof of the equivalence of (a)-(d) depends on the following:

LeEMMA 2. Let & be a subset of &7, If g - & lies also in &~ for some g € G,
then there is a k € K salisfying g - x = k- x for all x € &.

In particular, any two subspaces of &~ which are conjugate under G are also
conjugate under K.

Proof. By assumption, © and g - & lie both in 7. So if x € &, then 7(g - x)
= —g-x and also 7(g-x) = 7(g) - 7(x) = —7(g) - x, hence g~7(g) - x = «x,
ie. g77(g) € Ce(©) (the centralizer of © in G). Since C¢(©) is a 7-stable sub-
group of G, the decomposition G = K - exp (0~7) of G induces the decomposi-
tion C4(€) = Cx(S) - exp (Ca(@)~7) of Ce(@). So we can write g = kp with
k€ K and p € exp (& 7); then g7lo(g) = p72 € Ce(&) M exp (GB~7) =
exp (Co(©)~7), which gives p € exp (Cs(&)~7) (because exp is one-to-one on
®&=7). Consequently, g = kp € kCyx(&).

Remark. The lemma obviously remains true if ® is only reductive, provided
one understands by a Cartan involution of a reductive Lie algebra & an involu-
tion whose restriction to [®, ®] is Cartan. This observation will be used below.

Returning now to the proof of Theorem 2 we first prove:

(a) = (c). Suppose U; and U, are H-conjugate, say A; = k- A, with h € H.
Since H commutes with ¢, %" = % - 9, (and also A~ = Ay~7). Thus A7 and
Ao are two H-conjugate subspaces of $~7. Being r-stable, § is reductive (in ¢),
and 7|9 is a Cartan involution of $. By the lemma, 2,° and ,° are also
H M K-conjugate.

(c) = (d), (b). Suppose A;* and Ao” are H M K-conjugate. We may as well
assume ;7 = Ay Ay~ and Ao~ are then both maximal abelian in € (7).
Since Co(A,7)°" (the fixed point set of the composite involution o7 in the
centralizer €& (A7) of A17 in &) is a 7-stable (hence reductive) subalgebra of &,
;72 and A, are conjugate by an element in H M K which leaves ;% point-
wise fixed. This element therefore also maps A; = A* + Ui~ onto A, =
9I16 + 2[2—“.

(d) = (c)(b). This is shown by an obvious modification of the proof of
(c) = (d)(b). (Interchange the roles of ;7 and A, and replace € (A,7)°" by
Co(A)7.)

(b) = (a) trivially.

COROLLARY 3. Any two o-stable maximal split abelian subalgebras Ay, Wz of
with the property that A,° and Ay (resp. Wi and Ay~7) are both maximal split
abelian in & (resp. in &) are conjugate under H.
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Proof. In view of part (1) of the theorem, we may assume that ; and 9, are
also 7-stable. The hypothesis then implies that %, and %s* (resp. A~ and A7)
are both maximal abelian in &~ (resp. in @77 = §2—7). Since ©°
(resp. ®77) is 7-stable (hence reductive), A;” and Ao® (resp. A= and A;~7) are
H M K-conjugate. Part (2) of the theorem shows that A; and A, are then
also H M K-conjugate.

COROLLARY 4. There 1s only a finite number of H-conjugacy classes of o-stable
maximal split abelian subalgebras of ©.

Proof. Fix a o-stable maximal abelian algebra %, in &~ with the property
that Ay~ is maximal abelian in &=, Any abelian algebra in &= is then
H M K-conjugate to a subalgebra of A,. In view of the theorem it therefore
suffices to show that there are only a finite number of subspaces of 9y of the
form 9~ for some o-stable maximal abelian ¥ in .

To see this, let ® = > {Oa: @ € Ap*} be the root space decomposition of &
under ,. If A is o-stable, maximal abelian in &= with %~ C Ay, then

A= = M {ker (&|Ao): /AN Ay = 0, &, # 0}.

(In fact, if x € Yy~ and a(x) = 0 whenever |2 M Ay = 0 and O, # 0, then
[x,9] = 0 whenever y € 3 {&a: /A N Ay = 0} = Co(A M Ap). In particular
[x,A] = 0,s0x € A by the maximality property of A. Thusx € A N A =
A-7). It follows that A~ is uniquely determined by a certain set of roots of
Ao in &, which shows that there are only finitely many such subspaces A~ of

?I()_”.

Remark. Wolf shows in [11] that the corollary remains true if ‘“‘maximal split
abelian’’ is replaced by ‘“‘Cartan’’. His proof uses algebraic geometry and a
reduction to special cases. The proof given here is more related to M. Sugiura’s
method [8]. One will note that the 2, in this proof could equally well have been
chosen so that A’ is maximal abelian in G,

Define a maximal split abelian algebra in &= to be a split abelian subalgebra
of & which lies in &= and is maximal with this property. Of course, such an
algebra need not be maximal split abelian in &, but can always be extended to
a g-stable maximal split abelian subalgebra of ®. It follows from Corollary 3
that any two maximal split abelian algebras in &~ are conjugate under H.
Moreover, as a consequence of Theorem 1, any maximal split abelian algebra in
&7 is H-conjugate to a r-stable one (i.e. to a maximal abelian algebra in
®=7~7) and any two 7-stable ones are conjugate under H M K. For the re-
mainder of this section 9 denotes a fixed maximal abelian algebra in &——.

Since U splits in &, & decomposes into root spacesof A: & = > {G,: @ € A*},
where

Oy = {x € ®:ad (y)x = a(y)x forally € A},
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and in particular & = Co (), the centralizer of ¥ in ®. Set R = {a € A¥,
a # 0and O, # 0}. We shall show:

THEOREM 5. R is a root system in A* with Weyl group W = Ns(A)/Ce(A) =
Nr(U)/Cx ().

Before going into the proof of this theorem we need some preliminary obser-
vations. First of all, following a familiar pattern one proves:

Lemma 6. (a) R spans A*.
(b) [On, Gg] C Ouyp.
(€) 0(Oy) = Oy = 7(Oa).
(d) B(®y, &) = 0unless o = —8.
(e) If x € U satisfies a(x) # 0 for all @ € R, then Cs(A) = Co(x).

One sees from (c) that the subspaces &, + ®_, of ® are stable under ¢ and r,
while the root space ©, themselves are stable under the composite involution
or. These subspaces of ® are related by

LEMMA 7. For any o € R and any u, v = ==1 there are linear isomorphisms:
(@) Og = (O + O_ )" and Oy — (O, + O_o)*" given by x — (x + wo(x))
and x — (x + ur (x)), respectively.

(b) G2t — (O + O_g)¥ 7 given by x — (x + uo(x)) = (x + vr(x)).

Proof. (a) From Lemma 1 (c) it is clear that x — (x 4+ uo(x)) maps ¢, into
(Of + G_p)v. If x + uc(x) = 0, then x € &, N G_,, which is zero for a € R;
so this map is injective. Also, if x € (O, + O_)%, say x = x4 + x_ with
Xy € Oa, then uo(x) = x implies that uo(xy) = x_, again because &, M G,
= 0. Thus x = x; + uo(x,) is in the image of the map &, — (&, + G_,)*,
so that this map is also surjective.

(b) follows from (a) since &, = G,°7 + &,

The next lemma is crucial for the proof of Theorem 5 and is often a useful
tool for computations in the Lie algebra ®.

LEmMA 8. (a) For any x € &7 (o € R, u = =£1)

[x, 0 (x)] = B(x, o(x))za
[x, 7(x)] = B(x, 7(x))24

where 3, 1s the element in A satisfying
B (24, 2) = a(z) for all z € U.

(b) For any x € (&g + &_ )% (u,v = 1, a € R) there is a unique
Y € (O + O_q)~ "7 s0 that forallz € A

ad (2)x = a(z)y
ad (2)y = a(2)x.
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Such elements x, y satisfy
[x, 9] = —B(x,%)2a = B(y,¥)%a.

Proof. (a) If x € G, then [x, 0(x)] € [Cn, O_e] C Cx(), alx, o(x)] =
lo(x), x] = —[x, o(x)], and 7[x, o(x)] = [r(x), 70(x)] = [wo(x), ux] =
—[x, ¢(x)]. So [x, o(x)] € Cg(A)==—" = A. Moreover, for any z € ¥,
Bz, [x, 0 (x)]) = B([z, x], 0(x)) = a(z)B(x, o(x)), which proves the first equa-
tion. The second one follows from the first one and 7(x) = uo(x).

By Lemma 2(b) any x € (0, + ®_,)* '’ can be uniquely written as x =
Xo + 10 (xe) = X + 97 (%,) With . € G277 Lety = xq — 10 (xq) = X — 07 (X4).
Then

y € (G 4+ G_)=*=" and

[, ¥] = [%a + 260 (Xa), Xa — 10 (X)]
—2U[ X, 0(x4)]
—2u B (Xa, 0(%4))24

It

Il

by (a). Also,

Bx,x) = B, + 1o (Xa), %o + 1o (X)) = 2u B (x4, 0(xa))
by Lemma 6(d). Similarly

B(y,y) = B(xq — 1o (xa), ¥ — 160 (%e)) = —2u B (Xe, 0(xa))
This proves the last assertion in (b), and the rest is obvious.

The proof of Theorem 5 can now be completed by an adaptation of familiar
arguments [3, 4, 7]. First of all, it follows from Lemma 2 that Ng;(Q) =
Ng ). Ce), so that Ng(UA)/Ce(A) = Nx(A)/Cr(A). This quotient group
can be identified with a group W of linear transformations of 9 (or of A*, by
duality), which clearly permutes the elements of R. To show that R is a root
system with Weyl group W it suffices to show:

(a) For each @ € R, W contains the B-orthogonal reflection 7, in et defined
by

o Blv,2.)
B (2, %)

(b) 2 B (24, 28) /B (2a, 2«) is an integer for all «, 8 € R.

(c) W permutes the Weyl chambers of R freely. (A Weyl chamber of R is a
connected component of {x € U : a(x) # Oforalla € R}.)

In fact, it follows from (a), (b) and Lemma 6(a) that R is a root system in
A* and that the Weyl group Wy of R (which, by definition, is generated by the
reflections 7., « € R) is contained in W. Since W, acts transitively on the Weyl
chambers, (c) gives Wy = W.

re(x) = x —

Proof of (a). Given a € R, choose non-zero x and y as in Lemma 8(b) (for
some choice of u, v = =41). (This is always possible: &, = &, + &, so
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®,%77 is non-zero for at least one choice of the sign.) One of them, say «x, is
in § = 0. Then exp (ix),t € R, isa one parameter group of linear transforma-
tions of & which leave the negative definite form B, invariant. By Lemma S(b)
the plane spanned by v and z, is stable, but not fixed, under exp (tx). Therefore

exp (fox)z, = —z, for appropriate t, € R. (Indeed, if x is normalized by
B,(x,x) = —1, one finds by series computations using the relations of Lemma 8
that

exp (tx) = cos (ff|z][)z + sin (t]jzal])y

where ||2.]|? = B (%ay 2a)- S0 to = 7||2.||? will do.) Moreover, since a(z) = 0
implies ad (x)z = —ad (3) - x = —a(z)y = 0, al stays pointwise fixed under

exp (tgx). So exp (tox) gives the desired reflection r, in at.

Proof of (b). Fixe € R and set

2

T B(%a 2a) ©

Passing to the complexified Lie algebra G¢ of ® we can find x € 10,7 (for
appropriate # = =1) satisfying B(x, 7(x)) = 2/B(2a, za). Set v = 71(x).
Lemma 8(a) shows that these elements x, v, z of ®¢ satisfy

2

[x, 5] ==
[z, x] = 2«
[Z, 3’] = '_2:)’

hence generate a subalgebra of ®¢ isomorphic with @¢(2, C). For any 8 € R,
(Og) ¢ is an eigenspace of ad (z) with eigenvalue 8(z) = 2B (2a, 24)/ B (Za) 5a). S0
2B (24, 23) /B (34, 2o) corresponds to a weight of a finite dimensional representa-
tion of €¢(2, C), hence is integral {7, IV-7, Thm. 4].

Proof of (c). Suppose w € W maps a Weyl chamber C onto itself. The con-
vexity of C implies that it contains an element x fixed by w: one can take
x = (y +wy + ... 4+ wy)/n where vy € Cis arbitrary and w"*! = e. A
representative for w in Ng () then centralizes the closure 7" of the one-param-
eter subgroup exp (itx), t € R, in Int (0¢). Since 7 is a torus in the compact
connected subgroup of Int (8¢) with Lie algebra & + 7®~7, the centralizer of
T in this subgroup is connected [3, VII-2, 2.8]. So w can be represented by
exp (z) for an appropriate

2 € Coclx) = (Co(x))c.

By Lemma 6(e) this implies that z centralizes 9 so that w leaves  pointwise
fixed. This proves (b) and thereby Theorem 5.

Extend ¥ to a ¢, r-stable maximal split abelian subalgebra 3 of ®. Then X
consists of the restrictions to 3 of the roots in the root system R of 3. The Weyl
group of Ris W = NgQ)/Ce@) = Nk(A)/Cx ). The subgroup W of W
which leaves % = A~ invariant also leaves Av invariant (Y° being the B-
orthogonal complement of 9 in ) and can be characterized as the subgroup
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of W fixed by the automorphism of W induced by the automorphism ¢ of G.
The action of W7 on U gives a homomorphism of W< into W. This homomor-
phism is in fact surjective. (Indeed, if # € Ng(¥), then u- and ¥ are both
maximal abelian in Cg(U)~". Since Cg(A) is 7-stable, hence reductive (in ©),
7|Co(A) is a Cartan involution; so u - %A and ¥ are conjugate under Ck Q0), say
A = vu- A with v € K leaving ¥ pointwise fixed. Then vu € Nx(A) and its
action on ¥ coincides with that of «.) If one denotes by W¥ the subgroup of W
which leaves ¥ pointwise fixed and by R the roots in R fixed by ¢ (i.e. the
roots in R vanishing on A~ = ), then one can summarize the situation in two
short exact sequences:

1) 0>R >R—->R—>0
2) 1->-WMsW -W-—1

Remark. In view of these circumstances it seems natural to wonder whether
R together with the involution (—¢) is a normal sigma-system of roots in the
sense of Araki [1], i.e. whether ca + a ¢ R for alla € R. If so, Theorem 5 and
the relations (1) and (2) above would be a consequence of general properties

of normal sigma-systems. Unfortunately, this need not be the case (cf. example
(b) below).

Up to isomorphism, the root system R depends only on & and ¢ and not on
the choice of . (This is clear from the uniqueness of ¥ up to conjugation by
H.) In fact, it is easy to identify R for the involutions of simple Lie algebras
classified in [2] from the information given there. The method is as follows:
the decomposition &, = &7 + &, =7 of the root spaces of U into eigenspaces
of the composite involution ¢7 shows that R = R, \U R_ (not necessarily
disjoint), where R, = {a € R: O,*7 ## 0}. R, is clearly just the restricted
root system of the reductive Lie algebra &7, while R_ consists of the weights
of the representation adg of &7 on &~77. So one knows R as soon as one knows
(1) the Lie algebra &°7 and (2) the representation of &7 on &—°*. All of this
information can be found in [2].

Examples. (a) Riemannian spaces. (1) Compact type. If & is compact, (i.e.
if B is negative definite) then the only Cartan involution of ¢ is the identity
and the only split abelian subalgebra is the trivial one. So in this case the root
system R is trivial for any involution ¢ of . Conversely, suppose ¢ is an involu-
tion of a semisimple Lie algebra & for which the corresponding root system R
is trivial. Then ®— contains no non-trivial split abelian algebra, so &=~ = 0
for any Cartan involution 7 commuting with ¢. Assume further that = &7
contains no non-trivial ideal of ®. (Such an ideal could have been factored out
in the first place.) Then & = [®—, &—] (because the B-orthogonal comple-
ment of [&~7, &] + &~ in & is an ideal which lies in 7). Since ®—7—7 = 0,
& = O so

© =[G, ] C G and
O =0 +0G"C O+ G =0
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This shows that 7 must be the identity, hence & must be compact.

(2) Non compact type. If o is itself a Cartan involution of &, then 7 = ¢ is
the only Cartan involution commuting with ¢ (by the uniqueness of such
Cartan involutions quoted earlier). So in this case ¥ is maximal split abelian
in ® and R is the usual restricted root system.

(b) Lie groups. Let &, be any semisimple real Lie algebra. Set & = &y X
and define an involution ¢ of & by ¢ (x1, x2) = (x2, x1). The Cartan involutions
r commuting with ¢ are of the form

7(x1, %9) = (ro(%1), 70(%2))

where 74 is a Cartan involution of ®&,; the maximal abelian algebras in &=~
are A = {(x, —x); x € Ao} where Uy is maximal abelian in Gy=70. The root
spaces of 9 are of the form (®g), X (®¢)a, where (&), is a root space of U,
in ®y. The root system R of 3 in & is isomorphic with the restricted root system
Roof g in Go. A = Ay X Agis a o-stable maximal split abelian subalgebra of (¥
extending 9. The root system R of A in ® is R = { (a1, a2): a1, a2 € Ry}. o acts
on R by sending (a1, as) to (as, ai), which shows that R is (in general) not a
normal sigma system of roots under (—o) (nor under ¢ itself, for that matter).

(c) Real forms. Suppose O is a complex Lie algebra, ¢ the conjugation with
respect to a real form &y =  of &. The Cartan involutions 7 of & (& regarded
as a real Lie algebra) are the conjugations with respect to compact real forms.
If 7 commutes with o, then 7o = 7| is a Cartan involution of ®o. The maximal
abelian subspaces of &7~ are therefore of the form A = 7A, where A, is
maximal abelian in the maximal compactly embedded subalgebra §, = &,
of ®y. The ¢-stable maximal abelian algebras in §~ extending A are of the
form A = A, + A, with U, maximal abelian in Gy, (Ao)~". Note that Ay + Ao
is a maximally compact (‘‘fundamental’’) Cartan subalgebra of (&, and every
maximally compact Cartan subalgebra of & can be obtained in this way. The
root system R of U is the usual root system of a complex Lie algebra. Theorem
5 shows that the restriction R of R to 2 = A, is also a root system. (I do not
know whether this fact has been previously observed.)

Theorem 1 and its corollaries are also of some interest in this case. In fact,
the o-stable maximal split abelian subalgebras of & are in one-to-one correspon-
dence with the Cartan subalgebras of &y (via 9 <> % 4 2A~7). The theorem
and its corollaries correspond to well-known conjugacy statements about real
Cartan subalgebras: for example, Corollary 3 says that there are only finitely
many conjugacy classes of Cartan subalgebras in a real semisimple Lie algebra.

(d) Pseudo-Grassmannian spaces. SO(p, q)/SO(p1, q1) X SO(p2, q2);
SUp, ¢)/S{U(p1, 1) X U(ps, g2)}; Sp(p, ¢)/Sp(p1, g1) X Sp(ps, q2). This

example is intended as an illustration of the recipe for computing the root
system R given above.
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Let ' = R, G or H and ® the Lie algebra of matrices with entries from F

of the form

P
g
DG2*

where x* = &, and with the additional restriction that Tr (x;) + Tr (x), =
if /= C. Thus & = @9O(p, ¢q), SU(p, q) or SB(p, ¢q) according as F

p
q

q
X2
X3

SYMMETRIC SPACES

cy o= — *
] X1 = —X1,X3 = —X3 .

R, C, or H. Conjugation by a diagonal matrix of the form

P11 P q1 qs
1
1 + 1
j2 41 pr+p2=0p,q1+ g2 =g,
g1
—1
q2

defines an involution ¢ of &, whose fixed point set & consists of matrices of

—////// ////_///7

P2 q1

4

—

2

I,
/1)

VI
I

1

qo

L/////// ////////_

and is isomorphic with @O (p1, 1) X SO (p2, ¢2), S{U(p1, 1) X U(ps, q2)} or
SP(p1, ¢1) X SP(ps, ¢2). A Cartan involution r commuting with ¢ is defined
by 7(x) = —x* A maximal abelian subspace of &= is given by the matrices
of the form

1 P2 g1 q2 _
h a ayf =0if ¢ # j,and ¢;/ € R;
P2 a
a;/ = 0if7 # j,and a;/" € R.
q1 a'*
qs a''*

Thus dim (¥) = min (p1, ¢2) + min (pq, q1).
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The fixed point set &7 of the composite involution o7 consists of matrices

2 _////1/// /),
b Y1 11

11717/, i
. 1/, i

-

Do q2

and is isomorphic with @O (p1, g2) X €D (pa, 1), S{U(p1, g2) X U(pe, 1)}, or
SPB(p1, 2) X SB(p2, ¢1). @77 consists of matrices of the form

P1

2 7//)// I,
Q2 /1
w11/ iy

| VI _

and the representation of 7 on &7 is equivalent to the natural one on
Frite: @p FP2r01 As remarked above, the decomposition & = &7 + G~ is
stable under the adjoint action of . Denote by «./, a;’ the linear functionals
on A defined by a/(¢) = a;/, /' (¢) = ;" for @« € A as above. Then the
weights of the representation of 3 on &7 are the restricted roots of &7, which
are [4, vol. 11, pp. 109-112]:

qo

:!:ozi/Y :}:ai/i Olj”; 1«,] < min (Pl, (]2)Y 1 ;éjY
ta!, tal + aj/"iyj <min (PQ, ql),i #j,

if ¥ = R, and these together with
+2a,, +£2a;"

if ¥ = C or H. The weights of the representation of I on &7 == Fritez @
FPeta1 gre

:’:ai,ia:i”ri = min (Ph 92>7j < min (p2v ql)
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So the root system R is (in the notation of Tits):

B,,if F=R
BC,if F=CorH,

where # = min (p1, ¢1) + min (ps, ¢2).

3. Decompositions of symmetric spaces. Let G be a connected, semi-
simple, real Lie group, ¢ an involutive automorphism of G. ¢ is called a Cartan
involution of G if the corresponding involution of & (also denoted by ¢) is
Cartan. One knows that there always is a Cartan involution = of G which
commutes with o [4, vol. I, p. 155]. Its fixed point group K = G7 is connected,
and compact modulo the center of G. Let H be an open subgroup of the fixed
point group G° of ¢. (So H is a—necessarily closed—subgroup of G between G*
and its identity component (G?)¢). According to M. Berger’s generalization of
a theorem of E. Cartan on Riemannian symmetric spaces one has [2, § 55]:

TueorEM 9 (Berger-Cantan). K\G/H = Adq¢(H N K)\®—.

More precisely, the map K X &7 X H — G, (k, x, h) — kexp (x)h, is
surjective with fiber { (kl=1, Ad¢ (I)x, lh): | € H M K} above kexp (x)h.

In terms of the symmetric space G/H, this means that G/H is in one-to-two
correspondence with the vector bundle K X gynx® 7" over the compact
symmetric space K/H M K. (Of course, all of the maps involved are actually
real analytic).

Choose a maximal abelian algebra 2 in &7 and let A = exp (A) be the
corresponding subgroup of G. Set Wy nx = Ny nx(4)/Cx A x(d), which
can be regarded as a subgroup of the Weyl group W = Wk of the root system
of A in &. Since exp: A — A4 is bijective we can also think of Wy A x as a
transformation group of 4. With this understanding:

TuEOREM 10. K\G/H = Wy A x\4.

More precisely, the multiplication map K X 4 X H — G is surjective, and
the A-components of any two elements in the same fiber are conjugate under
Ny nx(4). The map is regular at (k, «, k) if and only if a* # 1 whenever
&7 # 0.

Proof. We know that the maximal abelian algebras in &7 are H N K
conjugate to A. Since every element of &—7—7 lies in (at least) one of these,
G = Ade (H M K) - A. Suppose two elements x and x’ of A are conjugate
under H M K, say x = Ad (u)x’ with u € H M K. Then ¥ and Ad (1) are
two maximal abelian algebras in Ce(x)=~" = Co(x)°"~". Since 7|Cs(x)°7 is a
Cartan involution of the reductive Lie algebra € (x)?" there is an element v in
the identity component of Cq(x)°™7 = Cg(x)?" so that Ad (i) -% = Ad (v) - .
So «~1e lies in H M K, normalizes 9, and Ad (#™'v)x = Ad (u~')x = «’, which
shows that x and x are also conjugate under Ny A x(4). In view of Theorem 9
this proves that K\G/H = Wy ~x\4.
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It remains to prove the regularity assertion. Since the multiplication map
K X A X H — G is compatible with left multiplications from K and right
multiplications from H, it suffices to determine when its tangent map at a
point of the form (e, a, €) is surjective. This tangent map: § X A X H —» O
sends (x, y, z) to Ad (a)x + » + z, so its image is Ad (¢)f + A + . Com-
paring dimensions one finds that Ad () + A + O = & if and only if
Ad (@) N A+ D) =Cs A 2(A). Nowevery element in & can be written as

X0 + Z Xo + 7 (%)

aER

with xo € € () and x, € O,; every element in A + $ as
yO + FZR ya + U(yu)

with y¢ € A 4+ Cs(A) and v, € G,. So for an element in Ad (a)f& N (A + H)
one has an equation

Ad ((l) (xo + Zaxa + T(xa)) = Yo + Zaya + U(ya)y
which gives

Xo = Yo
A*Xq = Vo
(L“""r(xa) = a(ya).

Thus xy = vy must be in Ca () M (A + Cs(A)) = Co A e(A);and if a € R,
then

Vo = 0% 7 (%) = a7 (Ys).

Since the eigenvalues of o7 are =1 this equation can be satisfied for a non-zero
v if and only if &7 % 0 and a* = 1.

As remarked earlier, R, = {a € R: &,° 5 0} is the root system of the
reductive Lie algebra &7, and if H is connected, then Wy A x can be identified
with the Weyl group of this root system. In that case the closure of a Weyl
chamber of R; in 4 (i.e. the closure of a connected component of {a € 4: a* 1
foralla € R.}) provides a fundamental domain for the action of Wy A x on 4,
hence a parametrization of the K — H double cosets in G.

From Theorem 10 one gets a system of spherical coordinates on the sym-
metric space G/H:

CoRrROLLARY 11. The map K/Cy A x(A) X A — G/H, (k, «) — kaH, 1s sur-
jective and is locally invertible (by an analytic map) at every point (k, a) for
which a* # 1 whenever &7 #~ 0.

The geometry of the situation is nicely illustrated by the following:

Example. Real hyperbolic spaces. SOo(p, q)/SOs(p, ¢ — 1). G = SOu(p, q) is
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the group of the matrices which leave the quadratic form
(x,x) = —x12 — ... — 2+ w4 . Kt

invariant and whose upper left hand X p submatrix has a positive determi-
nant. H = SO¢(p, ¢ — 1) is embedded in G as the subgroup fixing ¢,,, =
(0,...0,1) € R+ K = SO(p) X SO(q) as the subgroup leaving the sub-
spaces R?T0 and R of RP*¢ (spanned by e, ... e, and by e,y1, . . . €py,) In-
variant. For 4 one can take the one-parameter subgroup of G consisting of the
matrices a = a, ¢t € R, defined by

a- e = cosh (t)e; + sinh (t)e,y,
a- ey, = sinh (t)e; + cosh (t)ey,
a-e;=e; fori#1,p+gq,

It is easy to check that Wx = Z,; also Wx = Wy Ak, except when p = 1,
in which case Wy A ¢ is trivial.
The symmetric space G/H can be identified with

X={xeRre: —x2 — .. —x2+ x>+ ... + 2,02 = 1},
and K/CH (‘\K(A) with

V={ycRruy2+ . .+ =1=yu"+. ..+ ¥}
gSv—l XSQ_I,

except when ¢ = 1, in which case one has to add the restriction x,,, > 0 to
insure the connectedness of X and Y. The map K/Cx(4) X A — G/H,
(kCx(A), x) — k exp (x)H, is then identified with ¥ X R — X, (y, t) —
cosh (¢) ' -+ sinh (¢)y"”,if y = 9" + 9" withy" € R 0and y"” € R If p > 1,
this map has critical points along ¢t = 0; if p = 1 the map is regular every-
where. This agrees with Theorem 10 and its corollary since Wy A x and R,
are trivial precisely when p = 1. If p 4+ ¢ = 3 the distinction between the
cases p = 1 and p > 1 is geometrically obvious.

We now go on to describe the decomposition of the symmietric space G/H
into orbits of a parabolic subgroup P of G. This is equivalent to a description
of (1) the decomposition of G into P — H double cosets, (2) the decomposition
of the real flag manifold P\G into orbits of H, or (3) the decomposition of
G-conjugates of P into H-conjugates. (The last reformulation comes from the
fact that P is its own normalizer, so that Pg — g~'Pg is bijection between P\G
and the set of G-conjugates of P.) The method used here is an extension of the
one used by Wolf {10], who treats the special case when G is complex and H a
real form of G. The relevant facts about parabolics can be found in [9]. We
start with the case of a minimal parabolic and observe:

LEMMA 12. Every minimal parabolic subgroup P of G contains a o-stable
maximal split abelian subgroup A of G, unique up to conjugation by an element
from H (M N (N being the unipotent radical of P).
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Proof. First we note that any two minimal parabolics P and P’ have a
maximal split abelian subgroup of G in common. In fact, in virtue of the con-
jugacy of the minimal parabolics we can write P* = gPg~! for some ¢ € G.
Let 4 be a maximal split abelian subgroup of Gin P. Then G = P - Ny(4) - P,
by the Bruhat decomposition. If g = pwp’ with p, p’ € P and w € Ng(4)
then P N\ P = P M (pwPw1p~) = p(P M wPw1)p~!, hence P M P’ con-
tains pAp~!, which is also maximal split abelian. In particular, 2 M ¢ () con-
tains a maximal split abelian subgroup 4 of G. C¢(A4) is then a Levi subgroup of
P M o(P), hence N M ¢(N)—conjugate to a o-stable Levi subgroup of
P M o(P) [5], which must be of the form Cz(A4’), where A’ is a o-stable
N M ¢(N)—conjugate of 4.

Now suppose that 4; and A, are two g-stable maximal split abelian sub-
groups in P. By what has just been shown we can write 4. = nAd;n~! with
ne NNo(lN)., Then omdm™') = ndm™' and also o(ndn!) =
oc(n)Aqso(n~1), which shows that n=lo(n) € Ng(A). This can happen only if
nlo(n) = e (because of the uniqueness properties of the Bruhat decomposi-
tion G = N - Ng(A) - N). The equation ¢(n) = n implies that n = exp (x)
where x € M M ¢(M) satisfies ¢(x) = x (because of the well known fact that
exp: MM a(N) = NN o(N) is bijective). Hencen € H /M N.

Let .27 be the set of o-stable maximal split abelian subgroups of G. H acts
on.%Z on the right: (4)k = h=14h,.o/ /H is finite (by Corollary 4), and the
lemma gives a map P\G/H —.%/ /H sending PgH to the H-conjugacy class [ 4 |
of a g-stable 4 in g~1Pg. The fiber of this map above [4] € .9/ /H is in one-to-
one correspondence with Wg(A)/Wg(A) (where We(4d) = Ng(A)/Cy(4)
and Wy(4d) = Ng(4)/Cy(4)), because any two minimal parabolics con-
taining 4 are conjugate under N (4 ).

Fix a o-stable 4 in P. Any other g-stable maximal split abelian subgroup of
G is then of the form g~'4g where g € G satisfies o (g 4o (g) = g~1Ayg, ie.
ga(g™") € Ng(A). From the above remarks we see that every P-H double
coset has a representative g satisfying go(g=!) € Ny (4), and that g is unique
up to left translations from Cg(4) and right translations from H. To sum-
marize these observations, set

Nom(A) = {gH € G/H: ga(g™?) € Ng(4)},
Wem(4) = Co(A)\Ngm(4) = {Co(A)gH: go(g™") € Ne(4)},
and denote by W7 (4 ) the subgroup of W (4 ) fixed by ¢ (i.e. the subgroup of
We(A4) which leaves A%’ invariant). Note the inclusions
Wu(d) C We'(4) C We(d)
Wer(A)/Wy(4d) C We(d)/Wg(d) C Wem(d).
THEOREM 13. Let P be a minimal parabolic in G, 4 a o-stable maximal split

abelian subgroup in P.
(1) Weu(A) is finite, and there is a one-to-one correspondence

P\G/H = Wgm(4)
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so that
PgH & Cq(A)gH

ifgo(g™!) € Ne(d).
(2) The union of the open P-H double cosets is dense in G. If P - H itself is
open, then there is « one-to-one correspondence

(P\G/H) opew = W (4)/ Wy (A4)
so that

PgH < gWy(4)
ifg € No(4)represents g € We(4).

Remark. If P - H itself is not open, we can find goH € N (A) so that PgoH
is open, and we can apply (2) with P replaced by gi~'Pg and 4 replaced by
g0 1A g, to see that the open P-H double cosets are then in one-to-one cor-
respondence with W7 (go=1Age)/ Wa(ge1Ago) so that PgogH > gWy (go™ 14 g,).

Proof. The first part of the theorem is a summary of the preceding obser-
vations. The fact that the union of the open orbits is dense is clear from the
finiteness of P\G/H. To prove the rest we need a lemma and some more
notation:

R = the roots of A in &
R(P) = the roots of A in P
= the system of positive roots for R corresponding to P
Re={a € Rio a=al
R, ={ad € R:0-a# a}
R7(P) = R° M R(P)
R,(P) = R, "\ R(P)

Recall that if A~ is maximal split abelian in &=, then R,|2~ is a root system
whose Weyl group can be identified with the quotient of W47 (4) by the sub-
group which leaves 2 pointwise fixed.

LemMA 14. The following conditions on P are equivalent:

(1) P - H 1s open in G.

2) If a € R(P) N\ g+ R(P), then &, C 9.

(3) A~ is maximal split abelian in &= and R(P) M ¢R(P) = R (P).

(4) A= is maximal split abelian in &= and R,(P)|A~7 1s a system of positive
roots for R,|A~.

Proof (of the lemma). Choose a Cartan involution 7 commuting with ¢ so

that A C G
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(1) © (2).P-Hisopenin Gifandonlyif & = $ + B. Moreover,
@ = @0 + ZR @a
@ = @0‘7 _I_ ZR((Sja + @a-a)v
% = @0 ‘|‘ ZR(P) @a

so that & =  + P if and only if: a € R(P) and ¢ -a € R(P) implies
(O + Gpg)™ = 0, ie.a € R(P) M o R(P) implies O_ C 9, ie. a €
R(P) N ¢R(P) implies ®, = 1&_, C .

(2) = (3). If A7 is not maximal abelian in ——7 then there is x € &=~
so that [A~7, x] = 0 but x ¢ A7. Write x = > _x, with « € U {0} and
0 # x, € O, Since (A7, x] = 0,0/ = 0,ie.0-a = a;sincex ¢ A at least
one such « is non-zero. Then a # 0, x, # 0, and x_, = 7(x,) # 0, so we can
choose such an a in R(P). If s0, a = g-a € R(P) N eR(P) and o(x,) =
—X,.q = —Xq IS a non-zero element in O contradicting (2).

3) = (2). Assume (3). So if « € R(P) Mo R(P) then ¢:«a = «, hence
7 (Gy) = G and O, = O,7 + O, . If x € ®,77, then x — 7(x) € O~ and
(U=, x — 7(x)] = 0 (because A~ = 0), so x — 7(x) € A~ (because A~ is
assumed to be maximal abelian in &=—7), Thusx € %° N (G, + G_,) = 0.
Since x was arbitrary in &7, ®,~ = 0 and &, = &7 C 9.

(3) = (4). Let > be an order in A* so that R(P) > 0 and denote the
restriction of this order to the subspace (*)~ by the same symbol. Suppose
a€ R, and @« >0 (ie. @« € R,(P)). Then o-a < 0 by (3), so a2 =
(e — o -a) > 0 (identifying (A~)* with (U*)~ via A" = F(a — o a)).
Conversely, suppose a € R, and «|%~ > 0. Then 3(a — o0 -a) > 0, ie. a >
o - o Inview of (3) this can happenonlyifa > 0 (and ¢ - @ < 0).So R, (P)[~
consists of the roots in R,|~7 which are positive with respect to the order > in
=)*,

(4) = (3). Suppose a € R(P) N\ o-R(P), iie. «a >0 and g-a > 0. If
a € R,, then (4) implies that «|%=" > 0 and ¢ - A~ > 0, which is impossible
(because @A~ = —o - a|A). Thusa ¢ R,, ie.a € R°.

Returning now to the proof of the theorem, assume that P - H is open, i.e.
that the conditions of the lemma are satisfied. If PgH is also open for some
g € G, then the conditions of the lemma also hold with P replaced by P’ =
¢~1Pg and A4 replaced by a o-stable 4’ in P’. In particular %~ and (')~ are
both maximal split abelian in &—°. In view of Corollary 3 we may therefore
assume that A = A’ (by replacing g by gh for some & € H). The theorem will
now follow if we can show that the systems R(P) and R(P’) of positive roots
for R are W (A4)-related.

By Lemma 14 (4) and the remarks about the Weyl group of R, preceding
the lemma we can find u € W (4) so that R,(P)|A~ = u - R,(P)|A~~.
Therefore

R,(P") = {a € Ryt ald~ € R,(P")[2A~}
= {a € Ry a|A~ € u-R,(P)|UA} = u-R,(P).
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Also, since R°(P’) and u - R°(P) are two systems of positive roots for R°
(= the system of roots of A? in €s(A~7)) there is a v in the Weyl group of this
root system (which is contained in the subgroup of W7 (4) which leaves 3~
pointwise fixed) so that R7(P") = vu - R7(P). Since v leaves A=’ pointwise fixed
and since R, (P’) is uniquely determined by R, (P")|2~° we also have R, (P’) =
- Ry (P)=vu-R,(P). ThusR(P")= R (P") UR,(P')=uv-R°(P)\Juv-R,(P)
= uv- R(P), which shows that R (P) and R(P’) are indeed W7 (4) related.

Remarks. (1) The fact that P\G/H is finite is also proved in [11]. For the
case when G is complex and H a real form of G, the description of (P\G/H )open
coincides with the one given in [10]. Other special cases have of course long
been known (cf. the examples below).

(2) Ng,g(A) = {gH € G/H: ga(g~!) € Ne(4)} is a symmetric subspace of
G/H. ie. if § = gH € Ng;z(4) then the symmetry o, : G/H — G/H about g
(defined by o,(g") = go(g™)a- (') leaves N,z (A4) invariant. Note incidentally
that Ng,u(A) can be directly characterized in terms of the symmetric space
structure of G/H: N,z (A) consists of those points of G/H whose symmetries
normalize 4 (4 being regarded as a transformation group of G/H)). Note also
that We,u(4) is a finite symmetric space (in the sense of Loos [4]) with the
symmetry oyabout § = Co(A)gH (go(g™?) € Ng(4)) defined by

og(g') = galg™)g'.
(3) It seems natural to wonder whether in fact G = P - Ny(4) - H, which
would amount to Weg,5z(4) = We(4)/Wgu(4). But this is false, in general.

(It happens if and only if the s-stable maximal split abelian subgroups of G are
all conjugate under H.)

The above theorem becomes particularly simple if H is the full fixed point
set of o. In that case one easily checks that G/H can be embedded into G by
the map gH — go(g~!). The image G, of this map is just the connected com-
ponent of the identity in the set of s-symmetric elements, i.e. elements ¢ € G
satisfying o (g=1) = g [4, vol. I, p. 182]. The action of G on G/H by left transla-
tions corresponds to the action of G on G, defined by g(x) = gxa(g™?) for
g € Gand x € G,.

CoRroLLARY 15. Let P be a minimal parabolic in G, A a o-stable maximal split
abelian subgroup in P. Let G act on G, = {ga(g™?): g € G} by g(x) = gxo(g™1)
and set

Ng,(A) = Ne(4) N G,, Cg,(4) = Co(4) N G,.
Then the following quotients of this action are isomorphic:
(1) P\G, = Cs(4)\Ng,(4).

(2) If the P-orbit of e is open in G,, then

(P\Go)open = C(4)\Cq,(4).
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Proof. (1) is immediate from Theorem 13(1). (2) will follow from Theorem
13(2) if we can show that ¢ € Ng(4) leaves A= invariant if and only if
ga(g™!) € Cg(4), i.e. if and only if the action of g on 4 commutes with the
action of ¢ on 4, and this is clear.

Remark. In general, when H is a possibly proper subgroup of G, the map
G/H — G,, gH — ga(g™) is a finite covering whose fibers are in one-to-one
correspondence with G?/H, which is a group isomorphic to a finite direct prod-
uct of cyclic groups of order two [4, vol. I, p. 171].

We now drop the assumption that P be minimal. If 4 is a ¢-stable maximal
split abelian subgroup in P, set Wp(4) = Np(A4)/Ce(4) and Wpo(4) =
Wp(d) N\ W (A). With this notation we have:

CoroLLARY 16. (1) P\G/H 1s finite for any parabolic P in G.
(2) The union of the open P-H double cosets is dense in G. If P - H itself s
open then there is a o-stable maximal split abelian subgroup A in P so that

<P\G/H)onen = WPU(A)\WGU(A)/WH(A)

Proof. The fact that P\G/H is finite and that the union of the open P-H
double cosets is dense is a trivial consequence of Theorem 13(1).

Let P, be a minimal parabolic contained in P. Clearly, a P-H double coset
will be open if and only if it contains an open P-H double coset. If P - H
itself is open we can choose P, so that P, - H is also open. Assume that this is
so and choose a g-stable 4 in P,. The open Py-H double cosets are then of the
form PogH with ¢ € N,(4) and go(g~!) € Cq(4) (by Theorem 13(2)).
Suppose two of these, say Pog; and Pg.H, lie in the same P-H double coset:
PgH = PgH. We have to show that Pyg1H = Popg.H for some p € N,(4).
Replacing P by g,7'Pg; and Py by g:=1P g, one sees that it suffices to show that
PogH is contained in P - H for some g € Ng(4), ga(g™!) € Cz(4) only if
PogH = PopH forsome p € Np(4). Sosuppose that PogHH C PH, g € Ng(4),
and go(g™!) € Cy(4). Writeg = phwithp € Pand h € H. Then A = gdg™!
= phAh='p~1,s0 A" = p71Ap = hAh 'lies in P and is o-stable. After replacing
A’ by a conjugate under P M H we may even assume that 4 and A’ lie in a
common o-stable Levi subgroup M of P M ¢(P). (This follows from the fact
that any two o-stable Levi subgroups of P M ¢(P) are conjugate under a
o-stable element from the radical of P M ¢ (P), cf. the proof of Lemma 12.)
The intersections of 9 and A’ with the center of I coincide, being the largest
subalgebra of the center of M which splits in ®; and modulo the center of IN,
A and A’ are maximal split abelian in I while A~ and (')~ are maximal split
abelian in M. (A~ and (A’)~ are maximal split abelian in &~ (by Lemma
14.)) Applying Corollary 3 to the (semisimple) quotient of Mt by its center one
gets that ¥ and ' are conjugate under M M H, say A’ = Ad (m) - A with
m € M M\ H. Thus 4 = pA'p~ = pmAm=p~, pm € Np(A), and PgH =
PoypH = PopmH, as required.
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Remark. 1t follows from Theorem 13 that any P-H double coset (open or not)
has a representative g such that ge(g=!) € Ng(4). However, the description of
all such representatives of the same P-H double coset seems too complicated
to be of much use.

There is a class of parabolic subgroups of G which are of special significance
for the symmetric space G/H. They are constructed as follows. Suspending
previous conventions we now denote by 2 a maximal split abelian subalgebra
in & and by O, (a € R) the root spaces of ¥ in ®. Choose a linear order in A*
and set

N=2 O

a>0

From the relation [®,, O] C Gayp it follows that N is a nilpotent subalgebra
of & normalized by & = Cg(A). So P = Cy(A) + N is a subalgebra of ©.
Similarly, the connected subgroup N of G with Lie algebra M is normalized
by C¢(A4), so that P = C4(A4) - N is a subgroup of G with Lie algebra . In
fact, P is a parabolic subgroup of G, N is its unipotent radical, and Cs(4) a
Levi subgroup. To see this, extend  to a s-stable maximal split abelian sub-
algebra 3 of ®, and denote the root spaces of ¥ in & by Oz(& € R). So R =
R|% and for any « € R,

G = 3 {Ga: a2 = al.

Choose a linear order in 3* compatible with the order in A* defining N (i.e.
if @ € A*and @A > 0, then & > 0). Set

=3 G

a>0

Since & > 0 implies | = 0,

N = CaA) + N.

So N C Cq(4) N and P = Cg(d) - N contains the minimal parabolic
P = Cz(A) - N, which shows that P itself is parabolic.

Remark. 1t is easy to identify P in terms of the classification of parabolic
subgroups of G by sets of simple roots in R : P is the parabolic corresponding to
the set S of simple roots vanishing on % = 3~ (i.e. the set of simple roots fixed
by o). However, ¥ need not coincide with the split component S+ of the center
of €y (). (A may be properly contained in SL.)

Corollary 16 applies in the present situation (with A playing the role of the
A there):

(P\G/H)or)cn = WPlr(/T)\WGU(/T)/WH(/T)-

Now W' (A) is precisely the (normal) subgroup of W’ (A) which leaves the
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subspace A of ¥ pointwise fixed. According to the discussion after the proof of
Theorem 5

W' (A)/ W' (A) = We(4)
and
WHU(/T)/I/VPU (/T) =~ We(d),

where Ws(4) = Ng(A4)/Ce(4) is the Weyl group of R and Wy(4) =
Ngx(A)/Cyx(A4). So in the present situation Corollary 16 becomes:

CoroLLARY 17. P\G/H is finite, and there is a one-to-one correspondence
(P\G/H )open = W (A)/Wr(4)
so that
PgH < gWy(4)
ifg € No(A) representsg € We(4).

Remark. 1t follows from Theorem 13 that any P-H double coset (open or
not) has a representative g such that go(g~!) € Ng (). However, one may not
be able to choose g so that go(g™!) € Ng(4).

Examples. (a) Riemannian space. (1) Compact type. If G is compact then the
only parabolic subgroup of G is G itself and the only split abelian subgroup of
G is {e}. So in this case Theorem 12 is trivial.

(2) Non compact type. Suppose o is a Cartan involution of G so that H = K
is maximal compact modulo the center of G. The g-stable maximal split abelian
subalgebras of & are then precisely the maximal abelian algebras in &, If 4
is a o-stable maximal split abelian subgroup of G and go(g~') € Ng(A) for
some ¢ € G, write g = [ -k with/ € exp (&) and & € K. Then go(¢g™!) =
12 € Ng(4) Nexp (&7) = A, which shows that

Waw(d) = {Ce(A)gK @ go(¢™") € No(4)}

has only one element. So G = P - K for any (minimal) parabolic P of G (by
Theorem 13). This is essentially Iwasawa’s decomposition theorem. The
‘“special’”’ parabolics are in this case just the minimal ones.

(b) Lie groups. Let G, be a connected, semisimple, real Lie group. Set G =
Go X G and let H be the diagonal in G. So H is the fixed point set of the
involution ¢ of G defined by o (g1, g2) = (gs, g1) and the map G/H — G, gH —
g1+ g2~ is a one-to-one correspondence. The (minimal) parabolics of G are of
the form P = P, X P, where P; and P, are (minimal) parabolics in G. The
o-stable maximal split abelian subgroups in such a parabolic P are of the form
A = A, X Ay where 4, is a maximal split abelian subgroup of G in P; M P..
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The bijection G/H — Go maps N¢,5(A4) onto N¢,(4¢) and induces a bijection
of Wem(4) onto W, (4y). So the relation PNG/H = W ,u(4) of Theorem
13 (1) becomes P1\Go/ Py = W, (A4y), which is essentially Bruhat's decomposi-
tion theorem. (Of course, this is not an independent proof of Bruhat's theorem,
since that was used in the proof of Lemma 12.) The “‘special’’ parabolics are in
this case of the form P = P; X P,, where P, and P, are opposite minimal
parabolics of G,.

(¢) Real forms. Let G be a connected semisimple complex Lie group, Go = H
the connected real form of G defined by a conjugation ¢ in G. (So ¢ is an
involutive automorphism of the real Lie group G satisfying o(ix) = —io(x)
for all x € ). Let B be a minimal parabolic (=Borel) subgroup of G, 4
a o-stable, maximal split abelian subgroup of G in B. Then Ay = A7 4+ A~
is a Cartan subalgebra of &, with split component ° and compact com-
ponent z . A~ is maximal split abelian in & if and only if Ay is a maxi-
mally compact Cartan subalgebra of &, and if this is the case then no root
of A vanishes on A~ 9, 1.3.3.4]. It therefore follows from Lemma 14, (1) < (2),
that B - Go is open in G if and only if ¥, is a maximally compact Cartan
subalgebra of ®y; and if this is the case, then (P\G/Go)open == Wpr°(4)\
W (A)/We,(A) for any parabolic P containing B (Corollary 16). This is
essentially Theorem 4.9 in [11]. The “‘special’” parabolics are in this case the

Borel subgroups of G which contain a maximally compact Cartan subgroup
Of Go.

(d) Real hyperbolic spuces. Let G, H, and 4 be as in the example after
Corollary 11. For one of the two possible choices of an order in * =~ R the
“special’”’ parabolic P = Cy(4) - N defined above is then the subgroup of G
which leaves the one-dimensional subspace of R?*¢ spanned by ¢; + ¢,,, in-
variant (the other order corresponds to the subgroup P of G which leaves the
subspace spanned by e¢; — ¢,,, invariant). Note that P is not minimal, except
when ¢ = 1 (Riemannian case). We know that W¢(4) = Z,, and that Wy (4)
= Weu(A) unless p = 1, in which case Wg(4) is trivial. It therefore follows
from Corollary 17 that there is only one open P-H double coset, unless p = 1
in which case there are two. This can be seen directly as follows. Identify G/H
with the connected component X of ¢,,, in the hypersurface

fx € R (w,x0) = —x2. 0 —x,2 + .o a2 = 1]

Suppose x € X is in the P-orbit of e,y,, say x = p -e,, with p € P. Since
p-er+ eprq) = cler + epyy) forsome ¢ 5% 0, p-er = —x 4+ cler + epiy).
So —1 = (p-e,p-er) =1 —cler 4 eprq %), 16 (61 + Cpig, x) = 1/c 5# 0.
Conversely, if ¢ = (e1 + ¢,14, x) 5 0 forsome x € X, one can find p € 0(p, q)
so that p - ey, = xand p-e; = —x + c(er + ¢5y,) (because (x, x) = 1 =
(eprar €prg) and (—x + cler + i), =X + cler + €p4y) = —1 = (1, &1)).
Moreover, only the first and the last columns of p are determined by x, so that
one can even choose p to lie in SO (p, ¢) provided p > 1. (Recall that matrices
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in SOq(p, g) must have an upper left hand p X p submatrix of positive determi-
mant.) If p = 1, one may not be able to choose p in SOy (p, q): for example,
ifx = —e,p,thenc = —land (p ey, p-e1) = (—x 4+ cler + ¢py,), 1) = —1,
thus p must have a negative entry in the upper left hand corner. So if p = 1,
then there are two open orbits of P on X = G/H, namely the orbits of e,,
and of —e,.,; if p > 1 there is only one orbit, in agreement with the theory.
The argument shows further that the singular orbits of P on X make up the
intersection of X with the hyperplane {x € RP**: (x, ¢; + ¢,,,) = 0}.
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