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Abstract. This paper offers a philosophical overview and investigation of the problem of incom-

pleteness in set theory and what this entails for the ensuing debates about proposed extensions of

ZFC. The incompleteness of ZFC is well-known and leaves us with a rich array of competing exten-

sions. What should we make of disagreements between them? We start by considering second order

logic and its categoricity theorems and how they might be used to compare different set theories. We

then aim to use interpretability as a way of understanding that some of these debates are insubstan-

tial. This culminates in some discussion of the relationship between interpretability and the generic

multiverse. The second half of the paper then takes up a more modest goal: we search for common

ground and settle for partial agreement between set theories in much the same way that physicists

are often content with empirical agreement. We then aim to describe a natural bound on the amount

of agreement that we can expect to obtain between reasonable extensions of ZFC.

Set theory purports to provide a foundation for mathematics by providing a framework into which every

mathematical subject can be absorbed and understood. However, the subject matter of set theory itself

arguably remains a vexed question. It is well-known that our best set theories are incomplete. Naturally

enough, this incompleteness prompts debate over the propositions that are left undecided. Without

any prospect of deciding such questions, doubts about the fixedness of the content of set theory are

bound to arise and indeed have [Mostowski, 1967, Hamkins, 2012, Steel, 2014]. Problems of this kind

put the project of set theory on a strange footing. While we happily embed arithmetic and analysis

into the lower rungs of the cumulative hierarchy, we seem hampered in our efforts to understand set

theory itself. When one person says φ and another says ¬φ, who are we to believe? The development

of frameworks for posing and settling these questions are fundamental to the set theoretic enterprise.

Nonetheless, it’s arguable that the incompleteness encountered in set theory runs so deep that the

methodologies for settling such questions end up at least as controversial as the questions themselves.

My goal in this paper is to provide a metamathematical and philosophical investigation and overview of

the logical mechanics of disagreement in contemporary set theory. On might think of this as a piece of

mathematical philosophy of mathematics. In particular, I will argue that in many cases disagreement

in set theory is not as serious as it first might seem. I will offer two perspectives for thinking this that

divide the paper essentially in two. First, we’ll investigate the idea that the problem is one of mere

semantics. Perhaps these are are just definition debates and we are better understood as arguing past

each other. This is the topic of Section 2. Second, we’ll investigate the idea that there is sufficient
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common ground between the interlocutors of such debates that the stakes are lower than one might

expect. This is the topic of Sections 3 and 4. In both cases, our main investigative tool will be relative

interpretability. However, we shall begin our discussion in Section 1 by considering an important kind

of argument for the opposing position that most debates about set theoretic questions are substantive.

Besides setting the scene for our investigation, it will also introduce us to an intriguing and important

recurring character in our story: second order logic.

In more detail, the paper is set out as follows. We being in Section 1 with second order logic and

its categoricity theorems. We discuss the prospects for these and related tools for understanding

disagreement and we see that this perspective pushes the idea that one party to a disagreement must

be right while the other is wrong. We observe that this attitude seems to contrast with those of

contemporary set theorists, who sometimes take the models delivered by forcing to be just as good as

their ground models. Second order logic and forcing are constant lietmotifs in this paper; the former

will push us toward rigidity while the latter points toward a more flexible point of view. We then

introduce the formal tools of interpretation in Section 2. Our primary goal here is to take seriously

the idea the parties to disagreement about set theory could be merely arguing past each other and

so, in some sense, both of them could be right. The investigation here takes the form of a Goldilocks

search whereby we rule out a number of equivalence relations that are either too strong or too weak to

plausibly model the idea of a merely verbal dispute. This will lead us to an interpretative understanding

of the generic multiverse. In Section 3, we’ll shift our perspective away from disagreement regarding

entire theories to those parts that seem particularly important: the common ground. The underlying

motivation for this is an analogy with the idea of empirical equivalence between theories in physics.

We’ll show how the tools of interpretability can be naturally generalized to work in partial contexts

and illustrate some limitations of their applicability. Finally, in Section 4 we’ll ask just how much

common ground we can reasonably expect to find between strong set theories. Again we undertake a

Goldilocks search that leads us on the long road from agreement on the logic of transitive models to a

logic that brings together our recurring characters, second order logic and forcing: Ω-logic.

Given the length and density of this paper, it also seems apropos to provide a few – hopefully helpful

– remarks for the reader. First and regarding the philosophical side of things, my goal below has

been to deliver a somewhat opinionated overview rather than a comprehensive exploration of the rich

dialectics that I believe the problems discussed below pose. I do this, in part, since this paper is

long enough already, but also because I think these are philosophical discussions that are beginning to

attract more attention. As such, I would prefer to say a few things that are perhaps a little incautious

in the hope that others will come to refine and correct me in the future. Nonetheless, whenever I have

felt that I’m stepping into controversy or taking a less trodden path, I have tried to highlight this to

the reader so that they might not be misled. This seemed to me like the right strategy for a paper of

this kind. On the mathematical side of things, the reader will note that I have included quite a lot

of proofs, sometimes of quite well-known propositions. I have done this because I believe that proofs

are very much part of the content of this discussion. Nonetheless, I have aimed to merely sketch the

more familiar claims, while being more comprehensive with material less known to a general audience.

Moreover, I have also tried to design the document so that it might be read by those who would prefer

to pass these proofs by – even if only on a first reading. As such, a number of theorems are stated in
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a sub-optimal form in order to better fit with the discursive thread that is being traced at the time.

When this occurs, we’ll use the footnotes to point the reader to their canonical statements.

1. Comparison & Categoricity

The problem of incompleteness is, of course, hardly peculiar to set theory. With regard to arithmetic,

we often appeal to Dedekind’s categoricity theorem in this regard. A pleasing argument shows that

any two models of arithmetic in the full semantics of second order logic must be isomorphic to each

other.1 Thus given any arithmetic statement, either it or its negation will be true in such a model.

This result doesn’t tell us which one is the right one, but it does seem to give us reason to be confident

that there is a right answer. This strategy is not without controversy. For example, its use of second

order logic in its full semantics appears to ask us to assume the fixedness of something much more

complicated than original problem.2 Nonetheless, we may still wonder whether this strategy can be

generalized to the problem of set theory.

Theorem 1. [Zermelo, 1976] SupposeM and N are models of second order ZFC in the full semantics.3

Then eitherM or N is isomorphic to a rank initial segment of the other.

Following [Shepherdson, 1951], we may prove this by taking the transitive collapses ofM andN , noting

that since we are using the full semantics both M and N are well-founded. An inductive argument

then reveals that the respective collapses must be Vα and Vβ for some ordinals α and β. Thus, one

must be an initial segment of the other.

We have here a nice uniqueness result: models of second order ZFC in the full second order semantics

are unique up to a rank initial segment embedding. However, it doesn’t give us a full isomorphism

and so we don’t learn thatM and N decide the sentences of L∈ in the same way. The strategy above

is thus blocked. Moreover, we might again worry about the use of the full semantics of second order

logic.4 From this point of view this weak categoricity result doesn’t seem so surprising. Indeed, we

might think it on the verge of begging the question. Fortunately, Jouko Väänänen has provided an

extension of Zermelo’s theorem that makes no appeal to second order logic and even better, provides

a genuine isomorphism. The statement of the theorem requires a change to our standard practice of

doing set theory in the language L∈, which consists of just one two-place relation symbol, ∈. Rather,

we work in a language L∈,∈∗ with a pair of two-place relation symbols, ∈ and ∈∗. We then use a

theory ZFC(∈,∈∗) which has the usual axioms of ZFC for both ∈ and ∈∗. For example, for any sets

x and y, there is both an ∈-pair and an ∈∗-pair of x and y. Then with regard to the Separation and

Replacement schemas for ∈ and ∈∗, we permit arbitrary formulae of the combined language L∈,∈∗ .

Theorem 2. [Väänänen, 2019] ZFC(∈,∈∗) proves that ∈ and ∈∗ determine isomorphic structures.

1A model of second order in its full semantics logic includes every subset of the its object domain in its second order
domain. See Chapter 4.2 of [Shapiro, 1991] for a detailed description of the full semantics; it is called standard semantics

there. Dedekind’s theorem can be found as Theorem 4.8 in [Shapiro, 1991].
2See [Meadows, 2013] and [Maddy and Väänänen, 2023] for some discussion of this controversy.
3See Section 5.2 of [Shapiro, 1991] for a description of second order ZFC. Essentially, we just replace the Separation

and Replacement schemas with their natural second order counterparts.
4Speaking a little imprecisely, a model of second order logic in its full semantics is a model that is closed under subsets:

whenever x is an element of M, so is every one of its subsets. More precisely, whenever M = ⟨M,∈M⟩ and x ∈M and

y ⊆ {z ∈M | z ∈M x}, then there is some w ∈M such that for all z, z ∈M w iff z ∈ y.
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Proof. (Sketch5) First, we let U = ⟨V,∈⟩ and U∗ = ⟨V,∈∗⟩ be the structures associated with each

membership relation and note that they share the same domain. We show that U and U∗ are isomor-

phic. Since both membership relations are permitted in the Replacement Schemas, we may mutually

collapse U and U∗ into each other. A little more precisely, we have collapse functions:

π∗ : U∗ ∼=M∗ ⊆ U and

π : U ∼=M⊆ U∗.

With some work (that we omit for simplicity), it can be shown that these collapses yield ordinals of the

same length; i.e., that OrdM
∗

= OrdU and OrdM = OrdU
∗
. Now observe that sinceM is a submodel

of U∗, π∗ also collapses M to some N . We use this to make a squeezing argument to obtain the

isomorphism. More specifically, we we have it that

π∗ ↾M∼= N ⊆M∗ ⊆ U .

Since N and U are transitive, isomorphic structures with respect to the ∈-membership relation, we

must have N = U and so

U ⊆M∗ ⊆ U ,

which means that M∗ = U . Thus, we have π∗ : U∗ ∼= U as required. Furthermore, the isomorphism is

definable in U∗ and a similar argument shows that such an isomorphism is also definable in U . □

Clearly, the position from which this theorem is articulated is quite different to the standard ZFC

position employed in Zermelo’s theorem. What should we make of this? The most obvious distinction

is that we are not merely talking about models, which are sets, but rather a pair of relations that

mutually perceive each other as proper classes. A little informally, we might say that our position has

shifted; we are no longer on the outside looking in, but rather, we are part of the picture comparing one

membership relation to another. We might say that we have shifted from an external perspective to an

internal one. For this reason, Väänänen’s theorem is sometimes said to establish internal categoricity

in contrast to Zermelo’s external perspective.6 But why would this matter? I think the simplest way

to convey the potential philosophical value of this move is through a kind of thought experiment.

Recall that we began this discussion by observing the problem of incompleteness and its impact on

our perception of the subject matter of set theory. I raised the concern that, with respect to some

undecided statement φ, we might have one person who proposes φ while another proposes that ¬φ.

Suppose that we are those two people. Given our disagreement, we might wonder whether we can be

talking about the same subject matter. In this situation, it seems quite natural for me to augment

my set theory with an extra membership relation ∈∗ to accommodate your possibly distinct notion.

Then assuming we both agree that ZFC provides a sound basis on which to theorize about sets,

Väänänen’s theorem tell us that the universe associated with my ∈-relation is isomorphic to that of

5My goal is to convey the main idea of the proof rather than nail down all the details. This is because I want to highlight

that these kinds of moves were present in Shepherdson’s argument and because we shall see them again later. I should
also note that the axiom of choice is not used in this proof, so it still holds if we use ZF (∈,∈∗) instead. I’ve used ZFC
above just because it is the standard foundation for mathematics and thus, fits the discussion a little better. Similar

remarks apply later to Enayat’s Theorem 16 and Corollary 19. I thank Ali Enayat for prompting to note this.
6More detailed discussion of internal categoricity and its philosophical significance can be found in [Maddy and Väänänen,

2023] and [Button and Walsh, 2018].
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your ∈∗-relation. This seems like a big step forward. We are now on a similar footing to that we had

with regard to arithmetic. We haven’t decided the question, but the isomorphism tells us that there

is a right answer.

At least that’s one way of telling the story. I’d now like to spend some time drawing out some of the

more controversial assumptions that underlie this little argument.

(1) The domain for both ∈ and ∈∗ should be the same.

(2) Both membership relations should be permitted into formulae used in the Separation and

Replacement schemas.

(3) We only need to agree on ZFC.

We shall address each of these assumptions in turn below.

(1) The domain for both ∈ and ∈∗ should be the same. In the setup of ZFC(∈,∈∗), our quantifiers

range over a single domain objects. This assumption is crucial for us to be able to obtain the genuine

isomorphism between the ∈ and ∈∗ relations rather than a mere embedding of one relation into a rank

initial segment of the other. I’m not aware of a convincing philosophical argument that this is either a

good or a bad assumption, however, I’ll now record a couple of observations that may give some reason

for caution. First, we might think that some simple consequences of this theory are counterintuitive.

To see this, let’s consider an obvious example. In ZFC(∈,∈∗) there will be an emptyset, ∅, associated

with ∈ and an emptyset, ∅∗, associated with ∈∗. In general, they will be distinct and in these cases,

there could be some x such that x ∈∗ ∅ and y where y ∈ ∅∗. Thus, we have objects that are empty

according to one relation and nonempty according to another. Of course, this is not a mathematical

issue: Väänänen’s extension of Zermelo’s theorem is both elegant and intriguing. However, this issue

may give us cause to wonder how well it fits with our thought experiment above.7

This brings us to the second observation: perhaps there is a theory better suited to our argument

than ZFC(∈,∈∗). We motivated our thought experiment by imagining that you and I were concerned

that our discourse about set theory might not – as we might have assumed – have been focused on

a particular subject matter. In an attempt to formalize this situation, we proposed to expand our

languages to accommodate two membership relations. Väänänen’s theorem then appeared to resolve

the situation. However, we also noted that the use of a shared domain led to some counterintuitive

consequences. With that in mind, we might think that a more natural theory for our thought experi-

ment would be one that separated the domains associated with the two membership relations. Thus it

might be more natural to incorporate predicate symbols V and V ∗ that we treat as domains for ∈ and

∈∗ in the obvious way. We might then add an axiom demanding that V and V ∗ partition the domain

of quantification. This will remove the counterintuitive features we’ve just discussed, but it will also

mean that the isomorphism is lost. As with Zermelo’s Theorem 1, we’ll only get an embedding of one

structure into an initial segment of the other. So perhaps less ground has been gained than appeared

at first sight.

7To be very clear, I am not suggesting that Väänänen intended to apply his theorem in this way. Moreover, I do not

wish to claim that this thought experiment exhausts the opportunities for philosophical application of this theorem.
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(2) Both membership relations should be permitted into formulae used in the Separation and Replace-

ment schemas. ZFC(∈,∈∗) has two Separation schemas; one for ∈ and one for ∈∗. For example on

the ∈-side, we have it that for any x there is a set y such that for all z

z ∈ y ↔ z ∈ x ∧ φ(z)

where crucially φ(z) is any formula of L∈,∈∗ . Thus, we can use both ∈ and ∈∗ to provide conditions

for separation. This is a powerful assumption that is also crucial to obtaining Väänänen’s result. In

particular, we use the shared version of Replacement to obtain a definable collapse of one membership

relation within the other. But what reason do we have for thinking that this assumption is a reasonable

one within the context of our thought experiment?

This question has a more canonical response that originated in the context of the induction schema

in arithmetic [Parsons, 1990, Field, 1999]. To apply this to set theory, rather than merely taking the

axioms of ZFC at face value, we are implored to consider the intentions behind them. With regard

to the Replacement Schema, it literally says the following:8 Suppose x is a set and that F is a (class)

function that is definable in ZFC by a formula of L∈. Then the pointwise image of x via F is itself

a set; i.e., F “x is a set. We might argue that the restriction to (class) functions that are expressible

in L∈ is merely forced upon us by our choice of language: this is as much as we can do with the tools

we have available. But really the motivation for Replacement is that given any set x and any (class)

function G whatsoever, G“x should also be a set regardless of whether or not G is definable. So the

story goes. To articulate this enhanced version of Replacement, we need to move to a second order

version of set theory or one that allows quantification over classes. We then regard the Replacement

schema of ZFC as a mere approximation (among many) of thetrue second order version.9 But for our

purposes in ZFC(∈,∈∗) this is not required. In order to stay faithful to this intention, the natural

thing do to is to admit – not only those (class) functions definable using a single membership relation

– but rather (class) functions that can be defined using both of them. If we are taking seriously the

idea that any (class) function should enjoy Replacement, then those defined using L∈,∈∗ are certainly

within our scope.

(3) We only need to agree on ZFC. Our use of Väänänen’s theorem in the thought experiment aimed

to show that if you and I both agree on ZFC then we have good reason to think that we are talking

about the same subject matter. However, our motivation coming into that example was a little more

ambitious. We were concerned about the possibility that you think φ is true while I do not, where φ

is some sentence that is not decidable by ZFC. But this puts some pressure on our decision to use

ZFC(∈,∈∗) to model our debate. To see this, let’s make things more specific and suppose that you

think that the continuum hypothesis, CH, is true while I think it is not. Then it would seem natural

to represent this situation by letting, say, ∈ have CH satisfied while ∈∗ has ¬CH. We might record

these statements as CH∈ and ¬CH∈∗
respectively. Following through on this, we should then use the

theory

T = ZFC(∈,∈∗) + CH∈ + ¬CH∈∗

8We just discuss Replacement here. A similar story can be told for Separation.
9Alternatively one might invoke a story about the indefinite extensibility of such classes, rather than referring to a

definite totality of them.
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to model our debate. If we do this, then Väänänen’s theorem still holds since it just requires ZFC(∈
,∈∗). Thus, we get an isomorphism between the ∈ and ∈∗ relations and this entails that they satisfy

the same statements. But this is, of course, impossible since ∈ and ∈∗ disagree on CH. So T is

inconsistent. What should we make of this? The first and perhaps most obvious response is that this

reveals that one of us is wrong. Indeed, this little argument is really just another way of saying – as

we did with arithmetic – that there is a right answer. It gives us no clues regarding how to identify it,

but we are given reason to believe that there is one.

In this paper, I want to open the door to a second response and provide a critical investigation of

its prospects and boundaries. Rather than taking the road above, I would like to retain some doubts

around the assumptions that motivate our thought experiment and see where this can lead us. For

one reason to explore this territory, we note that a non-trivial section of the set-theory community

appears to retain doubts as to the fixedness of the subject matter of set theory. One example of this

occurs in the debate between John Steel and Hugh Woodin regarding what is known as the generic

multiverse [Steel, 2014, 2004, Woodin, 2012, 2011a, 2004]. Far too briefly, this is a view inspired by

the ubiquity of undecidability in set theory.10 Rather than accepting incompleteness as a problem to

be solve, we are encouraged to think of it as evidence of a failure to pose these questions correctly. In

particular, we take it that generic extensions of models of set theory are, so to speak, just as good as

their ground models.11 Other examples of roughly this attitude can be found in Joel David Hamkins’

multiverse approach to set theory and Saharon Shehah’s probabilistic attitude to set theory [Hamkins,

2012, Shelah, 1991]. In the sections that follow we are going to investigate this territory by exploring

two perspectives through which one might not take all debates in set theory seriously: that some

debates are merely verbal; and that there is sufficient common ground that we need not worry.

2. Arguing Past Each Other

The phenomenon of arguing past on another should be familiar one. Two disputants appear to be

vigorously engaged in a deadlocked debate when it is revealed that the disputants do not understand

the meaning of some crucial term or claim in the same way. With this revealed and after a little more

discussion, they realize that once they understand each other’s meaning, the debate is resolved and

their disagreement has been translated away. I aim to explore the idea that many debates about axioms

in the foundations of mathematics can be seen as instances of disputants arguing past each other. The

idea then is that these disputants are really saying the same thing, but just employing language in

divergent ways to achieve this. To put this idea on a more precise footing, we shall use the theory of

interpretation. We start with a brief overview of this theory as it will provide us with a mathematical

framework for analyzing disputes between alternative foundational theories12 . As intimated above,

the fundamental instrument of interpretation is translation. Unless stated otherwise, we shall restrict

our attention to the language of set theory, L∈.

10I’d like to be clear that I’m not claiming that either Steel or Woodin believe the view described; rather that this
debate has been conducted in response to a folk attitude that has been prevalent since the arrival of forcing. Their
work has brought much needed precision to what was once a murky disagreement often debated on the basis of dubious

metaphysical assumptions.
11We’ll revisit the generic multiverse later in this paper, however, detailed analysis of its goals can be found in [Maddy
and Meadows, 2020, Meadows, 2021].
12A more comprehensive overview can be found in [Visser, 2006].
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Definition 3. [Tarski, 1953] Let T and S be theories in L∈. We say T interprets S if there are formulae

δt(x) and εt(x, y) recursively determining a translation t : L∈ → L∈ such that:13

t(x = y) := x = y

t(x ∈ y) := εt(x, y)

t(¬φ) := ¬t(φ)

t(φ ∧ ψ) := t(φ) ∧ t(ψ)

t(∀xφ) := ∀x(δt(x)→ t(φ))

and for all φ ∈ L∈

S ⊢ φ⇒ T ⊢ t(φ).

Informally speaking, the T user provides a translation of the S user’s ∈-relation and defines a domain

on which it is interpreted. Then anything that S can prove can be proven in T through the lens of this

translation. Beyond this syntactic perspective, the following fundamental theorem provides a more

picturesque understanding of the mechanics of interpretation.

Theorem 4. Suppose T interprets S via t. Then t determines a function

t∗ : mod(T )→ mod(S)

such that for allM |= T , m0, ...,mn ∈M and φ(x̄) ∈ LS

M |= t(φ)(m0, ...,mn) ⇔ t∗(M) |= φ(m0, ...,mn)

when for all i ≤ n,M |= δt(mi).
14

We call such a t∗ a mod-functor and we’ll frequently omit the ∗ below as it should not cause any

confusion. By way of explanation, this theorem tells us that whenever T interprets S we obtain a

function taking a model of T and returning the internal model of S defined within it. Then using

the soundness and completeness theorems, we see that whenever T interprets S, then S is consistent

relative to T . We now consider a classic example of an interpretation.

Example 5. Let ZFC + MC be ZFC plus the assumption there is a measurable cardinal and let

ZFC + V = L be ZFC plus the assumption that every set is constructible (i.e., that V = L). Dana

Scott showed that ZFC +MC implies that V ̸= L, so both theories cannot be true at the same time.

However, it is possible for ZFC +MC to interpret ZFC + V = L. We define our interpretation t by

letting δt(x) say that x is constructible (i.e., x ∈ L); and we let εt(x, y) simply say that x ∈ y. Thus

we preserve the interpretation of the membership relation but restrict the domain of the interpretation

13Note that the = clause is somewhat unusual in that we are demanding that identity, unlike membership, is left alone
by the translation. Since we will almost always be working in extensions of ZFC this doesn’t make much difference

since ZFC is Morita complete in the language of Barrett and Halvorson [2016] and Meadows [2023b]. In the language
of Visser and Friedman [2014], all the interpretations considered below are identity preserving. In places where results

are sensitive to this issue, we shall take care to highlight this to the reader using the footnotes.
14This useful theorem seems to be part of the folklore although it is arguably implicit in Section 2(d) of [Feferman, 1960].
Extensive use and generalization of it can be found in [Visser, 2006]. A sketch of the proof can be found for Theorem

3.2 of [Meadows, 2023b].

https://doi.org/10.1017/bsl.2025.10093 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10093


OF SHEEP AND WOLVES EQUIVALENCE & DISAGREEMENT IN SET THEORY 9

to the constructible hierarchy. Thus t(φ) is just φL. It can then be seen that for all axioms ψ of ZFC

ZFC + V = L ⊢ φ ⇒ ZFC +MC ⊢ t(φ)

and ZFC +MC ⊢ (V = L)L essentially by definition.15

Returning to our motivating philosophy, what should we make of this example? Does it tell us that

a debate between the ZFC + MC user and the ZFC + V = L user would be an instance of arguing

past each other? Can the debate be deflated using the interpretation t? I don’t think that would be

right. However, something significant is certainly happening. The ZFC+MC user is able to translate

everything that the ZFC + V = L user says and prove it themselves. Under this interpretation,

it is simply not possible for them to disagree.16 Nonetheless there are a number of features of this

interpretation that should make us hesitant to suggest that the substance of the debate has been

removed and they are really just talking past each other.

In the remainder of this section, we are going to work our way toward an interpretability relationship

that plausibly captures our idea of a debate based on misinterpretation. We shall do this by considering

a sequence of stronger and stronger relationships noting at each point their shortcomings with respect

to our underlying motivation. They will all be too weak for our purposes, but this will be resolved in

the following section.

2.1. Too weak. Let us start by observing that mere interpretability – as instantiated in Example 5 – is

generally asymmetric. While one theory can interpret another, this does not mean that the other can

interpret the original. For example, it is easy to see that ZFC + V = L cannot interpret ZFC +MC.

This is because ZFC +MC says there is a measurable cardinal κ, and so it can prove that there is a

model of ZFC + V = L. This means that ZFC + MC proves outright – and not merely relatively –

that ZFC + V = L is consistent. Thus, if ZFC +MC were also consistent relative to ZFC + V = L,

then ZFC + MC could prove its own consistency, thus, contradicting Gödel’s second incompleteness

theorem. Thus, there is an interpretative asymmetry.

But what does this tell us about our debate scenario? While ZFC +MC is in a position to interpret

ZFC+V = L in such a way that it can provide a complete simulation of ZFC+V = L via translation,

ZFC + V = L cannot do the same. Only one party to the dispute is able to make a move that could

put them in position to translate the debate away. Indeed, the debate ensuing out of Example 5 is in

an even worse position. Not only is the ZFC + V = L user unable to interpret ZFC +MC and thus,

simulate ZFC + MC via translation; the ZFC + V = L user proves that there are no measurable

cardinals. As such, I think it could be reasonable for the ZFC + V = L user to conclude that

ZFC + MC is just plain false. Perhaps ZFC + MC does not have an interpretation since it simply

doesn’t deserve one. On the other side of this dialectic, the ZFC + MC user may draw different

conclusions. The ZFC +MC user may see the ZFC +V = L user’s inability to simulate ZFC +MC

as indicative of a pathological weakness in ZFC + V = L. They might claim that ZFC + V = L is

15For more details see the opening chapters of [Devlin, 1984].
16More specifically, there will be no sentence φ ∈ L∈ such that the ZFC + MC user asserts – or better proves – t(φ)

while the ZFC + V = L user proves ¬φ.
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OF SHEEP AND WOLVES EQUIVALENCE & DISAGREEMENT IN SET THEORY 10

unduly restrictive as theory purporting to provide a foundation for mathematics.17 Regardless of who

is right, it seems clear that they are not merely arguing past each other. This asymmetry motivates

an obvious improvement of mere interpretation.

Definition 6. T and S are mutually interpretable if there are translations, t and s such that

t : mod(T )↔ mod(S) : s.

It is no longer enough that T interprets S, they must be able to interpret each other.

Example 7. ZFC and ZFC + V = L are mutually interpretable. The interpretation, t, described in

Example 5 also works for ZFC to interpret ZFC + V = L. Given a model of ZFC we just use its

version of L to get a model of ZFC+V = L. Note that, unlike ZFC+MC, ZFC alone cannot prove

the consistency of ZFC + V = L since it lacks the measurable cardinal or any other extra assumption

that would permit such a proof to go through. Indeed, ZFC is – strictly speaking – a weakening of

ZFC + V = L. Thus to interpret ZFC in ZFC + V = L, we can just use the identity translation

i that neither restricts the domain nor alters the membership relation. This works simply because a

model of ZFC + V = L already is a model of ZFC.

Mutual interpretability is clearly an equivalence relation on theories. Does it give us a more plausible

relation to represent our motivating idea of arguing past each other? Clearly, the asymmetry of mere

interpretability has been removed. However, I now want to discuss three reasons to be reserved about

whether mutual interpretability is really sufficient to deflate debates between alternative foundations

of mathematics.

(1) Practical triviality

(2) Poor fit

(3) Loss in translation

2.1.1. Practical triviality. One reason to pause is the comparative ease with which mutual interpretabil-

ity results can be obtained. The following theorem of Per Linström gives a stark illustration of this.

Recall that a theory T is essentially reflexive if T can prove the consistency of each of its finite

fragments.

Theorem 8. [Guaspari, 1979, Lindström, 1979] For essentially reflective theories T and S that can

interpret PA, the following are equivalent:

(1) T interprets S; and

(2) Every Π0
1 theorem of S is a theorem of T .

The essential idea of the proof is to work within T and use the completeness theorem to define a model

of S.18 The assumption around Π0
1-statements ensures that the construction does not get stuck. This

then leads to the following – perhaps counterintuitive – result.

Fact 9. ZFC and ZFC + ¬Con(ZFC) are mutually interpretable.

17For a more thorough discussion of restrictiveness in foundations see [Feferman et al., 2000, Maddy, 1997, Meadows,
2022].
18See Theorem 6.6 in [Lindström, 2003] for more details.
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Proof. (Sketch) Clearly ZFC + ¬Con(ZFC) can interpret ZFC using the identity interpretation.

In the other direction, we note that the reflection theorem ensures that both theories are essentially

reflexive. Moreover, it can be seen that ZFC+¬Con(ZFC) has no more Π0
1 consequences than ZFC.

Thus, ZFC + ¬Con(ZFC) can also interpret ZFC. □

Morally speaking, ZFC and ZFC + ¬Con(ZFC) are very different theories. The latter theory aug-

ments ZFC with a statement that is in about as bad faith as one could imagine with its base: it says

that it’s inconsistent. Assuming – as we do – that ZFC is actually consistent, then the only models of

this theory will be ones where the natural numbers are nonstandard and their putative witnesses to the

inconsistency of ZFC will be among them. It seems very unlikely that a hypothetical debate between

users of these theories is one in which the participants are merely arguing past each other. I think the

right lesson to take from this is that mutual interpretability simply sets the bar on equivalence too

low. It certainly tells us something of value, but it doesn’t tell us that arguments between proponents

of mutually interpretable theories aren’t engaging in a substantive debate.

2.1.2. Poor fit. Another reason for reservation, is the weakness of the simulation offered by an inter-

pretation. When T interprets S via some translation t, we know that every theorem of S is provable

– modulo the translation – in T . We might say that the simulation is complete. But is it also sound?

Returning to the characters of Example 5, we find a situation where this is not the case. Recall that

we had a translation t such that for all sentences φ of L∈

ZFC + V = L ⊢ φ ⇒ ZFC +MC ⊢ t(φ).

However, the converse fails. For example, ZFC + MC, proves that there is a countable transitive

model satisfying ZFC and the statement that 0# exists, which we abbreviate as 0#∃. The existence

of such a model is a Σ1
2 proposition and thus, by the Lévy-Shoenfield theorem,19 it doesn’t change

its meaning when its quantifiers are restricted to L. Thus, ZFC + MC also proves that there is a

transitive model in L that satisfies ZFC + 0#∃. But from Gödel’s second theorem, we know that

ZFC + V = L cannot prove its own consistency let alone that there is a transitive model of ZFC, so

the arrow above cannot go in both directions. Regarding soundness, we see that ZFC + MC proves

more than ZFC+V = L even through the translation. Moreover, the excess statements are ones with

regard to which a reasonable advocate of ZFC+V = L might demur. Of course, this example involves

interpretative asymmetry, however, this problem also occurs between ZFC and ZFC +¬Con(ZFC).

In particular, when we interpret ZFC in ZFC + ¬Con(ZFC) using the identity translation, we end

up with ¬Con(ZFC) being an obvious theorem of ZFC + ¬Con(ZFC) but not of ZFC.

What should we make of this? In the context of our thought experiment, we see that mere inter-

pretability doesn’t provide a perfect simulation. When a theory T interprets a theory S, we see that

rather than proving exactly what the S proves, T proves everything S proves and possibly more. Sup-

pose I am the S user and you are using T to interpret me via some interpretation t that overshoots

in this way. You might claim that you are providing a simulation that deflates any potential debate,

but I may object that you are proving too much. I might think that among your extra theorems there

is a false statement. My reason for using T could be that it represents the very limit of my present

19See Theorem 13.15 of [Kanamori, 2003] for a statement and proof.
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knowledge and therefore that the excess given by T goes too far. This lack of fit motivates our next

equivalence relation, which is based on a refinement of ordinary interpretation.

Definition 10. Let us say that T faithfully interprets S if there is a translation t such that

S ⊢ φ ⇔ T ⊢ t(φ).

We thus solve the fit problem by fiat. We demand that the translation proves exactly the translations

of the theorems of S. Such an interpretation seems to have a better claim to providing a genuine

simulation. Faithful interpretation also has a pleasing semantic version: T faithfully interprets S via

t if and only if the associated mod-functor t : mod(T ) → mod(S) is a surjection up to elementary

equivalence.20 The use of faithful interpretation gives a more plausible claim to providing a proper

simulation and thus we might wonder if it is a suitable model for debates where parties argue past

each other. Disappointingly, we see that for a wide class of theories, faithful interpretation is almost

as easy to obtain as ordinary interpretation.

Theorem 11. [Lindström, 1984] Let T and S be essentially reflective theories that can interpret PA.

Then the following are equivalent:

(1) T faithfully interprets S; and

(2) Every Π0
1 theorem of S is a theorem of T and every Σ0

1 theorem of T is a theorem of S.

Roughly speaking, this is a generalization of Theorem 8 in which we use the completeness theorem in

T to obtain a model of every complete theory extending S. This then gives us every model of S up to

elementary equivalence. To do this, we use the tree of different completions of S as given by Henkin’s

completeness theorem.21 We then use some inherent incompleteness in T to chose a path through that

tree depending on how certain undecidable sentences turn out in a model.22 The conditions of (2)

in the theorem ensure this construction is not derailed. With this in hand, we can easily obtain the

following result.

Fact 12. ZFC and ZFC plus the statement “there is no ω-model of ZFC” are mutually faithfully

interpretable.

This follows since these theories have exactly the same Σ0
1 and Π0

1 consequences; and indeed, this is the

necessary and sufficient condition for mutual faithful interpretation. The requirements are obviously

stricter than those for mere mutual interpretation, but as the Fact above shows, we still seem to end

up with something that is far too easy to obtain.23 In particular, the claim that there is no ω-model

of ZFC seems like a substantive point of disagreement.

It’s also possible to obtain a little insight into why faithful interpretation doesn’t deliver what we want.

In the proof of Theorem 11, we need to make a bunch of random decisions to ensure that we capture

20In other words, for all models N of S there is a model M of T such that t(M) ≡ N . The claim is proven using a

simple compactness argument.
21See Theorem 6.14 in [Lindström, 2003] for more details.
22In ZFC, we can use the continuum pattern for this. See Theorem 2.10 of [Lindström, 2003] for a way of doing this in

arithmetic.
23For an example where faithful interpretation is ruled out, note that ZFC + ¬Con(ZFC) cannot faithfully interpret

(on any interpretation) ZFC since it has an extra Σ0
1 consequence in the form of ¬Con(ZFC).
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all the models of the interpreted theory up to elementary equivalence. To do this, we make use of the

undecidability of the interpreting theory. This allows us to make infinitely many choices through the

tree of theory completions.24 However, it is not difficult to see that this proof strategy is not revealing

any kind of deep connection between the theories. Rather, we are using a clever trick to connect the

incompleteness of one theory to that of another. This does the job, but it is not telling us that these

theories provide two different ways to talk about the same subject matter.

2.1.3. Loss in translation. If we are to think of our interlocutors as arguing past each other, then we

want to have some sense that they are really talking about the same subject matter and the source

of disagreement is merely a matter of semantics. If we’re really using language differently to talk

about the same content, then we should expect that if I translate my language into your language and

then back again, I should end up saying exactly what I said in the first place. Or from the semantic

perspective of Theorem 4, we should expect that if we start with a model of my theory transform and

it into one of yours and then back into mine, I should end up exactly where I started. This does not

occur with our example of mutual interpretability above. To see this, let

i : mod(ZFC + V = L)↔ mod(ZFC) : t

be the mod-functors determined by the interpretations described in Example 7. Now suppose thatM
is a countable model of ZFC and letM[c] be a generic extension ofM by a Cohen real.25 ThenM[c]

satisfies ZFC and that V ̸= L. Then note that i◦ t(M[c]) is justM[c]’s version of L and so it satisfies

V = L. Thus i ◦ t(M[c]) ̸=M[c].

Thus, the mutual interpretations do not return us to exactly where we started: information has

been lost in translation and it cannot be recovered. In particular, if we have a model of ZFC with

non-constructible sets, then once those sets are gone we have no way to get them back through inter-

pretation. Thus, it seems wrong to think of a dispute over whether to include V = L is one where the

participants are merely arguing past each other. We need a stronger relation.

2.2. Too strong. We now have number of failed approaches to modeling a debate between users of

alternative foundations that are practically identical. We started from mere interpretation and worked

our way up to mutual faithful interpretation. However, in each case we found reason to think that the

fit between the equivalence relation and the idea of merely verbal dispute was flawed. In this section,

we are going to start from the other end of the spectrum and work our way down. In particular, we

are going to begin with the strongest natural equivalence relation on theories aside from identity. We

start from the semantic perspective.

Definition 13. Let T and S be theories articulated in LT and LS respectively. We say that T and S

are definitionally equivalent if they are mutually interpretable as witnessed by mod-functors

t : mod(T )↔ mod(S) : s

in such a way that:

24See [Meadows, 2022] for examples and generalization of this kind of argument.
25The reader will lose little if they think of M being a countable transitive model. See the appendices of [Maddy and

Meadows, 2020] for discussion of how to force over possibly ill-founded models.
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(1) whenever M |= T , then M = s ◦ t(M); and

(2) whenever N |= S, then N = t ◦ s(N ).

Intuitively speaking, this tells us that if we start with a model of T and then transform it into a model

of S and back again using t and s, then we end up exactly where started again. Similarly, if we start

with a model of S. Thus, these translations do not suffer any of the information loss we discussed in

Section 2.1.3.

For a trivial example, let sLO be the theory of stricty linear orders using the < reation and let nsLO

be the theory of non-strict linear orders using the ≤ relation. We then translate x < y as x ≤ y and

x ̸= y; and in the other direction, we translate x ≤ y as x < y or x = y. We make no alterations to the

domains.26 It is then easy to see that if we start with a model A of sLO and use these translations to

make a model of nsLO and then a model of sLO again, we get back to A. Similarly, if we start with

a model of nsLO.27 If we imagined a debate between an sLO user and an nsLO user, then intuitively

we’d probably think of this as being a pointless debate. The fact that these theories are definitionally

equivalent reveals why. It gives us a precise way of understanding the way in which the parties to such

a debate would be merely arguing past each other.

For a more interesting example, recall Aczel’s proposal for a theory of sets that intentionally admits

ill-founded sets. The theory is formulated by removing Foundation and replacing it with Aczel’s anti-

foundation axiom.28 Let us call this AZFC. This theory had been proposed as a means of addressing

an apparent weakness of ordinary ZFC: it’s inability to deal with an ill-founded membership relation.

For example, according to ZFC there can be no set x such that x is itself its only member. AFZC

on the other hand, proves that such sets exists. Nonetheless, we have the following result.

Theorem 14. [Visser and Friedman, 2014] ZFC and AZFC are definitionally equivalent.

If we brought this to bear on our debate between alternative theories, then this result shows that

ZFC and AZFC can be understood as different ways of talking about the same subject matter. If

we imagined a debate between the ZFC user and the AZFC user, then this result tells that there is

not so much at stake. Or perhaps better, while we haven’t ruled out the possibility that the ZFC

and AZFC user are talking about two different abstract structures, it is clear that ZFC and AZFC

could be used to talk about the same abstract structure. This doesn’t mean that there cannot still be

some kind of disagreement. In particular, the AZFC user might claim that – although the ZFC user

can simulate them perfectly – AZFC is simply a more natural tool for the investigation of ill-founded

structures. Such a debate seems comparable to debates between programming languages when all such

languages are Turing complete. There’s something to debate, but it’s on a very different level to the

discussion in this paper.

26Indeed, definitional equivalence cannot permit an interpretation that restricts the domain to a proper subset.
27Note that the translations do not take us forth and back to the same formula. For example, we get x < y ends up
being translated back to (x < y ∨ x = y) ∧ x ̸= y. Nonetheless, these formulae are equivalent over sLO.
28The anti-foundation axiom says that for an A = ⟨A,R⟩ where R ⊆ A2 there is a unique surjective, near-embedding

f : A → ⟨X,∈⟩ where X is transitive. Here a near-embedding is a homomorphism such that for all x, y ∈ A, xRy ↔
f(x) ∈ f(y); the ← direction takes us beyond an ordinary homomorphism. This definition is described in Theorem 1.6
of [Forti and Honsell, 1983]. Alternative formulations and further discussion can be found in [Aczel, 1988] and [Barwise

and Moss, 1996]. See [Maddy, 1997] for philosophical discussion of the place of Aczel’s set theory in the foundations of

mathematics.
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While I believe the semantic perspective on definitional equivalence gives us a very concrete way of

understanding what is happening, we might worry that it relies too much on toy models and so we

might only be able to make use of this relationship from a – so to speak – external perspective. It

turns out that an internal approach can be offered which is quite similar in spirit to Theorem 2. To

motivate this, first recall the given a theory T articulated in LT , we may form a simple definitional

expansion T ∗ of T by adding a new relation symbol P to LS and an axiom of the form

∀x̄(Px̄↔ φ(x̄))

where φ(x̄) is a formula of LT .29 In effect, we are defining the extension of P using the formula φ(x̄).

This means that the new symbol, P , is redundant in the sense that it can always be replaced by φ(x̄)

wherever it occurs.30 Let us say that a definitional expansion of T is formed by a series of simple

definitional expansions. We then have the following result linking definitional equivalence with a more

internal perspective.

Fact 15. Let S and T be theories articulated in LS and LT respectively where LS and LT share no

vocabulary.31 Then the following are equivalent:

(1) S and T are definitionally equivalent; and

(2) There are definitional expansions S∗ and T ∗ of S and T respectively into LS ∪ LT such that

T ∗ and S∗ are logically equivalent (i.e., they are the same theory).

Informally speaking, this tells us that S and T can each be definitionally expanded to the same language

LS ∪ LT to give the same theory. Let’s apply this to our comparison between ZFC and AZFC by

supposing that you think we should use ZFC while I think we should use AZFC. Both theories are

articulated in L∈, but say different things about the membership relation. Following the same course

as we did in relation to Väänänen’s theorem, it seems appropriate to move to a language with two

membership relations, L∈,∈∗ . We let ZFC use ∈ and AZFC us ∈∗. Then the you can use ZFC

in L∈,∈∗ to provide a definition for ∈∗. And similarly the I can use AZFC in L∈,∈∗ to provide a

definition for ∈. The resultant theories then have exactly the same consequences. As in our discussion

of Väänänen’s theorem, we move to a shared language and obtain a kind of collapse between the

theories in question.

Definitional equivalence addresses all the problems of the previous section and gives us a plausible way

to model disputes where participants are arguing past each other. But how well does it work on our

original project to compare alternative extensions of ZFC? Very interestingly, we see something like

categoricity rears its head once more.

29Constant symbols and functions symbols can also be added by a definition, however, the underlying theory must

establish the required uniqueness for such objects.
30Of course, this doesn’t mean that a definitional expansion is without value. For example, the practical use of ZFC is

littered with an array of defined vocabulary without which it would likely be unusable by humans.
31This annoying technical restriction is required for the equivalence but it is also easy to accommodate in our philosophical

story. We are simply taking care to distinguish our language from that of our interlocutor.
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Theorem 16. [Enayat, 2016] If S and T are theories extending ZFC that are definitionally equivalent,

then S and T are the same theory.32

Proof. Suppose that we have mod-functors t : mod(T ) ↔ mod(S) : s witnessing the definitional

equivalence of T and S. We claim that T and S have the same consequences. To see this, let T ∗ be a

definitional expansion of T into L∈,∈∗ by adding the axiom

∀x∀y(x ∈∗ y ↔ εt(x, y))

defining ∈∗ using εt. Then note that since t and s witness definitional equivalence we also see that T ∗

implies that ∈ can be defined in terms of ∈∗; i.e., we have

∀x∀y(x ∈ y ↔ εs(x, y)∈
∗
)

where εs(x, y)∈
∗
is the same formula as εs(x, y) except that instances of ∈ have been replaced by ∈∗.

Given that T and S both extend ZFC, this means that T ∗ is an extension of ZFC(∈,∈∗) and so

by Väänänen’s theorem ∈ and ∈∗ are always isomorphic and so T and S must have the same logical

consequences. □

This seems like bad news. Our goal has been to develop a precise means of modeling disputes between

adherents of distinct set theories extending ZFC in such a way that we could think of the parties as

arguing past each other. We’d hoped to translate the disagreement away and having investigated a

number of equivalence relations that were too weak, we used this discussion to motivate the relation of

definitional equivalence. This provided the, so to speak, gold standard of equivalence through which

no information is lost. However, in the case of set theories extending ZFC, we see that definitional

equivalence is trivial in that it reduces straight back to identity. For some, this could be the end of the

road. An argument very like the categority argument we started with also appears to block the use of

interpretability for our project. This much is certainly true: we’ll need to lower our standards if we

are to retain our goal of adequately modeling such disputes as instances of arguing past each other.

2.2.1. The interpretability hierarchy. Fortunately, there are a number of lower standards that remain

philosophically appealing. So with the problems of the previous section in mind, we now introduce

a series of natural weakenings of definitional equivalence and investigate their prospects for deflating

debates between strong set theories.

Definition 17. Let T and S be theories articulated in LT and LS respectively. Suppose that T and S

are mutually interpretable as witnessed by mod-functors

t : mod(T )↔ mod(S) : s.

We say that t and s witness that T and S are:

• Bi-intepretable if there are definable functions f and g over T and S:

(1) whenever M |= T , then fM :M∼= s ◦ t(M); and

(2) whenever N |= S, then gM : N ∼= t ◦ s(N ).

32This is actually a weakening of Enayat’s theorem, but this version fits better with our current discussion. A stronger

version of the theorem will be discussed later. We also note that a similar and sharper observation about the relationship

between internal categoricity and bi-intepretablity is made in [Freire and Hamkins, 2020].
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• Iso-congruent if:

(1) whenever M |= T , then M∼= s ◦ t(M); and

(2) whenever N |= S, then N ∼= t ◦ s(N ).

• Sententially equivalent if:

(1) whenever M |= T , then M≡ s ◦ t(M); and

(2) whenever N |= S, then N ≡ t ◦ s(N ).

So less formally, we see that definitional equivalence takes us back and forth to exactly where we

started. Sentential equivalence takes us back and forth to a model with the same complete theory.

With isocongruence we return to an isomorphic structure. And with bi-interpretability, we return to

an isomorphic structure and we can actually define the isomorphism. Taking little stock we see that

we have the following chain of implications among the equivalence relations we’ve discussed so far:

Definitional equivalence → Bi-interpretability → Iso-congruence → Sentential equiva-

lence→Mutual faithful interpretability→Mutual interpretability→ Equiconsistency.

I don’t believe it’s known whether the first two arrows reverse, however the rest of the sequence is a

strict hierarchy.33

We’ve seen some reason to think that definitionally equivalent theories just provide two different ways

of talking about the same thing. But given that the new relations are weaker we might wonder

whether they could adequately model disputes about alternative set theories. We can provide some

philosophical motivations for using these relations for this purpose. For example, suppose that we

adhere to some form of structuralism about mathematics. There are many ways to formulate such

positions, however, at their core is the maxim that we should not be concerned with what a structure

is made from, we should only be concerned with the structure itself.34 More succinctly, we should

only care about a mathematical structure up to isomorphism. Thus in general, given two isomorphic

structures, we think there is no good reason to prefer on over the other. Then both bi-interpretability

and iso-congruence seem to provide a good fit with this position. Both of these relations tells us that

if we go back and forth we end up with a model that is – by structuralist lights – just as good as

the one we started with. Bi-interpretability provides an extra feature in that we are – so to speak –

able to see the isomorphism, while this is not required for mere isocongruence. We might say that bi-

interpretability gives an internal perspective to the structuralism involved, while mere iso-congruence

provides an external point of view.35 With respect to sentential equivalence we might turn to some

species of formalism in which the enterprise of mathematics is understood to be – at its root – a

syntactic process of proving theorems from axioms. Our talk about infinite mathematical structures

is to be thought of as a fiction or heuristic crutch that support the real work that is fundamentally

33It should be noted that if we allow a more liberal definition of bi-interpretability that allows us to treat definable
equivalence classes as objects, then there is a pair of theories that are bi-interpretable but not definitionally equivalent.

The first example of this was provided by Visser and Friedman [2014], however, a much more natural example can be
found in Theorem 16 of [Enayat and  Le lyk, 2024]. Moreover, if we restrict our attention to countable models, then there
is a pair of theories that are iso-congruent but not bi-interpretable. See [Meadows, 2023b] for more details.
34There is an extensive literature on structuralism in philosophy of mathematics. However, for our purposes the modest

attitude based approach on [Hamkins, 2020] is sufficient and very general.
35This distinction between internal and external perspective is motivated by a similar distinction in epistemology. See
Section 3 of [Balaguer, 1995] for a related discussion. It is not clear to me whether or how this relates to the distinction

between internal and external perspectives with regard to categoricity.
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syntactic. From this perspective, our talk of moving back and forth between models is merely a

congenial way of getting at the important fact, the back and forth move preserves the real syntactic

information since it preserves the complete theory.

Returning to our motivating problem, we must now ask whether going lower in the hierarchy of

equivalence relations helps. The first step down is disappointing. Visser and Friedman have shown

that for theories that are able to provide a reasonable foundation for mathematics, if they are bi-

interpretable, then they are definitionally equivalent. Recall that a sequential theory is a theory that

interprets a very weak set theory that is intended to capture the minimal requirements for coding

sequences and thus, syntax.36

Theorem 18. [Visser and Friedman, 2014] If T and S are bi-interpretable theories that are sequential,

then T and S are definitionally equivalent.37

The proof takes a few steps, however, a crucial move is to take the internally defined isomorphisms to

deliver an internal version of the Cantor-Bernstein theorem which allows us to turn the injections into

a bijection. It is then easy to see that ZFC and its extensions are sequential theories and so we have

the following result.38

Corollary 19. [Enayat, 2016] If S and T are bi-interpretable extensions of ZFC, then S and T are the

same theory.39

Thus, it seems that our internal structuralist perspective cannot support the possibility of disagreement

between adherents of mutually inconsistent extensions of ZFC. This could be another stopping off

point for some readers. It tells us that the only times we can translate away apparent disagreement

by translating back and forth to an isomorphic structure – where that isomorphism is visible – the

disagreement was illusory in the first place.

2.3. The middle ground. We appear to be running out of room in our hierarchy with only iso-

congruence and sentential equivalence remaining. These are relative newcomers and as such, less

is known about them. Nonetheless, the space between between iso-congruence and bi-interpretability

seems very small. The only example distinguishing them that I know relies on restricting our atten-

tion to countable models to ensure certain isomorphisms exist but remain undefinable. More work is

36More specifically, a sequential theory must interpret Adjunctive Set Theory via a direct interpretation. Adjunctive

set theory consists of two axioms: first, there is an empty set; and second, for any pair of sets x and y there is some z
containing exactly y and the members of x. A direct interpretation is one that preserves identity and doesn’t restrict
the domain. All interpretations considered in this paper preserve identity. I should also mention that in fact, Visser and

Friedman really show that we only need one of the theories to be able to interpret a somewhat weaker class theory. See
[Visser and Friedman, 2014] for more details.
37It’s important to note that the interpretations witnessing bi-interpretability must preserve identity. In the context of
htis paper, all interpretations are identity preserving: see the first clause of Definition 3. In the context of ZFC this

doesn’t matter too much, but it can be very important in weaker theories. For a significant example, see Theorem 16 of
[Enayat and  Le lyk, 2024].
38This kind of collapse result appears to be peculiar to strong theories like ZF and ZFC. For an excellent account of

this phenomenon in ZF and related theories see [Enayat and  Le lyk, 2024].
39This is an easy consequence of Theorem 16, Theorem 18 and the fact that ZFC is Morita complete. In particular,
in ZFC we can represent definable equivalence classes with definable objects using Scott’s trick. In model theory such
theories are said to eliminate imaginaries: see Section 4.4 [Hodges, 1997] for more details. I thank Ali Enayat for

drawing my attention to this.
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required here, but given this we shall also leave iso-congruence aside. Fortunately, it is possible to

separate sentential equivalence from iso-congruence. This also gives us a good example of sententially

equivalent extensions of ZFC.

Theorem 20. [Meadows, 2022] Let ZFC+V = L[c] be the theory consisting of ZFC augmented by the

statement that the universe has been constructed from a Cohen real over L. Then ZFC + V = L and

ZFC + V = L[c] are sententially equivalent but they are not isocongruent.

Morally speaking, it’s not difficult to see why these theories aren’t isocongruent. If we start with a

transitive model of ZFC+V = L and define a model of ZFC+V = L[c] it will want to be well-founded

have the same order type for its ordinals if it has any hope of defining a model of ZFC = V = L that

is isomorphic to the original. But then it can be collapsed and so – with a little work – we end up

having a Cohen real in the original model, which is impossible.

To show sentential equivalence, the obvious thing to do here is take a countable model M of ZFC+V =

L and then add a Cohen real to obtain a model of ZFC+V = L[c]. And in the other direction taking a

model N of ZFC+V = L[c], we can simply define N ’s version of L to obtain a model of ZFC+V = L.

The problem with this strategy is that the first step isn’t a genuine interpretation. Interpretations

always return models whose domain is a definable subset of the original model. Generic extensions

always return models that are proper supersets of the original model. This can be addressed by using

a Boolean valued ultrapower where we build a model using an ordinary ultrafilter over a complete

Boolean algebra rather than a generic ultrafilter.40 This means that the Boolean ultrapower can be

defined within the ground model, so we are able to define an internal model of ZFC+V = L[c] within

any model of ZFC + V = L.41 Exploiting the homogeneity of the forcing used to obtain Cohen reals,

it can then be shown that regardless of which ultrafilter we use, the resultant model will have the same

complete theory. Putting this together, we can show that the respective back and forth transitions

between models of these theories always give us a model that is elementary equivalent to the one we

started with.

This gives us our best prospect, so far, of an equivalence relation modeling disputants arguing past each

other. It doesn’t appear to be practically trivial like mutual interpretability or its faithful improvement;

and it doesn’t collapse into the triviality of identity like definitional equivalence and bi-interpretability.

If you believed that every set is constructible and I believed that every set is constructible from a

Cohen real over L, then we might use the interpretations above to translate this disagreement away

by noting that the back and forth interpretations preserve the complete theory of the original models.

I think many set theorists would agree that sententially equivalent theories like those above are close

enough as foundations as to be practically the same. Anything you can do in one theory you can do

in the other, via the translations. There is also a syntactic rendering of sentential equivalence.

Proposition 21. T and S are sententially equivalent iff there exist translations t : LS → LT and

s : LT → LS witnessing mutual interpretability such that:

(1) T ⊢ φ↔ t ◦ s(φ), for all sentences φ of LT ; and

40See [Hamkins and Seabold, 2012] for a detailed account of Boolean valued ultrapowers. Another way of doing this is
to define a notion of a generic interpretation. This is explored in [Meadows, 2022].
41See [Hamkins and Seabold, 2012] or [Meadows, 2023a] for more details about Boolean valued ultrapowers.
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(2) S ⊢ ψ ↔ s ◦ t(ψ), for all sentences ψ of LS.

Here we see that the translation functions return us sentence-by-sentence to exactly where we started

according to the theory in question. We might see this as offering a more internal perspective on

sentential equivalence. If you are a S user and I am a T user, then these translations reveal that I can

translate any sentence of my theory into yours and then return to obtain a sentence that arguably has

the same meaning.42

This looks like good news, however, we should also take into account what is lost in the move below

iso-congruence and bi-intepretability. In general, the back and forth translations do not return us to a

structure that is isomorphic to the one we started with: we only get elementary equivalence. As such,

we might wonder whether this relationship is strong enough to satisfy the mathematical structuralist.

I think the structuralist can reasonably complain that information has been lost in translation. For

example, when forcing is involved our use of Boolean valued ultrapowers means that the structure we

end up with is typically ill-founded from the perspective of the original model. If we like transitive

models, then the model we end up with seems obviously pathological. Nonetheless, if we consider the

example above, I think it’s not so surprising that this kind of information loss occurs. In a nutshell,

the information contained in ultra or generic filters is, so to speak, too random to be recovered by a

definition or interpretation. Essentially, this is because generics and ultrafilters are only obtained by

choice principles. The consequence of this is that when we use an interpretation that forgets a generic

set – as in the example above – there is simply no way of defining it back. Given this, if we want

forcing arguments to be in our toolkit for theory comparison, it seems that isocongruence is too much

to demand and that sentential equivalence provides a reasonable way of modeling the idea that distinct

theories are saying the same thing.

2.3.1. Pointwise equivalence. We’ve now finally found in sentential equivalence an equivalence rela-

tion that avoids the practical triviality of mutual interpretation and the collapse into identity of bi-

interpretability. I think it is a good candidate for theoretical equivalence between strong set theories.

Nonetheless, it also suffers a practical limitation in that examples of sententially equivalent theories

extending ZFC, tend to make use of very artificial theories. For example, while ZFC + V = L is

a natural albeit restrictive theory, the theory ZFC + V = L[c] is not commonly used and certainly

never proposed as a serious foundation for mathematics. Indeed, there is a sense in which this theory

was cooked to provide a simple pair of sententially equivalent theories.43 It would be better if we

had an equivalence relation between theories that worked between theories more commonly used by

set theorists. More particularly, it would be good to identify a non-trivial equivalence relation that

was able to enjoin theories of the form ZFC + φ and ZFC + ¬φ. In this little section, we’ll consider

a significant weakening of sentential equivalence that will provide many more examples of equivalent

theories. We’ll then discuss an equivalence relation from contemporary set theory that has a similar

42It is, however, worth noting that in contrast to the internal characterization of definitional equivalence (as in Fact 15)

we are using two different theory contexts T and S rather than one. We shall see that the ability to provide satisfying
internal syntactic counterparts to our external semantic equivalence seems to become more difficult the more we weaken

the equivalences.
43A more natural example of sentential equivalence occurs between an extension of ZFC and Steel’s multiverse theory

MV . See Theorem 32 and [Meadows, 2021] for more details. However, this is not an equivalence between extensions of

ZFC since MV does not (globally) satisfy the powerset axiom.
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extension: the generic multiverse. As this is the first place in this paper where forcing enters in a very

general fashion, I should make a quick remark about nomenclature. Whenever I talk about forcing or

generic extension, I shall mean that the underlying partial order is a set unless I state otherwise.

Our plan is to weaken sentential equivalence in two stages. For the first stage, we remove demand

that we always have to use the same translations to get between a model of one theory and another.

Rather, we may vary which translation we use in response to the model we are considering.

Definition 22. Let T and S be theories extending ZFC. We say that T and S are pointwise sententially

equivalent if:

• For all M |= T there is a model N of S and mod-functors t, s such that

t(M) ≡ N & s(N ) ≡M.

• For all N |= S there is a model M of T and mod-functors s, t such that

s(N ) ≡M & t(M) ≡ N .

The salient difference is that the translations are no longer deployed uniformly across the models of

T and S. We can use different translations from model to model. This opens up the playing field

substantially.44

To throw a little philosophical light on this equivalence relation, we return to our motivating example

of a debate about competing foundational theories. Suppose that you are using theory S while I’m

using theory T , where T and S are pointwise sententially equivalent theories extending ZFC. We see

that any model of my theory T can define a model of S and that model can in turn define a model of

T that is elementary equivalent to the one we started with. This means that if you prove a theorem

in S, there is a sense in which I can always access that by using the translation to move to a model of

S where that theorem is true and further there is a sense in which this model of S is equivalent to the

one I started with in the sense that it can define a model that is elementary equivalent to it. Similar

remarks show that you, as an S user, can access theorems of T by moving to an equivalent model.

Moreover, if some statement φ is merely satisfiable according to S then I know there is a model of my

theory T that can be defined in a model of S where φ is true and that is equivalent in the sense that

this model of T can define a model of S that has the same complete theory as the original model of S.

Again, similar remarks apply when we start from a sentence ψ that is satisfiable according to T .

I think these remarks speak of a tight connection between pointwise sententially equivalent theories,

however, unlike our previous examples there does not appear to be a syntactic or internal counterpart to

the pointwise equivalence relation. Since the pointwise equivalence allows us to vary the interpretations

used as we move between models, the talk of models becomes an essential part of the definition and

as such, its philosophical interpretation. Given that we noted that sentential equivalence may be more

appealing to those with formalist tendencies, this talk of models makes it more challenging to provide

a satisfying philosophical account of who should find pointwise sentential equivalence to be sufficient

for us to say that we have equivalent ways of talking about the same subject. It seems to be that the

easier we make it to find equivalences, the more difficult it is to explain the underlying philosophy.

44We note that if T and S are pointwise sententially equivalent then they are equiconsistent with each other over a weak

base theory. I do not know whether such T and S are mutually interpretable.
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The second stage of our weakening compounds this phenomenon. Given that the pointwise relation

focuses on models, this opens up the possibility of using arbitrary parameters in the definitions of our

interpretations. Then just as we allowed ourselves to vary the interpretation from model to model, we

might also allow ourselves to vary the parameters used in those interpretations. To set this up, we first

modify our interpretative mechanism to incorporate the use of parameters. Given that we are focused

on models, we just give the generalized version of mod-functor.

Definition 23. Let us say that t(·)· :
∑

M∈mod(T )M → mod(∅) is a parametric mod-functor determined

by the formulae δt(x, z) and εt(x, y, z) if all ordered pairs of a modelM = ⟨M,∈M⟩ of T and element

m ∈M , we have t(M)m = ⟨N,∈N ⟩ where:45

(1) N = {x ∈M | M |= δt(x,m)}; and

(2) ∈N= {⟨x, y⟩ ∈M2 | M |= εt(x, y,m).

Thus, the mod-functor definition remains the same except that we now allow the use of a parameter,

m ∈ M , to define the interpretations of domain and membership relation. With this in hand, we can

provide our final weakening of sentential equivalence.

Definition 24. We say that S and T are pointwise, parametrically sententially equivalent if

• For all M |= T there exist N |= S, parametric mod-functors t, s, and sets m ∈ M and n ∈ N
such that

t(M)m ≡ N & s(N )n ≡M.

• For all N |= S there exist M |= T , parametric mod-functors s, t, and sets m ∈ M and n ∈ N
such that

s(N )n ≡M & t(M)m ≡ N .

Once again, we are allowed to vary the interpretation we use from model to model. However in addition

to this, we are also allowed to pick parameters from the respective models to get the interpretations to

do the required work. This opens up the playing field further and again complicates the philosophical

story. While sentential equivalence seems more appealing to those with formalist tendencies, we’re now

not only talking about models but making essential use of parameters within them. Nonetheless, it is

arguably at this level that we see a more practical level of intervention by obtaining equivalences via

forcing of distinct natural theories extending ZFC. To demonstrate this we first recall that following

very useful theorem.

Fact 25. (Laver, 2007; Woodin) If V is a generic extension of an inner model M , then M can be

defined in V using a parameter.46

Informally speaking, this tells us that if we are in a generic extension, then we can define – using

parameters – any of the ground models from which our universe eventuated. This fact, in combination

with Boolean valued ultrapowers, allows us to show a striking equivalence.

45Note that mod(∅) is intended to denote models of the empty theory; i.e., arbitrary models of L∈. Also note that we

are abusing notation a little in the hopes of leaving less clutter on the page and making the relationship with ordinary
mod-functors more obvious to the reader. In particular, while we should write t(⟨M,m⟩), we are writing t(M)m instead.
We hope this causes no confusion.
46Note that this theorem cannot be extended to work for class forcing: see Theorem 26 of [Antos, 2018].
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Example 26. Consider the theories ZFC +CH and ZFC +¬CH. We claim that they are parametri-

cally, pointwise, sententially equivalent and provide a sketch of a proof. We start with a model M of

ZFC + CH. As is well known, in any such model, there is a complete Boolean algebra B such that

(⊩B ¬CH)M.

Let U be a ultrafilter over B from M. Then the Boolean ultrapower N of M by U can be defined

in M using the parameter U . Then it can be seen that N has an inner model M∗ that is a generic

refinement of N and is elementary equivalent to M. By Fact 25, M∗ is definable using a parameter

in N . Thus we have moved from a model of ZFC + CH to a model of ZFC + ¬CH and back to a

model of ZFC + CH that is elementary equivalent to the one we started with.

Next we start with a modelM of ZFC+¬CH. Rather than going to LM, we may force to collapse all

the cardinals below 2ℵ0 to obtain a model of ZFC +CH. More precisely, there is a complete Boolean

algebra B in any model M of ZFC + ¬CH such that

(⊩B CH)M.

The rest of this case is then analogous to the first case: we use an ultrafilter to define a Boolean

ultrapower and then return to an elementary equivalent model using Fact 25.

It’s then easy to see that the argument above can be adapted to obtain the following result. Taking

our lead from the example, let us say that a theory T interprets S via forcing if for all φ ∈ S, T proves

⊩P φ, where P is uniformly defined over T by some formula.47

Corollary 27. Any pair of theories that can interpret each other via forcing are parametrically, pointwise

sententially equivalent.48

This gives our best solution to the problem posed at the very beginning of this paper: is there a way

of deflating a debate between users of ZFC who disagree about whether some sentence φ is true or

not? We wondered whether we could offer translations that would reveal that they were arguing past

each. Could they be understood as using different languages to say the same thing? We then saw that:

mutual interpretation was too easy to obtain; bi-interpretability collapsed into identity; and sentential

equivalence only worked in special cases. But with the generalization to pointwise comparison with

parameters, the generalized notion of sentential equivalence gives us an equivalence relation that allows

us to deflate one of the fundamental problems of set theory: the continuum hypothesis. If we think

that CH holds, then we can travel to and return from an equivalent world where it is false. Similarly

if ¬CH is true.

2.3.2. The generic multiverse. We finally have an equivalence relation that is serviceable for the com-

parison of theories extending ZFC. However, we’ve also noted some difficulties in arguing for the

philosophical picture that motivates it. In an effort to alleviate this worry and to situate this rela-

tion in the context of contemporary set theory, we now highlight an intriguing relationship between

47In other words, P is defined over T in the same way that constant symbols of one theory can be interpreted in another.
As we noted above, this isn’t, strictly speaking, an interpretation. Nonetheless, it can often be converted into one using
the techniques described above.
48Recall that we are restricting our attention to set forcing here.
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pointwise parametric sentential equivalence and the generic multiverse. The latter notion has been in-

vestigated by Woodin and Steel in response to the incompleteness of ZFC wrought by forcing [Woodin,

2012, Steel, 2014]. Very crudely, the generic multiverse responds to incompleteness by embracing it

rather than attempting to remove it. Rather than attempting to solve problems shown to be be inde-

pendent of ZFC by forcing, we simply allow that there are set-concepts or worlds where such problems

have affirmative solutions and worlds where they do not. The underlying idea is not dissimilar to the

motivating problems of this paper. Indeed, I think its relationship with pointwise parametric sentential

equivalence gives a clear perspective of a role that the generic multiverse can play in set theory.

First we define the generic multiverse. Our definition is a little different to that offered in [Woodin,

2012] since we only demand that our models are countable but not transitive. Countability is required

to ensure that generic filters exist, but we avoid transitivity since our approach to forcing uses Boolean

valued ultrapowers which are generally ill-founded. This helps us to get the relationship with gener-

alized sentential equivalence, however, a similar relation was also proposed by Woodin in [Maddy and

Meadows, 2020]. It will be helpful to say that a generic refinement is obtained when we employ Fact

25 to define a ground model of the universe. Roughly speaking it is the inverse of the operation that

gives us generic extensions.

Definition 28. (Woodin) Let M be a countable model of ZFC. Let the generic multiverse generated

from M, denoted VM, be the set of models N such that there is a sequence ⟨M0, ...,Mn⟩ where

M = M0 and N = Mn such that for all i < n, Mi+1 is either a generic extension or a generic

refinement of Mi.

Thus, the generic multiverse of someM consists of all those models that can be obtained by a sequence

of generic extensions and refinements starting from M. We have a set of models closed under generic

extension and its inverse. Using a result of [Usuba, 2017], it turns out that every such model can be

obtained by a single generic refinement following by a generic extension.49 Our next problem is to

define a suitable equivalence relation using the generic multiverse.

Definition 29. Let us say that theories T and S extending ZFC are generic multiverse equivalent if

{VM | M |= T} = {VN | M |= S}

where we restrict our attention to models that are hereditarily countable.

The essential idea here is to blur the models associated with a theory T by considering their generic

multiverses. Note that whenever we have

{M | M |= T} = {N | N |= S}

then S and T are the same theory. By using a collection of generically related models rather than

a single model, we wipe away the generically superficial differences between those models. Thus,

comparing these generic multiverses associated allows us to ignore the kinds of difference that are caused

by forcing. If we don’t think these differences are significant, then generic multiverse equivalence is a

good way to track equivalences that ignore these differences. As with pointwise parametric sentential

49See [Maddy and Meadows, 2020] for more details. [Koellner, 2010] contains a similar result.
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equivalence, we see that ZFC + CH and ZFC + ¬CH are generic multiverse equivalent. Given a

model M of ZFC + CH, there is a model M[G] of ZFC + ¬CH in VM; and given a model N of

ZFC + ¬CH there is a model N [H] of ZFC + CH in VM.

Given the pointwise parametric sentential equivalence also obtains these kinds of equivalences, this

raises questions about its relationship with generic multiverse equivalence. Our goal now is to show

that – under certain restrictions – generic multiverse equivalence implies pointwise parametric sentential

equivalence. The restrictions are necessary since generic multiverse equivalence uses genuine generic

extension for forcing arguments while pointwise parametric sentential equivalence uses Boolean valued

ultrapowers. It can be seen that there are complete theories given by generic filters that cannot be

matched by ultrapower constructions. A relatively simple restriction is to restrict our attention to

theories extending ZFC by Σ2 statements. Essentially, a Σ2 statements says that something holds in

an initial segment of the cumulative hierarchy.50 A typical example is the statement that a measurable

cardinal exists. The following fact then underpins our claim.

Fact 30. (Woodin) Suppose there are unboundedly many Woodin cardinal and that φ is a Σ2 sentence.

Then whenever P ∈ V is such that ⊩P φ and Q is a poset, there is some Ṡ ∈ V Q such that:

⊩Q∗Ṡ φ.

Informally speaking, this tells that whenever a Σ2 sentence φ can be forced to be true but is then

forced to be false, it can still be forced to be true again. For this reason, it is often known as the

Σ2-resurrection theorem. We can then state our claim and sketch its proof.

Theorem 31. [Meadows, 2023c] Suppose T and S are extensions of ZFC plus there are unboundedly

many Woodin cardinals by Σ2 statements. Then if T and S are generic multiverse equivalent, then

they are also parametrically, pointwise sententially equivalent.

Proof. (Sketch) Suppose T and S are as above and that they are generically multiverse equivalent. Let

ZFC∗ denote ZFC augmented with a proper class of Woodin cardinals. Then let T be ZFC∗ + Φ

where Φ is Σ2; and S be ZFC∗ + Ψ where Ψ is also Σ2. Now let M be a model of T . By symmetry

of argument and results from above, it will suffice to show that there is a generic extension of M in

which S holds. Since T and S are generic multiverse equivalent, there must be a generic refinement

M∗ of M with a generic extension N satisfying S. But then using Fact 30, we see that M must also

have a generic extension satisfying S as required. □

Thus, we see that parametric, pointwise sentential equivalence provides us with a non-trivial lower

bound below generic multiverse equivalence. This speaks to both to the naturalness of generic multi-

verse equivalence and the value of the framework we’ve been developing by being able to capture it.

But is there some reason to prefer one of the other? In defense of parametric, pointwise sentential

equivalence, we have in it an equivalence relation that emerges through a natural sequence of gener-

alizations based on a linguistic translation: it’s just definability with parameters! By contrast generic

multiverse equivalence essentially relies on forcing and generic extension. These techniques are peculiar

to set theory and as such, one might worry about that the resulting equivalence relation is too parochial

50We’ll discuss Σ2-statements in more detail in Section 4.1 where we also observe their relationship with satisfiability in

second order logic.
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to support much philosophical significance. Moreover, the paucity of generic sets means that we must

restrict our attention to toy models that are countable. No such restriction is required with parametric,

pointwise sentential equivalence. On the other hand, John Steel offers a defense of generic multiverse

equivalence based on the quality of models it delivers in comparison to those offered by sentential

equivalence relations [Steel, 202?].51 As we observed above, in order to simulate the effect of forcing

arguments, we must use Boolean valued ultrapowers in parametric, pointwise sentential equivalence.

In general, the effect of this is that the models produced by such ultrapowers will be ill-founded. Steel

says that such interpretations fail to preserve meaning. I am unsure how to offer a complete theory of

meaning here, but we can illustrate the effect by considering how the meaning of the term “ordinal”

changes as we move from some ground model to an ill-founded Boolean ultrapower. While “ordinals”

are well-founded in the ground model, in general, they are not in the ultrapower. We might say that

the meaning of the term “ordinal” has not been preserved in this translation. By contrast, when we use

generic extensions, we obtain a model with exactly the same ordinals as those of the ground model.

Thus, the term “ordinal” and, indeed, much more is preserved in the move to a generic extension. For

this reason, we may come to prefer generic multiverse equivalence. We leave any final adjudication

on this matter to the reader, but note that the close relationship illustrated above is remarkable and

arguably casts them them both in a better light together.

This concludes our discussion of using “talking past each other” as a means of resolving debates about

extensions of ZFC. Our goal was to find a plausible way of modeling the idea that some mutually

inconsistent set theories could be considered as providing merely different ways of saying essentially

the same thing. The hope then was that the disagreement could be dissolved in translation. Having

discarded a number of equivalence relations that were too weak or strong, we then slowly worked

our way into a Goldilocks zone where equivalence wasn’t too easy to obtain and yet was applicable to

contemporary set theory. In pointwise, parametric sentential agreement we found a plausible alignment

with contemporary practice while – at the same time – making the philosophical story about the

naturalness of this relation more challenging.

3. The Common Ground

Having explored the idea of merely verbal dispute in set theory, I now want to investigate a distinct

but closely related reason to not take all debates in set theory seriously. Perhaps there is enough

common ground between competing set theories that the disagreements lying outside that region can

be largely ignored. This idea has obvious parallels in physics where people often talk about empirically

equivalent theories. Such theories have empirical information as their common ground and as such, for

the empirical purposes of physics any theory will be as good as any empirically equivalent alternative.52

Similarly with regard to the foundations of mathematics, we might imagine only caring about, say,

51Note that Steel’s comments in that paper actually relate to the following result:

Theorem 32. [Meadows, 2021] Let MV ∗ be Steel’s multiverse theory MV augmented by the statement that the multiverse
has a core that satisfies V = HOD. Then ZFC + V = HOD + the ground axiom is sententially equivalent to MV ∗.

The proof of this also makes use of Boolean ultrapowers, so I think Steel’s responses also apply in the current context.

For a precise description of MV and the rationale behind its axioms see [Maddy and Meadows, 2020] and [Steel, 2014].

The ground axiom is discussed in detail in [Reitz, 2007].
52A classic example of this kind is the relationship between Lagrangian and Hamiltonian mechanics. See [Barrett, 2019]

for a detailed discussion.
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how some set theory deals with analysis. We might see the rest of the theory as providing a kind of

ancillary scaffolding that facilitates a more complete theory of analysis, but not care so much about

that scaffolding itself. Perhaps we shouldn’t care about what’s happening in the heavens so much as

what is happening here and now closer to the ground.

Our project in the current section is to generalize the tools of relative interpretation to a theory of

common ground between theories. We call this partial interpretation. We outline some of the basic

theory here and illustrate some its limitations. Then in the following section, we shall apply these

tools to develop a better understanding how much common ground we can expect to find between

competing set theories. In contrast to our work on arguing past each other, we shall be working our

way up to stronger equivalences rather than trying to weaken relations that are too strong for practical

application.

3.1. Partial equivalence. Let’s start with a plausible example of something like empirical equivalence

in set theory. We’ll then use this as our guide to providing a general theory of partial equivalence

using interpretability. After that, we’ll apply our framework to some other examples and then show

that it has some disappointing limitations. Our prototypical example is well-known, however, it will

be useful to sketch a quick proof of it since it provides the basis for our investigation. Let us say that T

interprets S using an inner model if the mod-functor t : mod(T )→ mod(S) is such that for all models

M of T , t(M) is an inner model of M; i.e., t(M) is a model of S with the same ordinals as M.

Proposition 33. Let T and S be theories extending ZFC and suppose that T interprets S using an

inner model while S interprets T via forcing. Then T and S agree on Π1
2 sentences; i.e., for all Π1

2

sentences φ,

T ⊢ φ ⇔ S ⊢ φ.

Proof. Let φ be a Π1
2 sentence. (⇐) Suppose that T ⊬ φ. Then fix a model M of T where M |= ¬φ.

Since T interprets S via an inner model, M defines an inner model N of M such that N |= S. Now

N and M share the same ordinals, so the Levy-Schoenfield theorem53 tells us that N |= ¬φ. Thus,

S ⊬ φ. (⇒) Similarly, if S ⊬ φ, we may fix a model N satisfying S ∪ {¬φ}. Without loss of generality,

we suppose N is countable and so by our assumption we may fix an N -generic g such that N [g] |= T .

Again, N and N [g] share the same ordinals, so we have N [g] |= ¬φ and thus, T ⊬ φ as required. □

The proof above is driven by the fact that we are using good interpretations in the context of theories

that are strong enough to ensure that Π1
2 sentences are preserved. The classic example here is ZFC +

CH and ZFC+¬CH. Traditionally, a model of ZFC+CH can be obtained by using the interpretation

that restricts us to L; and a model of ZFC + ¬CH can be obtained by forcing to add ℵ2 many reals.

Informally speaking, this tells us that if we are happy – as the mathematical community generally is

– to use ZFC in our mathematical practice, then no matter what natural strengthening of this theory

we take up, we cannot disagree about Π1
2-statements.54 Following the idea above, we might take the

Π1
2-statements as the concrete ones that we really care about and the possible exotic extensions of

ZFC as mere instruments for learning more about what is concrete. This informal gloss only talks

53See Theorem 13.15 in [Kanamori, 2003].
54By this, we mean that there will never be a Π1

2 sentence φ of the stronger theory such that ZFC proves its negation.

See [Steel, 2014] and [Maddy and Meadows, 2020] for more discussion of this.

https://doi.org/10.1017/bsl.2025.10093 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10093


OF SHEEP AND WOLVES EQUIVALENCE & DISAGREEMENT IN SET THEORY 28

about natural strengthenings, so the scope of this claim is arguably limited. The idea that motivates

this is that the ways of extending ZFC that have turned out to have been mathematically fruitful are

linked to the large cardinal hierarchy by inner model and forcing arguments.55

This example gives us a reasonable prototype for “empirical equivalence” in the foundations of mathe-

matics. We now put our interpretative tools to work to abstract out what is arguably the underlying

mechanism of the example. This will allow us to draw some links with the work of the previous sections

and highlight the fact that “empirical equivalence” is fruitfully understood through the lens of relative

interpretability. We start by describing the idea semi-formally and then give the proper definition.

Suppose we have two theories T and S that purport to be foundations for mathematics. Then we

might consider a particular topic of mathematics that is discussed in some language L∗ and wonder

whether they agree about it. For example, we might consider the ways in which T and S are applied

to analysis. To do this we consider the ways in which T and S interpret the language of analysis.

Note, however, in the example above, we only obtain agreement over the Π1
2 fragment of the language

of analysis. In order to model this situation better we shall overload our notation and let L∗ represent

both a language and some fragment of the sentences associated with that language.56 We shall then

speak of L∗-sentences as those sentences of the language associated with L∗ that are members of the

fragment of associated with L∗.

Definition 34. Let T and S be theories in languages LS and LT respectively and let L∗ be some

language associated with a fragment of its sentences. Then suppose we have translations p and q

determining mod-functors such that:57

p : mod(T )→ mod(L∗)← mod(S) : q.

We say that T and S are agree on L∗ via p and q if for all L∗-sentences φ58

T ⊢ p(φ) ⇔ S ⊢ q(φ).

The idea here that we interpret L∗ in T and S using p and q; and then we say that they agree about

L∗ if the respective translations give the same L∗-theory; i.e., the same theorems in the fragment

associated with L∗. We might think of L∗ as the “empirical” domain that we really care about. In

contrast to most of the relationships discussed in Section 2, it appears to be very weak. For instance,

there is no demand for any kind of back-and-forth agreement between the theories. Indeed, we haven’t

even required that they be mutually interpretable. Rather, it seems most similar in structure to mutual

faithful interpretability, as in Definition 10, and it is perhaps best understood as a partial version of

that. Nonetheless, it does have a simple model-theoretic gloss.

Proposition 35. The following are equivalent:

55See [Koellner, 2010] and [Steel, 2014] for more detailed discussion of this.
56Recall that a fragment is just a subset of the set of sentences in some language. Strictly speaking, it would be more
precise to denote what we have called L∗ above as a pair ⟨L∗,Γ⟩ where L∗ is a language and Γ is a subset of the first

order sentences associated with L∗. I’ve opted to avoid this to keep things a little cleaner on the page, however, I shall
take care to use footnotes to head off potential confusions.
57Note that I’m abusing notation by writing mod(L∗) to denote all of the models of language associated with L∗. We

might call these L∗-models.
58Recall that below Theorem 4, I noted that we’d abuse notation and use t for both the translation of L∗ into LT and
the mod-functor t∗ : mod(T )→ mod(L∗). It seems apropos to mention it here since this is the first time since then that
we’ve abused our notation in this way.
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(1) T and S agree on L∗ via p and q;

(2) The pointwise images of the models of T and S through p and q respectively give the same

models of L∗ up to elementary equivalence in L∗, or more formally59

(p“mod(T )/ ≡L∗) = (q“mod(S)/ ≡L∗).

Proof. (1 → 2) Suppose M is a model of T . We show that there is a model N of S such that

p(M) ≡L∗ q(N ). This will suffice for one direction and the other is similar. First, we observe that any

φ ∈ L∗ that is true in p(M) is such that q(φ) is consistent with S. To see this note that since p(M)

is a model of T , p(φ) is consistent with T and so by (1) we see that q(φ) is consistent with S. From

here, it is easy to see that for any finite subset ∆ of ThL∗(p(M)), q“∆ is consistent with S. And so

by compactness, we may fix a model N of S where q“ThL∗(p(M)) is satisfied. Thus, q(N ) satisifies

ThL∗(p(M)) as required.

(2→ 1) Suppose T ∪ {p(φ}) is consistent. We show that S ∪ {q(φ)} is consistent and leave the other

(very similar) direction to the reader. First, we fix a model M of T ∪ {p(φ)} and then fix a model N
of S such that p(M) ≡L∗ q(N ). Then we see that since φ is satisfied by p(M), φ is also satisfied by

q(N ) and so N is a model of S ∪ {q(φ)} which suffices by soundness. □

Observe now that Proposition 33 can be understood within this framework. To see this, first recall

that there are many natural translations of the language of analysis into the language of set theory.

Let us fix one of them can call it the standard translation.

Proposition 36. Let T and S be theories extending ZFC that are equiconsistent as witnessed by inner

model interpretations or forcing. Then T and S agree on the Π1
2 fragment of analysis via the standard

translation of analysis in set theory.

In Section 2.3, we noted above that forcing arguments using generic extension don’t strictly give us

interpretations since they augment the domain. For this reason, we made use of Boolean valued

ultrapowers to get around this. However, to make the passage of our current inquiry a little smoother,

we’ll now proceed as if generic extensions do give us interpretations.60 It’s also worth noting that the

standard translation works on every sentence in analysis, not just the Π1
2 sentences. However, this has

no effect on the results.

We now have a general notion of partial interpretation based on interpretability that fits our canonical

example. It turns out that with the addition of large cardinal axioms, further examples of agreement

can be gained that encompass the entire language of analysis and beyond. This phenomenon has been

discussed extensively by John Steel in his work on eventual monotonicity and what he calls a theory of

the concrete [Steel, 2014, Feferman et al., 2000, Steel, 2010]. For one example, we have the following.

Theorem 37. [Steel, 2014] ZFC + ADL(R) and ZFC plus there are infinitely many Woodin cardinals

agree on the theory of the analysis (Π1
ω).

59A model of L∗ is a model of the language associated with L∗. We write M≡L∗ N to indicate that M and N satisfy

exactly the same L∗-sentences. Similarly, we write ThL∗ (M) for the set of L∗-sentences that are satisfied in M.
60For one way of making this precise see [Meadows, 2022] in the context of countable transitive models. To expand

this approach to deal with models that might now be well-founded, see the discussion in the appendix of [Maddy and

Meadows, 2020].
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Very roughly, we start by establishing the equiconsistency of these theories: a forcing argument takes

us from ZFC and the Woodin cardinals to a model of ZFC +ADL(R); and an inner model argument

takes us from a model of ZFC+ADL(R) to a model of ZFC with infinitely many Woodin cardinals.61

The arguments then proceed by showing that sufficient structure is preserved in these interpretations

to ensure that the theory of analysis is preserved.62

3.2. The limitations of empirical agreement. As we observed above, agreement seems very similar to

mutual faithful interpretability. Moreover, we saw reasons in Section 2.1.2 to be pessimistic about

the philosophical significance of faithful interpretability; in particular, it was too easy to obtain and

provided an implausible analysis of our target idea of arguing past each other. Perhaps worryingly, with

our definition of agreement above, we are only concerned with the translations of consequences of the

theories. We are not offering a more natural, structural connection between the theories themselves.

As such, the fact that T and S agree on Π1
2 sentences doesn’t tell us much about T and S or their

connection. Perhaps this is enough for an argument based on common ground, but we’ll see in this

section that it leaves some unsatisfying equivalences on the table that are difficult to remove by formal

means. To see this recall that in the example from the previous section, we considered theories were

mutually related by forcing or inner model arguments. But this is not required to obtain agreement

as we have defined it. Here is an arguably pathological illustration of this.

Proposition 38. Suppose there is a countable transitive model of ZFC plus an inaccessible cardinal.63

Then there are mutually interpretable theories T and S extending ZFC that agree on Π1
2 sentences but

are not mutually related by forcing or inner model interpretations.

Proof. Let T be ZFC plus the statement that there is an inaccessible cardinal. Let S be ZFC plus

every statement φ ∈ Π1
2 that T proves. Noting that T and S have the same Π0

1-consequences, we see

using Theorem 8 that they are mutually interpretable. Then since a model of T is a model of S, we see

T interprets S by the trivial inner model, itself. So it suffices to show that S cannot interpret T by a

forcing or inner model construction. To see this, use our assumption to fix a countable transitive model

M of T and let M† = LM . Then let M∗ = VM†

κ where κ is the least inaccessible cardinal according

to M†. Then M† is a model of S that thinks there are no inaccessible cardinals. To complete the

proof we observe that M∗ has no inner model or generic extension that thinks there is an inaccesible

cardinal. To see this, first note that since M∗ satisifies V = L is has no proper inner models and

that M∗ doesn’t satisfy T . Then observe that if G is M∗-generic, M∗[G] cannot think there is an

inaccessible since this is a Π1-statement and so by downward absoluteness, this would imply that M∗

also had an inaccessible. □

The connection between T and S from the proof above is clearly very weak as is evidenced by the fact

that, in general, a model of S will only be able to define a model of T that is ill-founded. There is

also something sufficiently odd about S to warrant consideration about whether such theories should

61See Theorem 32.16 and the sketch below it from [Kanamori, 2003] for more details. And for a thorough versions of

these arguments see Neeman’s chapter in [Foreman and Kanamori, 2009] and Koellner and Woodin’s chapter that follows

it.
62See [Steel, 2014, Maddy and Meadows, 2020] and [Meadows, 2021] for further discussion of the philosophical significance
of this phenomenon.
63This assumption is overkill, but makes for an easy proof.
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be taken seriously. In favor of S, we might observe that it appears to provide a way for us to obtain

more results in analysis without explicitly committing to the existence of large cardinals. This could

be seen as an advantage by those who are shy about the apparent ontological excesses of contemporary

set theory. However, the way in which this advantage is obtained is in some sense parasitic: we are

enjoying the benefits of theft over honest toil by simply lifting theΠ1
2 theorems of T in order to even

formulate S. John Steel is critical of this move and calls it an instrumental dodge [Feferman et al.,

2000]. While it is true that S doesn’t commit itself to the existence of an inaccessible cardinal and

this might seem like a benefit, we are left to wonder how one might extend or even just gain a proper

understanding of S, without investigating and understanding T better. It seems that the proper way

to investigate S must go through T and so the apparent alleviation of large cardinal burdens is more

of a dodge than genuine ontological parsimony. More practically, the use of S invokes a kind of bad

faith in that the only way to obtain the extra Π1
2 theorems is to prove them using T and then sweep

them up into S by fiat. One wonders whether the inaccessible cardinal of T has really gone away after

all.

This kind of pathology motivates a brief (and somewhat disappointing) effort to obtain a deeper

connection between theories and the languages they interpret. Our idea is to not merely demand

that the L∗-consequence of two theories are the same, but that the theories themselves are mutually

interpretable in a way that preserves their interpretation into L∗. The following definition is intended

to capture this idea.

Definition 39. Let T and S be theories in LS and LT respectively and let L∗ be some language

associated with a fragment of its sentences. Suppose we have t : mod(T )↔ mod(S) and

p : mod(T )→ mod(L∗)← mod(S) : q.

We say that t (sententially) preserves L∗ from T over p to S over q if for all L∗-sentences φ

T ⊢ p(φ)↔ t ◦ q(φ).

If in addition, there is some s : mod(S) → mod(T ) such that s preserves L∗ from S over q to T over

p, we say that s and t mutually preserve L∗ between S and T over q and p.

The key difference between preservation and agreement is that we also demand some connection be-

tween T and S in that they must be mutually interpretable, which then gives us a conduit through

which we can track the information about L∗ that is passed between these theories. Before we give an

example, we note that a more convenient model-theoretic characterization is also available.

Proposition 40. Given T, S, t, s,L∗, p and q as in Definition 39, the following are equivalent:

(1) t (sententially) preserves L∗ from T over p to S over q; and

(2) p(M) ≡L∗ q ◦ t(M) for allM∈ mod(T ).

Proof. To see this observe that the following are equivalent:

• p(M) ≡L∗ q ◦ t(M) for all M∈ mod(T );

• p(M) |= φ iff q ◦ t(M) for all M∈ mod(T ) and φ ∈ L∗;

• M |= p(φ) iff M |= t ◦ q(φ) for all M∈ mod(T ) and φ ∈ L∗; and
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• T ⊢ p(φ)↔ t ◦ q(φ) for all φ ∈ L∗.

□

Suppose T and S are set theories and that L∗ is the language of analysis. Then if the relation defined

above holds and we are given some model M of T , M defines a model p(M) of arithmetic that is

elementary equivalent to the model of arithmetic q ◦ t(M) defined in the model t(M) of S that is

defined in M. It is then easy to see that mutual preservation between theories implies agreement.64

Moreover, we see that the scenario of Proposition 33 also gives us mutual preservation.

Proposition 41. Let T and S be theories extending ZFC that are equiconsistent as witnessed by inner

model interpretations or forcing. Then those interpretations mutually preserve the Π1
2 fragment of

analysis T and S via the standard translation of analysis in set theory.

Proof. LetM be a countable model of T and suppose that t : mod(T )↔ mod(S) : s are interpretations

given by forcing or inner models. Let p be the translation of analysis into the language of set theory.

We claim p(M) ≡Π1
2
p ◦ t(M). This then holds since as we’ve remarked, forcing and inner model

arguments preserve Π1
2 statements. Similarly, p(N ) ≡Π1

2
p ◦ s(N ) for models N of S. Thus, we have

mutual preservation. □

This suggests that our initial abstraction of Proposition 33 to obtain the definition of agreement missed

an important feature of the relationship between such theories. So are there any theories that satisfy

Definition 34 but not Definition 39? Here is an easy example where agreement holds but preservation

fails.

Proposition 42. There exist theories T and S that are L-faithful over p and q but L cannot be mutually

preserved between T and S over p and q.

Proof. Since GBN is a model theoretic conservative extension of ZFC, we see that ZFC and GBN

agree on the language of analysis over the standard translations. However, ZFC and GBN are not

mutually interpretable since – by a reflection argument – ZFC cannot interpret GBN . □

This does give us a strict hierarchy between agreement and mutual preservation, but there is something

cheap about the failure since we blocked it by selecting a pair of theories that are very close but are,

somewhat annoyingly, not mutually interpretable. So can we can have mutually interpretable theories

that agree on some language but do not mutually preserve it? An affirmative answer to this question

might put us in a position to formally identify theories that exploit an instrumental dodge, like those

from Proposition 38. Unfortunately and perhaps surprisingly, a generalization of Lindström’s argument

for Theorem 11 shows that it many cases, agreement is sufficient for mutual preservation. To keep

things short and simple, we provide a relatively specific example and then merely remark about how

it can be generalized.

Theorem 43. Suppose T and S are essentially reflective, recursively axiomatizable theories extending

ZFC that agree on the theory of arithmetic. Then T and S mutually preserve arithmetic.

64For example, given the setup of Definition 39 and model M of T , we see that p(M) ≡ q ◦ t(M) where t(M) satisfies

S. A similar argument applies to models of S, and so we see that (p“mod(T )/ ≡) = (q“mod(S)/ ≡).
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Proof. Suppose M is a model of S. We aim to define a model N of T in M with the same theory of

arithmetic. More precisely, we want to show that M can define a model of

T ∗ = T ∪ {φ ∈ LAr | M |= φ}.

Fix a formula defining T ∗ and let T ∗M be the denotation of that formula in M. Note that it can be

arranged that the standard part of T ∗M is T ∗. Now observe that for any finite subset Γ0 of T and

finite set Γ1 of arithmetic sentences,

T ⊢
∧

Γ1 → Con(Γ0 ∪ Γ1).

This holds since T extends ZFC and so it can prove that Γ0 holds in some initial segment of the

universe which, of course, contains its version of N. Now since this sentence is itself arithmetic and T

and S agree on arithmetic, we see that S also proves this sentence.

We now claim that M |= Con(∆) for all finite subsets of T ∗. To see this, let ∆ be such a set and let

∆ = ∆0 ∪∆1 where ∆0 ⊆ T and ∆1 is a set of arithmetic sentences that are true in M. Then since

∆1 is satisfied in M and S ⊢
∧

∆1 → Con(∆0 ∪∆1) we see that M |= Con(∆0 ∪∆1) as required.

Now we can define the model of T ∗. We do this in two cases noting that either M |= Con(T ∗M) or

M ̸|= Con(T ∗M). In the first case, we let N be whatM thinks is the L-least model satisfying T ∗M. In

the second case, we let c be whatM thinks is the largest natural number such that the set X of codes

of formulae from T ∗M up to and including c are consistent. Such a c must exist in M since it thinks

that T ∗M is inconsistent. Moreover, by a previous claim, we see that c must be in the nonstandard

part ofM’s natural numbers. Thus, X includes T ∗ and is consistent according toM. Thus, we let N
be the L-least model of X. □

Thus, we see that under a few conditions that are easily satisfied, mutual agreement between theories

over some language implies that they also preserve it. Thus, the effort to demand more connection

between theories puts us in no better position with regard to the problem of the instrumental dodge.

Moreover, this result can easily be generalized as the following theorem demonstrates.

Theorem 44. Suppose T and S are recursively axiomatizable theories extending ZFC and the statement

that 0# exists. Moreover suppose that T and S agree on their L consequences. Then T and S can

mutually preserve their theories of L.

We omit the proof, but the key point is that since T and S both think that 0# exists, they can both

define their theories of L.65 For a particularly pathological example, we could let T be ZFC plus the

existence of a measurable cardinal and S be ZFC plus the statement that 0# exists and all of the

L-consequences of T . Then T and S mutually preserve their theories of L. This is another obvious

example of an instrumental dodge. So our efforts to avoid this pathology appear to have been in vain.

For this reason, we’ll content ourselves with mere agreement for the rest of this paper. Despite this,

these results shed some interesting light on the relationship between some natural generalizations of

mutual faithful interpretability and sentential equivalence to partial contexts and further work should

be done here.

65See Chapter 18 of [Jech, 2003] for more details.
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4. Maximizing the zone of agreement

We now have a serviceable theory of partial interpretation in place, but we still seem to lack a satisfying

explanation of what is driving the agreement we saw in Proposition 33. What is it about their

connection that leads them to agree on so much? Our goal in this final section is twofold. First, we aim

to refine our analysis of Proposition 33 by developing a better understanding of the structure that is

preserved by the forcing and inner model interpretations used there. This will give us an account that is

much more amenable to generalization and leads naturally to our second goal: to better understand the

boundaries of the common ground that can be forged between strong set theories. Following Woodin

an Koellner, we shall calibrate the our common ground using what they call strong logics. Indeed,

the ensuing discussion is heavily influenced by the work of Koellner, Steel, Väänänen and Woodin

[Koellner, 2010, Steel, 2014, Feferman et al., 2000, Ikegami and Väänänen, 2015, Woodin, 2001, 2012].

Steel’s discussion of a theory of the concrete in [Steel, 2014] and Koellner’s intriguing story of logics

between β-logic and Ω-logic in [Koellner, 2010] provided the initial inspiration for this section. My

somewhat modest goal has been to pull these threads together and slow the passage down so that we

might take a closer look at what lies along the way. Nonetheless, we should note that strong logics are

just one instrument, among many, that we might use to calibrate agreement. In the context of this

paper, they deliver a good way of slowing things down and a surprising connection between second

order logic and forcing, as is nicely illustrated in [Ikegami and Väänänen, 2015]. In a similar fashion to

Section 2, we will conduct another Goldilocks search. In that section, we quickly found some unsuitable

lower bounds and then worked our way down from the impractical relations like bi-interpretability to

sentential equivalence and various generalizations thereof. By contrast, here we will quickly find an

impractical upper bound and then we’ll commence a long journey upward from the logic underlying

Proposition 33 with the help of large cardinal assumptions.

Let us start by discussing what Woodin and Koellner call strong logics. Rather than considering

fragments of languages, like the Π1
2 fragment of analysis, we are going to instead consider agreement

on consequence relations strengthening first order logic by restricting the kinds of model that we admit.

As always, we shall restrict our attention to the language of set theory, L∈, unless otherwise stated.

What we shall call an X-logic will then be determined by a (generally proper) class X of models of

L∈. When given sentences Γ∪{φ} from L∈, we shall say that φ is an X-consequence of Γ, abbreviated

Γ |=X φ, if every M ∈ X that satisfies Γ also satisfies φ.66 In the case of Proposition 33, there is a

particularly natural X-logic that gives a very natural counterpart to the Π1
2 sentences of analysis. Let

β be the class of well-founded models and consider β-logic. We then see that:

Proposition 45. The following are Turing equivalent:

(1) {φ ∈ L∈ | |=β φ};

66This is essentially the approach to strong logics used by Woodin in [2012]. We note also that there is good reason to
not think of X-logics as genuine logics. In the model-theoretic tradition, a logic is not restricted to a particular language,

like L∈, and there is an expectation that it will satisfy certain invariance conditions. A typical example of an orthodox

strong logic is that obtained by extending first order logic with a new quantifier W which is such that Wxyφ(x, y) holds
in some model iff φ(x, y) is a well-founded relation. A general definition of logics like these can be found in Definition

1.1.1 of [Ebbinghaus, 1985]. Even if we allow languages extending L∈, then the logics considered below all fail to satisfy

this definition since they do not have the renaming properly. To emphasize this distinction, we thus refer to what Woodin
and Koellner call strong logics as X-logics, where the X is some implicit class of L∈-models. We thank an anonymous

referee for this helpful suggestion.
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(2) The set of true Π1
2 sentences.

Proof. (1≤T 2) Note that |=β φ iff

(4.1) ∀M (M is well-founded→M |= φ)

and this statement is clearly Π1
2. So the Turing machine sending φ to the corresponding version of 4.1

witnesses that 1 ≤1-1 2. (2≤T 1) Let t : Π1
2 → L∈ take φ and return a sentence of L∈ saying that the

universe is Vω+1 and (the standard translation) of φ holds. Then φ⇔|=β t(φ) as required. □

Thus, we might say that β-logic is the natural logical counterpart to the Π1
2 sentences of analysis. The

proof above also establishes that the consequence relation for β-logic is Π1
2-complete. With this in

hand, we can describe a suitable notion of agreement between theories regarding a logic.

Definition 46. Let us say that T and S completely agree on an X-logic, if

(1) T |= “Γ |=X φ” iff S |= “Γ |=X φ”; and

(2) T |= “Γ ̸|=X φ” iff S |= “Γ ̸|=X φ”

where Γ ∪ {φ} is a recursive set of L∈ sentences.

This is a strengthening of our previous conception agreement since we are demanding that T and S not

only agree on the X-consequences, they must also agree on X-satisfiability. This seems like the natural

notion of agreement between X-logics and it helps avoid the effects of idiosyncratic upward absoluteness

facts. Now we are ready to introduce the new ingredient into our analysis of Proposition 33: structural

preservation. The idea here is that beyond demanding that our theories are mutually interpretable,

we also want those interpretations to preserve the structure that guarantees the agreement we desire.

We start with a form of agreement tailored to Proposition 33.

Definition 47. We say that a mod-functor t : mod(T )→ mod(S) preserves L if LM = Lt(M) whenever

M |= T .

It is easy to see that both inner model and forcing interpretations preserve L since they essentially

just make a model wider or thinner and L is the thinnest inner model of ZFC. However, there are

other interpretations that preserve L that are neither forcing nor inner model interpretations. For one

species of example, consider the symmetric extensions used to obtain models where the axiom of choice

fails.67 We now put these pieces together to offer a new analysis of Proposition 33.

Theorem 48. If T and S are extensions of ZFC that are mutually interpretable via interpretations

that preserve L, then T and S completely agree about β-logic.

Proof. Suppose t : mod(T )↔ mod(S) : s are such interpretations. Then suppose T ⊬ “Γ |=β φ”. Then

we may fix M |= “Γ ̸|=β φ”. Since t(M) preserves L and ̸|=β is a Σ1
2 property, the Lévy-Shoenfield

theorem tells us that t(M) |= “Γ ̸|=β φ” and so S ⊬ “Γ |=β φ”. Essentially the same argument

suffice shows T ⊬ “Γ ̸|=β φ” implies S ⊬ “Γ ̸|=β φ” and analogous arguments then work in the other

direction. □

67See [Jech, 2008] for the canonical source on this technique.
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It is worth noting that the interpretations used above can involve both forcing and inner models. For

example, let T be the theory where we augment ZFC by the statement V = L[c] where c is a Cohen

real; and let S be the theory where we add to ZFC the statement V = L[r] where r is a random real.

Neither T nor S can interpret the other by an inner model interpretation or generic extension alone.

However, T may interpret S by going to its version of L and then forcing to add a random real. This

two step interpretation clearly preserves L and thus fits the template above. Similar remarks apply to

S.

This modified perspective gives a promising approach to carving out larger tracts of agreement between

set theories while also offering a kind of explanation for why the agreement occurs. Our eventual goal

will be to generalize the kind of structural preservation employed above to obtain even more common

ground via agreement over stronger X-logics. But before we move on, it’s also worth remarking that

agreement on β-logic is not at all trivial. It is well known that much of ordinary mathematics can be

construed as going on below the Π1
2-level (in the codes).68 Perhaps it is no coincidence that ZFC is

so good at handling countable transitive models: the natural calculators of the Π1
2 realm. As such, it

would not be absurd for someone to think that agreement over β-logic is all the common ground we

need between our set theories and that debates about theories that agree on β-logic are just quibbles

over our preferred mathematical scaffolding. Nonetheless, to further our investigation we shall take it

that a good foundation should have room for future expansion in mathematics and as such, we would

like to understand where the limits of agreement might lie.69

4.1. Too much to ask for. Now we aim to explore the limits of agreement using the framework proposed

above. An obvious and natural first question leaps to mind: what is the strongest X-logic we could

hope to incorporate into the common ground?70 The obvious and naive answer is: we’d like to preserve

the logic that has just one model, the entire universe. But since the universe is not itself a set, there are

tedious Tarskian issues around defining this as an X-logic. Moreover, in including the whole universe

we would have departed from our project to obtain merely partial agreement. So let’s look for what

seems to be the next natural step down. Let V· be the class consisting of all rank initial segments of

the universe; i.e., Vα for all ordinals α. Then for Γ ∪ {φ} ⊆ L∈, we say that φ is a V· consequence of

Γ, abbreviated, Γ |=V· φ, if for all α, Vα |= φ whenever Vα |= Γ. Like β-logic, V·-logic has some very

natural cousins.

Theorem 49. (Essentially Väänänen) The following are Turing equivalent:

(1) {φ ∈ L∈ | |=V· φ};
(2) the set of true Π2 sentences; and

(3) {φ ∈ L∈ | |=SOL φ}.

where |=SOL is the consequence relation for full second order logic.71

68See for example [Simpson, 1999].
69For further discussion of this, see Maddy’s notion of the Generous Arena [Maddy, 2016].
70I’m being a little vague with what it means for one X-logic to be stronger than another. Informally and roughly, we

might think of one X-logic as being stronger than another if it allows us to access more of the true theory of sets. For a
more formal relation, we might say X-logic is stronger than Y -logic if X ⊆ Y .
71See [Shapiro, 1991] for more details.
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Proof. (1≤T 2) Note that |=V· φ iff

(4.2) ∀α∀M(M = Vα →M |= φ)

where the right hand is Π2 since M = Vα is Π1.72 So the Turing machine taking φ to the corresponding

version of 4.2, we get a 1-1 reduction. (2≤T 1) Let φ be Π2 and ψ be a sentence of L∈ saying that the

universe is a ℶ-fixed point. Then it can be seen that φ holds iff

|=V· ψ → φ.

To see this note that if α is a ℶ-fixed point, then Vα is a Σ1 elementary submodel of V .73 Now suppose

φ is of the form ∀xχ(x) and suppose it is not true. Then we may fix some x such that ¬χ(x). Let α

be a ℶ-fixed point where x ∈ Vα. Then Vα |= ψ ∧¬χ(x) and so ̸|=V· ψ → φ. The proofs of (2≤T 3) and

(3≤T 2) are very similar to (2≤T 1) and (1≤T 2) respectively. For (2≤T 3), we use of sentence of SOL

that says its universe is a ℶ-fixed point. For (3≤T 2), we exploit the fact that being a full model of

SOL is Π1 to see that |=SOL is Π2. □

I think it’s fair to say that these equivalences reveal that V·-logic is a very natural X-logic. We might

even say that V·-logic gives us the strongest, natural notion of satisfiability we could hope to make

sense of. When φ is V·-satisfiable it is true in an initial segment of the universe that is maximal in

the sense that nothing can be added to it without increasing its rank. But is it a plausible place to

find agreement between strong set theories? Can it fit in the common ground? Given this relationship

with second order logic, we might wonder if a triviality result like Zermelo’s Theorem 1 or Enayat’s

Corollary 19 is on the cards. Perhaps the only way for theories to agree about V·-logic is for those

theories to be identical. This is not quite the case.

Theorem 50. Let ubGCH be the statement that the GCH holds unboundedly; more accurately, that

∀α∃β > α 2ℵβ = ℵβ+1. Then U = ZFC + ubGCH and B = ZFC +¬ubGCH agree74 on V·-logic, but

they are not identical.

Proof. The theories are obviously not identical, so it suffices to show they agree on V·-logic. Suppose

U ⊬ “Γ |=V· φ” and fix countableM of U such thatM thinks Γ ̸|=V· φ. Thus there is some α ∈ OrdM

such that VM
α |= Γ∪{¬φ}. Now we may class force above α inM to obtainM[G] such thatM[G] |= B

and VM
α = V

M[G]
α .75 Thus, we see that B ⊬ ‘Γ |=V· φ” as required. A similar argument works in the

other direction. □

Thus, we see that agreement between theories over V·-logic doesn’t collapse to identity. But unlike

the example from Proposition 33 and its refinement in Theorem 48, it’s not clear that some kind of

structural feature is being preserved in the interpretations used above. The forcing arguments that link

these theories are, so to speak, tinkering with the heavens rather than preserving something feature

72For more detail see Lemma 0.2 in [Kanamori, 2003].
73For more detail see the discussion above Proposition 22.3 of [Kanamori, 2003].
74For ease, we only consider agreement here rather than complete agreement. Note also that Solovay showed that if

there is a strongly compact cardinal, then ubGCH holds [Solovay, 1974]. This is a rare example where the existence of
a large cardinal has a profound effect on global properties of the universe. Nonetheless, we may obtain an analogous
theorem by considering unbounded instances of the generalized continuum hypothesis at regular cardinals.
75See Section VIII.4 on Easton forcing in [Kunen, 2006] for more details.
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that occurs a little closer to the ground. Worse still, agreement over V·-logic also distinguishes theories

that seem to be very close to each other. Here is a simple example.

Proposition 51. T0 = ZFC + 2ℵ16 = ℵ17 does not agree with T1 = ZFC + 2ℵ16 ̸= ℵ17 about V·-logic.

To see this, let φ be a sentence of L∈ that says there is a largest cardinal and it is ℵ17. Then T0 proves

that |=V· φ → 2ℵ16 = ℵ17 while T1 does not. From a practical perspective of applicable set theory,

there is not much difference between these theories. But V·-logic is designed to take such differences

seriously. It is not difficult to see that this phenomena can be generalized to larger definable cardinals.

For these reasons, we now leave V·-logic behind, although we’ll return to a generalization of this X-logic

when we come to the end of this investigation.

4.2. The long road. Our search for the common ground now has two examples of X-logics at opposite

ends of the common ground spectrum: β-logic and V·-logic. While β-logic delivers a modest but well-

understood amount of common ground, we argued that V·-logic was beyond the pale. In this section,

we shall explore some of the vast region between them, with a view to opening up an even wider body

of common ground. Our plan is to lift the ideas underlying β-logic agreement to deliver a sequence

of stronger and stronger X-logics: our long road. While we cannot hope to provide a comprehensive

survey here, we will aim to generalize our analysis in such a way that we end up with a template

for logical agreement. Our main tools for this journey will be from inner model theory and large

cardinals. This section is somewhat technical in comparison to those preceding it and there are fewer

philosophical remarks to adorn it. However in essence, our goal is to simply enumerate a number of

natural strengthenings of β-logic and illustrate the tools that can be used to achieve this effect. I

believe a clear and patient illustration of these techniques should provide the first steps toward a more

edifying foundational understanding of them in this context. The reader less willing to get bogged in

details may simply focus on the defining conditions of these X-logics and the results delimiting the

common ground that they obtain.

4.2.1. γ-logic. We start by recalling that β-consequences form a Π1
2 set and set our initial sights on

defining a natural X-logic whose consequence relation is Π1
3. To do this, we must place a stronger

restriction on our target models than mere well-foundedness and for this purpose, we appeal to the

theory of sharps.76 Given a set x we say that x# exists if there is a non-trivial elementary embedding

j : L(x) → L(x) where L(x) thesmallest inner model of ZF which contains x as an element.77 This

fact can be used to obtain a transitive model M#
0 (x) of the form ⟨Lλ(x),∈, U⟩ satisfying certain

conditions,78 the most salient of which are that:

• M#
0 (x) thinks U is a κ-complete, normal ultrafilter on some κ < λ; and

• M#
0 (x) is linearly iterable by U and its images; i.e., for all α ∈ Ord, Ultα(M#

0 (x), U) is

well-founded.79

76See [Schimmerling, 2001] for an excellent overview of this theory.
77There are many equivalent definitions of x#, however, this is most convenient for our purposes. For more details see:
[Schimmerling, 2001]; Chapters 18 and 19 of [Jech, 2003]; and Chapters 9, 14 and 21 of [Kanamori, 2003].
78See Definition 2.6 in [Schimmerling, 2001].
79A detailed description of this process can be found in Schimmerling [2001].
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Such models are known as mice. The final condition above has a useful implication: by iterating

M#
0 (x) more than ω1-times we obtain an elementary embedding j : M#

0 (x) → M∗ where M∗ is a

transitive model with ω1 ⊆ M∗. The Lévy-Shoenfield theorem then tells us that M∗ is correct about

Π1
2 statements and thus, so is M#

0 (x). So mice of the form M#
0 (x) are, in effect, perfect calculators of

Π1
2 truth, much in the same way that countable β-models are perfect calculators of Π1

1 truth. We put

them to work in our project by using them to define a new X-logic.

Definition 52. Let γ be the X-logic consisting of the set of countable transitive models closed under

the operation x 7→M#
0 (x) taking a set to the associated mouse containing it.

We now record a few useful properties of γ-logic.80 Recall that a model N is Π˜1
n-correct if for all Π˜1

n

statements φ(x) about the reals and any real x, we have φ(x)N ↔ φ(x)V .

Proposition 53. (1) Being an element of γ is a Π1
2 property.

(2) |=γ is Π1
3.

(3) If N is in γ and N |= ZFC−, then N [g] is Π˜1
2 correct whenever g is (set) generic over N .

Proof. (1) Noting that iterability through just the countable ordinals is sufficient for iterability through

all the ordinals, it can be seen that the property of being M#
0 (x) is a Π1

2-property.81 Then we observe

that N ∈ γ iff

∀x ∈ N∃y ∈ N (y = M#
0 (x))︸ ︷︷ ︸

Π1
2

.

︸ ︷︷ ︸
Π1

2

Note that the first two quantifiers don’t increase the complexity since they quantify over elements of

N and are thus, in effect, arithmetic. (2) Observe that |=γ φ iff

∀M ∈ R(M∈ γ︸ ︷︷ ︸
Π1

2

→M |= φ︸ ︷︷ ︸
∆1

1

)

︸ ︷︷ ︸
Π1

3

.

(3) Let N ∈ γ and let g be N -generic. Then it can be seen that N [g] is still closed under sharps. Now

suppose φ(y) is Π1
2 where y ∈ RN [g]. We claim that

φ(y)V ⇔ φ(y)N [g].

The (⇒) direction follows by downward absoluteness from V to N [g]. For the (⇐) direction we see

that M#
0 (y) exists and is a member of N [g]. Suppose that φ(y)V . Since M#

0 (y) is linearly iterable,

there is an elementary embedding j : M#
0 (y) → M∗ where ωV

1 ⊆ M∗. It then follows by the Lévy-

Shoenfield theorem that M∗ |= φ(y) and so by the elementarity of j, M#
0 (y) |= φ(y).82 By downward

absoluteness again, we see that N [g] thinks that M#
0 (y) possesses the Π1

2 property of being linearly

iterable, and so we may work in N [g] to obtain i ∈ N [g] such that i : M#
0 (y)→ M† is an elementary

80The reader might worry that unlike β-logic, γ logic is defined by a closure property on models. But in fact, β-logic

can also be described as a closure property over ω-models. See Theorem 2.23 of [Bagaria et al., 2006].
81See Theorem 14.11 in [Kanamori, 2003].
82Note that the critical point of the embedding is > ω, so reals are not moved by j.
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embedding where ω
N [g]
1 ⊆M†. Then we see that M† |= φ(y) by the elementarity of i, and N [g] |= φ(y)

by the Lévy-Shoenfield theorem as required. □

We thus, have some understanding of the complexity of this X-logic and a demonstration that it is a

natural generalization of β-logic. Note that in the argument for (3) as in the argument for Theorem

48 we make heavy use of the Lévy-Shoenfield theorem. In the case of Theorem 48, we did this with

the inner model L, whereas here we use the merely countable M#
0 in (3) to get the same effect. We

might say that M#
0 localizes the inner model L. Indeed we can obtain L from M#

0 by iterating M#
0

along the entirety of the ordinals.83 These observations are useful for our current problem: generalizing

Theorem 48 to obtain agreement on γ-logic. While we demanded the L was preserved in Theorem

48, we are now going to need to preserve a richer structure. For this purpose, we introduce the inner

model M1. In essence, M1 is the canonical inner model containing one Woodin cardinal. A little more

specifically, M1 can be obtained from its sharp M#
1 by iterating its active measure out of the universe.

M#
1 is then a stronger version of a mouse than M#

0 that contains a Woodin cardinal and satisfies a

minimality condition.84 Moreover, the iterability required of M#
1 makes use of a non-linear iteration

described through the device of an iteration tree. We shall be particularly interested in what is known

as ω1-iterability.85 The following remarkable fact is the driving force behind our current interest in M1

and other mice with Woodin cardinals.

Fact 54. [Neeman, 1995]86 Let x ∈ R and let M an ω1-iterable premouse satisfying ZF− plus the

existence of a Woodin cardinal δ where δ is countable in V . Then there is an elementary embedding

i : M →M∗ fixing δ such that there is a Col(ω, δ)-generic g over M∗ where x ∈M∗[g].

Informally speaking, this tells us that every real number can be captured in a generic extension of

an iteration of such a mouse. Or as a slogan: every real is a generic somewhere! This process is

known as genericity iteration. This fact will allow us to gain a kind of access to witnesses of existential

statements involving the reals. With this in hand, we may obtain our agreement result.

Theorem 55. Suppose T and S are theories that extending ZFC that imply that M1-exists, it is ω1-

iterable, and that its Woodin cardinal is countable. Suppose also that S and T are mutually interpretable

by interpretations that preserve M1 and its iterability. Then T and S completely agree on γ-logic.

Proof. Since |=γ is Π1
3, it will suffice to show that T and S agree on Π1

3 statements. Let ∀xψ(x) be

Π1
3 where ψ(x) is Σ1

2. Suppose that T ⊬ ∀xψ(x) and fix a model M of T such that M |= ∃x¬ψ(x)

and fix x from M witnessing this. We aim to show that there is a model of S where this statement

is also true. To this end, let t(M) be the model of S given by the M1-preserving interpretation, so

we have MM
1 = M

t(M)
1 . Working in M, we then use Fact 54 to obtain and elementary embedding

83This gives us a structure that is longer than the ordinals, but if we truncate it at the critical point of its ultrafilter,
we obtain L. This process is often known as iterating a measure out of the universe.
84A proper definition can be found in [Steel, 1995], [Müller et al., 2020] and in Steel’s chapter in [Foreman and Kanamori,
2009].
85We’ll aim to avoid specific discussion of iteration trees below, but see Definition 5.10 in [Martin and Steel, 1994] for

more detail.
86A proof can be found in Section 7 of Neeman’s chapter in [Foreman and Kanamori, 2009]. There is also another
version of this result from Woodin, but this requires (ω1 + 1)-iterability: see Section 7.2 of Steel’s chapter in [Foreman

and Kanamori, 2009] or [Farah, 2020].
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i : M1 →M∗ such that there is an M∗-generic g for Col(ω, δ) where x ∈M∗[g]. Since M∗ is an inner

model and ¬ψ(x) is Π1
2, we see that ψ(x)M

∗[g] and so we have

(⊩Col(ω,δ) ∃x¬ψ(x))M
∗

⇔(⊩Col(ω,δ) ∃x¬ψ(x))M1

by the elementarity of i. Now working in t(M) we may let h be Col(ω, δ)-generic over M1 and so

we see (∃x¬ψ(x))M [h]. Then since M1[h] is Π˜1
2-correct in t(M) and ∃x¬ψ(x) is Σ1

3, we see that

t(M) |= ∃x¬ψ(x) and so, S ⊬ ∀xψ(x) as required. The rest of the cases are similar. □

Informally speaking, we start with a model M of T satisfying ∃x¬ψ(x). We use a genericity iteration

to capture a witness of this. Elementarity then ensures that this existential statement is also forced in

M1. Then since M1 is shared by M and t(M) we may work in t(M) to obtain a generic extension of

M1 where the existential statement holds. Absoluteness between M1 and t(M) then finishes the proof.

The key element, however, is the use of the genericity iteration to capture the required witness. This

gives us a nice analogy and generalization of Theorem 48. Instead of merely preserving L we preserve

M1 and instead of merely agreeing on β-logic, we agree on γ-logic. Here is a helpful illustration of its

application.

Example 56. Consider the following theories:87

(1) ZFC plus there is a Woodin cardinal;

(2) ZFC plus Π1
2-determinacy;

(3) ZFC plus there is an ω2-saturated ideal on ω1.

Woodin showed that these theories are equiconsistent. Moreover, the interpretations witnessing this

can be seen to be M1-preserving and so by Theorem 55, we see that they all agree on γ-logic.

Thus, we have a number of natural extensions of ZFC that all agree on γ-logic and indeed on any Π1
3

statement. This cements our claim to having generalized β-logic.

4.2.2. γn-logic. Our next goal is to show how this technique can be taken further up through the

projective hierarchy by preserving more structure in the form of inner models with the pleasing side

effect of also obtaining agreement on stronger X-logics. First we describe our next X-logic. For n ≥ 1

and x ∈ R, M#
n (x) is the canonical countable mouse with n Woodin cardinals. Its canonicity is

witnessed by a minimality condition.88

Definition 57. For n ≥ 1, let γn be the set of countable transitive models N closed under x 7→M#
n (x)

for for x ∈ R where M#
n (x) is ω1-iterable in N and V .

For the inner models that our interpretations will preserve, we note that Mn(x) is the inner model

obtained from M#
n (x) by iterating its topmost and active extender out of the universe.89 It is the

canonical inner model containing n many Woodin cardinals and x ∈ R.90 The Mns will play a similar

87See Theorem 32.17 from [Kanamori, 2003] and the ensuing discussion on that page.
88See the discussion around Theorem 1.2 in [Steel, 1995] for more detail.
89An extender can be understood as a directed system of ultrafilters that are able to represent strong embeddings that
mere ultrafilters. See Chapter 26 of [Kanamori, 2003] for details.
90See [Steel, 1995] for a proper definition and discussion.

https://doi.org/10.1017/bsl.2025.10093 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10093


OF SHEEP AND WOLVES EQUIVALENCE & DISAGREEMENT IN SET THEORY 42

role to L and M1 in our previous agreement results. Toward our agreement claim, we then observe

that the models in γn are increasingly correct; and that this correctness corresponds with preservation

of inner models of the form Mn. We note that for some technical issues, these results are sensitive to

whether we use odd or even n ∈ ω.91 The correctness result rests on the following fact:

Fact 58. Suppose n ≥ 0 is even and M#
n (x) exists and is ω1-iterable for all x ∈ R. Then M#

n (x), is

Σ˜1
n+2-correct.

92

Lemma 59. (1) If n is odd and N ∈ γn, then N is Π˜1
n+2-correct.

93

(2) If V and W are models of ZFC where MV
n = MW

n for odd n, then for all φ ∈ Π1
n+2

φV ⇔ φW .

Proof. (1) We proceed by induction supposing that we have established the claim for m < n. Fix N

as described above and let ∃xψ(x, y) be Σ1
n+2 with y ∈ RN and ψ(x, y) ∈ Π1

n+1.94 Now fix x ∈ V

witnessing this. We claim that

∃xψ(x, y)V ↔ N |= ∃xψ(x, y).

(⇒) Since N ∈ γn, we know that M#
n (y) ∈ N and is ω1-iterable in N and V . Let δ0 be the least

Woodin cardinal according to M† = M#
n (y). Using Fact 54, we may fix i : M† → M∗ and g that is

Col(ω, δ0)-generic over M∗ such that x ∈ M∗[g]. Now it can be seen that M∗[g] is M#
n−1(x ⊕ y) and

so by Fact 58, it is Σ˜1
n+1-correct.95 This means that M∗[g] |= ψ(x, y) and so we have by elementarity

that96

(⊩Col(ω,δ0) ∃xψ(x, y))M
∗

⇔(⊩Col(ω,δ0) ∃xψ(x, y))M
†
.

Now working in N we may fix h ∈ N that is Col(ω, δ)-generic over M†. So we have M†[h] |= ∃xψ(x, y).

Fixing some x ∈ RM†[h] witnessing this, it can be seen that M†[h] is M#
n−1(x⊕y) and thus Σ˜1

n+1-correct

by Fact 58.97 Finally, by upward absoluteness, we see that ∃xψ(x, y) holds in V .

(⇐) Suppose ψ(x, y) is of the form ∀zχ(x, y, z) where χ(x, y, z) is Σ1
n. Now fix x ∈ N such that

N |= ∀zχ(x, y, z) and suppose toward a contradiction that

∃z¬χ(x, y, z)V .

Noting that ∃z¬χ(x, y, z) is Π1
n+1 and thus Σ1

n+1 we may reuse the (⇒) part of proof to obtain the

result. The proof of (2) is very similar. □

91The restriction to even and odd n ∈ ω is related to periodicity phenomena in the project hierarchy. See [Müller et al.,
2020] for a discussion of how it relates to our current problem. See [Moschovakis, 1980] for a discussion of periodicity

theorems.
92See Lemma 1.17 of [Müller et al., 2020] for a proof.
93The base case here was observed on page 1660 of Steel’s chapter in [Foreman and Kanamori, 2009].
94Note that Σ˜1

n+2-correctness is the same as Π˜1
n+2-correctness and it works a little more smoothly in this proof.

95See the proof of Lemma 1.1.7 in [Müller et al., 2020] for more details on this point. A perhaps easier argument can be
made to show that M∗[g] is still (n− 1)-iterable in essentially the sense of [Neeman, 1995] since g is obtained by a small
forcing in relation to the remaining Woodin cardinals of M∗. The argument of Lemma 1.1.7 is then easily adapted to

show that sensibly defined (n− 1)-iterable models are Σ˜1
n+1-correct.

96Note δ0 is not moved by i since the embedding is determined by a branch of length ω.
97Again, see the proof of Lemma 1.1.7 in [Müller et al., 2020] for more details.
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Using this lemma, we can now obtain agreement over γn-logics using strong theories and interpretations

that preserve the right inner models.

Corollary 60. Let n ∈ ω be even. Suppose T and S are theories extending ZFC that imply that

Mn+1-exists, it is ω1-iterable, and that its Woodin cardinal is countable. Suppose also that S and T

are mutually interpretable by interpretations that preserve Mn+1 and its iterability. Then T and S

completely agree on γn-logic.

Proof. To see this first note that M#
n (x) is a Π1

n+2-singleton.98 Thus, by a similar calculation to that

in Proposition 53 (1) and (2), we see that the consequence relation of γn is Π1
n+3. Then Lemma 59

can be used to close out the proof. □

Through the use of Woodin cardinals and preservation of their canonical models, we now have a way

of obtaining agreement for X-logics representing any odd level of the projective hierarchy. Thus, we’ve

generalized the ideas of γ-logic to through every rung of the theory of analysis.

4.2.3. δ-logic. We now continue our journey by considering the limit of the projective logics above.

In contrast to the previous sections, instead of defining a new class of target models, we are going to

gather up what we’ve already obtained. As such, we shall define the consequence relation as kind of

supremum of the weaker logics below it.99

Definition 61. Given Γ ∪ {φ} ⊆ L∈, we say that φ is a δ-consequence of Γ, abbreviated Γ |=δ φ, if

there is some n ∈ ω such that for all M ∈ γn, M |= φ whenever M |= Γ.

Informally speaking, φ is a thus δ-consequence of Γ if φ is a γn-consequence of Γ for some n ∈ ω.

Noting that the γn-logics get stronger as we go to greater n ∈ ω, we see that φ’s being a δ-consequence

of Γ is effectively saying that φ is eventually a consequence of Γ. Perhaps unsurprisingly, we can then

see that δ-logic is closely related to the true theory of analysis.

Proposition 62. For all x ∈ R and n ∈ ω, suppose M#
n (x) exists and is ω1-iterable. Then the following

sets are arithmetical in each other:

(1) The set of true Π1
ω sentences; and

(2) {φ ∈ L∈ | ZFC− |=δ φ}.

Proof. (1≤Π0
ω

2) Suppose φ ∈ Π1
n+2 ⊆ Π1

ω for some odd n ∈ ω. Then fix a countable transitive model

N ∈ γn. But then we see by Lemma 59 (1) that N is Π˜1
n+2-correct, so we see that if φ is true iff

N |= φ. It is then easy to see that φ is true iff ZFC− |=γn
φ. And it will suffice to show that:

ZFC− |=γn
φ ⇔ ZFC− |=δ φ

since this establishes that the truth of Π1
ω sentences is reducible to whether they are δ consequences of

ZFC−. To see this first note that the (⇒) direction follows by definition. In the (⇐) direction suppose

that ZFC− ̸|=γn φ. First note every N ∈ γm for m ≥ n is Π˜1
n+2-correct and so we have ZFC− ̸|=γm φ

for all such m. On the other hand, suppose i < n. Then fix N ∈ γn such that N |= ZFC ∪ {¬φ}.

98See the observation after Corollary 4.11 in [Steel, 1995].
99This can be understood as a precursor to our eventual destination: Ω-logic.
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Then it can be seen that N is also closed under x 7→ M#
i (x) and so N ∈ γi. Thus ZFC− ̸|=γi

φ

and so ZFC− ̸|=δ φ as required. (2≤Π0
ω

1) Let φ ∈ L∈ and let TrΠ1
ω

denote the true Π1
ω sentences.

Then it suffices to describe a Turing machine using TrΠ1
ω

as an oracle that takes φ ∈ L∈ and halts iff

ZFC− |=δ φ. To do this we just check through each n ∈ ω whether the statement

∀N(N ∈ γn → N |= φ)

is in TrΠ1
ω

. If it is we halt; it not we repeat the process at n+ 1. □

As above, we can then obtain agreement on δ-logic as follows.

Theorem 63. If T and S are theories that extending ZFC that imply that for all n ∈ ω, Mn-exists and

is ω1-iterable, and which are mutually interpretable by interpretations that preserve each Mn and its

iterability. Then T and S completely agree on δ-logic.

Proof. Suppose T ⊬ “Γ |=δ φ” and fix a model M of T witnessing this. Let t(M) be the model of S

obtained by the Mn-preserving interpretation. Then working in M we see that for all n ∈ ω there is

some N ∈ γn such that N |= Γ ∪ {¬φ}. We aim to show this also holds in t(M). Working in M, let

n ∈ ω. Then the statement

∃N(N ∈ γn ∧ N |= Γ ∪ {¬φ})

is Σ1
k for some k > n.100 Then since t(M) preserves Mi for all i ∈ ω, it can be seen by Lemma 59 (2)

that the statement above is also preserved from M to t(M) and so S ⊬ “Γ |=δ φ”. The rest of the

cases are similar. □

This gives us a natural generalization of Theorem 55 and Corollary 60 to the limit of the γn-logics,

which in effect, give us agreement on the entire theory of analysis. Here then is a pair of theories that

mutually interpret each other with sufficient structural preservation that they agree on δ-logic.

Example 64. Consider the following theories:

• ZFC plus determinacy of all sets of reals in L(R); and

• ZFC plus there are infinitely many Woodin cardinals.

Woodin showed that these theories are equiconsistent. Moreover, the interpretations witnessing this

preserve the Mns and their iterability. Thus, they completely agree on δ-logic and the theory of

analysis.

At this point, we have now developed a strategy for obtaining a large amount of common ground.

Moreover for some readers, agreement on the theory of the real numbers may all the common ground

they need. Nonetheless, there are many more steps that could be described with the help of inner

model theory and, in particular, the core model induction. Rather than explore this terrain in great

depth, we now aim to offer a more general perspective on what lies ahead.

100This can be made more precise but it is not necessary for the claim.
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4.2.4. Typical X-logics. We would like to take a more general attitude to the kinds of closure we saw

above. Recall with γ-logic we sought models that were closed under the operation of generating mice

for sets. Given that such mice can be easily represented as reals, we might re-imagine these closure

properties as closure properties with respect to particularly useful sets of reals. We can then use models

closed in this way to give us new X-logics. This sets us up with a couple of problems. First, we must

find a suitable conception of what constitutes a useful set of reals; and second, we must say what it

means for a model to be closed with regard to such a set. In response to the first problem, we turn to

the universally Baire sets. We give a quick overview of these sets and then describe a way of building

X-logics with them. Recall that given a T tree on ω × γ, the projection of T , denoted p[T ] is the set

of x ∈ ωω such that there is some f : ω → γ where for all n ∈ ω, ⟨x ↾ n, f ↾ n⟩ ∈ T . For an example,

every Σ1
1 set is the projection of a recursive tree T on ω× ω.101 More generally, these projections give

us convenient and robust representations for sets of reals whose extension may change depending on

the context of the background universe.

Definition 65. [Feng et al., 1992] Let us say that a A ⊆ R is κ-universally Baire if there exists trees T

and S on ω × γ for some γ which are such that:

(1) A = p[T ] = R\p[S]; and

(2) ⊩P R = p[T ] ∪ p[S], whenever P has cardinality < κ .

We say that A is universally Baire if it is κ-universally Baire for all κ.

Informally speaking, being universally Baire generalizes the property of being Π˜1
1. Recall that a Π˜1

1 set

A ⊆ R can be represented as the projection of a tree on ω×ω1 and its complement can be represented

by the projection of a tree on ω × ω. The absoluteness of well-foundedness then gives us a way of

identifying natural counterparts to such sets in other models like generic extensions. The property of

being universally Baire is intended to abstract out the essentials of this kind of representation. Thus,

we may use the trees T and S to identify versions of A in generic extensions of the universe. With

sufficient large cardinals, more point classes of reals become universally Baire. For example, if every

set has a sharp, the Π˜1
2-sets become universally Baire.

Given a universally Baire set A as witnessed by trees T and S, we now describe a way of representing

A in generic extensions V [G] of the universe V . Of course, the extension of p[T ] will generally not still

be A in V [G] as additional reals could fall into the projection of T . Thus, it is convenient to adopt a

name AG that is intended to denote p[T ]V [G]. For this purpose we let AG be the set of those x ∈ RV [G]

such that there is some T ∈ V for which A = p[T ]V and x ∈ p[T ]V [G].102 So we use the trees from the

ground model that represent A to represent its counterpart in the generic extension. In particular, if

T and S witness that A is universally Baire and G is V -generic, then AG = p[T ]V [G]. Next we offer

an appropriate notion of closure that a model can have with respect to a universally Baire set. There

are a number of similar notions on the market, but this one is the most common.103

101See [Moschovakis, 1980] for more detail.
102See section 2.1 of [Bagaria et al., 2006] for more detail.
103For some examples: strong closure is discussed in [Bagaria et al., 2006]; related notions of correctness and closure are

discussed in [Farah, 2020]; and related notions of faithfulness and invariance are discussed in [Koellner, 2010].
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Definition 66. (Woodin) Say that a countable transitive model M is A-closed if for all P ∈ M and

V -generic G for P
V [G] |= M [G] ∩AG ∈M [G].

The essential idea here is that an A-closed model M is able to correctly identify its overlap with A

even as A is extended generically. For an example, if every real has a sharp and N ∈ γ, i.e., a γ-logic

model, then N is A-closed where A = {⟨i, x⟩ | i ∈ x#} is a set designed to represent the function

x 7→ x#.104 With this in hand, we may then give a very general definition of an X-logic that is faithful

to some universally Baire set and which also generalize γ-logic.

Definition 67. Given ub A ⊆ R, let us say that φ is an A-consequence of Γ, Γ |=A φ, if every A-closed

model M , if M |= Γ, then M |= φ.

Thus, the target structures for our X-logics are the A-closed models for a universally Baire A ⊆ R.

In the presence of a sharp for every real, we see that γ-logic is an example of what we might call an

A-closed logic. Our goal now is to extend the template of Theorems 48, 55 and 63 by showing that if

we preserve something like inner model structure, we end up agreeing on A-closed logics. Our problem

then is to identify a suitable kind of structure to preserve. To this end, let us first observe that A-closed

logics are robust under forcing.

Lemma 68. Suppose A ⊆ R is universally Baire. Then for all P and P-generic G over V

Γ |=A φ ⇔ V [G] |= “Γ |=AG
φ.”

Proof. (⇒) See the proof of Theorem 2.35 in [Bagaria et al., 2006]. (⇐) Suppose Γ ̸|=A φ and fix an

A-closed model M such that M |= Γ ∪ {¬φ} witnessing this. We then claim that M is AG-closed in

V [G] whenever G is P-generic over V . To see this fix trees T and S witnessing that A is universally

Baire. Then suppose that Q ∈M and H is Q-generic over V [G]. It suffices to show that

V [G×H] |= M [H] ∩AG×H ∈M [H].

To do this, observe that for x ∈ RM [H] we have

x ∈ AG×H ⇔ x ∈ p[T ]V [G×H]

⇔ (Tx is ill-founded)V [G×H]

⇔ (Tx is ill-founded)V [H] ⇔ x ∈ p[T ]V [H] ⇔ x ∈ AH .

Thus, M [H] ∩ AG×H = M [H] ∩ AH and so the claim follows since M is A-closed. Thus, V [G] ̸|=
“Γ |=AG

φ” as required. □

This gives us a clue to the kind of structure our interpretations should preserve. In the examples above,

we preserved an inner model or a collection of such models. In this case, we are going to do something

104Here we use the representation x# instead of M#
0 . The former is the theory of Ultω(M#

0 , U) truncated to its critical

point in the language L∈(cn)n∈ω where cn denotes the critical point of the nth iteration of M#
0 . See Fact 5.6 in [Larson,

2011] for a proof of this.
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similar, but less fine-grained: we are going to demand that the interpretations preserve their generic

multiverses. Thus, given theories T and S, and interpretations

t : mod(T )↔ mod(S) : s

witnessing mutual interpretability, we want VM = Vt(M) for models M of T and VN = Vs(N ) for

models N of S.105 It is not difficult to see that such interpretations witness that T and S are generic

multiverse equivalent.106

We should note that this is a much more difficult equivalence relation to satisfy than those we’ve

considered so far along our road. First, as we discussed in Section 2.3.2, generic multiverse equivalence

is plausible criterion for saying that entire theories convey the same information, not merely parts of

those theories as we’ve been considering in Sections 3 and 4. To see the effect of this, we recall a pair

of theories that are not generic multiverse equivalent but still preserve β-logic. Let T be ZFC plus

the existence of a measurable cardinal. And let S be ZFC plus the existence of a precipitous ideal

on ω1.107 Then we can generically extend any model of T to obtain a model of S; and any model of

S has a proper inner model satisfying T .108 These interpretations preserve L and so they completely

agree on β-logic. However, they are not generic multiverse equivalent. To see this note that there

are models of S that satisfy V = L(Vω1+2); and we can (class) generically extended such a model

to obtain a model M of S plus the ground axiom.109 M is then the bedrock or core of its generic

multiverse, but no model of T can be obtained from M by generic extension. Thus, T and S are not

generic multiverse equivalent. Despite this, there is some reason to doubt its importance. For one

thing, the process used to obtain a model of the ground axiom involves endless fiddling with instances

of the generalized continuum hypothesis, similar to that used in the argument for Theorem 50. There

we worried that our focus had shifted to far away from the concrete. Perhaps we should have similar

worries about such models and theories here. For another thing, there is an attitude among some set

theorists that the models we really care about are those obtained by generic extension from canonical

models. For example, Martin and Steel [1994] optimistically remark with regard to the theory of core

models, “We believe that one day the theory will reach models for all the large cardinal hypotheses

used by set theorists. This will mean that all of the many models of ZFC they have produced can

be built by forcing from core models.” Roughly speaking, in the example above, we are invited to

focus on the models that can be obtained from models of T by (set) generic extension.110 With these

reservations and replies regarding our preservation constraint out of the way, we are almost ready to

state our general agreement theorem.

A final tweak is, however, required. Since our discussion in this paper is about comparison between

theories rather than structures, we need some way of dealing with universally Baire sets as syntactic

items. The following somewhat technical definition is intended to address this.

105Recall Definition 28.
106Recall Definition 29. I think it’s unlikely that the converse holds, although I do not have a proof of this.
107Similar remarks should apply to the theories from Example 56, but the interpretations used there are much more

complicated to describe.
108See Theorem 22.33 in [Jech, 2003].
109See Theorem 3.5 in [Reitz, 2007].
110A more recent example of this general idea can be found in the introduction to Steel [2022]. With regard to a theory
T extending ZFC, Steel remarks, “The consistency strength of T is determined by the minimal mouse M have a generic

extension satisfying T , and thus the consistency strength hierarchy is mirrored in the mouse order.”
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Definition 69. Let us say that a formula Φ(x) ∈ L∈ is definably universally Baire if whenever:

• W is a world in the generic multiverse;

• U is a generic refinement of W such that W = U [G]; and

• U [H] is a set generic extension of U ,

then U thinks there is a universally Baire set A such that

ΦW = AG & ΦU [H] = AH

where ΦW = {x ∈ R | Φ(x)W } and similarly for U [H].

Informally speaking, the idea here is provide a definition Φ(x) that identifies a universally Baire set in

a uniform manner across the generic multiverse. We also note that although we have articulated this

definition in the language of the generic multiverse, it can also be defined more fussily in the language

of set theory. We shall then write Γ |=Φ φ to mean that every real coding a modelM that is ΦM-closed

is such that M |= φ whenever M |= Γ. We call this Φ-logic. Finally with this in hand, we are ready

for the agreement theorem.

Theorem 70. Suppose that T and S are theories extending ZFC that imply that some Φ(x) is definably

universally Baire. Suppose also that T and S are mutually interpretable by interpretations that preserve

the generic multiverse. Then T and S completely agree on Φ-logic.

Proof. Suppose T ⊬ “Γ |=Φ φ.” Fix a countable model M of T witnessing this and let VM be the

generic multiverse of M. Since T and S are generic multiverse equivalent, we may fix some N in VM

such that N |= T . Moreover, it can then be seen that there is some Q in VN such that Q is a generic

refinement of both M and N .111 Then using the definition of definably universally Baire and Lemma

68 twice, we see that both P and N satisfy that Γ |=Φ φ. Thus S ⊬ “Γ |=Φ φ”. The other cases are

similar. □

Taking a little stock, we’ve now learned how to obtain a large amount of common ground and laid out

a general strategy for obtaining more of it with a general logical prototype for obtaining agreement

between strong theories. It would pleasing to set out a few more natural milestones beyond the realm

of infinitely many Woodin cardinals, but we leave this for future work. It is also worth observing

at this point that the logical framework we have exploited here gives us a nice perspective on the

length of the road through the common ground. By contrast and as is well-known, the next obvious

jump beyond analysis and up the complexity hierarchy leads us into third order arithmetic and the

continuum hypothesis, which is beyond the realm of possible agreement, at least as we currently

understand it.112 This could make it appear as though there is not much common ground beyond

second order arithmetic, but the hierarchy of universally Baire sets shows that there is a rich vein of

structure to explore and understand.

111This follows by a simple induction on the paths linking models in the generic multiverse using Usuba’s downward
directed grounds theorem [Usuba, 2017].
112Nonetheless, it is worth noting Woodin’s theorem that if there is a proper class of measurable Woodin cardinals, then
any pair of set-generic extensions of the universe that satisfy the continuum hypothesis will agree on all Σ2

1 statements.
This doesn’t fit the logical template offered here, but is certainly remarkable. A proof this can be found in Section 3.2

of [Larson, 2004].
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4.3. The limits of agreement. Having offered a way of understanding a typical X-logic in our common

ground, we come to our final question: where if anywhere does the road end? In this short section, we

shall argue that Woodin’s Ω-logic stakes out a plausible culmination and delimitation of our common

ground project. Ironically, this brings us back to one of the recurring themes of this paper: second

order logic. At the beginning of this section, we argued that second order logic in the form of V·-logic

was too strong to fit into a reasonable conception of common ground. Ω-logic can be understood

as responding to this problem by providing a natural weakening of V·-logic using the second of our

recurring themes: forcing. More precisely, we weaken V·-logic by allowing more target structures into

the scope of its consequence relation. We do this by considering initial segments of generic extensions

of the universe and not just of the universe itself. It is defined as follows.

Definition 71. We say that φ is an Ω-consequence of Γ, Γ |=Ω φ, if for all P, α ∈ Ord and G that is

P-generic over V , V
V [G]
α |= φ whenever V

V [G]
α |= Γ.

Outside set theory, such an X-logic might seem artificial. However, in close analogy to the case of

V·-logic, Ω-logic bears a very close relationship to a natural weakening of second order logic defined

below.

Definition 72. [Ikegami and Väänänen, 2015] Say that a second order sentence φ is a Boolean second

order logic consequence (BSOL) of Γ, Γ |=BSOL φ, if for all P ∈ V and P-generic G over V if M ∈ V [G]

is a full model of second order logic satisfying Γ, then M |= φ.

Thus, if we were looking for a counterexample to the claim that |=BSOL φ, we may seek that model

not just in our universe but in any generic extension thereof. Analogously to Theorem 49, we then see

that:

Fact 73. (Väänänen & Ikegami, Woodin) The following are Turing equivalent:113

(1) {φ | |=Ω φ};
(2) {φ ∈ Π2 | ∀P ⊩P φ}; and
(3) {φ | |=BSOL φ}.

Thus, we see that Ω-logic can be understood as a very sensible generalization of second order logic

for the problems we’ve seen above. It’s also not difficult to see that Ω-logic is weaker than V·-logic,

but is it plausible that natural theories can agree on it? Can it be part of the common ground? The

following theorem gives us an affirmative answer.

Theorem 74. (Essentially Woodin) Suppose T and S are generic multiverse equivalent theories extend-

ing ZFC and implying that there is a proper class of Woodin cardinals. The T and S completely agree

on Ω-logic.

So by generically weakening V·-logic, we end up with something amenable to the common ground. The

following fact is the key to the proof.

113The proof is very similar to that of Theorem 49. More details can be found in [Ikegami and Väänänen, 2015].
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Fact 75. (Woodin)114 Suppose there is a proper class of Woodin cardinals. Then for all P and P-generic
G over V

Γ |=Ω φ⇔ V [G] |= “Γ |=Ω φ.”

Proof. (of Theorem 74) Suppose T ⊬ “Γ |=Ω φ” and fix a model M of T witnessing this. Then

exploiting generic multiverse equivalence, we may fix a model N ∈ VM satisfying S. Now fix P ∈ VM

such that P is a generic refinement of both M and N . Then by two applications of Fact 75, we see

that N |= “Γ ̸|=Ω φ” and so S ⊬ “Γ |=Ω φ” as required. The other cases are similar. □

Looking over the loose threads before us, we see that by weakening V·-logic to its generic counterpart

the possibility of a natural form of agreement returns. This delivers a pleasing rapprochement to a

recurring tension in this paper. Time and time again, we have seen second order logic and variations

on that theme enforce a kind of rigidity on the possibility of set theoretic alternatives, while forcing

and generic extension have offered a much greater degree of flexibility. In Ω-logic, there is a sense in

which this tension is resolved through their entanglement. We have an X-logic that aims to give as

much of the sublime power of second order logic as possible while still remaining within the common

ground. Nonetheless, it remains unclear if or how this is related to our discussion of the long road

in the previous section. We appear to have a way of agreeing on a very strong X-logic, but no story

about how this is related to the X-logics that were based on models with natural closure properties.

This is where Woodin’s Ω-conjecture enters our story.

Conjecture 76. (Woodin)115 Suppose there is a proper class of Woodin cardinals. The following are

equivalent:

(1) Γ |=Ω φ;

(2) There is universally Baire A ⊆ R such that

Γ |=A φ.

The answer proposed here is clear: Ω-logic is the limit of the A-closed logics where A is universally

Baire. Like δ-logic it is a limit logic that collects up all the logics below it. Note that only (1→2)

is open.116 However, it is known to be true in all currently known canonical inner models for large

cardinals.117 If the Ω-conjecture is true, we would learn, among other things, that generified second

order logic sits at the end of the long road of Section 4.2. We thus have a plausible limit to the kind

of agreement we can expect between strong, natural extensions of ZFC: Ω-logic. Moreover, we have

a conjecture that aims to explain this phenomenon as a generalization of our prototypical example

of agreement with β-logic. We started out with the idea of developing a greater region of partial

agreement between set theories. Having observed that second order logic provided a reasonable bound

at which point agreement seems to fail, we then took our first steps up through the large cardinal

114See Theorem 1.8 in [Bagaria et al., 2006] for a proof.
115See [Woodin, 2001, 2004, 2011b, 2012] for more discussion of this conjecture. Note that Woodin thinks of (2) as a
kind of proof theory where the universally Baire set A is the proof. Thus, he writes Γ ⊢Ω φ. We do not follow him in
this practice here.
116A proof (2→1) can be found in the proof of Theorem 3.3 in [Bagaria et al., 2006].
117See Section 9.4 of [Larson, 2011]. In fact, it suffices for there to be a Woodin cardinal δ for which the collapse of a
countable Skolem hull of Hδ+ has a universally Baire iteration strategy.
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hierarchy and greater levels of agreement. We isolated a reasonably general conception of a strong

logic and what is required to agree upon it. And finally we have seen that the limit of that project

could bring us back to a synthesis of the two recurring themes of this paper: second order logic and

forcing. While there may be other reasonable places to mark the end of agreement, it’s difficult to

ignore the elegance and uniformity of the account offered above.

Conclusions. I think I should thank the readers who have made it this far. I hope it has been a

rewarding journey. In the first half of this paper, we considered whether different set theories are

really so different after all. Perhaps the proponents of various alternatives would be better understood

as talking past each other and really just saying the same thing in different languages. We used

interpretability to compare theories and worked to isolate natural equivalence relations between those

theories that plausibly explained our dispositions to think of them in some contexts as equivalent.

This led us into the realm of the generic multiverse. In the second half of this paper, we restricted

our scope and considered some conceptions of partial agreement motivated by the idea maximizing

the common ground. We marked out the limits of plausible agreement and then embarked on the long

road of increasing agreement and inner model theory culminating in our final destination: Ω-logic.
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