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1. It is known that the behaviour of an electromagnetic field is consistent
with it possessing a linear momentum density (1, p. 103)

g = DxB = c~2ExH (1.1)

(Girogi Units are used and the system of notation is the usual one).
This leads to the suggestion that the electromagnetic field has a density of

angular momentum,
m = rxg (1.2)

This is consistent with a variational principle in field theory (2). Corresponding
to this is a flux of angular momentum across any surface, and it may be shown
(3) that the rate of flux of angular momentum across unit surface in the direction
of normal n is

cn= -rxE(D.n)-rxH(B.n)+Urxn (1.3)

where W = E. D + B . H. Unfortunately there arises from general field theory
a further definition of angular momentum density (3)

m' =DxA + rx{D.(A\)} (1.4)

the corresponding flux being

c'n=(Hxii)xA + rx[(Hxn).(AV) + (n.DyH<t> + Lti] (1.5)

where A is the vector potential, <j> the scalar potential (1, p. 23) and L is the
so-called Lagrangian density

2L=E.D-B.H.

The question immediately arises, under what conditions are the forms for m
and m', and the forms for cn and c'n equivalent. Clearly the conditions necessary
are that m'—m vanishes when integrated over the whole of space and that
c'n-cn vanishes when integrated over a closed surface. This is in accordance
with the principle that the energy of electromagnetic fields cannot actually be
localised. All that is possible is to find the value over the whole of space
(1,'p. 110). It has already been shown (3) that the forms for m' and m are in
general equivalent and it has been shown (4) that the forms for c'n and cn are
in fact equivalent for a 7 £ n wave in a circular waveguide if the flux is taken
across a normal cross section the centre of which is the origin. It is proposed
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to show in this paper that the equivalence of c'n and cn is much more general
and to give general conditions for equivalence.

For completeness, the relation for the equivalence of m' and m is given
here. The proof is given in (3).

j (m'-m)dx= I (rxA)D.dS- j (rxA)V.Ddx (1.6)
Jy Js Jv

S being the surface bounding V. If the region is charge-free the second integral
on the right-hand side of (1.6) vanishes, and for a number of fields such as a
plane wave, or a field vanishing in a suitable way at infinity, the first integral
vanishes if S is a sphere of infinite radius.

2. Using standard methods of vector analysis it is easily shown that

c'n-cn = V. [(n xH)(A xr)2-rx - (AID. n]).
8t

It follows that

(nxH)(Axr)2dS- - I (rxA)D.dS ...(2.1)f (c'n-cn)dS = f V.[(n |

provided that the surface S is fixed.
Suppose now that S is a plane surface. Then, using Stokes' theorem,

we have

1 V.[(nxff)(Axry]dS

= I dS.(n.V)[(nxH)(Axry]
Js

- (nxdr).[(nxH)(Axr)]

I= - (Axr)(H.dr).

The result is independent of « and so by addition of elementary plane surfaces,
it holds for any arbitrary surface and its associated rim. Thus

J= J {rxA){H.dr)- JLf {rxA)(D.dS) (2.2)

The equivalence of c'n and cn follows if the sum of the two integrals on the
right-hand side of (2.2) vanishes. Sufficient conditions for these are as follows.

(a) If the field is periodic, the mean value (over a period) of the second
term vanishes and if the field is finite at | t \ = oo, the mean value of the second
term over all time vanishes. This condition is generally satisfied in practice.

(b) If the surface is closed, the first integral vanishes.
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(c) Either integral may vanish under suitable radiation conditions at
infinity.

(d) The origin may be chosen so that the first term always vanishes. If

having chosen the origin accordingly, it is found that A{H. dr) also vanishes,

then the first term will vanish. In a large number of cases of interest this is
hr fact found to be true but it does not necessarily follow. It may be noted
that <j> may be chosen to be zero if desired.

3. If we use the potentials A*, <f>* denned by

dt

D= -VxA*

and the dual property of Maxwell's Equations (1, p. 25), we may derive
alternative expressions for the angular momentum density and flux.

m" = BxA* + rx{B.(A*V)} (3.1)

-(Exn).(A*V) + (n.B)V<l>* + Ln} (3.2)

It follows that

I (m"-m)rfT = - j (rxA*)(B.dS) (3.3)
Jv Js

f (c:-cn)dS=- f (rxA*)(E.dr)- f f (rxA*)(B.dS) (3.4)
Js Jc dtjs

The conditions for the vanishing of the integrals on the right-hand sides of
(3.3) and (3.4) are similar to those mentioned above. There is, however, one
further condition which may prove useful. If the boundary curve C lies on
a perfect conductor E\ dr — 0. Similarly if a portion of S is a perfect con-
ductor, then B. dS = 0.

Clearly in this case also, it will be convenient to take <f>* zero.

4. It has been shown (2, p. 23) that the expressions (1.3) and (1.5) for
angular momentum flux are equivalent for a TEX t wave in a circular waveguide
if the flux is taken across a normal cross section the centre of which is the
origin. It may be shown that this is true much more generally, and the proof
given below—which uses (2.2) and avoids a heavy manipulation of Bessel
Functions—is applicable for a coaxial guide also. It may be remarked that the
formulations (1.3) and (3.2) are equivalent because the first integral on the
right-hand side of (3.4) vanishes and the mean value of the second term
vanishes. It may be noted that this would be true for a waveguide of any
cross section because E. dr vanishes everywhere on the wall. Thus c"n and cB

are equivalent here. The equivalence of c'H and cn for the circular guide may
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be proved as follows. The mean value of the second integral of the right-hand
side of equation (2.2) vanishes and it is only necessary to consider the first
integral. If the origin is at the centre of the guide, then, with an obvious
notation

f (rxA)(H.dr) = f" r\Aeix-A^H^dO (4.1)

where the integrand is evaluated at r = a, and if the guide is coaxial at r — b
also. ip denotes unit vector in direction p. It can be shown that Ae and At

vanish on the walls and so the integral on the right-hand side of (4.1) vanishes.
For the TEM mode in a coaxial guide

E = Eir

and so r x A vanishes identically.
Thus c'n and cn are equivalent for a circular waveguide or a coaxial wave-

guide, provided that the centre of the cross section be taken as origin. If
the origin is not at the centre of the cross section, but at a point whose position
vector is r0 referred to the centre of the cross section, an extra term

f n X {[AA^at

is added to the right side of (4.1), the other components of A vanishing on the
wall. The quantity in brackets can be rewritten as

ArH9(ix cos 0 + i sin 0)ad6.

This quantity will vanish for any mode by the usual circular symmetry properties.
The actual value of the angular momentum flux along the guide may be

obtained most easily from cn. Taking cylindrical polar coordinates, it becomes

=[ rl(Eti4 - E^izC

It may be shown without much difficulty that this reduces, for any mode, to

C =-iz [r{E^Dz + H^Bz)dS

This is zero for the TEM mode in a coaxial guide as might be expected.
If the field is periodic with a time factor exp{iat}, the mean value of C

over a period is given by

= - iM [ HEtf + H*Bz)dS
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where &t denotes the real part of and the asterisk denotes the complex con-
jugate value. Using the z component in Maxwell's equations we find that

- zz— . I 1 5 1 —V -3 /

ito J {d<p cq>

+ i&® — f* d<j> f" rHj f(r£^) + r£0 f (rtf*)rfr.

The second integral on the right-hand side can easily be shown to be zero.
If the 0 behaviour is exp{—in 0}

In particular, if n = 1 as in the TElt mode which has been previously discussed
(4), this becomes

C = i z i^- \(ExR).dS

in agreement with the previous result.

5. If Aj is a component of the four potential, the Lagrangian density is

given, using the gauge condition that —i vanishes, by (3) writing —i = AJk

dxj 8xk

L= -~(AJk-Akj)(AJk-AkJ) (5.1)
2//

where the summation convention is used throughout. (There is an error of 2
in the original.) The formulae for angular momentum density, indicated in
§ 1, have associated with them tensor densities <&'jkl and <bjU defined as
follows (3)

where n0 TJk = {Au - Aj,)(Alk - Akl) + L5jk.

—-A,- —— Aj,
8AJk 8Alk

where Mkjl = —-A,- —— Aj, (5.2)
8A 8A

ekj = Tw + i £ {MkJI-MJlk-Mlkj}.
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Utilising equations (5.1) and (5.2) and the fact that 1 = 0 it follows
dApq dAqp

that
. , _ d . . . . dL
®jki - *ju = — (XjAk - xkAj) — .

oxa oAx,,

In general this expression is non zero, and while equivalence relations can be
derived from this, it is easier to consider the equivalence of the vector quantities
cn, and c'm m and m'.
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