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MULTIPLICATIVE FUNCTIONS IN SHORT 
INTERVALS 

ADOLF HILDEBRAND 

1. Introduction. A central problem in probabilistic number theory is to 
evaluate asymptotically the partial sums 

M(f, x) = 2 /(«) 
n=x 

of multiplicative functions / and, in particular, to find conditions for the 
existence of the "mean value" 

(1.1) lim M(fx)/x. 

In the last two decades considerable progress has been made on this 
problem, and the results obtained are very satisfactory. In particular, 
Halâsz [7] determined completely the asymptotic behavior of M(f x) for 
multiplicative functions of modulus = 1 by proving 

THEOREM 1 (Halâsz). Let f be a multiplicative function of modulus = 1. 
Then either the limit (1.1) exists and equals zero, or there exist constants 
A e C\{0) , a G. R and a function L(u) satisfying 

(1.2) \L\ = 1, sup \L(ut) - L(u) | -» 0 (u -> oo), 

such that 

i+ /« 
(1.3) M(f x) = AL(\og x) 4- o(x) (x -» oo). 

1 -f ia 

The first case occurs if and only if the Dirichlet series 

F{s) = 2J —J-
n^\ ns 

satisfies 

(1.4) sup \F(o + it) | = o( J (a -> 1+) /or every T > 0, 
kl^r Va — 1 / 
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MULTIPLICATIVE FUNCTIONS 647 

and the second if and only if in the notation of (1.3), 

(1.5) F(a - ia) = -^—L(—^—) + o(—^—) (a -> 1 + ) . 
a— 1 Va — 1 / Va — 1 / 

It is implicit in Theorem 1, and easy to prove directly, that for any 
multiplicative function f of modulus = 1 the generating Dirichlet series 
F(s) satisfies either (1.4) or (1.5). 

For real-valued functions / , relation (1.3) (with A ¥= 0) can only hold 
when a = 0 and L(u) = 1 + o(\) (u —* oo), and therefore reduces to 

M(f x) = Ax + o(x) (x —» oo). 

Thus we obtain as a special case of Halâsz' theorem the following result, 
originally proved by Wirsing [16]. 

THEOREM 2 (Wirsing). For any real-valued multiplicative function f of 
modulus = 1 the mean value (1.1) exists. 

While Theorems 1 and 2 are of asymptotic nature, there exist also 
quantitative estimates for M(f x). We state here such a result, which 
implies Theorem 1 in the case (1.4) and is essentially due to Halâsz [8] 
(cf. [5, Lemma 6.10]). 

THEOREM 3 (Halâsz). Uniformly for all multiplicative functions f of 
modulus = 1 and all x, T = 2 we have 

M(f9x)^x[^—F*(i +—!-, T) + r-1]174, 
v log x V log x / J 

where 

F*(o, T) = max \F(a + it) |. 

Montgomery [12] recently obtained a sharper, but more complicated 
upper bound for M(f JC), which implies the estimate of Theorem 3 with 
the exponent 1 — e instead of 1/4. 

These results show that the global behavior of multiplicative functions 
of modulus ^ 1 is well understood. One may ask whether similar results 
hold for the "local" behavior of multiplicative functions. In particular, one 
may try to obtain asymptotic formulae like (1.3) for the short interval 
sums 

(1.6) M(f x) - M(f x - <Kx) ) = 2 f(n) 

under suitable growth conditions on the interval length <$>(x). 
In its general form, this problem has not been dealt with in the 

literature. The behavior of the quantities (1.6) has been determined only 
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for a few special functions / or under rather strong assumptions on / 
( [1], [2], [3], [13], [14] ). For example, Motohashi [13] and independently 
Ramachandra [14] proved that for any 8 e (7/12, 1] 

Àf(/A, JC) - M(/x, x - xe) = o(x6) (x -> oo), 

where /x is the Moebius function. Ramachandra [13] obtained similar 
results for functions, whose Dirichlet series are composed of L-functions. 
Babu [3] determined the limiting behavior of (1.6) in the case <j>(x) satisfies 
xa ^ cf>(x) = x for some a > 0 for multiplicative functions /satisfying 
l/l ^ 1 and 

\ {pm ^ x: \f(pm) - l | > c } | 

= o((j)(x) ) (x —» oo) for every e > 0. 

The purpose of this paper is to prove short interval analogues of the 
theorems of Halâsz and Wirsing. We shall get satisfactory results under 
the assumption 

<Kx) = x 1 + o ( , ) . 

This does not quite cover the above mentioned special cases, but in order 
to obtain results as general as Halâsz' or Wirsing's theorem, this 
restriction on 4>(x) is essentially necessary, as we shall see. 

2. Statement of results. Our main result exhibits, in a quantitative form, 
the connection between the "local" and the "global" behavior of / It 
turns out that the local behavior of / i s closely connected to the behavior 
of M(fa, x), where 

fain) = f(n)nia (n ^ 1) 

and a = a(f, x) is such that 

(2.1) \a\ ^ x, \M(fa, x) | = max \M(f^9 x) |. 
\a'\^x 

THEOREM 4. Let f be a multiplicative function of modulus = 1 and 
x = y = 3. Then we have 

(2.2) M(f, x) - M(f, x - y) 

t~'adt + 0(yR(x,y)), 
M(fa,x) A 

x 

where a is any real number satisfying (2.1) and 

„ , v L 2 1ogx \ " , / 4 

R(x,y) = log 

If in addition f is real-valued, then (2.2) holds with a = 0. 
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Using the above quoted results to estimate M(fa, x), we shall deduce 
from Theorem 4 a number of corollaries. In particular, we shall establish 
in Corollaries 1, 3 and 5 short interval analogues of Theorems 2, 3 and 1, 
respectively. 

We first derive some consequences of Theorem 4 for real-valued 
functions / . In this case, (2.2) holds with a = 0 and thus reduces to 

(2.2/ M(f x) - M(f x - y) = y~M(f x) + 0(yR(x, y) ). 
x 

Combining this with Theorem 2, we obtain immediately 

COROLLARY 1. Let f be a real-valued multiplicative function of modulus 
^ 1, and let <j>(x) satisfy 

(2.3) 3 ^ <j>(x) ^ x (x ^ 3), log <j>(x) ~ log x (x -> oo). 

Then the limit 

(2.4) lim -^-(M(f, x) - M(f, x - <Kx) ) ) 
A->00 <j>(X) 

exists and is equal to the mean value (1.1) of f 

Another obvious consequence of (2.2)r is 

COROLLARY 2. For every e > 0 there exists a 8 > 0 such that for any 
real-valued multiplicative function f of modulus = 1 

lim sup \x8"l(M(f x) - M(f x - xl~8) ) - A(f) \ ^ c, 
A ' - * C O 

where 

A(f) = lim M(fx)/x. 
x—>oo 

These two results are essentially best-possible, since by an example of 
Erdôs (cf. [1, p. 105] or [2, p. 102] ) there exists, for every 8 e (0, 1), a 
multiplicative function /assuming only the values 0 and 1, such that in the 
case <f>(x) = x ~ the limit (2.4) does not exist. 

We now turn to complex-valued multiplicative functions. Here the 
results will not be as neat as in the case of real-valued functions. The 
reason for this is that the behavior of the normalized short interval 
sums 

(2.5) -(M(fx) - M(fx -y)) 
y 

in general depends on the interval length y, a phenomenon which does not 
occur when fis real-valued. In fact, from (2.2) we see that the quantity 
(2.5) is, as a function of y, approximately proportional to 

https://doi.org/10.4153/CJM-1987-032-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-032-6


650 ADOLF HILDEBRAND 

• -(•--F 
- / _ rmdt = x~m . 
y J x y (1 — ia)y/x 

This expression is close to x~ia, if y is small compared to x/\a\ but for 
y » x/\a\ it behaves like an oscillatory function with decreasing 
amplitude. 

We first give a O-estimate for M(f x) — M(f x — y) analogous to that 
of Theorem 3. If we bound M(fa, x) by means of Theorem 3 and estimate 
the integral in (2.2) trivially by 

J x-y \x/\a\ ( \a\ > x/y) 

we obtain from Theorem 4 

COROLLARY 3. Uniformly for x = y = 3 and all multiplicative functions 
f of modulus ^ 1 we have 

-\M(fx) - M(fx -y)\ 
y 

( l / l \ i V / 4 

< max — min I F * l l + , T) + - ) + i?(jc,.y), 
r^2« ^log x V logx / T' 

X 

a^x/y ay T^la M o g X V log X 

where F*(o, T) is defined as in Theorem 3 

This yields a sufficient condition for the existence and vanishing of the 
limit (2.4), namely 

COROLLARY 4. Let f be a multiplicative function of modulus ^ 1 and let 
cj>(x) satisfy (2.3). / / 

(2.6) F*l 1 + , Kx/<K*)) - o(log JC) (x -> oo) /or ^v^ry A' > 0, 
V log x / 

then the limit (2.4) exists and equals zero. 

Condition (2.6) is stronger than (1.4) in general, and it is equivalent to 
(1.4) if <j>(x) = x. In the latter case, the condition is actually equivalent 
to the existence and vanishing of the mean value (2.4). However, this is not 
true in general, and it seems difficult to derive a reasonably simple 
necessary and sufficient condition for the vanishing of the limit (2.4) 
without imposing some regularity conditions on 4>(x). 

We shall use Theorem 4 in combination with Theorem 1 and Corollary 3 
to derive the following short interval analogue of Halâsz' theorem. 

COROLLARY 5. Let f be a multiplicative function of modulus = 1, and let 
(f>(x) satisfy (2.3) and 
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(2.7) (j>(x) = o(x) (x - » TO). 

Then either 

(2.8) lim inf -j- \M(f, x) - M(f, x - # J C ) ) I = 0, 

or there exist constants A e C\{0}, a G R and a function L(u) satisfying 
(1.2) such that 

(2.9) M(f, x) - M(f, * - # * ) ) 

= tfx)(_±_x'-«L(logJc) + 0 ( 1 ) | . 
U + /a -J 

TTze /i'rs/ alternative occurs if and only if(\A) holds, and the second if and 
only if (1.5) /s satisfied with A, a and L(u) as in (2.9). 

In the first case (i.e., when (1.4) holds), the result may seem 
unsatisfactory, and one would like to describe the behavior of / more 
precisely than by (2.8). However, it seems unlikely that this can be done 
without additional hypotheses on / and <j>(x). In particular, the limit 
in (2.8) need not exist, and the behavior of the quantities M(f x) — 
M(f x — <j>(x) ) may be quite irregular, even when <j>(x) is a fairly 
"regular" function. We shall give a counterexample in the last section. 

Delange [4] has characterized those multiplicative functions of modulus 
^ 1 , which have a non-zero mean value (1.1). By Theorem 1, this is the 
case if and only if (1.5) holds with a = 0, L(u) = 1 + o(\) and some 
A G C\{0}. Corollary 5 shows that this condition is also equivalent to the 
existence and non-vanishing of the short interval mean value (2.4). Thus 
we have 

COROLLARY 6. Under the assumptions of Corollary 5 the limit (2.4) exists 
and is non-zero if and only if the limit (1.1) exists and is non-zero, and both 
limits are equal if they exist. 

It is well-known that mean value theorems for multiplicative functions 
can be used to obtain information about the distribution of additive 
functions. Delange [4] and Halâsz [8] applied their mean value theorems to 
derive limit theorems for additive functions. We shall give here an 
application of this type for the mean value theorem of Corol­
lary 6. 

Let g be a real-valued additive function, and for integers N ^ M ^ 1 
define the distribution functions 

FNMW = T, 2 1, FN(z) = FN^N(z). 
M N-M<n^N 
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The well-known Erdôs-Wintner Theorem (cf. [5, Theorem 5.1]) gives 
necessary and sufficient conditions on the function g in order that the 
distributions FN(z) converge weakly to a limit distribution F(z). By Levy's 
continuity theorem this is the case if and only if, in some neighborhood of 
t = 0, we have 

lim - 2 ft(n) = <p(t\ 
N-^oo TV n^N 

where 

f(n) = exp(itg(n)) 

and <p(/) is the characteristic function of F(z). An analogous criterion 
characterizes the convergence of FNM,N)(z) to F(z). Since, for every 
t e R, ft is a multiplicative function of modulus 1 and <p(t) as a 
characteristic function is non-zero for sufficiently small \t\, we obtain, by 
applying Corollary 6 to f for every sufficiently small /, 

COROLLARY 7. Let M(N), N ^ 1, be a sequence of integers satisfying 

M(N) = o(N), log M(N) ~ log N (N -> oo). 

Then the distributions FN M<N)(Z) converge weakly to a limit distribution F(z) 
if and only if the distributions FN(z) converge to F(z). 

Previously, Babu [3] had shown that under the condition 

(2.10) | {pm g N: \g{pm) | ^ £} | = o(M(N) ) (N -> oo) 

for every e > 0 

the conclusion of Corollary 7 holds, whenever Na ^ M(N) ^ TV for some 
fixed a > 0. Babu also observed that in this result the rather strong 
condition (2.10) cannot be completely deleted. This shows that in Corol­
lary 7, which holds unconditionally, the range for M(N) is essentially 
best-possible. A counterexample can be derived from the above-
mentioned example of a multiplicative function assuming only the values 
0 and 1, for which the mean value (1.1), but not the short interval mean 
value (2.4) with <f>(x) = xa exists (cf. [1, p. 105] or [2, p. 102] ). 

To prove Theorem 4, we shall use an essentially elementary method, 
based on the large sieve. This method was used in [10] to give a new proof 
for Wirsing's mean value theorem, i.e., Theorem 2. To obtain Theorem 4 
for real-valued functions / would require only minor changes in the 
arguments of [10]. However, for complex-valued functions the method 
does not apply as easily, and several new ideas are needed to obtain 
Theorem 4 in its full strength. 

We shall prove Theorem 4 in Section 3 assuming a general result 
(Lemma 2) on certain approximate functional equations. This result will 

https://doi.org/10.4153/CJM-1987-032-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-032-6


MULTIPLICATIVE FUNCTIONS 653 

be proved in Sections 4 and 5 by first reducing the problem to a similar 
one involving Cauchy's equation, and then, in Section 5, solving the 
latter one. In Section 6 we shall prove Corollary 5. (The other corollaries 
are obvious and do not require a proof.) In Section 7 we shall construct 
the counterexample mentioned in the remarks following Corollary 5. 

In deriving the corollaries, we appealed to the mean value theorems of 
Wirsing and Halâsz. It is therefore of some interest to note that these 
results can also be proved by our method. In the case of Wirsing's 
theorem, this has been done in [10], while Halâsz' theorem (Theorem 1) 
can be obtained by a simple modification of our proof for Theorem 4. We 
shall give the details of this deduction in the appendix. 

3. Proof of theorem 4. It will be convenient to assume that \f(p) | is, in 
some average sense, close to 1. If this is not the case, we can argue crudely 
using the following Brun-Titchmarsh type estimate due to Shiu [15]. 

LEMMA 1. The estimate 

M(f x) - M(f x - y) « c y exp( 2 f(p) ~ M 

holds uniformly for all multiplicative functions f satisfying 0 = f = 1 and 
x = y = xe = 1, where c is any fixed positive number. 

This has been proved, in a more general form, in [15, Theorem 1]. (In 
the quoted result, the implied constant may depend on / . However, an 
inspection of the proof shows that the estimate actually holds uniformly 
for all multiplicative functions /satisfying 0 ^ / ^ 1.) 

Applying Lemma 1 to \f\, we see that under the hypotheses of Theorem 
4 the main terms in (2.2) are of order 

,(2 . . \f(P) I - 1 < y exp | 

provided y ^ xl/2, say, as we may assume (since otherwise R(x, y) » 1). 
Thus (2.2) holds trivially, unless 

(3.1) 2u = R(x9y) 
p = 

is satisfied, and we may henceforth assume (3.1). 
The main tool in the proof of Theorem 4 is the large sieve in its 

arithmetic form (see, e.g., [6, p. 105] ) 

1 p 

2 - 2 VT 2 an-" Vr ^ an 
p^QP r=\ rs M-N<n^M 

n=rmodp 
N M-N<n^M 
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« (N + e2)-i 2 \an\\ 
Jy M-N<n^M 

which is valid uniformly for Q? M, N ^ 1 and arbitrary complex numbers 
an, M — N < n ^ M. As a special case of this inequality we obtain 
that 

2 ! 
P^VyP 

P- 2 / ( n ) - 1 2 /(«) 
y x — \><n^x y x—y<.n~x 

p\n 

< 1 

holds uniformly for all x ^ j ^ 1 and all arithmetic functions / of 
modulus ^ 1. Specializing further to multiplicative functions / , we have 

2 /(«) = /(/>) 2 /(») + o(4) 
x —v ^ 

p p 

for every /? ^ -\/y, and therefore get 

/ ( / ? ) m ( - , - ) - m(x, >>) 1 \n D ' 2 
P^\fy P \p p> 

« 1, 

where 

1 
m(x,y) = w( / ; x, j ) = - 2 / ( « ) . 

By the Cauchy-Schwarz inequality it follows that 

2 -\f(p)m(*,y-)-mLy)\«( 2 'A 
1/2 

V , < / 7 % 2 / > ' V />' \ v , < / ? % 2 />> 

holds uniformly for x ^ y ^ 3 and 1 ^ j^i = Ĵ 2 — V?- ^ m addition 
1/4 y2 ^ y •» then this estimate remains valid with (x/t, y It) in place of (x,y), 

1/4 for 1 ^ / ^ _y , i.e., we have 

Mp tp' \t t'l V v i < ^ . v 2 / > 7 

1/2 
(3.2) 2 1 

(x ^ y ^ 3, \ ^ y\ ^ y2 ^ yx/\ 1 ^ / ^ y / 4 ) . 

Our proof rests on the inequality (3.2). For fixed x, y, y} and y2, (3.2) 
can be regarded as an approximate functional equation for the function 

<p(0 = m(x/t,y/t) 

and determines the behavior of y(t) to a large degree. An additive 
analogue of this equation, with the product f(p)<p(tp) replaced by the sum 
f(p) 4- y>(tp), has been investigated by Elliott [6, Chapter 9], and plays a 
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key role in the proof of some recent deep results in the theory of additive 
functions (cf. [6] ). To "solve" (3.2), we shall use the following general 
lemma, which will be proved in the next two sections. 

LEMMA 2. Let Q = 2, K = 10 and a , Q < p = QK, be complex numbers 
of modulus 1. Let <p(t) be a real- or complex-valued function, defined for 
1 = / = Q K, and suppose that, for some e > 0, the inequalities 

(3.3) W) - ^o | si « (i ^ t g f s t(\ + orm) ^ Q2K), 

and 

(3.4) 2 -\aMtp) - <p(t) | ^ € log K (\^t^QK) 

Q<P^QKP 

hold. Then there exists a real number a satisfying \a\ = Q and such that 
(3.5) <p(0 = ,(l)r''« + 0(€) (l^t^Q), 

where the O-constant is absolute. Moreover, if <p(t) is real-valued, then (3.5) 
holds with a = 0. 

We now complete the proof of Theorem 4 assuming the validity of the 
lemma. With / , x, and y being fixed as in the theorem, we put 

(\og(x/y) 1 / 2 \ 
8 = maxl — , (log x) I, 

v log x / 
so that 

R(x,y)x(log(2/8)ru4. 

Clearly, we may assume 

(3.6) 0 < 8 < 1/200. 

We apply the lemma to the function <p(t) = m(x/t, y/t) with the 
parameters 

Q = x48, K = (208)-\ ap = f(p)/\f(p) | 

(with the convention 0/0 := 1) and € = cxR (x, y), where c] is a large 
absolute constant to be specified presently. By the definition of 8 and our 
assumption (3.6) we have 

(3.7) Q â exp(4V^g^) ^ e\ QK = xvs â yi/4 

and K = 1/(20S) = 10, as required in the lemma. The trivial estimate 

< P ( 0 - «KO 

t 

y 
/(«) - 2 f(n)\ + O^—^-) 

-<n^ -<n = 
t t' 
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- ° ( ^ + ;) - ° ( ^ " 4 + ;) 
(1 ^ t ^ f ^ 2/ ^ 2y) 

shows that (3.3) holds with the above choice of £, provided cx is sufficiently 
large. Moreover, (3.2) and the estimate 

( 2 - Y / 2 x ( l o g K ) 1 / 2 ^ ( l o g ( 2 / S ) r 1 / 2 l o g K 
KQ<P^QK P 

R2(x, y) log K 

yield (3.4) with f(p) in place of 0 = f(p)/\f(p) I Since, by our initial 
assumption (3.1), 

2 - i ^ - z o o i ^ 2 -d - \f(P)\) 
Q<P^QKP P^XP 

^ R(x, y)'2 x R2(x, y) log K, 

we obtain (3.4) as stated, after adjusting the constant cu if necessary. 
The assumptions of Lemma 2 are therefore all satisfied, and we 

conclude that for some ax e R, \ax\ = Q, (3.5) holds, i.e., we have 

(3.8) m(x,y) = r ' " a ' # w ( - , ^ ) + 0(R2(x, y) ) (1 ^ / ^ Q). 

Multiplying both sides of this equation by t~l^a~a^~ and integrating 
over 1 ^ / ^ Q, we obtain, for any a e R, 

(3.9) 
m(x, >0 

1 -+• i(a — « | ) 

- /M?*)<-"-2* + °{£ + *w>) 
1 ^ /*min( (?,*/«) 

= -ma(x)Ia(x,y) + oU + R2(x,y)), 

where 

mjx) = - 2 f(n)n'a, Ia(x, y) = f* C>"dt. 
-£ A7=.X 
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This yields the desired estimate (2.2) with a = al for the range 

(3.10) y ^ x/log JC. 

We have yet to show that (2.2) remains valid for any real number a 
satisfying (2.1). To this end we fix such a number, a0 say, so that in the 
above notation 

l«ol = x, \m (x) | = max \ma(x) |. 

Put 

yx = x((|ool + l) logx) \ 

and suppose for the moment^ ^ yx (so that, in particular, (3.10) holds). 
Then we have 

(3.11) / a o { x , , ) . ^ « o ( 1 + 0 ( _ i _ ) ) . 

Thus, applying (3.9) with a = ax and a = a0, we get 

1 
\m(x,y) \m (x)I (x,y)\ + 0{R\x,y)) 

y 

^ \maQ(x)\ + 0(R2(x,y)) 

= -\m(x)I(x,y)\ + 0(R\x,y)) 

m(x9 y) 

1 + i(a0 - ax) 
+ 0(R\x,y)). 

This implies 

(3.12) \m(x,y)\ mm(l, \a0 - ax\
2) 

« \m(x, y) | ( 1 - — - — - 1 - ) « R2(x, y) 
V II 4- liar, - a . ) / 

and hence 

U 4- i(«o 

ra(x, j>) 

1 -f /(«o ~ a i ) 

m(x, j);) 

1 + i(a0 - a,) 

+ <9( |m(x, >>) | min(l, |a0 - a,| ) ) 

+ 0(R(x,y)). 

A further application of (3.9) then shows that (in the case y ^ yx) we can 
replace a = ax by a = a0 in (2.2) without introducing new error terms. 

Next, let for y ^ min(^j, jc/log2*), 
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yf = y log2*. 

We then have 

y J x \t t' Mogjc/ 

as can be easily checked using the definition of m(x/t, y ft) and the bound 
l/l ^ 1. By (3.8) it follows that 

x fx/(x-y') . 
(3.13) m(jc , / ) = - m ( x , j O / f"*1 2 ^ + <9(#2(x, >>) ) 

j / / 1 

= ^ m ( x , ^ y a ' / ( x , / ) + 0(R2(x9y)). 
y 

Now, 

l^%(x,/)-y%,(x,/)l 

=i/:-,{(r'-(r>i 
<C / m in ( l , |OQ - «J ) <C / ^ 

!"*(*, >0 I 
by (3.12). Therefore we obtain, using (3.11) and (2.2) with a = a0, 

"* (* , / ) = - m ( x , j )x z a ° / a n (x , / ) + O ( # ( X , J 0 ) 

y o 

= ^ m a o ( x ) / a o ( x , / ) + 0 ( * ( x , ; O ) 

= -maQ(x)Ia^y) + 0 ( t f ( x , / ) ) , 

which is the estimate (2.2) with a = a0 a n d / in place of y. This shows that 
(2.2) remains valid with a = a0 in the range yx < y ^ y2, where 

y2 = min(x, yx log2 x) = x min(l, ( |a0l + l ) - 1 log x). 

It remains to establish (2.2) (with a = a0), when y2 < y = x (so that 
y2 = x( \a0\ + 1) _ 1 log x < x). In this case we have 

|a0| -f 1 log x log x 

Thus it suffices to show 

(3.14) \m(x,y)\<:R(x,y). 
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By (3.9) we have 

1 - , o 2 / (3.15) \m(x,y)\ ^ -\ma(x)I (x9 y) | + 0{R\x9 y) ) 
y 

for y 1=k jc/log x. In view of (3.13), this estimate remains valid in the range 
x/\og x < y ^ x. U now 

i«ii + i > ^ ( W + i)(iog*r1/2, 

then 

x | ^ x ( l o g x ) 1 / 2
 < _ _ > _ _ 

l'«,(*. J ) I « • • , . = 7Î7Î' 
1 |«ol + 1 (logx) 

and (3.14) follows from (3.15). We may therefore suppose 

|«,| + 1 ^ ^ ( l « o l + lXlogx)"172, 

so that 

(3.16) K - ax\ ^ ( IOQI + l ) ( l - ^ ( l o g x)~x/2) ^ Uog x, 

since x ^ 3 and ( |a0l + 1) = log x by our assumption^ < x- We shall 
show that (3.16) together with the upper bound \a\ ^ x9 j = 0, 1, 
implies 

(3.17) min \ma(x) | « (log x)~]/m. 

Since, by the definition of a0, the minimum in (3.17) equals ma (x), this 
yields (3.14). 

To prove (3.17), we apply Theorem 3 with T = (log x)/\0 to the 
functions 

fa{n) = / ( » )«''";, j = 0, 1. 

This yields the bound 

K.COI « i r ^ K 1 + r^— " ,7/) + ] f <•> = ° '1 } 

* v log x ' v log x J ' ' ) 
for suitable real numbers t0 and /] satisfying 

ky - o,.| ^ r = ^ i o g * a = o, i). 

By (3.16) and the bound \a\ ^ x,j' = 0, 1, we have 
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(3.18) - l o g ^ ^ k o - f,l ^2x. 

A standard argument shows that 

' W i + ' 
log* 1 * ) 

where 

Sj = Re 2 

l og* 

1 - f(p)P^ 

it, « e~^ (j = 0, 1), 

If now S) ë (loglog x)/25 for y = 0 or 1, then (3.17) follows. In the 
remaining case 

max S: ^ (loglog x)/25), 
7=0,1 y 

we get, using Cauchy's inequality along with the elementary inequality 

|1 - z\2 ^ 2(1 - R e z ) (\z\ ^ 1), 

Re 2 ^ S, + 2 
i - y<'•-'<>> ^ 0 , v H - Ap)pit°\ 

p^x 

p^xP 

p^x 

1 

25 ^sx + [2s0 2 - ) ^ ( - + V ^ ) l o g l o g x + ° ( 1 ) 

v
 D^X P' v25 v 2 5 / 

But this inequality is impossible for sufficiently large x, since the left-hand 
side equals 

log 

and hence is 

^ 1 

V log x ' 

m + log-x 
i(h ~ t0) 

+ 0(1), 

loglog x + 0(1) 

by (3.18) and the well-known estimate 

1 

(3.19) f(a 4- it) = 
- + O(l) (a > 1, |/| ^ 2) 

1 + it 

<9((log/)2/3) ( a > 1, k| > 2 ) . 

Thus (3.16) implies (3.17), and our proof of (2.2) with a = a0 is 
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complete, apart from the proof of Lemma 2. It remains to verify that for 
real-valued functions / , (2.2) holds also with a = 0. From Lemma 2 we see 
that in this case we can take a} = 0 in (3.8) and hence also in (3.9). We 
therefore get (2.2) with a = 0 for the range (3.10). Using (3.13), we obtain 
the same estimate for all y â x. 

4. Proof of lemma 2. We first assume a = L Q < p ^ QK. By the 
hypothesis (3.3) and a weak form of Huxley's prime number theorem 
[11] we have, for 1 ^ t ^ QK and every interval / c (Q, QK] of the form 
/ = (JC,JC(1 + G " 1 / 3 ) L 

jj wo - v(ts) i-p— ^ ( wo - rix) i + €) I ds 

s log s JI s log s 

« k o - v(fx) i 2 - + € / -
/>e//> *" 5 log J 

<̂  2 - k o - <*>(#)i + ^ L—r^—. 
p&ip J1 slogs 

Decomposing the interval (Q, QK] into intervals of type /, we obtain, using 
(3.4) with a = 1, 

'QK ds 
|<p(0 - ff(ts) I r, 

J Q s log s 

« 2 -WO - *(?p)l + f L 
Q<p^QK P J Q S log S 

^ 2e log K (1 ^ / ^ ÔK). 

It follows that 

logo" 
| ,<0 - <p(l) I log 

^ 'y 5 log s 

(&" ds (QK ds 
^ ^ ç l o p ç J V Q s log s J Q s log s 

< d o g * ( i g / g eK_1) 

and therefore 

«<0 = <p(l) + O l — ^ — I ( 1 2 » 2 ÔK" ' ) 
1 - Î , , 
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for any TJ e (0, 1). This proves (3.5) in the case a 
a = 0 and for the larger range 

l,Q<p^ £K,with 

1 t 

Notice that here the hypothesis K ^ 10 of the lemma is not needed in 
its full strength; to obtain (3.5) for the range 1 ^ / ^ g, it suffices that 
K ^ 2 4- S for some fixed 8 > 0. 

We now turn to the general case. We first note that if <p(t) satisfies (3.3) 
and (3.4) with arbitrary coefficients a of modulus 1, then <p0(0 = l«p(0 I 
satisfies the same hypotheses with a = 1. By the above proved case of the 
lemma, we conclude 

(4.1) W(t)\ = |<p(l)| + 0(e) (1 ^ t ^ QK% 

where 

(4.2) K0 = K ° " - 1 g 1 0 ° " - 1 > 8 

by the assumption K ^ 10 of the lemma. This implies that either 

(4.3) 0 < | | v ( l ) | =§ \<p(t) | S 2|,<1) I (1 S ? S ÔK») 

or 

<p(?) = 0(e) (1 ^ / S gK0) 

holds with an absolute 0-constant. Since in the latter case the conclusion 
of the lemma is trivially valid, we may assume (4.3). 

Next, let K, = K 0 / 3 and 1 ^ t0, t ^ QKK Noting that by (4.3) for every 
P ^ Çt\ 

y(tt0) <p(tt0p) 

<p(0 <dtp) 
^ 4 <p(»o) _ <K0 

]<f(tt0p) f(tp) 

l { \ a p - ^ 
<p(tt0p) 

?(0 
<p(f/>) 

{ \aMtt0p) ~ <p(«0) 
1*0) 

+ \aprtp) ~ <K0 I } 

we obtain, using the assumption (3.4), 

2 A <p("o) <K"o/') 

tfO *('/>) 

16 

Mi) 
€ lOg K ^ €, l og K,, 
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where 

16e log u c? 

€1 = max p™ = e, 
|<P(1)| ^ i o l o g ( W

a " - l) /3 |<p(l)| 
say. Thus, for every fixed t0 e [1, QK% the function 

V l ( 0 - v(tt0)/qit) 

satisfies (3.4) with KX and Cj in place of K and c, and the coefficients a 
replaced by 1. Moreover, in view of the inequality 

<p(t't0) <p(tt0) 

<P(0 <P(0 

€ < €, (1 ^ f S f S f(l + Ô _ 1 / 3 ) = Ô2K,X 
ki)i 

(3.3) remains valid for <p{(t) with the parameters KX and Cj. Hence we can 
again apply the above proved case and obtain 

(4.4) ^ ) = ^ + 0(c,) ( I S / , ^ ^ 
W) <P(1) 

where 
).99 

* r -2 = 4 " " 1 É ^ - I - 1 > 1 

by (4.2). 

(4.4) can be regarded as a multiplicative form of Cauchy's functional 
equation with error term, and we shall show that, under some mild 
regularity condition, it has only trivial solutions. To this end, we use the 
following general result, which will be proved in the next section. 

LEMMA 3. Let T = 2 and q(t) be a complex-valued function, defined for 
\ = t ^ T and satisfying, for some 8 G (0, 1/2), 

(4.5) \q(f) - q(t) | ë S\q(t) | (1 S / S f S t(\ + T~U2) S T) 

and 

(4.6) \q(W) - q(t)q(0 | â 8\q(tt>) \ (t, t' è 1, 1 ^ tt' ë T). 

77Z /̂T zTẑ re exists a complex number z, \z\ ^ T, such that 

(4.7) q(t) = f exp{0(0) } ( l ^ i T), 

vv/zere z7z£ implied constant is absolute. 
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We apply Lemma 3 with q(t) = <P(0/<PO) and T = Q. From (3.3), (4.1), 
(4.3) and (4.4) we see that (4.5) and (4.6) are satisfied with 

8 = c3€/|cp(l) | 

for some absolute constant c3. We may assume 0 < 8 < 1/2, as required 
in the lemma, since otherwise by (4.1) the desired relation (3.5) holds 
trivially for any a e R. By Lemma 3 we therefore conclude that for some 
z G C, \z\ ^ T = g , 

(4.8) <p(0 = q(t)<p(\) = r> ( l ) exp{0(8) } 

= r(<p(l) + 0(6)) (1 ^ / ë Q). 

This implies, in particular, 

we) i = eRez(Wi)i + o(€)), 
whence, by (4.1), 

Ô R e >(l) = «PO) + 0( | (<2Rez - 1M1) I ) = <p(\) + 0(e). 

Therefore we can replace z by i Im z in (4.8) and obtain the desired 
relation (3.5) with a = Im z. Since \z\ ^ T = Q, we have |a| ^ Q, as 
required in Lemma 2. For real-valued functions <p(t), the relation (3.5) 
with a = 0 follows already from (4.1) and the hypothesis (3.3); 
alternatively, it can easily be seen from (3.5), that if this relation holds 
with some a e R for a real-valued function <p(t), then it also holds with 
a = 0. Hence all the assertions of Lemma 2 are proved. 

5. Proof of lemma 3. We first remark that since by hypothesis 0 < 
8 ^ 1/2 in (4.5) and (4.6), we can write these relations in the more 
convenient form 

(4.5)' q(t') = q(t) exp{0(S) } ( l ^ / g ^ t(\ + T~xn) ^ T\ 

(4.6/ q(tt') = q(t)q(f) exp{0(6) } (t, f i= 1, 1 ^ tf ^ T). 

Let now q(t) satisfy (4.5)' and (4.6)', put q(l) = \ and for 1 < t ^ T 
define 

q{t) = q(t2Y\ 

where k = k{t) is defined by 

r ^ T < r . 
Since by (4.5)' q(t) is bounded on the interval [1, T], we have 

(5.1) lim q(t) = 1 = q(l). 

Also, since by (4.6)' 
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<7(/2)2 = <K?2 )2 exp{0(2 -S)} 

for z ^ /c(/), we get inductively 

(5.2) q(t) = q(t2)2~' exp{0(2~~'8) } (1 < / ë 71, 0 < i ^ k(t) ), 

and, in particular, 

(5.3) q{t) = q{t) exp{0(S) } (1 g / S T), 

where the case / = 1 follows from (5.1) and (4.5)'. (4.6)' and (5.2) yield 

(5.4) q(txt2) = q{ (f,^2*)2"* = litY'W)2~* exp{0(2^0) } 

ft/,)^) exp{0(2 *S)} 

*.w«-p{"(^')} log 

(^, t2 ^ i, i < txt2 ë r, fc = fc(/,r2)). 
Put 

- (>+à). log <7(\) 
z = \[rr log A ' 

where the determination of log q(X) is such that 

|Im log q(X) | ^ 77. 

Since by (5.3) and (4.5/ 

q(X) = ?(A) exp{<9(ô) } = ^f(l) exp{0(o) } 

= q{\) exp{<9(5) } = exp{0(5) }, 

we have 

|log q(\) | ^ c4S 

for some absolute constant c4 and hence 

(5.5) |z| ^ c4S(logA)~1 ^ 2c4SV5". 

We shall prove (4.7) with this number z. 
By (4.5)', (5.3) and (5.5) it is enough to show 

q(\») = \nz exp{6>(ô) } (1 ^ n ^ log 7V log A). 

This holds trivially, if n is of the form n = 2', since, by the definition of the 
function q, 

q(t2') = q(tf for any t e [1, T2~\ 
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Otherwise, we write n ^ log 77log X in the form 

/i - 2 2', / c N U {0}, 

and obtain, by a repeated application of (5.4), 

*A'') = n ^ 2 ' ) e x p { o ( 5 2 ^ ) ) 
jej V V ,<E/ l o g T ' J 

= ?(A)" exp { o ( g ^ ^ ) } = \!" exp{0(5) }, 

as wanted. 
The required bound \z\ = T follows from (5.5) if 8 ^ l/(2c4) or T ^ T0 

for some absolute constant T0. But if these conditions are not satisfied, 
then, by (4.5)' and (5.3), (4.7) holds trivially with z = 0. 

6. Proof of corollary 5. We fix a multiplicative function / o f modulus 
^ 1 and a function a(x) such that (2.1) holds with a = a(x). By Theorem 4 
we have, for any function 4>(x) satisfying (2.3), 

(6.1) - î - ( M ( / , x) - M(J9 x - 4>(x) ) ) 
<t>(x) 

<#>(JC)X 

where 

(6.2) Ia(Ax, « 0 0 ) = / t ia(x)dt <C cj>(x) mini 1, J. 

Suppose first that (1.5) and hence (1.3) hold with constants A <= C\{0} , 
a e R and a function L(w) satisfying (1.2). Then 

lim \M(f9 x)\/x = \A\ > 0 
A'—»00 

by (1.3), and applying (6.1) and (6.2) with cj>(x) = x, we deduce that a(x) 
is bounded for x ^ 3. But then we have 

/ ^ ( x , <t>(x) ) = *~m(A) + o(l) (x -» 00) 
# x ) 

for any function cj>(x) satisfying (2.7). Thus the right-hand side of (6.1) is 
independent of <j>(x), provided <£>(x) satisfies (2.3) and (2.7). Since (1.3) 
obviously implies the desired relation (2.9) for some function 4>(x) 
satisfying (2.3) and (2.7), we therefore obtain (2.9) for all such func­
tions (j>(x). 
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Thus we have proved that, under the hypotheses of Corollary 5, (1.5) 
(with A ¥" 0) implies (2.9). To complete the proof of Corollary 5, it suffices 
to show that (1.4) implies (2.8). The asserted equivalence between (1.4) 
and (2.8) and between (1.5) and (2.9) (with A ¥= 0) then follows, since by 
Theorem 1 either (1.4) or (1.5) holds and the relations (2.8) and (2.9) with 
A ¥= 0 cannot hold simultaneously. 

To prove the implication (1.4) =̂> (2.8), we assume that (2.8) is not 
satisfied, so that 

lim inf |M(/, x) - M(f9 x - <j>(x) ) | > 0 
x^oo <J>(x) 

for some function <j>(x) satisfying (2.3) and (2.7). By (6.1) and (6.2) this 
implies 

(6.3) lim inf \M(fa(x}, x) \/x > 0. 
jt—»oo 

On the other hand, Theorem 3 yields the upper bound 

(6.4) \M{fa{xY x) | 

<C x\ \F\\ + - it{x))\ + } 
v log x ' V log x ' ' log x ) 

<C x exp\ —- Re 2J f 
I 4 n^x P J p~x P J ( logx)1 / 4 

for suitable numbers t(x) e R satisfying 

|/(x) - a(x) | ^ log x (x ^ 3) 

and hence 

(6.5) \t(x) | ^ \a(x) | 4- log x ^ x + log x (x ë 3). 

(6.3) and (6.4) imply 

R e s • - /w<"«, (xi}) 

By means of the elementary inequality 

4-ïH i ' â |1 - z , | 2 + |1 
2 ^ Ll 

g 2{Re(l - z,) + Re(l - z2) } 

( N = |z2| â i) 
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we deduce 

Re 2 1 i(l(x)-t(x')) 

— « 1 (x' â x S 3). 

The left-hand side in this estimate equals 

1 

log 
' V log x ' 

? 1 + 
1 

+ O(l) 

logx 
i(t(x) - t(x') ) , 

â loglog x - - loglog( \t(x) - t(x') I + 3) 

+ log 
logx 

- i(t(x) - t(x') ) O(l) 

by (3.19). In view of (6.5) it follows that 

t(x) = t(x') + 
Moe x ' \o%x> 

(3 ^ x ^ x' ^ x1). 

Hence the numbers t(x) are bounded, \t(x) | ^ K (x ~ 3), say, and from 
(6.3) and (6.4) we conclude that 

F*(a, K) = sup \F(o + *Y) | » -
\t\^K O 

1 

1 
(1 < a < 1.5), 

which contradicts (1.4). This proves the implication (1.4) =̂> (2.8). 

7. A negative result. By Theorem 1, the limit 

lim |M(/, x)\/x 

exists for any multiplicative function / of modulus ^ 1, and Corollary 5 
shows that if this limit is non-zero, then, for any function <p(x) satisfying 
(2.3) and (2.7), the limit 

lim \M(fx) - M(fx - <Kx))\ 

exists and is non-zero. We show here that in the case / h a s mean value 
zero, the above limit does not exist in general. 

THEOREM 5. Let <j>(x) satisfy (2.3) and (2.7). Then there exists a 
multiplicative function f of modulus = 1 , for which the mean value (1.1) 
exists and equals zero, but 
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(7.1) lim inf |M(/, x) - M(f9 x - <j>(x) ) | = 0 
JC-^OO <p(x ) 

(7.2) lim sup -^-\M<f, x) - M(f, x - <j>(x))\ = \. 
JC^OO <J>(x) 

Proof. Let <|>(x) be given as in the theorem. Put x0 = a0 = 1, and for 
& ̂  1 choose xk and a^ inductively such that 

(7.3) xk/(<S>(xk)ak_,) è /c, 

(7.4) ak ^ k 

and 

(7.5) \p^ - / A | S - ± - (O^j^k- lxJ^p< xy+1). 
Acx^ 

The condition (7.3) can be met in view of the assumption (2.7) on 
<t>(x). The existence of a number ak ^ k satisfying (7.5) follows from 
Kronecker's theorem. 

Define a completely multiplicative function / b y 

Xp)=pia* (xk<p^xk + i). 

By (7.5) we have, for n ^ x^, 

fin) = ^ - + o(^>), 

where 

a*(*) = 2 i. 
Pm\n 

P=xk 

It follows that for y ^ xk 

(7.6) M( / , xk) - M(f, xk - y) 

= 2 #!''"*-' + o(—— 2 ofc_,(«)). 
**-.y<"=** Xkxk-\ *k-y<n^xk 

The error term can be estimated by 

<C 2 2 2 i« 
&**-! / ^ * * _ , mi=l ^ - J X / I ^ X * k\ogXk_x 

Pm=*k Pm\n 

and hence is of order o(y) as k —> oo, uniformly for \/x^ ^ 7 ^ x^. 
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Taking in turn y 
(7.4), 

and y = 4>(xk) in (7.6), we obtain, by (7.3) and 

lim —\M(f,xk)\ = lim — 

and 

k-^oo Xi 

lim 
k-^co Cj>(xk) 

k-^oo I» 
2 «"**-

i=*k 

= o 

\M(f,xk) ~ M(f,xk - <j>(xk)) 

1 
= lim 

k^co <ty{xk) 
2 n 

*k~<Xxk)<"=xk 

iak_ 1. 

The second relation proves (7.2), while the first implies, by Theorem 1 and 
Corollary 5, that / h a s mean value zero and satisfies (7.1). 

Appendix. Proof of theorem 1. We confine ourselves to the proof that 
(1.4) implies, under the assumptions of Theorem 1, that / h a s mean value 
zero. This is the hard part of Theorem 1, for which Halâsz' analytical 
method had been so far the only available method of proof. The proof of 
the remaining assertions of Theorem 1 is comparatively simple. It is 
straightforward to verify that for any multiplicative function of modulus 
^ 1 either (1.4) or (1.5) (with A * 0) holds (cf. [5, Vol. I, p. 244] ). The 
implication (1.5) => (1.3) (in the case A ^ 0) can be proved by elementary 
convolution arguments. 

We fix a multiplicative function / o f modulus ^ 1 and assume that (1.4) 
holds. Put m(x) = M ( / x)/x, and for 0 < € ^ 1/2 define 

R(e) = {min(log(l/€), loglog x) }~ 1 / 2 . 

Our proof is based on the relation 

m(x) •(f) t
ia + Q(R(e)) (1 ^ / ^ xe), 

where a = a(e, x) is a suitable real number of modulus ^ x . This is a 
variant of (3.8) and can be established in the same way, the only difference 
being a different choice of the parameters Q, K and e in the application of 
Lemma 2. Multiplying both sides of this relation by t 
over 1 ^ t ^ x€, we get 

and integrating 

m(x) log x€ 

1 + m 
( 2 ^ ^ ) + 0(1 + *(€) log A 

To obtain the desired result m(x) = o(x) (x 
show that (1.4) implies 

oo), it now suffices to 
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max 
AnW" 

= 6>(log x) (x —> OO) 

for every K > 0. But this is a consequence of the following lemma. 

LEMMA. Uniformly for all multiplicative functions f of modulus =\ and 
all x = 3 we have 

fin) 
« 1 + ( H F ( I + ^_)|y /2

logx. 
Mog x 1 V log JC/ ' / 

Proof The proof is based on a simple convolution argument. Putting 
g = / * 1 (where * denotes the Dirichlet convolution), we have 

= I1 2 /(«) 2 i |+o(- 2 l/(«)l) 
X n=x m=x/n X n=x 

- 2 g(n)\ + 0(1) ^ - 2 \g(n)\ + O(l). 
X n^x X nfàx 

By an elementary estimate of Halberstam and Richert [9], the last 
expression is 

2 ^ 
n^x n 

= 

= 

Now 

<C e x p + 1. 

s lg( />)l _ 2 I I + /(/>) 

a ( 2 /j / V p) 

4 - 2(1 - Re /(/>) ) 

rtt) 
1/2 

«-M*i)T"*H* / ? / v 2 v /?> 

where the summations run over all primes =x and 

s = 2 1 ~ Re / ( /1 ) 

Hence we get 

/(«) 
< exp + 1 < e S/2 log JC. 
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If now f(2m) = 0 for all m ^ 1, then a standard argument yields 

, - s > < _!_U, + _!_)|. 
log x ' v log x ' ' 

and the asserted estimate follows. The general case can be readily derived 
from this, using the identity 

2 /M = 2 /en 2 /oo 
(n,2)=\ 

_ 2 ^ 2 ^ + o„ , 
m^O 2. ,j^x n 

(n,2) = \ 
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