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Asymptotically good towers and differential equations

Peter Beelen and Irene I. Bouw

Abstract

This paper concerns towers of curves over a finite field with many rational points, following
Garcia–Stichtenoth and Elkies. We present a new method to produce such towers. A key
ingredient is the study of algebraic solutions to Fuchsian differential equations modulo p.
We apply our results to towers of modular curves, and find new asymptotically good
towers.

1. Introduction

Let p be a prime and q = pa, for some a > 0. Consider a projective smooth curve X of genus g,
defined over Fq, and write Nq(X) for the number of Fq-rational points of X. We write Nq(g) for
the maximum of Nq(X), taken over all curves X of genus g which are defined over Fq. The Drinfel’d–
Vlăduţ bound [DV83] states that

A(q) := lim sup
g→∞

Nq(g)
g

� √
q − 1.

Moreover, A(q) > c log(q), where c > 0 is a constant [Ser83].

Garcia and Stichtenoth [GSR03] constructed many examples of infinite towers of curves · · · →
Xm+1 → Xm → · · · → X0 defined over a finite field Fq2 such that the limit of Nq2(Xm)/g(Xm)
is q − 1. Such towers are called asymptotically optimal. If this limit is positive, the tower is called
asymptotically good. Asymptotically optimal towers have, for example, interesting applications to
coding theory [Gop81, TV91]. For these applications it is important to have explicit equations for
the curves Xm. Garcia and Stichtenoth define towers of curves recursively, starting from a corre-
spondence (g, h) : X0 ⇒ X−1, by taking suitable (normalized) Cartesian products. A nice feature
of this recursive definition is that one obtains explicit equations for all curves Xm starting from an
equation for (g, h). One has to choose the correspondence very carefully for the corresponding tower
to have many rational points. Garcia–Stichtenoth find correspondences that work, but they do not
give a systematic method for finding such correspondences.

Elkies [Elk98] applies this approach to correspondences (g, h) : X0(�2) ⇒ X0(�), for certain small
values of �. Here g is the natural projection and h is the composition of g with the Atkin–Lehner
involutions on both sides. The corresponding tower is · · · → X0(�m+1) → X0(�m) → · · · . This gives
equations for modular curves X0(�m) starting from an equation for (g, h) : X0(�2) ⇒ X0(�). This is
a second important application of the theory.

Elkies also constructs other asymptotically optimal towers of curves, starting from correspon-
dences between other Shimura varieties, such as Drinfel’d modular curves. These Shimura varieties
are moduli spaces of curves, surfaces, etc., and the correspondences are an analog of the Hecke cor-
respondences for modular curves. Elkies shows that all asymptotically optimal towers constructed
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by Garcia and Stichtenoth are of this form [Elk98, Elk01]. Elkies suggests that all asymptotically
optimal towers arise in this way [Elk98, ‘Fantasia’].

In this paper we give a new method for constructing asymptotically good towers. We extract the
essential ingredients from the approach of Garcia et al. and Elkies, and formulate a general set-up.
Our approach is concrete and not just applicable to towers of modular curves. This allows for a
more systematic search for asymptotically optimal towers.

We start from a correspondence (g, h) : X0 ⇒ X−1 over a finite field Fq, together with a Fuchsian
differential equation on X−1. We say that the correspondence (g, h) is adapted to the differential
equation if the pull back via g is equivalent to the pull back via h (see § 2 for precise definitions).
The correspondence (g, h) gives rise to a tower of curves Tg,h = (Xm)m�0. Under some technical
assumptions we show the following (Theorem 3.7).

Theorem. The tower Tg,h is asymptotically good. This means that the limit of Nq(Xm)/g(Xm) is
positive.

One of the assumptions we make is that g and h are tame, i.e. the characteristic of the ground
field does not divide the ramification indices. We also give a criterion for the tower Tg,h to be
asymptotically optimal (Theorem 3.8).

The reason why such towers have many rational points is roughly the following. We suppose
that the differential equation has an algebraic solution Φ. After extending the field of definition Fq

of the correspondence, we may assume that the zeros and poles of Φ are Fq-rational. The set of
these zeros and poles has a subset T with the following property. For every P ∈ T and every m, the
inverse image of P in Xm consists of unramified and Fq-rational points.

It appears that all known examples of tame asymptotically optimal towers can be reformulated
in these terms. The reason is that, by Elkies’ work, the known examples come from certain corre-
spondences between Shimura curves. (In fact, the tame towers are all towers of modular curves.)
Such moduli spaces come naturally equipped with a differential equation: the Picard–Fuchs differ-
ential equation of a versal family of the objects it parameterizes. For towers of modular curves we
work this out in § 5. We expect that it is possible to generalize (parts of) our method to wildly
ramified towers.

The idea for using differential equations for studying the growing behavior of rational points in
a tower came from [GSR03]. In that paper Gauß’ hypergeometric differential equation was used to
prove a property for the Deuring polynomial. We show that the arguments of [GSR03] simplify and
generalize if one makes a more systematic use of differential equations. Our method is also related
in spirit to the older work of Ihara (see [Iha99] for a survey). However, Ihara’s work only applies to
towers of Shimura curves. Moreover, it uses p-adic uniformization to count points. We work purely
in characteristic p which is more convenient in practice.

To find new examples of asymptotically good towers, we construct correspondences via pull back.
Given a correspondence (g, h) : X0 ⇒ X−1 and an arbitrary map f : Y−1 → X−1, we define a new
correspondence (g̃, h̃) : Y0 ⇒ Y−1. This gives a systematic construction of the towers of modular
curves found by Elkies in [LMS02, Appendix]. This allows one to find many asymptotically good
towers.

The situation for asymptotically optimal towers is more complicated. We give a criterion for the
pull back of an asymptotically optimal tower to be asymptotically optimal again (Theorem 4.5).
Since our approach does not use the interpretation of the curves we consider as Shimura varieties,
one might expect to find counterexamples to Elkies’ conjecture. However, we did not find such an
example. The reason is that in Theorem 4.5 there is one condition which is hard to control. In a
forthcoming paper we will come back to the question of whether this idea can be used as evidence
for Elkies’ conjecture.
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The organization of this paper is as follows. In § 2 we review and extend known results on
Fuchsian differential equations on curves in positive characteristic. In § 3 we give the recursive
definition of a tower of curves corresponding to a correspondence and establish basic properties. We
estimate how the genus and the number of rational points grow in the tower, and prove the criterion
for a tower to be asymptotically good. In § 4 we develop the construction of correspondences via
pull back and construct a new example. Section 5 reformulates and extends some results of Elkies
on towers of modular curves.

2. Fuchsian differential equations

In this section we recall some standard results on Fuchsian differential equations. For proofs and
more details we refer the reader to [Kat70, § 11] and [Hon81]. Let k be a field of characteristic p > 0
and X/k a smooth projective curve. Let K = k(X) be the function field of X. Suppose that M is
a finite-dimensional vector space over K.

Definition 2.1. A k-connection ∇ on M is an additive map

∇ : M → Ω1
K/k ⊗K M

satisfying the Leibniz rule

∇(fm) = df ⊗m+ f∇(m),

for f ∈ K and m ∈M .

Equivalently [Kat70, § 1.0], ∇ corresponds to a K-linear map

∇ : Der(K/k) → Endk(M)

such that ∇(D)(fm) = D(f)m + f∇(D)m for D ∈ Der(K/k), f ∈ K and m ∈ M . A horizontal
morphism from (M1,∇1) to (M2,∇2) is a morphism ϕ : M1 → M2 of K-vector spaces which
is compatible with the connections, i.e. ϕ(∇1(D)m) = ∇2(D)(ϕ(m)). We write MC(X) for the
category of K-modules with connection.

Definition 2.2. Let P be a place of K/k and t a local parameter at P . For a K-basis e of M , we
write ∇(d/dt)e = Ae · e with Ae ∈ Mn(K), where n = dimK M . We say that P is a singular point
of (M,∇) if the matrix Ae has a pole at P for every basis e.

Definition 2.3. We say that (M,∇) is cyclic if there exists a vector m ∈ M and a nonzero
derivation D ∈ Der(K/k) such that m,∇(D)m, . . . ,∇d−1(D)m span M over K, where d = dimK M .

It is shown in [Kat70, § 11.4] that the notion of a cyclic module is independent of the choice
of the derivation D. In the rest of this section, we suppose that M is cyclic, and of K-dimension
d = 2. A K-basis m,∇(D)m of M is called a cyclic basis.

If P is the place of K/k, we write OP (respectively, mP ) for the local ring (respectively, the
maximal ideal) at P . Let

DerP (K/k) = {D ∈ Der(K/k) | D(mP ) ⊂ mP }.

If t = tP is a local parameter of X at P , then DerP (K/k) is a free OP -module with basis t d/dt.

Definition 2.4. Let P be a singular point of (M,∇) and t a local parameter at P . For a K-basis
e of M , we write ∇(t d/dt)e = Be · e with Be ∈ M2(K). We say that P is a regular singularity if
there exists a K-basis e of M such that Be is holomorphic at P . If all singularities of (M,∇) are
regular, we say that (M,∇) is a Fuchsian module.
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Suppose that P is a regular singularity of (M,∇), and let Be ∈ Mn(OP ) be as above. Write
Be(0) for the value of Be at t = 0. The characteristic polynomial of Be(0) is called the indicial
equation. Its roots are the local exponents.

The local exponents depend on the choice of the basis e. In this paper we always suppose that e
is chosen such that the matrix of ∇(D) is regular. Here D = t d/dt if P is a singularity and D = d/dt
otherwise. If P is not a singularity its local exponents are 0, 1 = dimK M − 1. The converse need
not be true. Singularities with local exponents 0, 1 = dimK M − 1 are called apparent singularities.

We now associate to (M,∇) a second-order differential equation. Let P be a regular singularity
of (M,∇) and t a local parameter at P . Let e = (e1, e2 := ∇(d/dt)(e1)) be a cyclic basis of M . Write

∇
(
d

dt

)
e = A · e, with A =

(
0 −a2

1 −a1

)
. (1)

It is easy to check that the fact that P is a regular singularity means that we may choose e such
that ai has a pole of order at most i at P for i = 1, 2.

Let M∗ = HomK(M,K) be the K-linear dual of M . We define a k-connection ∇∗ on M∗ by
requiring that

〈∇(D)(m),m∗〉 + 〈m,∇∗(D)(m∗)〉 = D(〈m,m∗〉),
for D ∈ Der(K/k), m ∈ M and m∗ ∈ M∗. One easily checks that ∇∗ is a connection. In fact, with
respect to the dual basis e∗ of M∗, we have ∇∗(d/dt)e∗ = −Ate∗. Here At is the transpose of A.

Write M̂∗
P = M∗ ⊗K K̂P , where K̂P is the completion of K at P . Denote by (M̂∗

P )∇∗
the

horizontal sections, i.e.

f1e
∗
1 + f2e

∗
2 ∈ (M̂∗

P )∇ if and only if

{
f2 = f ′1,
L(f1) := f ′′1 + a1f

′
1 + a2f1 = 0.

(2)

This is the differential equation corresponding to (M,∇). Giving (M,∇) is equivalent to giving the
differential equation (2). We sometimes call (M,∇) itself a differential equation.

One computes that

∇
(
t
d

dt

)
(e1, te2) =

(
0 −t2a2

1 1 − ta1

)
(e1, te2).

Writing ai = cit
−i + · · · with ci ∈ k̄, we find that the indicial equation is

X2 + (−1 + c1)X + c2 = 0. (3)

The local exponents γ1, γ2 are the roots of this equation. Note that our notion of local exponents
agrees with the classical notion. This is the reason for taking the differential equation corresponding
to the horizontal sections of M̂∗

P rather than M̂P .
Our next topic is algebraic solutions of Fuchsian differential equations in positive characteristic,

following Honda [Hon81]. Let (M,∇) ∈ MC(X) be a cyclic module of dimension 2, and let P ∈ X be
a regular singularity with local parameter t. Choose a cyclic basis e of M . Let L/K be an algebraic
extension. We say that u ∈ L is an algebraic solution of (M,∇) if it is a solution of the corresponding
differential equation (2). This is equivalent to the fact that ue∗1 + u′e∗2 ∈ (M∗ ⊗K L)∇∗

. In what
follows we mainly consider solutions in K.

Proposition 2.5. Let (M,∇) ∈ MC(X) be a cyclic module of dimension 2, and let u ∈ K be an
algebraic solution (with respect to some choice of a cyclic basis e).

(i) Suppose that P is a regular singularity. Write γ1, γ2 for its local exponents. Then

ordP (u) ≡ γi mod p,

for some i ∈ {1, 2}. In particular, γi ∈ Fp.

1408

https://doi.org/10.1112/S0010437X05001624 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X05001624


Asymptotically good towers and differential equations

(ii) If P ∈ X is regular we have

ordP (u) ≡ 1 mod p or ordP (u) ≡ 0 mod p.

Proof. Let u be an algebraic solution. Suppose that P is a regular singularity. Choose a local
parameter t at P . Put δ := ordP (u). In the complete local ring ÔP , we may write u = tδ(ε) with
ε ∈ Ô×

P . By assumption, u satisfies

u′′ + a1u
′ + a2u = 0,

where ai has a pole of order at most i, since P is a regular singularity. Write

a1 = c1t
−1 + · · · , a2 = c2t

−2 + · · · .

Substituting this in the differential equation and taking the coefficient of tδ−2, we find that δ2 +
δ(c1 − 1) + c2. Since the indicial equation (3) is X2 + (c1 − 1)X + c2, part (i) follows.

If P is a regular point, we may suppose that ai does not have a pole at P for i = 1, 2. Hence,
part (ii) immediately follows from the indicial equation.

Example 2.6. A key example of a Fuchsian differential equation we will be interested in this
paper, is that coming from the Gauß–Manin connection on the modular curve X(2). We recall
the situation from [Kat84]. The statements are easy to generalize to other modular curves (§ 5).
Let S = Spec(Z[λ, 1/2λ(λ − 1)]) and write E → S for the elliptic curve over S given by y2 =
x(x− 1)(x − λ).

We denote by M := H1
dR(E/S) the first de Rham cohomology group, and by ∇ : M → Ω1

S ⊗M
the Gauß–Manin connection. Write

ω =
dx

y
=

dx

[x(x− 1)(x− λ)]1/2
, ω′ := ∇

(
∂

∂λ

)
ω =

dx

2[x(x− 1)]1/2(x− λ)3/2
.

Then ω and ω′ form a basis of M . One computes that

∇
(
∂

∂λ

)
(ω, ω′) =

(
0 −1/4λ(λ− 1)
1 −(2λ− 1)/λ(λ − 1)

)
(ω, ω′).

The corresponding differential equation (2) is

λ(λ− 1)u′′ + (2λ− 1)u′ + 1
4u = 0. (4)

The differential equation (4) is Gauß’ hypergeometric differential equation. It has three singu-
larities 0, 1,∞ with local exponents 0, 0; 0, 0; 1

2 ,
1
2 . Working out the statement of Proposition 2.5

for the singularity P = ∞, we obtain the following. Let u ∈ k(λ) be an algebraic solution. After
multiplying u with a pth power, we may suppose that u is a polynomial. Then deg(u) ≡ −γi mod p,
where γ1, γ2 are the local exponents at ∞. In our case we find therefore that deg(u) ≡ −1

2 mod p.
The Deuring polynomial (or Hasse invariant)

Φ :=
(p−1)/2∑

i=0

(
(p − 1)/2

i

)2

λi (5)

is a solution mod p of this differential equation of degree (p − 1)/2. Proposition 2.7 below implies
that every other algebraic solution in characteristic p is of the form ψpΦ, for some ψ ∈ K.

In this paper we always assume that the Kp-module of algebraic solutions of (M,∇) has
dimension one. This restriction may not be necessary. We make it because it is always satisfied
in the concrete cases we consider and significantly simplifies the exposition. This condition can be
reformulated in terms of the p-curvature as follows.
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The p-curvature of (M,∇) is the K-linear morphism

ΨM : Der(K/k) → EndK(M)

defined by
ΨM (D) = ∇(D)p −∇(Dp).

See [Kat70, § 5] for basic properties of the p-curvature. Suppose that (M,∇) has an algebraic
solution u ∈ K. Then it is well known that then the Kp-module of algebraic solutions of (M,∇)
have dimension one if and only if the p-curvature ΨM is nonzero (see [Hon81, Appendix] and [Kat70,
Theorem 5.1]). The following proposition gives a necessary condition for this to happen. A similar
statement is proved in [Hon81, Proposition 5.1].

Proposition 2.7. Let (M,∇) ∈ MC(X) be a cyclic module of dimension two, and let u1, u2 ∈ K
be algebraic solutions (with respect to some choice of a cyclic basis e). We suppose that ordP (u1) ≡
ordP (u2) mod p for some regular singularity P . Then u1 and u2 are linearly dependent over Kp.

Proof. Let u1, u2 ∈ K be solution of the differential equation which are independent over Kp.
Choose a local parameter t at P . Let γ = ordP (u1) and γ + pν = ordP (u2). It is no restriction to
suppose that γ = 0. Write u1 =

∑
i�0 bit

i and u2 = tpν(
∑

i�0 dit
i). It is no restriction to suppose

that b0 = d0 = 1. Let w = u′2u1 − u′1u2 be the Wronskian; it satisfies the differential equation
w′ + a1w = 0.

It is easy to see that the assumption that u1 and u2 are independent over Kp implies that the
local exponents at P are both zero. One computes that

w = tpν
∑
i�0

i+1∑
j=0

(i+ 1 − 2j)di+1−jbj.

Since ordP (w) ≡ −1 mod p, it follows that bi = di for i = 0, . . . , p−2. The coefficient of tp(ν+1)−1 in
w is p(dpb0 − d0bp) = 0. Continuing we find that w = 0. However, this contradicts the assumption
that the solutions u1 and u2 are linearly independent over Kp.

Proposition 2.7 may also be rephrased as follows. Suppose that there exists a P ∈ X such that
the local exponents of (M,∇) at P are equal, then the space of algebraic solution of (M,∇) in L
has Lp-dimension one.

In general, a module (M,∇) ∈ MC(X) does not have algebraic solutions. Honda [Hon81,
Appendix] shows that (M,∇) has ‘sufficiently many solutions in a weak sense’ if and only if the
p-curvature of (M,∇) is nilpotent. The notion of sufficiently many solutions in a weak sense is
stronger than just the existence of an algebraic solution, namely one requires that the Wronskian
equation w′+a1w = 0 also has a nonzero algebraic solution. However, if (M,∇) is cyclic, has dimen-
sion two, and its singularities are Fp-rational, then the two notions are equivalent
[Hon81, Corollary 1 to Proposition 2.3]. Katz [Kat70] shows that in a ‘geometric’ context (as in
Example 2.6) the p-curvature is always nilpotent, in particular, the corresponding differential
equation has an algebraic solution in some extension L/K.

Suppose that (M1,∇1) and (M2,∇2) are elements of MC(X). We define a k-connection ∇ on
M = M1⊗KM2 by putting ∇(D)(m1⊗m2) = (∇1(D)m1)⊗m2+m1⊗(∇(D)m2), forD ∈ Der(K/k)
and mi ∈Mi.

Definition 2.8. Let (M1,∇1), (M2,∇2) ∈ MC(X) be modules with dimK M1 = dimK M2. We say
that (M1,∇1) is equivalent to (M2,∇2) if there exists a one-dimensional module (M3,∇3) ∈ MC(X)
such that:

• (M1,∇1) ⊗K (M3,∇3) � (M2,∇2);
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• (M3,∇3) has an algebraic solution θ;
• the set of singularities of (M3,∇3) is contained in the set of singularities of (M1,∇1).

In terms of local coordinates this definition means the following. Let (M1,∇1) ∈ MC(X) be a
cyclic, Fuchsian module of dimension two and let (M3,∇3) ∈ MC(X) be a one-dimensional Fuchsian
module. Let P be a regular singularity of both (M1,∇1) and (M3,∇3) with local parameter t. Choose
a cyclic basis (e1, e2) for M1 as in (1), i.e. we write

∇1(d/dt)(e1, e2) =
(

0 −a2

1 −a1

)
(e1, e2).

We identify M3 with K, and write ∇3(d/dt) = B · 1. Then with respect to the basis ξ1 = e1 ⊗ 1
and ξ2 = Be1 ⊗ 1 + e2 ⊗ 1 of M2 = M1 ⊗K M3 we find

∇2(d/dt)(ξ1, ξ2) =
(

0 −a2 +Ba1 +B′ −B2

1 −a1 + 2B

)
(ξ1, ξ2).

The corresponding differential equation is

y′′ + (a1 − 2B)y′ + (−B′ −Ba1 + a2 +B2)y = 0.

One checks that if u is an (algebraic) solution of the differential equation corresponding to (M1,∇1)
then θu is an (algebraic) solution of (M2,∇2). Here θ is an algebraic solution of M3 (Definition 2.8).
Let γ (respectively, γ1, γ2) be the local exponents of (M3,∇3) (respectively, (M1,∇1)) at P . One
computes that the indicial equation of (M2,∇2) at P is (X − γ1 − γ)(X − γ2 − γ).

Suppose we are given (M,∇) ∈ MC(X) and a cover f : Y → X defined over k, i.e. f is a finite
separable map between smooth and absolutely irreducible curves. Let L = k(Y ) be the function
field of Y .

Definition 2.9. We define the pull back (Mf ,∇f ) on Y as follows. Write ∇(m) = m⊗ dg, where
dg ∈ Ω1

K . Then Mf = M ⊗K L and ∇f : M ⊗K L → Ω1
L ⊗ (M ⊗K L) is defined by m ⊗ 1 �→

f∗(m⊗ dg) := m⊗ d(g ◦ f) ∈M ⊗K L⊗L Ω1
L = Mf ⊗L Ω1

L.

In local coordinates this may be described as follows. Let Q be a point of Y and P its image
in X. Choose a local parameter s of Q and let t = se be a local parameter of P . Here e is the
ramification index of Q in f . Write f ′(s) ∈ OQ for the derivative of f at Q. Choose an appropriate
basis e = (e1, e2) of M at P , and write

∇(d/dt)e =
(

0 −a2

1 −a1

)
e,

as above. Then

∇f (d/ds)(e1, f ′(s)e2) =
(

0 −(f ′(s))2a2(f(s))
1 −f ′(s)a1(f(s)) + f ′′(s)/f ′(s)

)
(e1, f ′(s)e2).

The corresponding differential equation is

Lf (v) =
(

d

f ′(s) ds

)2

v + a1(f(s))
(

d

f ′(s) ds

)
v + a2(f(s))v = 0.

One easily checks that if (M,∇) is Fuchsian, then (Mf ,∇f ) is also Fuchsian. Moreover, with
notation as above, if P is a regular singularity with local exponents (γ1, γ2) then (eγ1, eγ2) are the
local exponents at Q. Note that it may happen that P is a singularity but Q is not. (It is easy to
characterize this in terms of the local monodromy, but we do not need this here.)
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Notation 2.10. Let (M,∇) ∈ MC(X) and write S for its set of singularities. Suppose that (M,∇)
has an algebraic solution Φ. Let f : Y → X be a cover and (Mf ,∇f ) the pull-back module. We
write Φf := Φ ◦ f for the corresponding algebraic solution of (Mf ,∇f ).

Definition 2.11. Let (M,∇) ∈ MC(X). A correspondence adapted to (M,∇) is a pair of (separable)
covers g, h : Y ⇒ X between smooth and absolutely irreducible curves such that the pull-back
modules (Mg,∇g) and (Mh,∇h) on Y are equivalent. A correspondence (g, h) is called tame if the
covers g and h are tame.

A correspondence (g, h) : Y ⇒ X may equivalently be described by giving a curve C ⊂ X ×X.
Here C = {(g(P ), h(P )) | P ∈ Y } is the curve of correspondence. The degree of the correspondence
is the cardinality of {(x, y) ∈ C}, where x ∈ X is a fixed, sufficiently general point. We will be
particularly interested in correspondences of degree one. In this case, the map Y → C defined by
P �→ (g(P ), h(P )) is generically an isomorphism.

Proposition 2.12. Let (M,∇) ∈ MC(X) be a Fuchsian, cyclic module of dimension two. Let S be
its set of singularities. Suppose that

• (M,∇) has an algebraic solution Φ ∈ K; and

• the p-curvature of (M,∇) is nilpotent, but nonzero.

Let (g, h) : Y ⇒ X be a correspondence adapted to (M,∇). Write S for the set of singularities of
the pull-back module (Mg,∇g). Then there exists a function ε ∈ K(Y ) and a function θ ∈ K(Y )
whose poles and zeros are contained in S such that

Φh = εpθΦg.

Proof. Note that S is also the set of singularities of (Mh,∇h). The fact that (Mg,∇g) and (Mh,∇h)
are equivalent means that there exists a one-dimensional module (N,∇N ) such that (Mg,∇g) ⊗
(N,∇N ) � (Mh,∇h). It is no restriction to suppose that we have equality. Recall that there exists
an algebraic function θ such that θΦg is a solution of (Mh,∇h). This function is an algebraic solution
of the module (N,∇N ).

Theorem 5.9 of [Kat70] implies that the p-curvature of the pull-back modules (Mh,∇h) is also
nilpotent. It follows from the interpretation of ΨM = 0 in terms of algebraic solutions that ΨMh

�= 0.
Since θΦg and Φh are both solutions of (Mh,∇h), it follows that they differ by an element of
K(Y )p.

Lemma 2.13. Let (M,∇) ∈ MC(X) and g, h : Y ⇒ X be a correspondence adapted to (M,∇).
Then, for every map φ : Z → Y , the modules (Mg◦φ,∇g◦φ) and (Mh◦φ,∇h◦φ) are also equivalent.

The proof is straightforward.

3. Estimates for the number of points and the genus in a tower

In this section we define a tower of curves from a tame correspondence adapted to a differential
equation (M,∇). We also estimate the genus (Proposition 3.3) and number of points (Proposi-
tion 3.6) in the tower. The results are easiest to understand in the well-known case of towers of
modular curves (§ 5). It may be helpful to look at this case before reading the proofs in the general
case.

Let (M,∇) be a Fuchsian differential equation of rank 2 with set of singularities S. We always
suppose that M is cyclic (Definition 2.3). We denote by (g, h) : X0 ⇒ X−1 a tame correspondence
adapted to (M,∇) (Definition 2.11) unbranched outside S. We always assume that X0 and X−1 are
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smooth and absolutely irreducible curves. We assume that the covers g and h are disjoint (i.e. the
covers g, h : X0 → X−1 do not have a common subcover or, alternatively, no functions φ, ψ1 and
ψ2 exist such that g = φ ◦ψ1, h = φ ◦ψ2 and deg φ �= 1). Denote the common set of singularities of
(Mg,∇g) and (Mh,∇h) by S. To the correspondence (g, h) we associate a tower of curves

Tg,h =
(
· · · πm−→ Xm

πm−1−→ Xm−1 → · · · π0−→ X0

)
, (6)

where Xm is a smooth projective curve and πm is a cover. For m � 1, the curve Xm is the
normalization of the curve X ′

m. The curves X ′
m are defined recursively as follows. We put X ′

0 = X0.
For m � 0, we define X ′

m+1 by the fiber product

X ′
m+1

πm

��

�� X0

h

��
X ′

m gm
�� X−1

where πm(x0, . . . , xm+1) = (x0, . . . , xm) and gm(x0, . . . , xm) = g(xm). We have

X ′
m = {(x0, . . . , xm) ∈ Xm+1

0 | h(xi) = g(xi−1), 1 � i � m}.
The cover πm : X ′

m+1 → X ′
m induces a cover from Xm+1 to Xm which we again denote by πm. We

will also denote by xi : Xm → X0 (with 0 � i � m) the cover defined by xi : P �→ xi(P ).
To obtain a tower of curves, we require that Xm is an absolutely irreducible curve, for all m.

Clearly, a necessary condition for this is that g and h are disjoint. This condition is not sufficient
however. For example if we take g(t) = t2 + t and h(t) = 1/(t2 + t) both defined over a finite field
of characteristic two, then g and h are disjoint, but the corresponding curve X2 is not irreducible
(although X1 is).

We now state a sufficient condition for all curves Xm occurring in the tower Tg,h to be absolutely
irreducible. Let Y andX be curves defined over a field k and suppose we are given a cover π : Y → X
defined over k. We say a point P of X is totally branched in the cover π if there exists a point Q of
Y with π(Q) = P such that e(Q|P ) = deg π. The following lemma is obvious.

Lemma 3.1. Suppose that the cover πm : Xm+1 → Xm has a totally branched point for all m � 0.
Then all curves Xm are absolutely irreducible.

The condition that g and h are disjoint is not vital for the construction of the tower. If g = φ◦ψ1

and h = φ ◦ ψ2, one should replace the correspondence (g, h) by (ψ1, ψ2). Note that if g and h are
disjoint we have deg πm = deg h. All asymptotically good towers of function fields found by Garcia
et al. (see, e.g., [GS95, GSR03, GS96, GST97]) can be described as a tower Tg,h for a suitable
correspondence (g, h). For the definition of the tower, we do not need that the correspondence is
adapted to some differential equation. We only need this afterwards to estimate the number of
Fq-rational points.

We now state some restrictions we will assume in the rest of this section.

Assumption 3.2. Let (g, h) : X0 ⇒ X−1 be a tame correspondence adapted to a Fuchsian, cyclic
module (M,∇) of rank 2.

(a) The set of singularities S ⊂ X−1 of (M,∇) contains the branch locus of g and h.
(b) S = g−1(S) = h−1(S).
(c) All curves Xm occurring in the tower Tg,h are absolutely irreducible.
(d) deg g = deg h =: δ.
(e) The module (M,∇) has an algebraic solution Φ ∈ K and ΨM �= 0.
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We will usually check assumption (c) by using Lemma 3.1. Note that assumption (d) is a natural
restriction, since if deg g �= deg h the tower Tg,h is asymptotically bad [GS00].

We start by estimating the genus g(Tg,h) of a tower Tg,h. This genus is defined in the following
way:

g(Tg,h) := lim
m→∞

g(Xm)
δm

.

Here g(Xm) denotes the genus of the curve Xm. This limit exists [GST97], but may be infinite.
A necessary condition for a tower T to be asymptotically good is that 0 < g(T ) <∞. The following
proposition checks this in our situation.

Proposition 3.3. Suppose that Assumption 3.2 holds. Then for any m and any point P of Xm we
have

(i) xm−1(P ) ∈ S ⇐⇒ xm(P ) ∈ S,

(ii) g(Tg,h) � g(X0) +
#S − 2

2
.

Proof. We extend the constant field to Fq, which does not make a difference since we are only
interested in the genus at this point. We show that the branch locus of the tower Tg,h is contained
in S. (By branch locus we mean here the set of points ofX0 that are branched in the coverXm → X0,
for some m.)

Let P be a point of the curve Xm. By the recursive definition of the tower, we have h(xm(P )) =
g(xm−1(P )). Therefore, if xm−1(P ) ∈ S, we have xm(P ) ∈ h−1g(xm−1(P )) ⊂ h−1g(S) = S by
Assumption 3.2(b). Conversely, xm(P ) ∈ S implies xm−1(P ) ∈ S. This proves the first part of the
proposition.

Recall that the following diagram commutes.

Xm

πm−1

��

�� X0

h
��

Xm−1 gm−1
�� X−1

If P ∈ Xm ramifies in πm−1 : Xm → Xm−1 then g(xm−1(P )) ∈ S, since we assumed that h is
unbranched outside S. By Assumption 3.2(b), we have that xm(P ) ∈ S. It follows by induction
from part (i) that x0(P ) ∈ S.

One uses the Riemann–Hurwitz formula for the cover Xm → X0 to deduce

g(Xm) − 1
δm

� g(X0) − 1 +
#S · (δm − 1)

2δm
.

The proposition follows by letting m tend to infinity.

We now investigate the asymptotic behavior of the number of rational points in the tower Tg,h.
A key role is played by Proposition 2.12. Let Φ be an algebraic solution of (M,∇). Further,
let Φg (respectively, Φh) denote the corresponding solution of (Mg,∇g) (respectively, (Mh,∇h))
(see Notation 2.10).

Let π : Y → X be a cover of curves over k and P be a k-rational point of X. We say that P is
completely split if P is unbranched and every point Q of Y with π(Q) = P is k-rational. We now
determine a set T of completely split places of Tg,h.

Define

T := {a ∈ X−1 | ordaΦ �≡ 0 mod p and a �∈ S}. (7)
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Recall that Proposition 2.5 implies that ordaΦ ≡ 1 mod p for a ∈ T . The following lemma gives
some properties of this set. It will be useful in the investigation of the number of rational points in
the tower.

Lemma 3.4. Suppose that Assumption 3.2 holds. Then T := g−1(T ) = h−1(T ).

Proof. Define T := g−1(T ). Then T = {α ∈ X0 | ordα(Φg) �≡ 0 mod p}, since ordα(Φg) = ordg(α)Φ
for α �∈ S. Let α ∈ T. Proposition 2.12 implies that ordα(Φh) �≡ 0 mod p. Therefore, T ⊂ h−1(T ).
The other inclusion is similar.

Let α, β ∈ X0 with g(α) = h(β). Lemma 3.4 shows that α ∈ T if and only if β ∈ T.
Given a smooth absolutely irreducible curve C defined over Fq, we denote by Nq(C) the number

of Fq-rational points of C. For a tower Tg,h = (X0,X1, . . . ) defined as above with constant field Fq

we define the splitting rate of the tower Tg,h by

νq(Tg,h) := lim
m→∞

Nq(Xm)
δm

.

This limit exists [GST97] and is a nonnegative finite number.

Definition 3.5. Given a correspondence (g, h) : X0 ⇒ X−1 defining a tower Tg,h, we define the
minimal splitting field of this tower to be the smallest field k such that:

(i) the correspondence (g, h) : X0 ⇒ X−1 is defined over k;
(ii) all points of X0 in the set T are defined over k.

A necessary condition for a tower T to be asymptotically good is νq(T ) > 0. The following
proposition gives an estimate for νq(T ) in our situation.

Proposition 3.6. Suppose that Assumption 3.2 holds. Let Fq be the minimal splitting field of Tg,h.
Then

νq(Tg,h) � #T.

Proof. Recall that δ := deg g = deg h. Since S and T are disjoint, for any a ∈ T there are exactly δ
points ofX0 lying above a. Moreover, all of these points of X0 are defined over Fq by our assumption.
Let α be a point of X0 with g(α) = a. Write h(α) = b. Since T = g(T) = h(T) it follows that b ∈ T .

Now suppose that we have constructed inductively δm−1#T points of Xm−1 defined over Fq

and lying above T. Let P ∈ Xm−1 be one of these points, and let Q ∈ π−1
m (P ) ⊂ Xm. Note that

the cardinality of π−1
m (P ) is δ, since P is unbranched in πm. By assumption, xi(P ) ∈ T. Since

h(xm(Q)) = g(xm−1(Q)) = g(xm−1(P )), we conclude as above that xm(Q) ∈ T as well.

The following theorem gives a sufficient condition for Tg,h to be asymptotically good.

Theorem 3.7. Suppose that Assumption 3.2 holds. Suppose that T is nonempty. Then the tower
Tg,h is asymptotically good (with respect to the minimal splitting field Fq).

Proof. By Proposition 3.3, the tower has finite genus. The assumption implies that T = g−1(T )
is nonempty. By Proposition 3.6, the tower has positive splitting rate. Therefore, the tower Tg,h is
asymptotically good.

Theorem 3.8. Suppose that Assumption 3.2 holds. Let Fq be the minimal splitting field of Tg,h.
Suppose that

2#T = (
√
q − 1)(#S + 2g(X0) − 2).

Then the tower Tg,h is asymptotically optimal.
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Proof. This follows immediately from Propositions 3.3 and 3.6.

The minimal splitting field is often difficult to calculate in practice. This is a serious problem
in finding asymptotically optimal towers via the criterion of Theorem 3.8. Proposition 3.9 is a
useful tool to deal with this problem: it essentially controls the minimal splitting field at the cost
of introducing a new condition on the correspondence (g, h) : Y ⇒ X. Namely, we need to suppose
that the correspondence has degree one. In § 4 we will always make this assumption. In the case of
modular curves (§ 5) this condition is always satisfied, see the proof of Lemma 5.3.

Recall from § 2 that if a correspondence (g, h) : Y ⇒ X has degree one, then the map Y → C
of Y onto the curve of correspondence is generically a bijection.

Proposition 3.9. Let X and Y be smooth and absolutely irreducible curves defined over k, and
let (g, h) : Y ⇒ X be a tame correspondence of degree one over k.

Let V ⊂ X be a set of k-rational points such that for any α, β ∈ Y with h(β) = g(α) we have
g(α) ∈ V ⇔ g(β) ∈ V . Let α ∈ Y be such that:

(i) g(α) ∈ V ;

(ii) g(α) is a k-rational point of X;

(iii) (g(α), h(α)) is not a singularity of C.

Then α is a k-rational point of Y .

Proof. We first show that h(α) is a k-rational point of X. There exists a point β such that
h(α) = g(β). By the assumption on V and condition (i), the point h(α) = g(β) is in V and,
hence, k-rational.

Since the map φ has degree one, it can be inverted for nonsingular points of C. The k-rationality
of (g(α), h(α)) then implies the k-rationality of α = φ−1(g(α), h(α)).

Condition (iii) in the above proposition is not a heavy restriction in practice. Since the number
of singularities of C is finite, they can usually be dealt with by hand in any particular case. For
certain correspondences of degree two this proposition is due to Zieve (see [GSR03]). We will apply
this proposition in the situation that V = T (= g(T) = h(T)). If the conditions of the above lemma
are satisfied, then the points in the set T are defined over k if the points in the set T are.

4. Constructing towers via pull back

As before let (g, h) : X0 ⇒ X−1 be a correspondence adapted to a Fuchsian differential equation
(M,∇), where we suppose that g and h are disjoint. As always, we suppose that (M,∇) is cyclic
and of order 2. We write S for the set of singularities of (M,∇). Let f : Y−1 → X−1 be a (separable)
cover of smooth, absolutely irreducible curves, which is allowed to have wild ramification and may
be ramified outside S. We suppose that all curves and covers are defined over a finite field k. Write
(Mf ,∇f ) for the pull back of (M,∇) via f and Sf for the set of singularities of (Mf ,∇f ). In this
section we make the following additional assumption.

Assumption 3.2 (Continued).

(f) The correspondence (g, h) : X0 ⇒ X−1 has degree one.

Recall that we defined the curve of correspondence C ⊂ X−1 ×X−1 by

C := {(g(P ), h(P )) | P a point of X0}. (8)

The curve C is the image of X0 under the map g ∗ h : X0 → X−1 × X−1 defined by
(g ∗ h)(P ) = (g(P ), h(P )). Assumption 3.2(f) implies that the map X0 → C has degree one.
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Denote by p1 (respectively, p2) the projections of C onto it first (respectively, second) coordinate.
We have the following commutative diagram.

X0

g∗h
��

g

���������������
h

���������������

X−1 Cp1
��

p2
�� X−1

Let D ⊂ Y−1 × Y−1 be an absolutely irreducible component of the inverse image of C under
(f, f) : Y−1 × Y−1 → X−1 ×X−1. After extending the field of definition k, we may suppose that D
is defined over k. We have the following diagram.

X0

g∗h
��

D
(f,f)

����������������������������

p̃1����
��

��
��

p̃2 ���
��

��
��

�

C

p1		��
��

��
��

p2 

��
��

��
�� Y−1f

��������������������������� Y−1

f

��������������������������

X−1 X−1

The maps p̃1 (respectively, p̃2) are projections of D onto its first (respectively, second) coordinate.
Recall that we always suppose that the curve X0 is smooth. Denote by Y0 the normalization of the
curve D, then we have the following diagram.

Y0

��

g̃

���������������
h̃

��													

Y−1 D
p̃1

��
p̃2

�� Y−1

The maps g̃ and h̃ are defined such that the diagram commutes.

Definition 4.1. We call (g̃, h̃) the pull back of (g, h) under f .

The following lemma gives a key property of the pull-back correspondence (g̃, h̃).

Lemma 4.2. The correspondence (g̃, h̃) is adapted to (Mf ,∇f ).

Proof. We have the following (commutative) diagram.

Y0

φ

����������������������������

g̃		��
��

��
��

h̃ 

















X0

g
		��

��
��

��

h 

��
��

��
��

Y−1f

��������������������������� Y−1

f

��������������������������

X−1 X−1

Hence, the result follows immediately from Lemma 2.13.

Note that if deg g = deg h, then deg g̃ = deg h̃. The above lemma motivates that if the tower
Tg,h is asymptotically good, the tower Tg̃,h̃ is also a good candidate for being asymptotically good.
Recall that in Lemma 3.4 we defined a set T ⊂ X0 consisting of completely splitting places of the
tower Tg,h.

Theorem 4.3. Let (M,∇) be a Fuchsian differential equation of rank 2 and let (g, h) be a corre-
spondence adapted to (M,∇) all defined over a finite field Fq. Suppose Assumption 3.2(a)–(f) hold.
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Let f : Y−1 → X−1 be a tame cover and suppose that Assumption 3.2(c) holds for the pull-back
correspondence (g̃, h̃). If the set T is nonempty, then Tg̃,h̃ is asymptotically good over some finite
extension field of Fq.

Proof. Our assumptions imply that the branch locus of the pull-back tower Tg̃,h̃ is contained in
φ−1(S), where φ : Y0 → X0 is induced by (f, f) : D → C. Therefore, Proposition 3.3 implies that
the genus g(Tg̃,h̃) of the pull-back tower is finite.

We claim that νq(Tg̃,h̃) > 0. By Proposition 3.6, it suffices to show that the set

Tf := {a ∈ Y−1 | ordaΦf �≡ 0 mod p and a �∈ f−1(S)}
is nonempty. Let b ∈ Y−1 − f−1(S). Then ordbΦf = e · ordf(b)Φ, where e is the ramification index
of b in f . Since f is tamely ramified it follows that f−1(T ) ⊂ Tf . Therefore, the assumption that T
is nonempty implies that Tf is nonempty.

Before proceeding, we give an example illustrating Theorem 4.3.

Example 4.4. We consider the correspondence (g, h) : P
1 ⇒ P

1 given by h(t) = t2 and g(t) =
4t/(t+ 1)2. The correspondence (g, h) is adapted to the Gauß’ hypergeometric differential operator
L(u) = t(t−1)u′′ +(2t−1)u′ +u/4, which has the Deuring polynomial as a solution (Example 2.6).
We denote the Deuring polynomial by Φ. Recall that S = {0, 1,∞} is the set of singularities of L.
The set of singularities of the pull-back differential equation Lg equals S = {0,±1,∞}. Therefore,
the correspondence satisfies Assumption 3.2(b) and (d). One checks that the point x0 = 0 on X0 is
totally branched in the tower Tg,h. Therefore Assumption 3.2(c) follows from Lemma 3.1.

The tower Tg,h is the tower of modular curves X0(2m) starting from m = 3. The tower Tg,h is
essentially the same as a tower considered in [GSR03].

The curve of correspondence C = {(g(x), h(x)) | x ∈ P
1} is given by the equation

4a(b − 2)2 − (a+ 1)2b2 = 0. (9)

One checks that X0 is a normalization of C. In other words, Assumption 3.2(f) is satisfied. This
means that we can apply the pull-back construction to the tower Tg,h. Further, note that the point
(−1, 2) of C is a singularity.

Let f : P
1 → P

1 be the cover defined by t = f(s) := −n(n/(n− 1))n−1(sn − sn−1) for an integer
n � 2 satisfying p � | (n − 1) and p � |n, where p denotes the characteristic. In particular Y−1 = P

1.
An explicit calculation shows that the cover f is unbranched outside the set {0, 1,∞}. Let Fq be
the smallest finite field containing all roots of the polynomial Φ(Tm−Tm−1). Using Proposition 3.9
one checks that the pull-back tower Tg̃,h̃ is asymptotically good over the field Fq, for all n for which
Assumption 3.2(c) holds. We will not determine the field Fq explicitly here. For n = 2 we obtain
an asymptotically optimal tower which turns out to be the modular tower (X0(2m)) starting from
m = 4. For n > 2 one does not seem to obtain asymptotically optimal towers. Trivially, one sees
that q divides 2 · n!.

Example 4.4 illustrates how to find asymptotically good towers via pull back. The only problem
is to check Assumption 3.2(c) for the pull-back tower. This condition is satisfied if deg(g̃) = deg(g).
To obtain asymptotically optimal towers, we need to impose a condition on the minimal splitting
field. This condition is, in practice, hard to check.

Theorem 4.5. Let (g, h) : X0 ⇒ X−1 be a correspondence adapted to a differential equation
(M,∇) with singularity set S, satisfying Assumption 3.2(a)–(f). Let f : Y−1 → X−1 be a tame
cover unbranched outside S. Denote by (g̃, h̃) the pull back correspondence and suppose it satisfies
Assumption 3.2(c). If Tg,h is asymptotically optimal and the towers Tg,h and Tg̃,h̃ have the same
minimal splitting field Fq, then Tg̃,h̃ is also asymptotically optimal.
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Proof. By our assumptions φ−1(T) consists of completely splitting places of the tower Tg̃,h̃.
Therefore, νq(Tg̃,h̃) � deg φ · #T by Proposition 3.6.

As usual, denote by S the singularities of the differential equation (Mg,∇g). The Riemann–
Hurwitz genus formula for the cover φ : Y0 → X0 implies that

2g(Y0) − 2 + #φ−1(S) = deg φ · (2g(X0) − 2 + #S).

Since φ−1(S) contains the set of singularities of (Mg̃◦f ,∇g̃◦f ), it follows from Proposition 3.3 that
g(Tg̃,h̃) � deg φ · (g(X0) + (#S − 2)/2). This implies the theorem.

As a consequence of Theorem 4.5, we give an asymptotically optimal tower. We consider again
the correspondence (g, h) : P

1 ⇒ P
1 given by h(t) = t2 and g(t) = 4t/(t+1)2. Using Proposition 3.9

we immediately obtain that the roots of the Deuring polynomial are squares in Fp2. In fact these
roots are fourth powers in Fp2 (see [GSR03]).

Let f : P
1 → P

1 be defined by

t = f(s) =
16s2

(s− 1)4
.

One checks that Sf = f−1{0, 1,∞} = {0,±1, 3 ±
√

2,∞}. The pull-back differential equation is

Lf (v) = v′′ +
s4 − 4s3 + 20s2 + 8s− 1
s(s2 − 1)(s2 − 6s+ 1)

v′ +
16(s2 + 1)

s(s+ 1)(s − 1)2(s2 − 6s+ 1)
v = 0.

The pull back of C with respect to the map (f, f) has two absolutely irreducible components of
genus 0 and one of genus 2. We write f(A) = a and f(B) = b and use (9). The components
of genus 0 of the pull back of C are then given by the equations

−A+A2 + 4AB +B2 −AB2 = 0 and 1 −A+ 4AB −AB2 +A2B2 = 0. (10)

One may choose any genus 0 component D from (10) and a coordinate y of its normalization Y0

such that the maps φ : Y0 → X0 and g̃, h̃ : Y0 → P
1 are described as follows

X0

g

����
��

��
�� h

���
��

��
��

� Y0
φ��

g̃

����
��

��
�

h̃

���
��

��
��

P
1

P
1

P
1

P
1

with φ(y) = 4y2/(y2 − 1)2, h̃(y) = y2 and g̃(y) = −y(y − 1)/(y + 1).
Let Tg̃,h̃ = (Y0, Y1, . . . , Ym, . . . ) be the tower of curves defined by the correspondence (g̃, h̃).

One checks that y0 = ∞ is totally branched in the tower. Therefore, Lemma 3.1 implies that the
curves Ym are irreducible for all m. Then Ym is given by the equations

y2
i = −yi−1(yi−1 − 1)

yi−1 + 1
, with 1 � i � m.

We write Φf (s) = Φ(f(s)) for the algebraic solution of Lf (v) = 0 (Notation 2.10). Using that
the correspondence (g̃, h̃) is adapted to Lf (Lemma 4.2), one checks that

(s2 − 1)2p−2Φf (s2) = (s2 + 1)2p−2Φf

(
−s(s− 1)
s+ 1

)
.

This illustrates Proposition 2.12.

Proposition 4.6. The tower Tg̃,h̃ is asymptotically optimal if p ≡ ±1 mod 8.
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Proof. To apply Theorem 4.5, we only need to determine the minimal splitting field of the tower Tg̃,h̃.
Using Proposition 3.9 we see that this field is in fact the splitting field of Φf (t). In other words, we
are interested in the solutions of the equation

16y2

(y − 1)4
=

(
4y

(y − 1)2

)2

= λ with Φ(λ) = 0. (11)

We have already seen that all roots of the Deuring polynomial are squares in Fp2. Write λ = µ2.
Equation (11) has solutions in Fp2 if and only if µ+ 1 is a square in Fp2.

Suppose that p ≡ ±1 mod 8. We claim that for any root λ of Φ and any element µ with µ2 = λ
the element µ+1 is a square in Fp2. We will prove this claim following the approach by Rück in the
appendix of [GSR03].

Consider the elliptic curve Eλ given by Y 2 = X(X − 1)(X −λ). Since λ is a root of the Deuring
polynomial, Eλ is supersingular. We first suppose that λ �∈ {−1, 2, 1

2} and that λ is not a sixth root
of unity. It is known that Frobp2, the Frobenius automorphism over Fp2, acts on Eλ as multiplication
by ±p. This implies that the x-coordinate of any 8-torsion point of Eλ is an element of Fp2. Here
we use that p ≡ ±1 mod 8.

The point (0, 0) of Eλ is a point of order two. For any point (a, b) satisfying 2(a, b) = (0, 0) we
have

a2 = λ

as can be seen directly from the addition formulas of Eλ. Hence, we may choose a = −µ. For the
points (c, d) satisfying 2(c, d) = (a, b) we find in a similar way (c − a)4 + 4c2(a − 1)2a = 0. Write
µ = ν2. Note that ν ∈ Fp2, since all roots of Φ are fourth powers in Fp2. We obtain

(c2 + 2(−ν + µ− νµ)c+ λ)(c2 + 2(ν + µ+ νµ)c+ λ) = 0. (12)

The discriminant of any of these factors is µ+ 1 up to multiplication with squares in Fp2. Since all
solutions of (12) are in Fp2, the claim follows.

If λ ∈ {−1, 2, 1
2}, then a direct computation shows that µ+ 1 is a square in Fp2 in our situation.

On the other hand, if λ is a sixth root of unity, then Frobp6, the Frobenius automorphism on Fp6,
acts as multiplication by ±p on Eλ. By a similar argument as above, we conclude that

√
µ+ 1 ∈ Fp6.

However, it is obvious that
√
µ+ 1 ∈ Fp8. Therefore, µ+ 1 is also a square in Fp2 in this case.

Theorem 4.5 now implies that the tower Tg̃,h̃ is asymptotically optimal. The tower Tg̃,h̃ is
asymptotically good (although not optimal) for every p > 2 if we extend the field of definition
to Fp4.

5. Towers of modular curves

In this section we apply the results of §§ 3 and 4 to towers of modular curves.
Fix an integer � > 3. We do not suppose that � is prime. Write X0(�m) for the modular curve

parameterizing (generalized) elliptic curves E together with a cyclic isogeny E → E′ of degree �m.
For a precise description of the points above j = ∞ (the cusps) in terms of generalized elliptic
curves we refer the reader to [DR72]. The curve X0(�m) has a natural smooth model over Z[1/�].
Denote by σm : X0(�m) → X0(�m) the Atkin–Lehner involution. It sends an isogeny E → E′ to its
dual isogeny.

We define a correspondence (g, h) : X0(�2) ⇒ X0(�) as follows. Suppose that (E1 → E2 → E3)
corresponds to a point of X0(�2), i.e. E1 → E3 is a cyclic isogeny of degree �2 and Ei → Ei+1

has degree �. Then g(E1 → E2 → E3) = (E1 → E2) is the standard projection and h(E1 →
E2 → E3) = (E2 → E3) is σ1 ◦ g ◦ σ2.
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Analogous to Example 2.6, we obtain a differential equation on X0(�m). Fix a prime p relatively
prime to �. We denote by X0(�m)/Fp the reduction of X0(�m) to characteristic p.

Let S = Spec(Fp[j, 1/j(j−1728)]). Write E�m for the universal elliptic curve on X0(�m); it exists
for �m > 3. Let M�m = H1

dR(E�m/S) be the de Rham cohomology group and ∇ : M�m → Ω1
S ⊗M�m

the Gauß–Manin connection [Kat70, § 7]. Then (M�m ,∇) ∈ MC(X0(�m)); its set of singularities S�m

is contained in the inverse image of j = 0, 1728,∞.

Lemma 5.1. The correspondence (g, h) : X0(�2) ⇒ X0(�) is adapted to (M�,∇).

Proof. The pull back of E� via g is just the universal elliptic curve E�2 . Denote the pull back of E� via
h by E ′

�2 . The concrete description of g and h given above implies that there is an isogeny E�2 → E ′
�2 .

It induces an isomorphism H1
dR(E�2/S) � H1

dR(E ′
�2/S) on the de Rham cohomology groups. This

implies the statement of the lemma.

On X(1) we still have a versal family of elliptic curves E1. We may choose E1 such that it
is nonsingular outside j = 0, 1728,∞. The differential equation corresponding to (M1,∇) is a
hypergeometric differential equation (i.e. a Fuchsian differential equation with three singularities).
Its singularities are j = 0, 1728,∞ with local exponents 0, 1

3 ; 0, 1
2 ; 1

12 ,
1
12 , respectively. Note that

(M�m ,∇) is the pull back of (M1,∇) via the natural projection (E → E′) �→ E. Denote by ν2(�m)
(respectively, ν3(�m), respectively, ν∞(�m)) the number of singularities of (M�m ,∇) above j = 1728
(respectively, j = 0, respectively, j = ∞). Let µ(�m) be the degree of X0(�m) → X(1). These
numbers are computed in [Shi94, Proposition 1.43]. Moreover, it is shown in [Shi94, Proposition 1.40]
that

g(X0(�m)) = 1 +
µ(�m)

12
− ν2(�m)

4
− ν3(�m)

3
− ν∞(�m)

2
. (13)

The supersingular polynomial is defined as

Φ1(j) =
∏

(j − j(E)) ∈ Fp[j],

where the product is taken over the supersingular elliptic curves E/F̄p. Put

α :=
[
p

12

]
, δ :=

{
0 if p ≡ 1 mod 3,
1 if p ≡ 2 mod 3,

ε :=

{
0 if p ≡ 1 mod 4,
1 if p ≡ 3 mod 4.

There exists a polynomial Φ̃1 of degree α such that Φ1 = jδ(j−1728)εΦ̃1. All zeros of Φ̃1 are simple.

Lemma 5.2. The polynomial Φ̃1 is an algebraic solution of (M1,∇).

Proof. This is well known. It can for example be checked by direct verification, or deduced from
[Kat84].

We denote by Φ̃�m the induced algebraic solution of (M�m ,∇) ⊗ Fp (Notation 2.10).

Lemma 5.3. We write

T� := {x ∈ X0(�)Fp | Φ̃�(x) = 0, and x �∈ S�}.
The points of T� are Fp2-rational.

Proof. It is well known that the roots of Φ̃1 are rational over Fp2 (see [Sil86]).
For j1, j2 ∈ X(1) we write j1 ∼� j2 if there exists a cyclic isogeny of degree � from the elliptic

curve with j-invariant j1 to the elliptic curve with j-invariant j2. Define a (singular) curve

C(�) = {(j1, j2) ∈ X(1) ×X(1) | j1 ∼� j2}.
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We obtain a commutative diagram

X0(�)

g0































h0

���
��

��
��

��
��

��
��

�

��
C(�)

pr1�����
��

���
�

pr2 ����
��

���
��

X(1) X(1)

with g0(E1 → E2) = j(E1) and h0(E1 → E2) = j(E2) (compare with (8)).
If E1 and E2 are elliptic curves with j �= 0, 1728, there exists at most one isogeny E1 → E2 of

fixed degree �. Namely, let ϕ1, ϕ2 : E1 → E2 be two cyclic isogenies of the same degree. Then they
differ by an automorphism ψ of E1. However, since j(E1) �= 0, 1728 it follows that ψ is ±I. This
implies that the map X0(�) → C(�) has degree one and is defined over Fp. The lemma now follows
from Proposition 3.9, since the roots of Φ1 are Fp2-rational.

Proposition 5.4. Let � > 3 be an integer.

(i) Let (g, h) : X0(�2) ⇒ X0(�) be the correspondence defined above. Then the corresponding
tower of curves is isomorphic to Tg,h = (X0(�m)).

(ii) The tower Tg,h is asymptotically optimal.

Proof. Part (i) is proved in [Elk98]. Part (ii) follows from the work of [Iha99]. It is also proved in
[TVZ82]. We indicate an alternative proof using our results.

If ν2(�2) = ν3(�2) = 0, the proposition follows from Theorem 3.8. Otherwise, the estimates for
g(X0(�m)) and Np2(X0(�m)) given in § 3 are not quite good enough. However, it is easy to compute
these quantities directly, using the results of [Shi94]. Namely, one checks that

lim
m→∞

ν2(�m+1)
δm

= lim
m→∞

ν3(�m+1)
δm

= lim
m→∞

ν∞(�m+1)
δm

= 0.

Therefore, (13) implies that the genus of the tower is

lim
m→∞

g(X0(�m+1))
δm

=
µ(�)
12

. (14)

To estimate the splitting rate in the tower, one needs to count the points on X0(�m) above
j = 0, 1728 which are not singularities. Such points above j = 0 (respectively, j = 1728) are zeros
of the pull back of Φ if and only if j = 0 (respectively, j = 1728) is supersingular, i.e. p ≡ 2 mod 3
(respectively, p ≡ 3 mod 4). Distinguishing cases according to the value of p mod 12, one finds that

lim
m→∞

Np2(X0(�m+1))
δm

� (p − 1)µ(�)
12

. (15)

Equations (14) and (15) imply that the tower is optimal.

It is easy to see that for every a � 1 we can consider the tower defined by the correspon-
dence (g, h) : X0(�a+1) ⇒ X0(�a). This yields the subtower (X0(�a+m)) which is of course again
asymptotically optimal.

We now present a variant of this construction. Choose an integer λ relatively prime to � and p.
Consider the pull back of the correspondence (g, h) : X0(�a+1) ⇒ X0(�a) via the natural projection
X0(λ�a) → X0(�a). It is easy to see that the pull back correspondence is (g̃, h̃) : X0(λ�a+1) ⇒
X0(λ�a).
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Proposition 5.5. The tower defined by (g̃, h̃) : X0(λ�a+1) ⇒ X0(λ�a) is

· · · → X0(λ�m) → · · · → X0(λ�a+1) → X0(λ�a).

This tower is asymptotically optimal.

Proof. This is analogous to the proof of Proposition 5.4.

We illustrate in an example how easy it is to compute equations for modular curves, by using
the recursive definition.

Example 5.6. We want to compute equations for the curve X0(2 ·3m) in characteristic p �= 2, 3. Our
method is essentially the same as the method of Elkies [Elk98].

Note that the genus of X0(18) is zero. For N = 3, 6, 18, we write LN (u) = 0 for the differential
equation corresponding to (H1

dR(EN/S),∇). Using the description of the cusps in [Shi94], it is easy
to check the following statements. The differential equation L3(u) = 0 has three singularities. It
is no restriction to suppose that these singularities are x = 0, 1,∞, where ∞ maps to j = 0 and
x = 0, 1 map to j = ∞ with ramification index 1, 3, 1, respectively. The map X0(6) → X0(3) of
degree three is totally branched above x = ∞ and has two points P 1

0 , P
2
0 (respectively, P 1

1 , P
2
1 )

above x = 0 (respectively, x = 1), where P e∗ is ramified of order e. Up to normalization, there is a
unique such cover which is given by x = −27y2/(y−4)3. It follows that the singularities of L6(u) are
S6 = {0,∞,−8, 1}. A look at the ramification indices of these cusps inX0(6) → X(1) tells us that the
Atkin–Lehner involution σ6 acts on these points as (0, 1)(−8,∞), therefore σ6(y) = −8(x−1)/(x+8).

A similar argument shows that the natural projection g : X0(18) → X0(6) is cyclic of order
three and branched at y = 0,∞. Therefore, we may suppose that X0(18) → X0(6) is given by
g(z) = z3. The singularities of L18(u) = 0 are just the inverse image of S6, i.e. S18 = {0,∞,−2ζi

3, ζ
i
3},

where ζ3 ∈ Fp2 is a primitive third root of unity. The Atkin–Lehner involution is given, up to
normalization, by σ18(z) = −2(z−1)/(z+2). We define the rational function h(z) = σ6◦g◦σ18(z) =
z(z2 − 2z + 4)/(z2 + z + 1). This gives the recursive definition for the modular curves X0(2 · 3m).

For λ relatively prime to p, we may define the congruence subgroup Γ1(λ) ∩ Γ0(�a). Write
X1,0(λ, �a)C for the quotient curve of the completed upper half plane by Γ1(λ) ∩ Γ0(�a). It is well
known that X1,0(λ, �a)C has a model X1,0(λ, �a)R over R = Z[ζλ, 1/λ�], where ζλ is a primitive λth
root of unity. Write Fq = Fp[ζλ] and X1,0(λ, �a) = X1,0(λ, �a)R ⊗ Fq. Let f : X1,0(λ, �a) → X0(�a)
be the natural projection.

We can consider the pull back of (g, h) : X0(�a+1) ⇒ X0(�a) via f : X1,0(λ, �a) → X0(�a). Write
Tg,h(f) := (X1,0(λ, �a+n)) for the corresponding tower. As in [LMS02], we give a criterion on p for
this tower to be asymptotically optimal. For example, the tower of Proposition 4.6 is isomorphic
to (X1,0(8, 24+m)). It should be possible to give an alternative proof of the facts on the minimal
splitting field by using this interpretation of the tower.
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TVZ82 M. A. Tsfasman, S. G. Vlăduţ and T. Zink, Modular curves, Shimura curves and Goppa codes

better than the Varshamov–Gilbert bound, Math. Nachr. 109 (1982), 21–28.

Peter Beelen P.Beelen@mat.dtu.dk
Universität Duisburg–Essen, Fachbereich Mathematik, Campus Essen, D-45117 Essen, Germany
Current address: Department of Mathematics, Danish Technical University, DK-2800 Kongens
Lyngby, Denmark

Irene I. Bouw bouw@math.uni-duesseldorf.de
Institut für Experimentelle Mathematik, Ellernstraße 29, D-45326 Essen, Germany
Current address: Mathematisches Institut, Heinrich-Heine-Universität, D-40225 Düsseldorf,
Germany

1424

https://doi.org/10.1112/S0010437X05001624 Published online by Cambridge University Press

mailto:P.Beelen@mat.dtu.dk
mailto:bouw@math.uni-duesseldorf.de
https://doi.org/10.1112/S0010437X05001624

	1 Introduction
	2 Fuchsian differential equations
	3 Estimates for the number of points and the genus in a tower
	4 Constructing towers via pull back
	5 Towers of modular curves
	References

