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1. For i,j = 1, 2, ..., let au be real. A matrix A = (a{J) will be called positive (A>0) or
non-negative (A ^ 0) according as, for all / andy, au > 0 or au ^ 0 respectively. Correspondingly,
a real vector x = (xu x2, ...) will be called positive (x>0) or non-negative (x^;0) according as,
for all /, Xf>0 or x,^0. A matrix A is said to be bounded if || Ax || g M || x \\ holds for some
constant M, 0^M< oo, and all x in the Hilbert space H of real vectors x = (xu x2, ...) satis-
fying || x ||2 = £x(<oo. The least such constant Mis denoted by || A ||. Ifxandj belong to
H, then (x, y) will denote as usual the scalar product £XJ>;. Whether or not x is in H, or A is
bounded, y = Ax will be considered as defined by

= Xa
X'JxJ
j

whenever each of the series of (1) is convergent.
When A is bounded, A* will denote its adjoint, A* = (aj;), and sp A will denote its spec-

trum, that is, the set of complex numbers A for which A—XI fails to have a bounded (right and
left, necessarily unique) inverse. The point spectrum consists of those A in sp A for which
Ax = kx holds for some x # 0 in the Hilbert space H.

It is known, as a generalization of the Perron-Frobenius theory ([4], [5], [13]) for finite
matrices, that if A^.0, then n = sup {| A | : Ae sp A) also belongs to sp A; see, e.g., [2] (cf.
pp. 148 ff.), [8], [14], [15]. In addition, it is known that under certain additional restrictions
on A, e.g., that of complete continuity, /i is in the point spectrum of A and there exists a
characteristic vector x in H, satisfying x>0 or x^.0 according as A >0 or A ̂ 0 ; see [8], [11],
[14]. In case A >0, then also n is a simple eigenvalue.

If it is assumed only that A is bounded and that A>0, then n need not be an eigenvalue.
(The Hilbert matrix cited below is such an example. Also, any Toeplitz matrix A = (au) given
by aij = bi-ji where {bk} (k =0 , ± 1, ±2 , ...) is a sequence of positive numbers for which A is
bounded, will do; cf. [7], p. 868.) Thus, in general, fi need not have an associated eigenvector
in Hilbert space. On the other hand, it may happen that there exists a vector x not in Hilbert
space for which Ax =nx. This problem has been considered in particular by Kato [9], [10]
and Rosenblum [17]. The Hilbert matrix A = ((/+y)~1)satisfies'4>0 and is bounded; in fact
H = n (see [6], Chapter IX) and, moreover, [i is not in the point spectrum of A ([12], [18]).
It was shown by Kato [9] in connection with a problem posed by Taussky [19], that fi does
however have a positive eigenvector x not belonging to H.

The present paper will consider the problem of the existence of vectors x>0, not neces-
sarily in H, associated with certain bounded A>0, for which

^nx; fi = sup {| A | : Aesp^4}. (2)

In Theorem 1 it will be shown that the inequality of (2), when x is in H, implies equality under
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certain circumstances, while in Theorem 2 it will be shown that (2) must always hold for some
vector x, not necessarily in Hilbert space. This last result will be combined with a theorem of
Kato to yield Theorem 3, giving a necessary and sufficient condition for the boundedness of a
symmetric positive matrix.

2. There will be proved the following
THEOREM 1. Let A be bounded and satisfy A>0. Suppose that (2) holds for some x > 0 of

the Hilbert space H. Suppose in addition that either n belongs to the point spectrum of A*, or
only that there exists some v satisfying | v j =/i and belonging to the point spectrum of A*. Then
necessarily equality must hold in (2), so that

Ax=nx. (3)

Furthermore, n must then be a simple eigenvalue of both A and A*, and both have positive eigen-
vectors (each unique except for a positive multiple).

It can be remarked that in case A is completely continuous, then /i belongs to the point
spectrum of both A and A*, so that, in particular, the hypothesis of the theorem concerning
A* is fulfilled.

Proof of Theorem 1. Let A*y = vy, where j v | = /x for some y = (yu y 2 , . . . ) ^ 0 of the
Hi lber t space H. If | y | is denned by | y | = (| y t |, | y 2 \ , • • • ) , it is clear t h a t \y\is also in H
a n d tha t

Hence , by (2),
(jix, | y \)Z(Ax, \y\) = (x,A*\y \)^(x, fi\y\). (5)

Thus the inequalities of (5) become equalities. In particular the last yields

(x,A*\y\-ii\y\) = 0

and hence, by (4) and the fact that *>0 , /4* | j> | = / J | j> |. But A*>0, and this implies
that \y\ >0. The first relation of (5) now becomes (Ax—fix, | y |) = 0, which yields (3), as a
consequence of (2) and \y\ >0. The last assertion of the theorem can be proved as in [14]
(cf. p. 590).

The argument used above is similar to that used in [16, pp. 78-80, 82] for integral
equations.

3. In this section it will be shown that, for every bounded A >0, there exists some positive
vector x, not necessarily in Hilbert space, for which (2) holds. Whether there exists a relation
corresponding to (3) under conditions similar to those of Theorem 1 will remain undecided
however. There will be proved the following

THEOREM 2. Let A be bounded and satisfy A>0. Then there exists a vector x>0, not
necessarily in Hilbert space, for which (2) holds.

Proof of Theorem 2. Let X be real and satisfy X > pi. Since the resolvent R (X) = (A - XT) ~i

satisfies (A - XI)R (X) = I, it follows that

AR(X)y = XR(X)y+y, (6)

where y = (yk) is any vector of Hilbert space. If R (X) = (ry(A)) and if z = R (X)y, so that
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** = 2 > t a ( % m (k = 1 , 2 , . . . ) , (7)
m

then, by (6),

(Az)k = lzk+yk. (8)

CO

Since A>n(n being the spectral radius of A), R (A) is given by R (X) = - £ /4M~"~J <0.

Choose A!>A2> ... -+j*+0 and let, for each n = 1, 2, ..., j>(n) = (^n)) be defined by
Jfcn) = (/'ifc(^n))~1 or 0 according as k = n or k =£ n. (9)

Then, if z(n) = (zj^), one obtains from (7) the relation

0, (10)

and, in particular,

4 n ) = l for « = 1,2, . . . . (11)

Since /"^-•O as n->co for each fixed A: = 1, 2, ..., it follows that {Xz^+y^} is a
bounded sequence of numbers. According to (8), for k = 1, this last expression is equal to
{Y,aimzm)}l hence, since A>0 and zk

n)>0, {z^} is a bounded sequence of numbers for
each fixed k = 1,2,... . By the diagonal selection process there exists a sequence fit>ix2> ...
-* n+0 for which

jcfc = limZ^n) exists for each k= 1,2, ... , (12)
n—>co

where Z£° is defined by(10)withZ£° = zj^and Xn replaced by /v Clearlyx = (xu x2) ....) ^ 0.

In addition, it follows from (8) that

(ixk = lim(ZakmZ%>)2:(Ax)k, for k = 1, 2, ... . (13)
n-*oo \m /

Hence (2) holds and so x>0 by virtue of ( l l )and,4>0. This completes the proof of Theorem 2.

4. As a consequence of a result of Kato [10, p. 576] and Theorem 2 of the present paper
there will be proved

THEOREM 3. Let A = (atj) be any symmetric positive matrix (0<a,j = a,,), not assumed to
be bounded. Then a necessary and sufficient condition that A be bounded is that there exist some
real constant v and a vector x>0, not necessarily in Hilbert space, for which

Ax = vx. (14)

Proof of Theorem 3. The sufficiency follows from the result of Kato mentioned above,
even if the hypothesis A > 0 is weakened to A = 0. In fact, it is shown there that

IMII^v . (15)
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The necessity follows from Theorem 2 above. In fact, if A is bounded and positive, even if A
is not symmetric, then (2) holds for some x>0. This completes the proof of Theorem 3.

Incidentally, it is clear that relation (2) for some x>0 implies (14) for the same x and all
real v>fi. Since || A || =/i, it follows from (15) that (14) then holds for some fixed x>0 and
for all v^/i, but that (14) does not hold for any x>0 if v</x.
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