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1. Fori,j=1,2, ..., let a;; be real. A matrix 4 = (a;;) will be called positive (4>0) or
non-negative (4 2 0) according as, for all iand j, a;; >0 or a;; = O respectively. Correspondingly,
areal vector x = (x,, x,, ...) will be called positive (x> 0) or non-negative (x >0) according as,
for all i, x;>0 or x;20. A matrix 4 is said to be bounded if || 4x || <M || x || holds for some
constant M, 0S M < oo, and all x in the Hilbert space H of real vectors x = (x,, x,, ...) satis-
fying || x ||* = ¥ x?< 0. The least such constant M is denoted by || 4 ||. If x and y belong to
H, then (x, y) will denote as usual the scalar product ) x,y;, Whether or not x is in H, or 4 is

bounded, y = Ax will be considered as defined by
Yi= Zaijx j )]
J

whenever each of the series of (1) is convergent. )

When 4 is bounded, 4* will denote its adjoint, 4* = (a;;), and sp A will denote its spec-
trum, that is, the set of complex numbers A for which A4 — A fails to have a bounded (right and
left, necessarily unique) inverse. The point spectrum consists of those A in sp 4 for which
Ax = Ax holds for some x # 0 in the Hilbert space H.

It is known, as a generalization of the Perron-Frobenius theory ([4], [5], [13]) for finite
matrices, that if 420, then p = sup {| A|:2Aesp A} also belongs to sp 4; see, e.g., [2] (cf.
pp. 148 f.), [8], [14], [15]. In addition, it is known that under certain additional restrictions
on A, e.g., that of complete continuity, u is in the point spectrum of A and there exists a
characteristic vector x in H, satisfying x>0 or x20 according as 4A>0 or 420; see [8], [11],
[14]. In case A>0, then also u is a simple eigenvalue.

If it is assumed only that 4 is bounded and that 4 >0, then u need not be an eigenvalue.
(The Hilbert matrix cited below is such an example. Also, any Toeplitz matrix 4 = (a;;) given
by a;; = b;_;, where {b;} (k =0, +1, +2,...) is a sequence of positive numbers for which 4 is
bounded, will do; cf. [7], p. 868.) Thus, in general, u need not have an associated eigenvector
in Hilbert space. On the other hand, it may happen that there exists a vector x not in Hilbert
space for which 4x =px. This problem has been considered in particular by Kato [9], [10]
and Rosenblum [17]. The Hilbert matrix 4 = ((i+;)~*) satisfies 4 >0 and is bounded;in fact
p =7 (see [6], Chapter IX) and, moreover, u is not in the point spectrum of 4 ([12], [18]).
It was shown by Kato [9] in connection with a problem posed by Taussky [19], that u does
however have a positive eigenvector x not belonging to H.

The present paper will consider the problem of the existence of vectors x>0, not neces-
sarily in H, associated with certain bounded A4 >0, for which

AxSpx; p=sup{|1|:2esp 4}. )

In Theorem 1 it will be shown that the inequality of (2), when x is in H, implies equality under
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certain circumstances, while in Theorem 2 it will be shown that (2) must always hold for some
vector x, not necessarily in Hilbert space. This last result will be combined with a theorem of
Kato to yield Theorem 3, giving a necessary and sufficient condition for the boundedness of a
symmetric positive matrix.

2. There will be proved the following

THEOREM 1. Let A be bounded and satisfy A>0. Suppose that (2) holds for some x>0 of
the Hilbert space H. Suppose in addition that either p belongs to the point spectrum of A*, or
only that there exists some v satisfying | v | = p and belonging to the point spectrum of A*. Then
necessarily equality must hold in (2), so that

Ax = px. (3)

Furthermore, u must then be a simple eigenvalue of both A and A*, and both have positive eigen-
vectors (each unique except for a positive multiple).

It can be remarked that in case A is completely continuous, then u belongs to the point

spectrum of both A and A*, so that, in particular, the hypothesis of the theorem concerning
A* is fulfilled.

Proof of Theorem 1. Let A*y = vy, where | v| =pu for some y = (yy, y5, ...) # 0 of the
Hilbert space H. If | y | is defined by | y | = (|, |, |»2], ..., itisclear that | y | is also in H
and that

A*|y|zp|y]|. “

(ux, |y Dzdx, [y ) = Cx, 4* |y D20 1| 2 ) ©)
Thus the inequalities of (5) become equalities. In particular the last yields

(e, 4*|y| —n|yP=0
and hence, by (4) and the fact that x>0, A4*|y|=p|y|. But 4*>0, and this implies
that | y | >0. The first relation of (5) now becomes (Ax— ux, | y |) = 0, which yields (3), as a
consequence of (2) and | y| >0. The last assertion of the theorem can be proved as in [14]
(cf. p. 590).
The argument used above is similar to that used in [16, pp. 78-80, 82] for integral
equations. '

Hence, by (2),

3. In this section it will be shown that, for every bounded A >0, there exists some positive
vector x, not necessarily in Hilbert space, for which (2) holds. Whether there exists a relation
corresponding to (3) under conditions similar to those of Theorem 1 will remain undecided
however. There will be proved the following

THEOREM 2. Let A be bounded and satisfy A>0. Then there exists a vector x>0, not
necessarily in Hilbert space, for which (2) holds.
Proof of Theorem 2. Let 1 be real and satisfy A>p. Since the resolvent R (1) = (4—Al)™!
satisfies (4 —ADR (1) = I, it follows that
AR(2)y = AR (D)y+, (©)
where y = (y,) is any vector of Hilbert space. If R(1) = (r;(4) and if z = R(4)y, so that
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Z = ;rk,,,(l)ym k=1,2,..), @)

then, by (6),
(A2), = Azp+ yy. ®8)

Since 4> u (u being the spectral radius of 4), R (1) is given by R() = — )’ 4"A™""' <0.
n=0

Choose 4,>2,> ... »u+0 and let, for each n =1, 2, ..., y™ = () be defined by

W = (ry(4,)) "t or 0 accordingas k=nork#n. )
Then, if 2 = (z{), one obtains from (7) the relation
20 = Y rim(A)Ver =Tienl2a)Ir1n(2) > 0, (10
and, in particular,
M=1 for n=1,2,.... 1

Since % —0 as n— oo for each fixed k= 1,2, ..., it follows that {Az{"+y{} is a
bounded sequence of numbers. According to (8), for k = 1, this last expression is equal to
{3 a1,2%}; hence, since 4>0 and z{’>0, {z} is a bounded sequence of numbers for
eachfixed k =1, 2, ... . By the diagonal selection process there exists a sequence yt, >y, > ...
— u+0 for which

x,=1lim Z{" exists foreachk=1,2,..., (12)

where Z{" is defined by (10) with Z{"” = z{”and 4, replaced by y,. Clearly x = (x,, x;, ...) 2 0.
In addition, it follows from (8) that

ux;, = lim (Z aka,(,’,')) = (Ax),, fork=1,2,.... 13)

n—®n

Hence (2) holds and so x>0 by virtue of (11)and 4 > 0. This completes the proof of Theorem 2.

4. As a consequence of a result of Kato [10, p. 576] and Theorem 2 of the present paper
there will be proved

THEOREM 3. Let A = (a;;) be any symmetric positive matrix (0<a;; = a;;), not assumed to
be bounded. Then a necessary and sufficient condition that A be bounded is that there exist some
real constant v and a vector x>0, not necessarily in Hilbert space, for which

Ax < wx. (14)

Proof of Theorem 3. The sufficiency follows from the result of Kato mentioned above,
even if the hypothesis 4>0 is weakened to 420. In fact, it is shown there that

| 4] =v. (15)
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The necessity follows from Theorem 2 above. In fact, if 4 is bounded and positive, even if 4
is not symmetric, then (2) holds for some x>0. This completes the proof of Theorem 3.

Incidentally, it is clear that relation (2) for some x>0 implies (14) for the same x and all
real v>p. Since || 4 || =4, it follows from (15) that (14) then holds for some fixed x>0 and
for all v pu, but that (14) does not hold for any x>0 if v<pu.
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