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Abstract

Hidden Markov models (HMMs) are popular for modeling complex, longitudinal data. Existing identifia-
bility theory for conventional HMMs assume emission probabilities are constant over time and the Markov
chain governing transitions among the hidden states is irreducible, which are assumptions that may not
be applicable in all educational and psychological research settings. We generalize existing conditions on
homogeneous HMMs by considering heterogeneous HMMs with time-varying emission probabilities and
the potential for absorbing states. Researchers are investigating a family of models known as restricted
HMMs (RHMMs), which combine HMMs and restricted latent class models (RLCMs) to provide fine-
grained classification of educationally and psychologically relevant attribute profiles over time. These
RHMMs leverage the benefits of RLCMs and HMMs to understand changes in attribute profiles within
longitudinal designs. The identifiability of RHMM parameters is a critical issue for ensuring successful
applications and accurate statistical inference regarding factors that impact outcomes in intervention stud-
ies. We establish identifiability conditions for RHMMs. The new identifiability conditions for heterogeneous
HMMs and RHMMs provide researchers insights for designing interventions. We discuss different types of
assessment designs and the implications for practice. We present an application of a heterogeneous HMM
to daily measures of positive and negative affect.

Keywords: cognitive diagnosis model; heterogeneous hidden Markov models; identifiability; restricted latent class models

1. Introduction

The increasing availability of data from online learning systems, wearables, and handheld devices pro-
vides researchers with new opportunities to track development, evaluate interventions, and recommend
content. These novel data structures often arrive as a multivariate time series that require methods to
diagnose and classify respondent outcomes in a longitudinal fashion. Hidden Markov models (HMMs)
provide a general framework for understanding changes in latent states over time. HMMs consist of
two components: (1) an emission matrix P that describes the distribution of observed responses given
latent states; and (2) a transition matrix A that governs the likelihood of transitioning between states
over two adjacent time points. HMMs are designed to relate an observed Yt ∈ [q] with a hidden state
Zt ∈ [r] for r < q where we use the notation [n] = {1, . . . ,n} to denote the set of natural numbers from
1 to n ∈N. Recent research (e.g., see Kaya & Leite, 2017; Li et al., 2016; Madison & Bradshaw, 2018a;
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Madison et al., 2024; Zhan et al., 2019; Zhang & Chang, 2020) adapted the HMM framework for the
diagnostic context with a class of models we refer to as restricted HMMs (RHMMs), which map Yt onto
a more parsimonious collection of binary attributes, αt ∈ {0,1}K . RHMMs combine features of cognitive
diagnosis models (CDMs; e.g., see de la Torre & Douglas, 2004; Junker & Sijtsma, 2001; Roussos et al.,
2007; Stout, 2002) and HMMs. Specifically, RHMMs define P according to a CDM to classify respondent
states at a given time as well as a first-order HMM to describe changes in latent states over time.

The combination of the classical HMM framework with CDMs has the potential to advance learning
research and to identify interventions that accelerate learning (Ye et al., 2016). It is therefore critical
to understand technical details concerning the suitability of the HMM and RHMM frameworks
for educational and psychological research. There is extensive research exploring the necessary and
sufficient conditions for deploying CDMs (e.g., see Chen et al., 2015, 2020; Gu & Xu, 2021; Liu et al.,
2013; Xu, 2017; Xu & Shang, 2018) and several studies are dedicated to understanding the identifiability
of HMMs (Allman et al., 2009; Bonhomme et al., 2016), but there is less research available to guide
applications that combine CDMs and HMMs (Liu et al., 2023). RHMMs have features of both CDMs and
HMMs, so it is important to understand the assumptions of both components. Classical HMMs assume
constant emission and transition probabilities over time in addition to positive long-run, stationary
probabilities of residing in every state. The focus of this article is on relaxing the constant P and
positive long-run probability assumptions, so we consider a constant transition matrix, A, throughout
the remainder of this manuscript. It is important to understand the practical implications of these
two assumptions. The first assumption that P is constant over time implies that: (1) the support of
the observed indicators, Yt , and hidden states, Zt , does not change over time; and (2) the observed
Yt are parallel measurements in the sense that p(yt ∣ zt) is constant across t. Accordingly, the constant
P assumption could be reasonable whenever researchers observe a common set of measurements over
time, such as settings that monitor health and well-being and public opinion with a fixed instrument.
However, there are no guarantees the constant P assumption is feasible in all settings especially when
the items change over time.

The second assumption deals with the stationary (long-run) probability of residing in the hidden
states, which is denoted by π ∈ {π ∈ Rr ∶ π⊺1r = 1, πi > 0 for i = 1, . . . ,r} (i.e., the support for π is
the r-dimensional simplex). The second assumption requires that π > 0r where 0r is an r-vector of
zeros and “>” is interpreted as an element-wise inequality. We can write π as a limit involving the
initial distribution and the transition matrix. Specifically, the initial distribution is π1 where element
j corresponds with π1j = P(Z1 = j). Iterating forward we find the distribution for time t = 2, π2, to have
elements,

P(Z2 = k) =
r
∑
j=1

P(Z1 = j)P(Z2 = k ∣ Z1 = j), (1)

which is more simply stated as π2k = π⊺1 Ak where Ak is the kth column of A. Consequently, π⊺2 = π⊺1 A
and iterating forward to time n implies that the distribution of Zn is πn = π⊺1 An−1. The long-run
distribution is π⊺ = limn→∞π⊺1 An. The extent to which π > 0r is related to whether the Markov chain
is irreducible. A Markov chain is irreducible if it is possible to move from a given state j to every other
state k in finite time. The irreducibility assumption is violated (and π includes elements equal to 0)
whenever A includes absorbing states. For instance, state k is an absorbing state if P(Zt = j ∣ Zt−1 = k) = 0
for all j. The irreducibility assumption is satisfied in many content areas, but we can expect it to be
violated in educational studies that advance learning. That is, interventions are designed to facilitate
skill development toward the state of mastery, α = 1K , which is an absorbing state whenever we believe
it is unlikely to unlearn skills. Whereas forgetting skills may occur over a longer horizon (e.g., summer
slide), the irreducibility assumption is generally untenable within shorter windows defined by typical
intervention studies (e.g., days, weeks, or months).

The union of CDMs and HMMs offers a powerful framework for providing fine-grained diagnostic
classifications, but care is needed to ensure foundational assumptions are consistent with application
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domains. RHMMs have been applied to track changes in spatial rotation skills (Chen et al., 2018;
Wang et al., 2018; Yigit & Douglas, 2021), introductory probability (Liu et al., 2023), middle school
mathematics (Li et al., 2016), digital literacy (Liang et al., 2023), a cluster-randomized controlled trial
of mathematics for students with disabilities (Madison & Bradshaw, 2018b), and geometric sequences
(Chen & Culpepper, 2020). An important observation is that many applications have deployed RHMMs
that relax the constant P and π > 0r assumptions. For instance, prior research applied more general
RHMMs that include: (1) time-varying emission probabilities with {Pt}T

t=1; and (2) the studies were
applied in educational contexts with transition matrices that include absorbing states. Consequently,
applied RHMM research has outpaced current theory related to the identifiability RHMM parameters.

RHMMs provide a useful framework for educational and psychological research. However, despite
the widespread application and investigation of RHMMs, there is less research available regarding how
to design intervention studies to ensure RHMM parameters are identified. Model identifiability is a
critical issue for statistical inference. In the context of intervention studies, researchers need assurance
that model parameters are identified in order to make claims about the effect of interventions on
development.

Prior research established conditions for identifying parameters of HMMs to guide the design of
diagnostic interventions. Several studies explored identifiability conditions for the case of continuous
responses where Yt ∈ Rd for d > 0 (Gassiat et al., 2016; Gassiat et al., 2020; Gassiat & Rousseau,
2016). We consider discrete responses, so the identifiability conditions derived under the assumption
of continuous responses are not applicable for our case. There are several papers that explored the
identifiability of unrestricted HMMs with constant emission and transition matrices and an irreducible
transition matrix for discrete responses (Allman et al., 2009; Bonhomme et al., 2016; Cole, 2019;
David et al., 2024; Tune et al., 2013). Specifically, Cole (2019) describes a log-likelihood profile method
for establishing local identifiability of HMMs as well as a symbolic algebra strategy for establishing
global identifiability of HMMs. One limitation of Cole (2019) is the fact that “...for most HMMs the
exhaustive summary will be symbolically too complex for a symbolic algebra package to solve the
appropriate equations” (p. 117). A paper from the theoretical statistics literature (Bonhomme et al.,
2016) showed how to establish strict identifiability conditions for HMMs using results pertaining to
the simultaneous diagonalization problem. Specifically, Bonhomme et al. (2016) showed that HMMs
are strictly identified whenever rank(P) = rank(A) = r. Allman et al. (2009) proved that HMMs are
generically identifiable, which means that the non-identifiable parameter values reside in a measure
zero set of the larger parameter space, provided that researchers observe enough time points relative to
the number of observed response patterns and the number of hidden states. Tune et al. (2013) consider
an extension of Allman et al. (2009) by studying the identifiability of HMMs for a multiple observer
model, which in the context of psychometrics corresponds with a model that includes several items at
each time point. David et al. (2024) considers the identifiability of HMMs when external signals, such
as observed time-varying covariates, are available as predictors of both the hidden Zt and Yt . David
et al. (2024) show that when external signals are available that it is possible to establish conditions for
identifying parameters of HMMs with time-varying emission and transition matrices. Recently, Liu
et al. (2023) established identifiability conditions for RHMMs and showed that identification is closely
linked with properties of the emission and transition matrices.

Existing research provides helpful guidelines for designing diagnostic intervention studies, but the
studies are limited by several critical assumptions. First, the five studies (Allman et al., 2009; Bonhomme
et al., 2016; Cole, 2019; Liu et al., 2023; Tune et al., 2013) assume constant emission and transition
matrices over time in addition to an irreducible transition process (i.e., π > 0r). In contrast, we present
new conditions for identifying HMMs and RHMMs with heterogeneous P and we allow for the
possibility of absorbing states. Although the David et al. (2024) relaxes the assumption of constant P
and A matrices, their identifiability conditions assume the availability of external covariates that relate
to both hidden states and observed responses. In the context of psychometrics, David et al., 2024’s
requirement for external signals to relate to both hidden states and observed responses is analogous to
educational and psychological researchers needing test-taker covariates that contribute to differential
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item functioning by relating to both the measurement and transition models. The novel theorems in
this article provide identifiability conditions without the need for external signals. Furthermore, David
et al. (2024) assumes a stationary process for the observed and hidden states. Consequently, David et al.
(2024) is not directly applicable in educational contexts as it requires external signals and assumes a
stationary process, which does not accommodate learning and absorbing states.

The purpose of this paper is to fill the theory–practice gap by offering new insights about the
identifiability of heterogeneous HMMs and RHMMs when P is time-varying and A includes absorbing
states. We therefore consider the case where the emission matrix changes with time (i.e., a time-
varying model). Furthermore, we discuss conditions for cases where the Markov chain both satisfies
and does not satisfy the irreducibility assumption. The remainder of this paper includes five sections.
The first section discusses identifiability conditions for an unrestricted heterogeneous HMM and the
second section focuses on the case of RHMMs. The third section discusses the implications of the
new identifiability conditions in terms of practical considerations for assessment design. The fourth
section presents a Bayesian approach for estimating the model parameters of the heterogeneous HMM,
a simulation study to demonstrate parameter recovery, and an application to a dataset concerning
respondents daily changes in positive and negative affect. The final section discusses the implications of
the results and directions for future research. Note that we include all proofs and technical details in the
appendix.

2. Unrestricted heterogeneous HMMs

We begin our discussion by focusing on the finite heterogeneous HMM framework where the emission
probabilities vary over time. The first subsection presents an overview of HMMs and the second
subsection delves further into the identifiability of heterogeneous HMMs with time-varying emission
matrices and includes two new theorems.

2.1. Overview
Consider an irreducible, aperiodic stationary Markov chain Zt ∈ [r](t = 1,2, . . . ,T), with a time-
invariant r × r transition matrix A, and a stationary distribution π such that πj > 0 and ∑r

j=1 πj = 1.
We assume the the observed Yt ∈ [qt] are conditionally independent given the hidden states. That is, we
assume P(Y1, . . . ,YT ∣Z1, . . . ,ZT) =∏T

t=1 P(Yt ∣Zt). Let Pt denote the time-varying emission matrix with
dimension qt × r and qt ≥ r, which contains the conditional probabilities P(Yt = yt ∣ Zt = zt), where the
column entries are indexed by zt and rows correspond to observation patterns yt . We consider a first-
order Markov model for the latent Zt ’s, which assumes that given Zt−1, Zt is conditionally independent
of past values for the hidden states, P(Zt ∣Zt−1, . . . ,Z2,Z1) =P(Zt ∣Zt−1). The probability of transitioning
between states over time is governed by the transition matrix A. That is, the probability of transitioning
from state zt−1 at time t−1 to state zt at time t is P(Zt = zt ∣ Zt−1 = zt−1), which corresponds with row
zt−1 and column zt of A. Figure 1 presents a graph of an HMM where the transition matrix governs the
relationship among the hidden states and the observations are conditionally independent given the Zt ’s.

Figure 1. First-order hidden Markov model (HMM) with latent Zt underlying the observed Yt variables.
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2.2. Identifiability
We next discuss the identifiability of heterogeneous HMMs. We first discuss conditions for establishing
strict identifiability to ensure a unique mapping between the parameter space and likelihood function.
We conclude this subsection by presenting weaker generic conditions that are needed for the non-
identifiable parameter values to reside within a measure zero set.

2.2.1. Strict identifiability
Identifiability is an important prerequisite of statistical parameter inference. A model is identifiable
if different values of model parameters corresponds to different probability distributions of observed
variables. Model identifiability ensures that its underlying parameters can be consistently estimated.

Let {Pt}T
t=1 denote the T emission matrices. In the context of HMMs, we denote the parameter space

of (π,A,{Pt}T
t=1) by

Ω(π,A,{Pt}T
t=1) = {(π,A,{Pt}T

t=1) ∶ π ∈Ω(π),A ∈Ω(A),Pt ∈Ω(Pt),t = 1,2, . . . ,T}. (2)

The parameter space for the stationary distribution is Ω(π) = {π ∈ [0,1]r ∶ π⊺1r = 1}. The parameter
spaces for A and Pt are Ω(A) = {A ∈ [0,1]r×r ∶A1r = 1r} and Ω(Pt) = {Pt ∈ [0,1]qt×r ∶ P⊺t 1qt = 1r}.

Definition 1 (Strict identifiability). The parameters (π,A,{Pt}T
t=1) ∈Ω(π,A,{Pt}T

t=1) are identifiable
when

P(Y = Y ∣ π,A,{Pt}T
t=1) = P(Y = Y ∣ π̄,Ā,{P̄t}T

t=1)

if and only if (π̄,Ā,{P̄t}T
t=1) ∼ (π,A,{Pt}T

t=1),

where (π̄,Ā,{P̄t}T
t=1) is another value from the parameter space Ω(π,A,{Pt}T

t=1) and “∼” means two
parameter values are equivalent up to a permutation of hidden states.

The conditions shown in Assumption 1 are needed to establish the strict identifiability condition in
Theorem 1.

Assumption 1. Suppose for t ∈ [T], Yt ∈ [qt] follows an HMM with hidden state Zt ∈ {1, . . . ,r}, time-
specific qt × r emission matrix Pt > 0, time-invariant transition matrix, A, and stationary distribution
with π > 0r and T ≥ 3 with parameters that satisfy

(a) rank(A) = r;
(b) πc > 0 for all c ∈ [r];
(c) rankK(Pt−k) = r, rankK(Pt) = r and Pt = Pt+1 for some k ∈ (0,t) and t ∈ [2,T−1].

Remark 1. Assumption 1b requires a positive stationary distribution and excludes the possibility of
absorbing states. Assumption 1c involves a condition on the Kruskal rank of certain emission matrices.
The Kruskal rank of a matrix with r columns equals r if and only if the matrix has full column rank. See
Definition 13 in the Appendix A for additional details about the Kruskal rank.

We next present our Theorem related to identifiability of heterogeneous HMMs.

Theorem 1 (Strict identifiability for heterogeneous HMMs). Under Assumption 1, then P1, . . . ,PT, A,
and π are identified, up to label-switching.

Proof can be found in Appendix A.

Remark 2. Theorem 1 still holds if we have a slightly different condition (c) in Assumption 1 where
rankK(Pt+k) = r, rankK(Pt) = r, and Pt = Pt−1 for some k ∈ (t,T] and t ∈ [2,T−1].
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2.2.2. Generic identifiability
Theorem 1 established strict identifiability conditions for heterogeneous HMMs, which could be too
strong for practical data analysis. A weaker notion of identifiability is referred to as generic identifiabilty,
which was first introduced in Allman et al. (2009). Generic identifiability permits the presence of
certain exceptional parameter values for which strict identifiability does not apply; however, these
non-identifiable parameters must form a set with Lebesgue measure zero. Because the non-identifiable
parameters are confined to a measure zero set, one is unlikely to face identifiability problems in per-
forming inference. Therefore, generic identifiability is generally adequate for data analysis purposes. For
example, Allman et al. (2009) demonstrated that generic identifiability necessitates fewer consecutive
observed variables to fully determine the distribution of an HMM compared to strict identifiability. We
next discuss generic identifiability of heterogeneous HMMs.

Let S(π,A,{Pt}T
t=1) denote the set of non-identifiable parameters from Ω(π,A,{Pt}T

t=1):

S(π,A,{Pt}T
t=1) = {(π,A,{Pt}T

t=1) ∶ P(Y = y ∣ π,A,{Pt}T
t=1) = P(Y = y ∣ π̄,Ā,{P̄t}T

t=1) for

some (π̄,Ā,{P̄t}T
t=1) /∼ (π,A,{Pt}T

t=1),(π,A,{Pt}T
t=1) ∈Ω(π,A,{Pt}T

t=1),
(π̄,Ā,{P̄t}T

t=1) ∈Ω(π,A,{Pt}T
t=1)}. (3)

Definition 2 (Generic Identifiability). The parameter space Ω(π,A,{Pt}T
t=1) is generically identifiable,

if the Lebesgue measure of S(π,A,{Pt}T
t=1) with respect to parameter space Ω(π,A,{Pt}T

t=1) is zero.

Theorem 2 (Generic Identifiability for Heterogeneous HMMs). For a heterogeneous HMM, the
parameter space Ω(π,A,{Pt}T

t=1) is generically identifiable up to label-switching if πc > 0 for all c ∈ [r],
and

(a) Pt = Pt+1 for t ∈ [2,T−1];
(b) ∏t−1

k=1 qk ≥ r, qt ≥ r, ∏T
k=t+1 qk ≥ r.

Proof is shown in Appendix B. The generic condition for heterogeneous HMMs is weaker than the
strict condition. Specifically, Theorem 2 imposes conditions on the dimensions of the emission matrices
and does not require that any particular emission matrix is full rank.

3. Heterogeneous restricted HMMs (RHMMs)

The previous section discussed identifiability of heterogeneous HMMs where the observed response and
hidden states are categorical random variables, the emission matrix Pt is unrestricted, and the transition
matrix A corresponds with an irreducible and aperiodic first-order Markov process with stationary
distribution π. The purpose of this section is to introduce new identifiability conditions for restricted
HMMs where restrictions are imposed upon the emission matrix. Accordingly, this section includes
three subsections. The first subsection includes a discussion that connects restrictions in the emission
matrix with popular diagnostic models. The second and third subsections focus on the identifiability of
RHMMs for two types of models depending upon whether the transition matrix corresponds with an
irreducible process. Accordingly, the second subsection corresponds with the case where A is irreducible
with stationary distribution π and the third subsection presents identifiability conditions for the case
where A includes absorbing states.

3.1. Overview and definitions
This section considers the identifiability of the heterogeneous version of RHMMs, which include a
binary vector of latent attributes, α ∈ {0,1}K as opposed to the Z ∈ [r] in the previous section. The
hidden state for RHMMs at a given time t consists of a binary profile αt and indicates whether a given
respondent possesses one of the 2K possible profiles for the K attributes. We next define a general model
for a categorical response Y ∈ [q].
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Definition 3 (Nominal diagnostic model; NDM). A general model for a categorical response Y ∈ [q]
is the NDM, which has an item response function of:

P(Y =m ∣ α) = exp(μm(α))
∑q

m′=1 exp(μm′(α))
, (4)

where for m > 1,

μm(α) = β0m+
K
∑
k=1

βkmαk+∑
k<k′

βkk′mαkαk′ +⋯+β12⋯Km
K
∏
k=1

αk (5)

includes the main-effects and interaction-effects among the attributes. Note that the parameters for the
m = 1 case satisfies β00 =⋯ = β12⋯K0 = 0 to identify the model.

Definition 4 (Structure matrix). Let δj ∈ {0,1}Mj×2K
be a binary matrix such that the element in the

mth row and pth column δjpm = 1 if βjpm is active and non-zero and δjpm = 0 if βjpm = 0 and inactive.

Remark 3. The NDM is designed for nominal data and there are numerous special cases for dichoto-
mous and polytomous response data. We refer readers to de la Torre & Douglas (2004) for a review
of popular dichotomous diagnostic models. For example, Chen et al. (2020) provide an overview
of how different configurations δj corresponds with different diagnostic models for the Mj = 2 case.
Additionally, there are several studies on the development of polytomous diagnostic models (e.g., see
Culpepper, 2019; Fang et al., 2019; Ma & de la Torre, 2016).

An important feature for RHMMs is that we typically observe responses to multiple items at a given
point in time.

Definition 5 (Multi-item emission matrix). Suppose there are J total items. We let θj be the Mj ×2K

matrix of response probabilities such that element (m,c) denotes the probability of observing a response
of m on item j for members of class c. We let Jt ⊂ [J] denote the subset of items administered at time t.
Notice that the definition of Jt allows for the possibility that different items are administered over
time. Accordingly, under the assumption that the {Yj}j∈Jt ’s are conditionally independent given αt the
emission matrix for a given time t is Pt =⊛j∈Jt

θj where ⊗ is a Khatri–Rao product of matrices (see
Definition 8 in Appendix A).

We next present an example to demonstrate the previously defined components of the NDM.

Example 1. Suppose K = 2 and Mj = 3, so Yj ∈ [3] and the Mj×4 matrix of response probabilities, θj, is,

θj =
⎡⎢⎢⎢⎢⎢⎣

θj01 θj11 θj21 θj31
θj02 θj12 θj22 θj32
θj03 θj13 θj23 θj33

⎤⎥⎥⎥⎥⎥⎦
. (6)

The Mj×4 matrix of regression coefficients is

βj =
⎡⎢⎢⎢⎢⎢⎣

βj00 βj10 βj20 βj30
βj01 βj11 βj21 βj31
βj02 βj12 βj22 βj32

⎤⎥⎥⎥⎥⎥⎦
(7)

and the corresponding Mj×4 structure matrix δj is

δj =
⎡⎢⎢⎢⎢⎢⎣

δj00 δj10 δj20 δj30
δj01 δj11 δj21 δj31
δj02 δj12 δj22 δj32

⎤⎥⎥⎥⎥⎥⎦
. (8)

Note that βjp0 = 0 and δjp0 = 0 for all p to identify the model parameters and it is customary to include
intercepts in the model, which is imposed by the restrictions δj01 = 1 and δj02 = 1.
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3.2. Irreducible process with stationary distribution π
The purpose of this subsection is to establish the identifiability of RHMMs with an irreducible and
aperiodic transition matrix A. We first discuss conditions for strict identifiability and then conclude
this subsection with results for generic identifiability.

It is important to note that there is a one-to-one mapping between the Pt ’s and the NDM θ and β
parameters. Therefore, RHMM parameters based upon the NDM are strictly identified whenever the
conditions in Assumption 1 for Theorem 1 are satisfied. However, verifying strict identifiability of the
NDM can be more cumbersome given there are many parameters and ways to construct the β’s so
that the formed emission matrices have full column rank. Consequently, we first discuss conditions
for strictly identifying RHMM parameters for the special case of binary RHMMs prior to focusing on
generic identifiability for the more general setting.

Example 2 (Binary RHMMs). Suppose Mj = 2 for all j, so that Pt is a 2∣Jt ∣×2K matrix and βj and δj are
2K-vectors. The structure matrix in this setting for the items administered at time t is Δt is a ∣Jt ∣ ×2K

binary matrix with rows defined by the associated δj for j ∈ Jt . Accordingly, {Δt}T
t=1 are the structure

matrices for the items forming {Pt}T
t=1.

Assumption 2. Consider the conditions for the structure matrix, Δ, of binary RHMMs:

(a) Δ takes the form Δ = (D⊺1 ,Δ
′⊺)
⊺

after row swapping, where Δ′ is any (∣J ∣ −K) × 2K binary
matrix and D1 takes the form

Ds =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

D ∈ {0,1}K×2K
∶D =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 . . . 0 . . . 0
1 0 1 . . . 0 . . . 0
⋮ ⋮ ⋱ ⋮
1 0 0 . . . 1 . . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

;

(b) For two classes of respondents, there exists at least one item in Δ, in which they have different
success probabilities.

Remark 4. Note that we use the convention that the first column of Δ corresponds to the intercept,
the next K columns the main-effects for the attributes, the next (K

2) columns the two-way interaction
effects, etc. The last column corresponds with the K-way interaction effect.

Corollary 1 (Strict identifiability of Binary RHMMs). Any parameter from ΩΔ (π,A,{βt}
T
t=1) is

strictly identifiable up to label-switching, if:

(1) A satisfies Assumption (1a);
(2) πc > 0 for all c;
(3) Pt = Pt+1 for some t ∈ [2,T−1]; and
(4) Δt and Δt−k satisfy Assumption (2a) for 0 < k < t.

Proof is shown in Appendix C.

Remark 5. Corollary 1 requires K simple structure items are administered in Pt and Pt−k. A weaker
condition is available by imposing restrictions on pairs of items as described by Culpepper (2023).

Assumption 3. Consider the conditions for the structure matrix, Δ, of binary RHMMs:

(a) Δ takes the form Δ = (D⊺1 ,Δ
′⊺)
⊺

after row swapping, where Δ′ is a (∣J ∣−K)×2K binary matrix
and D1 is of the following form:
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Dg =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

D ∈ {0,1}K×2K
∶D =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

* 1 * . . . * . . . *
* * 1 . . . * . . . *
⋮ ⋮ ⋱ ⋮
* * * . . . 1 . . . *

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

,

where * can be either 0 or 1.
(b) In Δ, each main-effect must appear at least once. There exists a j such that δjk = 1 for any k =

1,2, . . . ,K.

Corollary 2 (Generic identifiability for binary RHMMs with π > 0r). The parameter space
ΩΔ(π,A,{βt}

T
t=1) is generically identifiable up to label-switching, if:

(1) Δt and Δt−k for 0 < k < t satisfy Assumption (3a); and
(2) Pt = Pt+1 for some t ∈ [2,T−1].

Proof can be found in Appendix D.

3.3. Identifiability for absorbing-state, multi-item HMM
The previously discussed classical HMM assumes that π is the long-run stationary distribution with the
requirement that all elements are non-zero, π > 0r . The requirement of non-zero elements of π implies
the absence of an absorbing state, which is inconsistent with the goals of education. That is, learning
interventions are designed to transition students into states with greater skills, knowledge, and abilities.
The purpose of this subsection is twofold. First, we present results for identifying parameters of multi-
item HMMs for the case where A includes absorbing states. Second, we present Corollaries that are
specific to the RHMM setting. We establish identifiability using Kruskal’s theorem for the uniqueness
of three-way arrays.

Suppose for t ∈ [T], Yt ∈ [qt] follows a multi-item HMM with hidden state Zt ∈ [r], time-specific
qt × r emission matrices {Pt}T

t=1, time-invariant transition matrix, A, and an initial distribution with
π1 > 0, two or more time points (i.e., T > 1) with P1 = P11 ∗P12 where P11 and P12 are column-wise
stochastic matrices and ∗ denotes a Khatri–Rao product, which is a column-wise Kronecker product
(see Definition 8 in Appendix A for more details).

Remark 6. An important component of the absorbing state HMM is that the emission matrix for the
first time point can be written as a Khatri–Rao product of two emission matrices. This assumption
implies that there are two responses at time t = 1 with Y1 = (Y11,Y12) such that Y11 and Y12 are
conditionally independent given Z1.

A first step for using Kruskal’s theorem to establish parameters of the absorbing state RHMM are
identified is to write the model as a three-way array. Specifically, we condition the observed responses
on Z1,

P(Y1, . . . ,YT ∣ Z1) = P(Y11 ∣ Z1)P(Y12 ∣ Z1)P(Y2, . . . ,YT ∣ Z1)
= P11 ∗P12 ∗B(1,T], (9)

where B(1,T] is the (q2q3⋯qT)×r emission matrix for Y2, . . . ,YT given Z1 (see Definition 9 and Equation
A4 in Appendix A for more details). We write the marginal distribution, M, of Y1, . . . ,YT in the three-
way array representation as

M = [M1,M2,M3] = [P11Dπ1,P12,B(1,T]] =
r
∑
l=1

π1lp11,l⊗p12,l⊗b(1,T],l, (10)

where Dπ1 = diag(π11, . . . ,π1r), π1l is the lth element of the initial distribution π1, and p11,l, p12,l, and
b(1,T],l are the lth column of P11, P12, and B(1,T], respectively.
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Theorem 3 (Strict identifiability for heterogeneous, multi-Item HMM with absorbing states). The
parameters π1, A, and {Pt}T

t=1 of a multi-Item HMM with absorbing states are strictly identifiable up to
label-switching if:

(1) A satisfies Assumption (1a);
(2) π1c > 0 for all c;
(3) rankK(P11) ≥ 2, rankK(P12) = r, and P12 = P2.

Proof is shown in Appendix E.
We reparameterize the multi-item HMM as a RHMM by replacing Zt ∈ [r] with the latent attribute

profile αt ∈ {0,1}K .

Example 3 (Binary RHMMs with Absorbing States). Suppose Mj = 2 for all j, so that Pt is a 2∣Jt ∣×2K

matrix and βj and Δj are 2K-vectors. Δ11, Δ12, {Δt}t>1 are the structure matrices for the items forming
P11, P12, and {Pt}t>1, respectively.

We next apply Theorem 3 to establish a corollary for the identifiability of binary RHMMs.

Corollary 3 (Strict identifiability of binary RHMMs with absorbing states). Any parameter from
ΩΔ (π1,A,{βt}

T
t=1) is strictly identifiable up to label-switching if:

(1) A satisfies Assumption (1a);
(2) π1c > 0 for all c;
(3) P12 = P2; and
(4) Δ12 satisfies Assumption (2a), and Δ11 satisfies Assumption (2b).

Proof can be found in Appendix F.

Remark 7. Corollary 3 relies upon Assumption (2a), which requires that K simple structure items are
administered in P12. Note that a version of Corollary 3 is possible such that strict identifiability can be
achieved with weaker conditions imposed upon on pairs of items, or dyad (e.g., see Culpepper, 2023).

Corollary 4 (Generic identifiability for binary RHMMs with absorbing states). The parameter space
ΩΔ(π,A,{βt}

T
t=1) is generically identifiable up to label-switching, if:

(1) Δ12 satisfies Assumption (3a) and Δ11 satisfies (3b); and
(2) P12 = P2 for some t ∈ [2,T−1].

Proof can be found in Appendix G.

Remark 8. Corollaries 1, 2, 3, and 4 are focused on the case of binary response data, but these results
can be easily extended to more general response models using existing results. For instance, we can
extend Corollaries 1 and 3 to the case of nominal response RHMMs by replacing condition (4) with
the conditions for the Δ structure in Liu and Culpepper (2024 Theorem 1). Moreover, we can establish
generic identifiability for a nominal response RHMM by replacing (1) in Corollaries 2 and 4 with the
conditions for the Δ structure in Liu and Culpepper (2024, Theorem 2).

4. Practical considerations for assessment design

The purpose of this section is to provide a summary of the aforementioned results for practitioners
who design assessments within the HMM or RHMM frameworks. Figure 2 includes a flowchart of the
relevant decision points for deciding upon which results to use as a guide for designing studies.

The flowchart includes four layers of decision points. The first decision at the top of the flowchart
requires practitioners to decide whether the emission matrix will be constant over time. An important
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Figure 2. Flowchart of identifiability results for different types of hidden Markov models.

Note: The boxes with dotted borders and italicized text indicate conditions from existing research whereas the bold boxes indicate

conditions established in this paper.

factor for determining whether Pt changes with time is the extent to which researchers can administer
an instrument over time that has invariant response probabilities. The instrument for an invariant P
may manifest differently for various contexts. In the case of mental health assessment, the instrument
might include one or more standard items regarding patients mood or mental state. In the context of
education, the instrument could consist of a collection of common items or parallel items, which require
mastery of the same mental processes. If a parallel item design is deployed it is critical that the number
of items and the number of response options on these items are also constant over time. In general, we
should expect the emission matrices to differ in cases where different items are administered over time.

After deciding upon whether the constant emission matrix assumption is feasible researchers then
move to the second layer of flowchart to (2a) if the assumption is feasible or (2b) if the emission matrix
is likely to vary over time. In the case of a constant emission matrix, we direct researchers to results in
previously published papers. For instance, Allman et al. (2009) and Bonhomme et al. (2016) provide
results for conventional HMMs that deploy an unstructured emission matrix and Y. Liu et al. (2023)
discuss conditions for identifying parameters of RHMMs. One important detail to recognize is that
although Allman et al. (2009) and Bonhomme et al. (2016) describe a conventional HMM with one item
per time period, their results can be applied to an emission matrix formed as a Khatri–Rao product of
item emission matrices (e.g., see Definition 5).

If the answer to the constant emission matrix question at the first decision point is “no” the flowchart
proceeds to question (2b), which deals with whether the Markov chain that governs transitions among
hidden states is irreducible. As noted above, an irreducible Markov chain is one where it is possible
to reach any state from every other state in a finite number of moves. In other words, this decision
point forces researchers to grapple with the way they anticipate their phenomenon of interest to change
over time. A Markov chain is irreducible if there are no absorbing states, so, researchers interested in
designing assessments to study learning would likely answer “no” and continue to (3b). In other cases,
researchers may expect respondents to move freely among states and it would be appropriate in these
settings to proceed along the “yes” path of the flowchart to (3a).

Decision point (3a) is focused on whether the irreducible Markov chain is coupled with structure
in the emission probabilities. If structure is present, the emission probabilities can be modeled as an
RHMM and researchers could use binary, polytomous, or nominal restricted models for the emission
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response probabilities. Figure 2 indicates that the appropriate identifiability results to guide assessment
design in this case are stated in Corollaries 1 and 2 and Remark 8. More specifically, RHMMs for binary
data require two conditions on the emission probabilities and latent structure. First, there must be at
least one pair of adjacent time points with parallel items to ensure the emission matrices are equal (e.g.,
condition (3) of Corollary 1 and condition (2) of Corollary 2). Second, the latent structure as described
by Δ must also satisfy conditions to ensure the minimum number of full rank emission matrices.
Strict identifiability requires simple structure items as described in Assumption (2a) whereas generic
identifiability requires the weaker condition presented in Assumption (3a).

If the answer of (3a) is “no,” the model is a heterogeneous HMM with time-varying emission matrices.
Accordingly, Theorems 1 and 2 present the appropriate conditions for designing identifiable assessment
designs. Specifically, researchers that deploy unrestricted emission matrices need to administer one pair
of parallel items and care is needed to ensure at least two emission matrices are full rank. One way
to satisfy the parallel items assumption is to administer the same item on two adjacent time periods.
Theorem 2 shows that heterogeneous HMMs are almost surely identified if the number of response
options of the items over time satisfy certain inequalities (e.g., see condition (b)). For instance, the
parallel item should be chosen so that the number of response options exceeds the number of hidden
states. Furthermore, the product of the number of item response options administered prior to and after
the parallel item must also exceed the number of classes.

Decision point (3b) focuses on whether multiple items are administered over time for the reducible
Markov chain. The flowchart in Figure 2 shows that there are currently no known identifiability
conditions for the case when the answer to (3b) is “no” and only a single item is administered over
time.

If multiple items are administered, the flowchart directs us to our last decision point, which is
whether there is structure in the response patterns of the multiple items. An answer of “no” implies
the emission probabilities are unstructured, so that Theorem 3 includes the appropriate conditions for
identifying the model parameters. An important feature of the conditions for the reducible Markov
chain case is that conditions must be imposed upon emission probabilities from the first two time
points as well as the initial distribution π1. In particular, the emission matrix from the first time
point must consist of two booklets of items, say B1 and B2. In the case of heterogeneous HMMs, the
model parameters will be strictly identified if the hidden states have distinct response probabilities in
the emission matrix formed by B1 and the emission matrix constructed by B2 is full rank. Another
requirement is that booklet B2 must also be administered at the second time point in order to identify the
transition matrix. Also, the initial distribution π1 must be strictly positive. This means that practitioners
need to collect a representative sample from the population so that respondents are drawn from every
hidden state. In the educational context, the assumption that π1 is strictly positive corresponds with
ensuring the study consists of students with all types of skill profiles.

Finally, given the case at decision point (4), if the items include structure in their response
probabilities the model is an RHMM and Corollaries 3 and 4 and Remark 8 provide guidelines for
designing an identifiable assessment. The primary distinction between this case and the results discussed
in Theorem 3 is that the Kruskal rank conditions for the emission matrices are replaced with conditions
on the Δ’s. Satisfying the conditions in Assumption 2 guarantees strict identifiability for binary response
RHMMs whereas the conditions in Assumption 3 are needed to generically, or almost surely, identify
the binary RHMM parameters. Remark 8 discusses how previous research on the identifiability of more
general nominal models can be integrated into our framework to understand the required conditions
for the Δ’s.

5. Methods and empirical analyses

This section discusses issues related to the estimation and application heterogeneous HMMs. The first
subsection presents a Bayesian model and full conditional distributions for a Gibbs sampling algorithm.
The second subsection presents results from a simulation study to demonstrate that satisfying the
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identifiability conditions produces a consistent estimator. The final subsection presents an application
with measures of positive and negative affect.

5.1. Bayesian model for heterogeneous HMM
This subsection discusses a Bayesian model for the multi-item, heterogeneous HMM. Let θj denote
the mj × r emission matrix for item j ∈ [J] with (θj)m,c denoting the probability of a response of m for
members of latent state c. We let Iit denote the set of items administered at time j and Jit = ∣Iit ∣ the
number of administered items. The conditional likelihood function for the response of individual i to
item j at time t is a categorical distribution such that

Yitj ∣ zit,θj ∼ categorical((θj)yitj,zit) . (11)

We assume the random variables within the Jt-vector of responses for individual i at time t, Yit ∈ {0,1}Jit ,
are conditionally independent given Zit . Accordingly, the likelihood of the responses for individual i at
time t given the value of the hidden state and item parameters is

p(Yit ∣ zit,Θt) = ∏
j∈Iit

(θj)yitj,zit, (12)

where Θt denotes the emission matrices for the administered items at time t. We consider independent
categorical prior distributions for the hidden states. Specifically, the prior for respondent i is:

Zit ∣ Zi,t−1,π1,A ∼ { categorical(π1) t = 1
categorical((A)zi,t−1,1, . . . ,(A)zi,t−1,r), t > 1 (13)

where (A)c,c′ = P(Zit = c′ ∣ Zi,t−1 = c). We consider independent Dirichlet priors for the initial distribu-
tion, the columns of the item emission matrices, and the rows of transition matrices as

π1 ∼Dirichletr (d0) (14)
((θj)1,c, . . . ,(θj)mj,c) ∼Dirichletmj (dθ) (15)
((A)c,1, . . . ,(A)c,r) ∼Dirichletr (dA), (16)

where d0, dθ, and dA are constants and W ∼Dirichletk with density function

p(w) = 1
B(d)

k
∏
j=1

wdi−1
i , (17)

where B(d) denotes the multivariate beta function.
We deploy a Gibbs sampling algorithm to approximate the posterior distribution. Specifically, we

sequentially sample the hidden states, initial distribution, item emission matrices, and transition matrix
from the associated full conditional distributions. The full conditional distribution for the hidden state
for individual i at time t is a categorical distribution, Zit ∣ zi,t−1,zi,t+1,π1,Θt,A ∼ categorical(π̃it), where
element c ∈ 1,r of π̃it is

π̃itc =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∏j∈Ii2(θj)yi1j,c)(π1)c (A)c,zi2

∑r
c=1(∏j∈Ii2(θj)yi1j,c)(π1)c (A)c,zi2

t = 1

(∏j∈Iit (θj)yitj,c)(A)zi,t−1,c (A)c,zi,t+1

∑r
c=1(∏j∈Iit (θj)yitj,c)(A)zi,t−1,c (A)c,zi,t+1

1 < t < T

(∏j∈IiT (θj)yiTj,c)(A)zi,T−1,c

∑r
c=1(∏j∈IiT (θj)yiTj,c)(A)zi,T−1,c

t = T.

. (18)

The full conditional distributions for the initial distribution π1, the columns of the item emission
matrices, and the rows of the transition matrix are independent Dirichlet distributions. That is,
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π1 ∣ z11, . . . ,zn1 ∼Dirichletr (n1+d1) where the cth element of n1 is the number of individuals residing
in state c at time t = 1,

(n1)c =
n
∑
i=1

�(zi1 = c). (19)

The full conditional conditional distribution for the cth column of the emission matrix for item j is

((θj)1,c, . . . ,(θj)mj,c) ∣ z,Y ∼Dirichletmj(nθjc+dθ), (20)

where z and Y denote the values of the hidden states and observed responses for all individuals across
time points and the kth element of nθjc is the number of respondents who reside in state c and select
option k on item j over time,

(nθjc)k =
n
∑
i=1

T
∑
t=1

1(zit = c)1(j ∈ Iit,yitj = k). (21)

The full conditional distribution for the cth row of A is

((A)c,1, . . . ,(A)c,r) ∣ z ∼Dirichletr(nAc+dA). (22)

The c′th element of nAc is the number of respondents who transition from state c to state c′ over time,

(nAc)c′ =
n
∑
i=1

T−1
∑
t=1

1(zit = c,zi,t+1 = c′). (23)

5.2. Simulation study
We conducted a simulation study to demonstrate that enforcing the identifiability conditions produces a
consistent estimator for the parameters of the heterogeneous HMM. In particular, we focus our attention
to the case of the multi-item, heterogeneous HMM. Theorem 3 states that the heterogeneous HMM is
identified if: (1) rank(A) = r; (2) π1c > 0 for c ∈ [r]; and (3) an item administered at time t = 1 has a full
rank emission matrix and is also administered at time t = 2. We simulated data using r = 3 hidden states
and J = 4 items administered over T = 4 time points. We simulated we responses for items 1 and 2 at
time one, item 2 at time 2, item 3 at time three, and item 4 at time four. Item 2 is administered at times 1
and 2 in order to satisfy condition (3) of Theorem 3. A full column rank emission matrix was specified
for the first item as

θ1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.70 0.05 0.05
0.10 0.10 0.05
0.10 0.70 0.10
0.05 0.10 0.10
0.05 0.05 0.70

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (24)

We specified distinct emission matrices for items 2 through 4 by permuting the columns of θ1. That
is, θ2 was constructed as columns (3,2,1), θ3 as columns (1,3,2), and θ4 as columns (2,3,1). The data
generating value for the transition matrix was

A =
⎡⎢⎢⎢⎢⎢⎣

0.7 0.2 0.1
0.3 0.4 0.3
0.1 0.2 0.7

⎤⎥⎥⎥⎥⎥⎦
. (25)

The data generating value for the initial distribution was π1 = (0.375,0.250,0.375). The data generating
transition matrix is full rank and the initial distribution has strictly positive elements, which implies
that the data generating parameters satisfy conditions (1) and (2) of Theorem 3.

We simulated data for six conditions with samples sizes of n= 250, 500, 1,000, 2,000, 4,000, and 8,000.
We replicated each condition 500 times and computed the mean square error (MSE) for the elements of
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Table 1. Average MSE of the elements of Θ, A, and π1 where

MSE was computed from 500 replications

n Θ A π1

250 0.0091 0.0065 0.0029

500 0.0047 0.0035 0.0021

1,000 0.0023 0.0017 0.0014

2,000 0.0012 0.0008 0.0006

4,000 0.0007 0.0004 0.0003

8,000 0.0005 0.0003 0.0002

Figure 3. Boxplots of simulated MSE for elements of the emission and transition matrices by sample size.

the four emission matrices, the transition matrix, and the initial distribution. We found evidence using
the Gelman-Rubin Rhat statistics of acceptable convergence using a chain length of 5,000 and a burn-in
of 1,000.

Table 1 and Figure 3 show that the parameter MSE decreases as the sample size increases. Table 1
reports the average MSE for the elements of Θ, A, and π1. The average MSE for the elements of the
emission matrices equaled 0.0091 for a sample size of 250 and declined with sample size to the value
of 0.0005 for n = 8,000. The average MSE for the elements of A and π1 demonstrate a similar pattern.
Figure 3 provides more detailed information by presenting boxplots of the MSEs of the 60 elements of
the item emission matrices and the nine element of the transition matrix by sample size. Figure 3 shows
evidence of consistency in the estimation of B and A given that the MSEs decline for all elements as the
sample size increases.

5.3. Application
Researchers are increasingly interested in developing tools to understand the dynamics of positive and
negative affect, mood, and depression (Loossens et al., 2021) and recent research deployed HMMs to
study changes in mood and depression (Jiang et al., 2022; Mildiner Moraga et al., 2024). Accordingly,
we consider an application involving a dataset of the ten-item Positive and Negative Affect Schedule
(PANAS; Shui et al., 2021). The dataset includes n = 142 respondents who were surveyed six times a day
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for five consecutive days for a maximum of 30 observations over time. Participants reported ratings on
a five-point scale with anchor endpoints for the value of “1” as “not at all” to a value of “5” to indicate
“extremely” for the following item stems: upset, hostile, alert, ashamed, inspired, nervous, determined,
attentive, afraid, and active.

Previous research found evidence that responses to mood measures, such as the PANAS, are subject
to time-of-day effects where mood changes systematically over the course of a day (Egloff et al., 1995).
One implication could be that the psychometric properties of the PANAS items are a function of the
time-of-day. Consequently, applying a homogeneous HMM to the PANAS response data may be too
restrictive. It is therefore justified to evaluate the relative fit of a homogeneous and heterogeneous HMM
to determine whether the emission matrix changes with the time of day.

An important contribution of our article is that our new identifiability theory provides the necessary
insight for evaluating the extent to which emission matrices differ within a day. That is, we provide
researchers with identifiability conditions for comparing of two identified versions of the homogeneous
and heterogeneous HMMs. Therefore our application to the PANAS dataset compares the relative fit of
a homogeneous and heterogeneous HMM.

There were instances in the PANAS data where respondents missed one of the six daily data
collections. A complete dataset would include 4,260 person by time-of-day by day responses (i.e.,
142×6×5). The PANAS dataset included 3,789 responses, which implies that participants missed a total
of 471 data collections (i.e., 11.1% of the total observations). For the purposes of demonstration, we treat
the missing response data as missing at random and impute the hidden state for the missing observations
within the Gibbs sampling algorithm. Specifically, the hidden states for the missing observations is
imputed by sampling Zit from Equation 18 by replacing the likelihood portion of the probability with
the value of one.

We deployed the heterogeneous HMM with r = 3 by specifying a distinct emission matrix for the
time-of-day (i.e., there were six different emission matrices). We used a Jeffreys’ prior for the columns
of the item emission matrices and the rows of the transition matrix. Specifically, the columns of the item
emission matrices were distributed as Dirichlet5(15/2) where 15 is a vector of five ones and the rows of
the transition matrix as Dirichlet3(13/2). We generated starting values for the item emission matrices
and initial distribution π1 by applying the K-means algorithm to the 3,789×10 matrix of observed items
responses.

We found evidence of convergence using the Gelman-Rubin Rhat statistics by approximating the
posterior distribution for both the homogeneous and heterogeneous HMMs by discarding the first
10,000 of 50,000 draws as burn-in. We computed the WAIC (Watanabe & Opper, 2010) for both models
in order to evaluate relative fit of the homogeneous and heterogeneous HMMs. The WAIC was smallest
for the homogeneous HMM with a value of 85813 versus 86301, which supports the conclusion that
PANAS item-level emission matrices were constant over the course of the day.

Figure 4 presents posterior means of the item emission matrices as pie charts of the response
probabilities for the ten items and three hidden states. Figure 4 provides evidence that members of
state one report more extreme responses to every item. In contrast, the results in Figure 4 suggest
that respondents within state two were more optimistic and tended to report lower levels on negative
affect items. Additionally, members of state two were more likely to report being inspired, determined,
attentive, and active. Finally, members in state three are similar to those in state two in terms of reporting
less negative affect. However, members of state three reported lower levels of characteristics such as
inspired, determined, and attentive than members of state two.

The posterior mean for the transition matrix was

Ā =
⎡⎢⎢⎢⎢⎢⎣

0.829 0.095 0.076
0.116 0.741 0.143
0.135 0.180 0.686

⎤⎥⎥⎥⎥⎥⎦
. (26)

The estimated transition matrix provides evidence that respondents were more likely to remain in their
current state. For instance, respondents within the first state had an 82.9% chance of remaining in state
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Figure 4. Pie charts of item by class emission probabilities for the PANAS dataset.

Note: The anchor labels were 1 = “not at all” and 5 = “extremely.”

one and only had an 9.5% and 7.6% chance of transitioning to states two and three, respectively. In
contrast, members of the optimistic state two had a 74.1% chance to remain optimistic, an 11.6% chance
to transition into state one, and a 14.3% chance to transition into state three. Finally, members of state
three had a 68.6% chance to remain in state three, a 13.5% chance to transition into state one, and an
18.0% chance to transition into the more optimistic state two.

6. Discussion

We presented new theory for designing assessments within the HMM and RHMM frameworks. Our
results provide practitioners with new insights for creating assessment systems for monitoring student
learning and changes in mental health. We extended existing identifiability theory by relaxing the
constant emission matrix and irreducibility assumptions. Our results accordingly provide practitioners
with guidelines for designing more flexible assessments that are grounded in assumptions that are more
likely met in applied settings.

There are several directions for future research. First, we noted in the flowchart in Figure 2 that there
are no known identifiability conditions for the time-varying emission matrix case when the Markov
chain is reducible and a single item is administered over time. The challenge with this setting is the need
to discover a technique to establish identifiability without using the forward projection properties in
Lemma 2 of Appendix A derived from the stationarity assumption.

Second, we proposed a Bayesian approach for approximating parameters of the heterogeneous
HMM and there are opportunities to extend the algorithm to the case of heterogeneous RHMMs.
That is, researchers could consider using Bayesian variable selection methods to impose structure on
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the emission matrix (e.g., see Balamuta & Culpepper, 2022; Chen et al., 2020; Culpepper & Balamuta,
2023; Jimenez et al., 2023). We established identifiability conditions up to label-switching. One potential
challenge with using the Bayesian framework to estimate model parameters is that MCMC algorithms
might experience within-chain label-switching, which would impact parameter estimates based on
posterior means. Although we did not find evidence of within-chain label-switching in our simulation
study or application, within-chain label-switching should be carefully investigated. In cases where
within-chain label-switching occurs, researchers should use or modify existing relabeling algorithms
(e.g., see Chung, 2019; Erosheva & Curtis, 2017) to permute samples from the posterior distribution.

Third, researchers are also interested in settings where there are attribute hierarchies (e.g., see Chen
& Wang, 2023; Tu et al., 2019). In the educational context, attribute hierarchies arise in cases where
some attributes can only be mastered after mastery of others. For instance, suppose K = 3, learning is
an absorbing state, and the attributes follow a linear hierarchy where students must first learn attribute
1, then attribute 2, and finally attribute 3. The flowchart in Figure 2 indicates that Corollaries 3 and 4
are the relevant conditions for this setting and a requirement is that the initial distribution π1 is strictly
positive. However, in the case of a linear attribute structure we would expect some elements of π1 to be
zero. For instance, probabilities involving mastery of the second and third attribute without mastery of
the first would be zero (e.g., P(α1 = 0,α2 = 1,α3 = 0), P(α1 = 0,α2 = 0,α3 = 1), and P(α1 = 0,α2 = 1,
α3 = 1)) in addition to probabilities such as P(α1 = 0,α2 = 0,α3 = 1) and P(α1 = 1,α2 = 0,α3 = 1).
Our identifiability results can be extended to allow for attribute hierarchies. For instance, Gu & Xu
(2023) studied identifiability of restricted latent class models in the presence of attribute hierarchies
and their results could be incorporated to establish identifiability conditions for RHMMs when attribute
hierarchies exist.

In conclusion, diagnostic models provide researchers with powerful tools for tracking changes in
attributes. The increasing availability of longitudinal data will provide researchers the opportunity to
leverage information to infer interventions that enhance outcomes. The results we shared in this article
will provide researchers with the tools to harness the wealth information available in modern studies.
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Appendix

A. Proof of Theorem 1

The goal of this appendix is to prove Theorem 1. To establish the result we need to understand properties of emission and
transition matrices. The first subsection reviews several definitions and results pertaining to emission and transition matrices.
Furthermore, we write the heterogeneous HMM as a three-way array using properties of forward- and backward-projection
rules. The second subsection discusses backward and forward projections for homogeneous HMMs and then extends these
results to the case of heterogeneous emission matrices. Once we are able to write the heterogeneous HMM as a three-way array
we use Kruskal’s theorem for the uniqueness of three-way arrays to complete the proof. Accordingly, the third shows how we
can write the heterogeneous HMM as a three-way array and applies Kruskal’s theorem.

A.1. Properties of emission and transition matrices
We start with by introducing some basic terminology for emission and transition matrices.

Definition 6 (Stochastic matrices). A n×m matrix M with non-negative entries is column-wise stochastic if 1⊺n M = 1⊺m and
row-wise stochastic if M1m = 1n where for n ∈N, 1n is an n-vector of ones.

Remark 9. The emission matrix Pt is a column-wise qt × r stochastic matrix and the transition matrix A is a row-wise r× r
stochastic matrix.

Lemma 1 (Properties of irreducible, aperiodic stochastic matrices). If A is an r× r transition matrix for an irreducible and
aperiodic Markov chain then A⊺π = π for π > 0r .

Proof. See Stirzaker (2003, p. 416). ◻

A.2. Forward and backward projections
We follow previous strategies by writing the HMM as a special case of a mixture model using forward and backward projection
rules.
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Lemma 2 (Bonhomme et al., 2016). Let Yt ∈ [q] be a random response conditioned on Zt ∈ [r]with probabilities specified in the
q× r emission matrix P and stationary distribution, π > 0r . Then, the first-order Markovian assumption implies that the emission
matrix for:

1. Yt given Zt−1 is PA⊺ (backward projection); and
2. Yt given Zt+1 is PDπAD−1

π where Dπ = diag(π1, . . . ,πr) (forward projection).

Remark 10. Note that Ã=DπAD−1
π arises in the distribution for Yt given Zt+1 because P(Yt ∣Zt+1)=∑r

z=1 P(Yt ∣Zt = z)P(Zt =
z ∣ Zt+1) requires the conditional distribution of Zt given Zt+1. Consequently, Ã is the matrix of probabilities governing
transitions from Zt+1 to Zt .

We next present notation that is essential for constructing the joint distribution of observed responses conditioned upon
a common collection of latent states. In particular, our results make use of specialized matrix products, such as the Kronecker
and Khatri–Rao products.

Definition 7. The Kronecker product two matrices A ∈Rm×n and B ∈Rp×q, is denoted by

A⊗B =
⎡⎢⎢⎢⎢⎢⎣

a11B ⋯ a1nB
⋮ ⋱ ⋮

am1B ⋯ amnB

⎤⎥⎥⎥⎥⎥⎦
. (A1)

Definition 8. The Khatri–Rao matrix product (i.e., a column-wise Kronecker product) of two matrices A=(a1, . . . ,ar) ∈Rm×r

and B = (b1, . . . ,br) ∈Rn×r , is denoted by

A∗B = (a1⊗b1, . . . ,ar ⊗br). (A2)

We present an example showing how to use the Khatri–Rao product can be used to express the emission matrix for two
independent responses.

Example 4. Suppose there are two items, Y1 ∈ [q1] and Y2 ∈ [q2] such that the responses are conditionally independent given
Z. The conditional probability for a particular response pattern for Y1 and Y2 is P(Y1 = j,Y2 = k ∣ Z = z) = p1zjp2zk. We let
piz = (piz1, . . . ,piz,qi)⊺ denote a qi-vector of probabilities for Yi given Z = z. Also, define Pi = (pi1, . . . ,pir) as the qi × r matrix
of response probabilities across the r classes. Therefore, the conditional independence assumption implies that the q1q2 × r
matrix of response probabilities for Y1 and Y2 is P12 = P1 ∗P2.

We present a two additional examples to demonstrate how to use the forward and backward projection rules and the
Khatri–Rao product to write the emission matrix for the responses of two adjacent time points.

Example 5. Suppose YT−1 and YT follow a first-order HMM with emission matrices PT−1 and PT , respectively, and transition
matrix A. Lemma 2. 1 implies that the emission matrix of YT given ZT−1 is PT A⊺. Note that YT−1 and YT are conditionally
independent given ZT−1, so the emission matrix for the combined response patterns for YT−1 and YT given ZT−1 is PT−1 ∗
(PT A⊺).

Example 6. Let Y1 and Y2 be the first two observations of a first-order HMM with emission matrices P1 and P2, respectively,
and transition matrix A. Lemma 2.2 implies that the emission matrix of Y1 given Z2 is P1Ã. The HMM structure implies that
Y1 and Y2 are conditionally independent given Z2, so the emission matrix for the combined response patterns is P1Ã∗P2.

We will apply the backward and forward projection rules to an arbitrary number of time points, so we introduce notation
to represent these emission matrices.

Definition 9. Let the backward projected distribution of Yt+1, . . . ,YT given Zt be defined as B(t,T]. The distribution for
Yt+1, . . . ,YT given Zt+1 is B[t+1,T].

Definition 10. The forward projected distribution of Y1, . . . ,Yt−1 given Zt is denoted as F[1,t) and the distribution of
Y1, . . . ,Yt−1 given Zt−1 is denoted as F[1,t−1].

As demonstrated by Allman et al. and Bonhomme et al., we can generalize the expressions in Examples 5 and 6 and write
the emission matrix for several observations from the future or the past conditional on a common time Zt for 1 < t < T.

Example 7. Under the HMM structure, we can apply the backward projection rule to derive the conditional distribution of
Yt+1, . . . ,YT given Zt . For instance, the conditional distribution of YT−2,YT−1,YT given ZT−2 is

B[T−2,T] = P(YT−2 ∣ ZT−2)P(YT−1,YT ∣ ZT−2) = PT−2 ∗(B[T−1,T]A⊺)
= PT−2 ∗(PT−1 ∗PT A⊺)A⊺. (A3)
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Applying the identity recursively implies that the distribution of Yt+1, . . . ,YT given Zt is,

B(t,T] = B[t+1,T]A⊺ = (Pt+1 ∗(⋯PT−2 ∗(PT−1 ∗PT A⊺)A⊺⋯)A⊺. (A4)

Similarly, the conditional distribution of Y1, Y2, and Y3 given Z3 is

F[1,3] = P(Y1,Y2 ∣ Z3)P(Y3 ∣ Z3) = F[1∶2]Ã∗P3 = (P1Ã∗P2)Ã∗P3. (A5)

A recursive application of the forward projection rule implies that the distribution of Y1, . . . ,Yt−1 given Zt is,

F[1,t) = F[1,t−1]Ã = (((P1Ã∗P2)Ã∗P3⋯)Ã∗Pt−1)Ã. (A6)

The forward and backward projected emission matrices rely upon the Khatri–Rao product. The following Lemma presents
identities for Khatri–Rao products that will help us to understand properties of forward and backward project emission
matrices.

Lemma 3 (Khatri & Rao, 1968). Let R and S are matrices of order m×p and n×q, and U and V are matrices of order p× r and
q× r.

(a) Mixed product property

(R⊗S)(U∗V) = (RU)∗(SV). (A7)

(b) Let all of the column vectors of V corresponding to independent column vectors of U be non-null. Then rank(U∗V) ≥
rank(U). Similarly, if all the column vectors of U corresponding to independent column vectors of V are non-null, then
rank(U∗V) ≥ rank(V).

The next proposition establishes several important results about forward and backward projected emission matrices.

Proposition 1 (Properties of stochastic matrices). Consider the following properties of stochastic matrices:

1. If A is an r× r row-wise stochastic matrix that is irreducible and aperiodic then 1⊺r DπAD−1
π = 1⊺r .

2. Backward and forward projection recursive identities:
(a) B(t,T] = (Pt+1 ∗B(t+1,T])A⊺
(b) F[1,t+1) = (F[1,t) ∗Pt)Ã.

3. B(t,T] and F[1,t+1) are column-wise stochastic matrices.

Proof. Observe that (1) is established using the property in Lemma 1 of an irreducible, aperiodic A that A⊺π = π and the fact
that 1⊺r Dπ = π⊺. We obtain (2a) because B(t,T] = B[t+1,T]A⊺ = (Pt+1 ∗B(t+1,T])A⊺ and Yt+1 is conditionally independent
of Yt+2, . . . ,YT given Zt+1. Similarly, part (2b) stems from F[1,t+1) = F[1,t]Ã = (F[1,t) ∗Pt)Ã, because Y1, . . . ,Yt−1 and Yt are
conditionally independent given Zt .

For (3), we note that the elements of B(t,T] and F[1,t) are products of non-negative elements, so all that remains to show is
that the columns sum to one. We proceed with the recursion in 2a for t <T. Let 1⊺

(t,T] = 1⊺qt+1
⊗1⊺
(t+1,T] with 1⊺

(T−1,T] = 1⊺qT
, so it

is a (∏T
j=t+1 qj)-vector of ones. Applying Lemma 3 recursively implies 1⊺

(t,T]B(t,T] = 1r . Similarly, for t > 1, 1⊺
[1,t) is a (∏t−1

j=1 qj)-
vector of ones. Recursively applying Lemma 3 with 1⊺

[1,t) = 1⊺
[1,t−1)⊗1⊺qt−1

and 1⊺
[1,2) = 1⊺q1

implies that 1⊺
[1,t)F[1,t) = 1r . ◻

We next introduce collapsing properties of backward and forward projected emission matrices.

Definition 11. Let IA = {x ∣ x ∈ Z,x ∈ A} denote the set of integers also in set A, and let

1⊺IA
= { ⊗j∈IA 1⊺qj

if IA ≠ ∅
1 if IA = ∅ .

Example 8. Given IA = (m,n], we have

1⊺IA = {
⊗n

j=m+1 1⊺qj
if m < n

1 if m ≥ n
.

Proposition 2 (Collapsing property). There exists constant collapsing matrices CF,[1,t),k and CB,(t,T],k such that,

(1) CB,(t,T],kB(t,T] = Pt+k(A⊺)k for 0 < k ≤ T− t and

CB,(t,T],k = 1⊺(t,t+k−1]⊗ Iqt+k ⊗1⊺(t+k,T]. (A8)
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(2) CF,[1,t),kF[1,t) = Pt−k(Ã)k for 0 < k < t and

CF,[1,t),k = 1⊺[1,t−k)⊗ Iqt−k ⊗1⊺[t−k+1,t). (A9)

Proof. We define these constant matrices recursively. For part (1), we note that the collapsing matrix can be written
recursively as CB,(t,T],k = 1⊺qt+1

⊗CB,(t+1,T],k for t,t+ 1, . . . ,t+ k− 2, where CB,(t+1,T],k = 1⊺
(t+1,t+k−1]⊗ Iqt+k ⊗ 1⊺

(t+k,T], and
then CB,(t+k−1,T],k = Iqt+k ⊗1⊺

(t+k,T].
Applying Lemma 3 and (2a) of Proposition 1 implies the first step of the recursion yields:

CB,(t,T],kB(t,T] = (1⊺qt+1
⊗CB,(t+1,T],k)(Pt+1 ∗B(t+1,T])A⊺

= (1⊺qt+1
Pt+1 ∗CB,(t+1,T],kB(t+1,T])A⊺

= (1⊺r ∗CB,(t+1,T],kB(t+1,T])A⊺

= CB,(t+1,T],kB(t+1,T]A⊺. (A10)

Iterating forward, we can get

CB,(t,T],kB(t,T] = CB,(t+k−1,T],kB(t+k−1,T] (A⊺)k−1
. (A11)

Then using (2a) and (3) of Proposition 1, we find

CB,(t+k−1,T],kB(t+k−1,T] (A⊺)k−1 = (Iqt+k ⊗1⊺(t+k,T])(Pt+k ∗B(t+k,T])A⊺ (A⊺)k−1

= (Iqt+k Pt+k ∗1⊺(t+k,T]B(t+k,T])(A⊺)k

= (Pt+k ∗1⊺r )(A⊺)k

= Pt+k (A⊺)k
. (A12)

The proof for part (2) follows in a similar fashion, but in the opposite order. That is, we let CF,[1,t),k = CF,[1,t−1),k⊗1⊺qt−1

for t−k+2, . . . ,t−1,t, where CF,[1,t−1),k = 1⊺
[1,t−k)⊗Iqt−k ⊗1⊺

[t−k+1,t−1), and then CF,[1,t−k+1),k = 1⊺
[1,t−k)⊗Iqt−k . The first step

in the recursion is,

CF,[1,t),kF[1,t) = (CF,[1,t−1),k⊗1⊺qt−1
)(F[1,t−1) ∗Pt−1)Ã

= (CF,[1,t−1),kF[1,t−1) ∗1⊺qt−1
Pt−1)Ã

= (CF,[1,t−1),kF[1,t−1) ∗1⊺r )Ã

= CF,[1,t−1),kF[1,t−1)Ã. (A13)

Iterating back we find,

CF,[1,t−k+1),kF[1,t−k+1) (Ã)k−1 = (1⊺[1,t−k)⊗ Iqt−k)(F[1,t−k) ∗Pt−k)Ã(Ã)k−1

= (1⊺[1,t−k)F[1,t−k) ∗ Iqt−k Pt−k)(Ã)k

= (1⊺r ∗Pt−k)(Ã)k

= Pt−k (Ã)k
. (A14)

◻

A.3. Three-way arrays
Allman et al. (2009) proved the identifiability of time homogeneous HMMs using Kruskal’s theorem for the uniqueness of
three-way arrays (Kruskal, 1976, 1977). We next define a three-way array.

Definition 12 (Three-way array). Let T = [T1,T2,T3] be a three-way array where each Ti has r columns with T defined as

T = [T1,T2,T3] =
r
∑
l=1

t1l⊗ t2l⊗ t3l, (A15)

where til is column l of Ti for i = 1,2,3.

The next example shows that heterogeneous HMMs with, time-varying emission probabilities can be written more
generally as a three-way array.
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Example 9 (Heterogeneous HMMs as a three-way array). We write the heterogeneous HMM model for Y1, . . . ,Yt−1,Yt,

Yt+1, . . . ,YT as a three-way array by conditioning on Zt . As shown by Allman et al. (2009), the HMM conditional independence
assumption and the requirement that π > 0r for the forward-propogation rule in Lemma 2 implies that,

P(Y1, . . . ,Yt−1,Yt,Yt+1, . . . ,YT ∣ Zt) = P(Y1, . . . ,Yt−1 ∣ Zt)P(Yt ∣ Zt)P(Yt+1, . . . ,YT ∣ Zt)
= F[1,t) ∗Pt ∗B(t,T]. (A16)

We can write Equation A16 as a three-way array as shown in Definition 12. Let M represent the marginal distribution of
Y1, . . . ,YT and define M1 = F[1,t) as the emission matrix for Y1, . . . ,Yt−1 given Zt , M2 = PtDπ is a rescaling of the emission
matrix for Yt given Zt , and M3 = B(t,T] is the emission matrix for Yt+1, . . . ,YT given Zt . Accordingly, the three-way array
representation for Equation A16 given in Definition 12 is

M = [M1,M2,M3] = [F[1,t),PtDπ,B(t,T]] =
r
∑
l=1

πlf[1,t),l⊗pt,l⊗b(t,T],l, (A17)

where πl is element l of the stationary distribution π, and f[1,t),l , pt,l , and b(t,T],l are l-th column of F[1,t), Pt , and B(t,T],
respectively.

Definition 13. For a matrix M, the Kruskal rank of M, rankK(M), is the largest number I such that every set of I rows in M
are linearly independent (e.g., see Allman et al., 2009).

Theorem 4 (Kruskal, 1976, 1977). Consider the three-way array in Definition 12. If

rankK(T1)+ rankK(T2)+ rankK(T3) ≥ 2r+2

then T uniquely determines T1, T2, and T3 up to label-switching and rescaling of the columns.

The proof also requires knowledge about the rank of project of matrices, so we present an existing result in the next Lemma.

Lemma 4 (Rank of matrix product). If A ∈Rm×n and B ∈Rn×k and rank(B) = n then rank(AB) = rank(A).

The following proposition establishes the uniqueness of the three emission matrices and stationary distribution for the
heterogeneous HMM in Example 9.

Proposition 3. Consider the three-way array representation of the marginal distribution M shown in Example 9. Under
Assumption 1, M1, M2, and M3 are uniquely identified up to label-switching.

Proof. In Equation A17, we decompose the marginal distribution of Y1, . . . ,YT into three tensors M1, M2, and M3. According
to Proposition 1, we have M1 = F[1,t), M2 = PtDπ , and M3 = B(t,T]. Note that (b) implies rank(Dπ) = r, so Lemma 4 implies
that rank(PtDπ) = rank(Pt). Therefore, (c) implies that rankK(M2) = r.

Applying property (b) of Lemma 3 implies that rank(Pt+1 ∗B(t+1,T]) ≥ rank(Pt+1) since all columns in B(t+1,T] are
nonzero. Given rank(Pt+1) = r, we can conclude that rankK(M3) = r. We note that M1 = F[1,t). We can repeatedly apply
(2b) of Proposition 1 to imply that

M1 = (((F[1,t−k) ∗Pt−k)Ã⋯)Ã∗Pt−1)Ã.

Part (b) of Lemma 3 implies rankK(F[1,t−k) ∗ Pt−k) ≥ rank(Pt−k) because the columns of F[1,t−k) are non-null. Recall
(c) implies that rankK(Pt−k) = r, so rankK(F[1,t−k) ∗Pt−k) = r. Recall that F[1,t−k] = F[1,t−k) ∗Pt−k, so Lemma 4 implies
rankK(F[1,t−k]Ã) = r, because rank(Ã) = r. The fact that F[1,t−k+1) = F[1,t−k]Ã implies rankK(F[1,t−k+1)) = r. We can
continue sequentially in this fashion to show that rankK((F[1,t−k+1) ∗Pt−k+1)Ã) = r, rankK((F[1,t−k+2) ∗Pt−k+2)Ã) = r,•,
rankK((F[1,t−1) ∗Pt−1)Ã) = r, which implies rankK(M1) = r.

Now we have rankK(M1)+ rankK(M2)+ rankK(M3) ≥ 2r+2, then by Theorem 4, tensors M1, M2, and M3 are uniquely
identified. ◻

Remark 11. Note that Proposition 3 states that the parameters are identifiable up to label-switching, but not rescaling of the
columns as stated in Theorem 4. The reason for this is that M is a column-wise stochastic matrix, so the restriction that the
columns sum to one eliminate the possibility of arbitrary rescalings. For instance, let Ds be a diagonal matrix with positive
scalars and Ms =MDs. The requirement that 1⊺r Ms = 1⊺r for a column-wise stochastic matrix implies that Ds = Ir .

Now we are able to complete the proof for Theorem 1. Given Assumption 1, by Proposition 3, M1, M2, and M3 are uniquely
identified. Next we need to show that parameters π, A, and Pt for all t can also be identified, i.e., M1 = M̂1, M2 = M̂2, and
M3 = M̂3 if and only if Pt = P̂t for all t, A = Â, and π = π̂. Notice that M2 = M̂2 implies PtDπ = P̂tD̂π . Pre-multiplying by 1⊺r
on both sides implies that π = π̂ and then Pt = P̂t . Given Pt = Pt+1, Pt+1 = P̂t+1 follows. According to (1) of Proposition 2, we
have CB,(t,T],kM3 = Pt+k(A⊺)k. Given M3 = M̂3 and let k = 1 we get Pt+1A⊺ = Pt+1Â⊺, then A = Â holds. Now for all k > 1, we
have Pt+k(A⊺)k = P̂t+k(A⊺)k, then rank(A) = r implies Pt+k = P̂t+k for all k > 1. Similarly, applying (2) of Proposition 2 we
have CF,[1,t),kM1 = Pt−k(Ã)k. Given M1 = M̂1, A = Â, π = π̂, and rank(A) = r, then Pt−k = P̂t−k follows for all 0 < k < t. Thus,
HMM parameters are all identified, this completes the proof.
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B. Proof of Theorem 2

We extend the notation for the Khatri–Rao product for two matrices to the case with an arbitrary collection of matrices.

Definition 14. The Khatri–Rao matrix product of n matrices Ui = (ui1, . . . ,uir) ∈Rqi×r for i ∈ [n] is denoted by

n⊛
i=1

Ui = (
n
⊗
i=1

ui1, . . . ,
n
⊗
i=1

uir) . (A18)

Remark 12. Note the product in Definition 14 produces a (∏n
j=1 qi)× r matrix.

Example 10. Suppose there are m items, Yi ∈ [qi] for i ∈ [m], such that the responses are conditionally independent given Z.
The conditional probability for a particular response pattern Y1, . . . ,Ym is P(Y1 = j1, . . . ,Ym = jm ∣Z = z) =∏m

i=1 piz,ji . Therefore,
the conditional independence assumption implies that the Khatri–Rao product can be used to form the q1q2⋯qm × r matrix
of response probabilities for Y1, . . . ,Ym as

P12⋯m =
m⊛

i=1
Pi. (A19)

Lemma 5 (Allman et al., 2009, Lemma 13). Let Ui ∈Rqi×r , q =∏n
i=1 qi, and U =⊛n

i=1 Ui. Then for generic Ui ’s, rankK(U) =
rank(U) =min(q,r).

Using Lemma 5, we can establish our Theorem for the generic identifiability of heterogeneous HMMs.
We first need to show that M1, M2, and M3 from Equation A17 generically satisfy Kruskal’s theorem. For generic choice of

A = Ir , these M1 and M3 reduce to M̃1 =P1∗P2∗⋯∗Pt−1, M2 =PtDπ , and M̃3 =Pt+1∗⋯∗PT . The Pt ’s are stochastic matrices
so we can express them as Pt =UtDt where Dt is a diagonal matrix of non-zero scalars defined so that the columns sum to one.
Recall that both the rank and Kruskal rank are unaffected by multiplying columns by nonzero scalars, so we can apply Lemma
5 to a Khatri–Rao product of P1, . . . ,PT . Therefore, by applying Lemma 5, we have rankK(M̃1) = rankK(M2) = rankK(M̃3) = r,
and then Theorem 4 generically holds. Thus by Theorem 4, from the joint distribution of the heterogeneous HMM for generic
A, M1, M2 and M3 are uniquely determined up to permutations of hidden states.

By employing a similar proof technique as in Theorem 1, and transition matrix A is generically of rank r, we can then
unravel M1, M2, and M3 to identify the heterogeneous HMM parameters P1, . . . ,PT , A, and π.

C. Proof of Corollary 1

The proof follows by recalling Chen et al. (2020) showed that if Δt and Δt−k are of the form (D⊺1 ,Δ
′⊺)⊺ with D1 ∈ Ds then

rankK(Pt) = rankK(Pt−k) = 2K , so the conditions in Assumption 1 are satisfied and Theorem 1 can be applied, which proves
the corollary.

D. Proof of Corollary 2

Chen et al. (2020, Theorem 1) establishes that the condition (1) ensures that the column-rank of Pt and Pt−k are generically
2K . Also, A is generically full rank, so the conditions for Assumption 1 hold generically and Theorem 1 can be applied, which
completes the proof.

E. Proof of Theorem 3

The proof follows closely to the proof of Theorem 1 with an exception being the condition that rankK(P11) ≥ 2. First, note that
P12 = P2 and rankK(P12) = r imply that rankK(B(1,T]) = r. Consequently,

rankK(P11Dπ1)+ rankK(P12)+ rankK (B(1,T]) ≥ 2(r+1), (A20)

so the M1, M2, and M3 defined in Equation 10 are unique. The uniqueness of M1 implies that P11Dπ1 is uniquely determined.
Pre-multiplying P11Dπ1 by 1⊺q11

implies that π1 is unique, so that P11 is also uniquely determined. The uniqueness of M2 directly
implies P12 is identified. As described in the proof of Theorem 1, the uniqueness of P12 and M3 together imply that terms
making up B(1,T] can be unraveled so that {Pt}t>1 and A are identified.
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F. Proof of Corollary 3

The proof follows by recalling Chen et al. (2020) showed that if Δ12 = (D⊺1 ,Δ
′⊺)⊺ with D1 ∈D and Δ11 satisfies Assumption (2b)

then rankK(P12) = 2K and rankK P11 ≥ 2, respectively. The conditions of Theorem 3 are satisfied, which proves the corollary.

G. Proof of Corollary 4

Chen et al. (2020, Theorem 1) establishes that the condition (1) ensures that the column-rank of P12 is generically full rank
and P11 has a Kruskal rank of at least two. Also, A is generically full rank, so the conditions in Theorem 3 generically hold,
which completes the proof.

Cite this article: Liu, Y. and Culpepper, S. (2025). Designing Learning Intervention Studies: Identifiability of Heterogeneous
Hidden Markov Models. Psychometrika, 1–26. https://doi.org/10.1017/psy.2025.10024
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