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GENERALIZED CESARO MATRICES

BY
H. C. RHALY, JR.

ABSTRACT. For a€[0, 1] the operator A* is the operator for-
mally defined on the Hardy space H? by

(AiN@) =(z-a) Y if(s)ds,  |z[<L.

If « =1, then the usual identification of H? with [? takes A, onto
the discrete Cesaro operator. Here we see that {A_: a €[0, 1]} is not
arcwise connected, that Re A, =0, that A, is a Hilbert-Schmidt
operator if a €[0, 1), and that A_ is neither normaloid nor spec-
traloid if o €(0, 1).

The generalized Cesaro matrices
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with « €[0, 1], were introduced in [6], where it was shown that, as operators on
I, they are bounded; it was shown, furthermore, that if 0=a <1, then A, is
compact and has spectrum o(A,)={1/n}, -, U{0}. The computation
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proves the following slightly stronger result.

THEOREM 1. A, @ €[0, 1), is a Hilbert—Schmidt operator on 1> with
- = 1
ladg= X a( T ).
m=0 n=m-+1 n

where || ||, denotes the Hilbert—Schmidt norm [4, pp. 17-20].
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The next theorem implies that the collection {A,: 0=a =1} is not arcwise
connected.

THEOREM 2. The assignment o — A, is continuous (with respect to the topol-
ogy induced by the operator norm) on [0, 1) but fails to be continuous at 1.

Proof. If this assignment were continuous from the left at 1, then for any
sequence {B,};-, <[0, 1) increasing to 1 it would be true that [[Ag — A,||— 0 as
n — o, This would say that A;, the norm limit of a sequence of compact
operators, is compact; A; cannot be compact, however, since o(A,)=
{A:]1-A|=1} [1, p.130]. It remains to show that if a€[0, 1), then the
assignment a« — A, is continuous at a. Fix A € (o, 1). We see that
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and hence for B <A we have ||A; — A,||=|B — | ||T,|, where T, is the following
Toeplitz matrix:
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Ifb,=A""'forn=1,2,3,..,and b, =0for n=0, -1, -2,...,then ¥, |b,|*=
(1-A?)"!'<o, so the b,’s are Fourier coefficients of a function ¢ in L?(0, 1);
the function ¢ is given by

(b(x) — Z /\n—le27-rinx — eZTrix(l__Ae21-rix)-1.

n=1

Since ¢ is bounded (with |p(x)|=(1—A)""' for all x), the matrix T, is
bounded [4, p. 24]. Suppose &>0; choose 6 =min{A—a, &|[T,|'}. If Be
(=8, a+8)N(0, 1), then |Ag — A,||<e, and the proof is complete.
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RemaRrk. The following proposition provides an alternate way of showing
that the assignment a — A, is not continuous at 1.

ProposITION 1. ||A;— A,||=2 for all a €0, 1).

Proof. It is clear that ||A,—A.|=|All=2 [1, p.130]. Since
A, —(A,—A,)=A, is compact and A, has no eigenvalues, it follows from [3,
Problem 143] that if Aeo(A;), then Aco(A,—A,); therefore |A;—A,||=
r(A,—A,)=r(A;)=2, where r(-) denotes spectral radius; this completes the
proof.

ProposiTION 2. |[Im A, || =20

Proof. Take B,=A,— A, It was shown in [6] that |B,||=2ca. Since
Im A, =(2i) (A, —A¥=(2i)"Y(B,—B¥), it is easy to see that |[ImA_|=
IB.)I+1BED =2e.

The numerical range W(A) of the operator A is defined to be the set
{Af, H:Ifll=1}; the numerical radius w(A) of A is the number sup {|A]: A €
W(A)}. Tt is a consequence of the preceding proposition that W(A,)<
{A:|Im A|=2a}; the next theorem implies that W(A,) is a subset of the right
half-plane {A: Re A =0}. .

THEOREM 3. Re A, =0 for ac [0, 1]; that is, (Re A)f, f)=0 for all fe I>.

Proof. It suffices to show that A, + A*=0. The matrix A, + A¥ is positive if
and only if all of its finite sections
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have positive determinants. Multiply the second column of S, by a and
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subtract from the first column, then multiply the third column by « and
subtract from the second, and continue in this way through the columns. The
resulting matrix
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has the same determinant as S,. We now multiply the second row of T, by «
and subtract from the first row, then multiply the third row by a and subtract
from the second, and continue in this way through the rows. The resulting
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has the same determinant as T,. It is easy to check that 2/(k—1)>
af(k—1)+a/k for k>2 and a €[0, 1], and hence z, ., is diagonally dominant
[5, Exercise 3, p. 227]; since Z, ., is hermitian, diagonally dominant, and all of
its diagonal elements are positive, it follows that Z,,, is positive definite [5,
Exercise 5, p. 228]. Its principal minor det Z, must then be positive [5, p. 96],
so det S, =det Z, >0, as needed.

Since W(A,) is convex [3, p. 110] and contains the set of eigenvalues
mo(A,) ={1/n}:_; [6, p. 407], it is easy to see that (0, 1] W(A,); in fact, it is
routine to check that W(A,) = (0, 1]. We also find that the numerical range of
the Cesaro operator A; is not hard to compute; for this computation we need
the following lemma.

Lemma. If T is an operator and A is a complex number such that |A|=|T|| and
A€ W(T), then A is an eigenvalue of T.

The proof of this lemma appears in [3, p. 319].

THEOREM 4. The numerical range of the Cesaro operator A, is the open disk
{A:j1=Al<1)

Proof. If A is an eigenvalue of A%, then it is clear that A € W(A,); hence
{A:[1-Al<1}c W(A)) by [1, Theorem 2, p. 130]. Assume |A —1|=1; then
IA=1}=||A;—I||, but A —1 is not an eigenvalue of A,—1I by [1, p. 130]. It
follows from the lemma that A —1¢ W(A,—I) and hence A¢ W(A;) when
[A—1]=1. If ]\ —1|>1, then A¢ W(A,) since W(A,) is convex.

We now turn to the case 0 <a <1. It is easy to see that if B is the matrix (b;)
(1,j=0,1,2,...) with byy=1, b;o=a/2, by =3, and b; =0 for all other values
of i,j, then W(B)c W(A,). It follows from [2] that W(B) is the closed
elliptical disk bounded by the curve

=,y
2

+
1+a? «

1.
16>

since the major axis is 3(1+ «?)'? we find that w(B) =3+21(1+«?)"?, and hence
o(A)=w(B)>1 if a>0. Since r(A,)=1<|A.|| [6], we must have ||A,||>
w(A,) [3, Problem 173]. In summary, we have found that r(A,)<w(A,)<
|A.ll; we state this result in Halmos’ terminology [3, pp. 114-115].

THEOREM 5. A, is not normaloid (since w(A,)#||A.ll) and not spectraloid
(since r(A,) # w(A,)) for 0<a<1.
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