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Summary

Xie & Xu (2000) present a model for mapping quantitative trait loci in an autotetraploid

population. However, one aspect of their model, namely gamete formation, does not properly

represent the biological process in autotetraploid species. This paper gives a more realistic

formulation for this part of the model, and discusses the consequences for multipoint mapping.

1. Introduction

Although there has been much interest in the theory

and practice of mapping quantitative trait loci (QTLs)

in diploid species over the last 20 years, there has been

very little attention to extending these approaches to

autopolyploid species. Xie & Xu (2000) have tackled

this problem, and have advanced the theory with a

model relating trait values to QTL genotypes in an

autotetraploid population of full sibs from a cross

between two outbred parents. As for diploid species,

it is necessary to infer the QTL genotypes from the

genotypes at linked marker loci and this involves

modelling the processes of gamete formation and

recombination. I believe that Xie & Xu (2000) do not

represent this process properly, and present an

alternative derivation below.

2. Statistical model

(i) Modelling recombination between two linked loci

This paper will consider the formation of gametes in

a tetraploid parent with genotype M
"
M

#
M

$
M

%
at a

marker locus M and Q
"
Q

#
Q

$
Q

%
at a linked QTL Q. I

assume that M
"
and Q

"
are on the same chromosome,

etc. Let the recombination frequency between M and

Q be r. Xie & Xu (2000) state that they assume that

gametes are produced by random chromosomal

segregation. This is defined (e.g. Allard, 1966) by two

features :
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1. Homologous chromosomes pair with equal fre-

quencies.

2. Either only bivalents are produced, or there is no

chiasma between the locus and the centromere in

a quadrivalent. These have the consequence that

sister chromatids never appear in the same gamete.

However, when considering linkage between two

loci, one is considering a chiasma between them

and hence only the former can give chromosomal

segregation at both loci.

Under random chromosomal segregation, a parent

will produce six possible gametes at each locus (i.e.

M
"
M

#
, M

"
M

$
, M

"
M

%
, M

#
M

$
, M

#
M

%
, M

$
M

%
at locus

M ). This order of subscripts will be used in all the

matrices below. Xie & Xu (2000) give a matrix T of the

conditional probabilities Pr(M¯ i rQ¯ j), where 1%
i, j% 6 represent the above order of gamete subscripts.

There is a typing error in their paper at this point, as

the probabilities do not sum to 1. Corrected (Xie &

Xu, personal communication), their matrix, denoted

T
X
, is

T
X

¯

A

B

(a­c)}d (b­c)}d (b­c)}d (b­c)}d (b­c)}d 2c}d

(b­c)}d (a­c)}d (b­c)}d (b­c)}d 2c}d (b­c)}d

(b­c)}d (b­c)}d (a­c)}d 2c}d (b­c)}d (b­c)}d

(b­c)}d (b­c)}d 2c}d (a­c)}d (b­c)}d (b­c)}d

(b­c)}d 2c}d (b­c)}d (b­c)}d (a­c)}d (b­c)}d

2c}d (b­c)}d (b­c)}d (b­c)}d (b­c)}d (a­c)}d

C

D

where a¯ (1®r)#, b¯ r(1®r)}3, c¯ r#}9 and d¯
1®2r}3­4r#}9.
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Table 1. Gametes produced by an autotetraploid parent with genotype M1M2M3M4 at a marker locus M and

Q1Q2Q3Q4 at a linked QTL Q if chromosomes pair as 1 with 2, 3 with 4. The recombination frequency between

M and Q is r. The gamete probabilities are obtained by multiplying the probabilities from each chromosome

pair

Gamete type Chromosomes 3, 4

Parental Recombinant

M
$
Q

$
(1®r)}2

M
%
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%
(1®r)}2

M
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Q

%
r}2

M
%
Q

$
r}2
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"
Q

"
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"
M

$
Q

"
Q

$
M

"
M

%
Q

"
Q

%
M
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M
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Q
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Q
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M
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M
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Q

"
Q

$
M

#
Q

#
(1®r)}2 M
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Q
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A derivation including the bivalent formation

explicitly gives a different form for this matrix. If

chromosomes 1 and 2 pair to form one bivalent, and

chromosomes 3 and 4 pair to form a second, the

possible gametes and their probabilities are shown in

Table 1. Two similar tables are obtained if chromo-

some 1 pairs with chromosome 3, and 2 with 4, or if

1 pairs with 4 and 2 with 3. Under random

chromosomal segregation, it is assumed that all these

three pairings are equally likely, i.e. probability 1}3.

Combining gamete genotypes from the three poss-

ible pairings, there are six genotypes with no recom-

binations (M
"
M

#
Q

"
Q

#
, etc., each with probability

(1®r)#}6), 24 genotypes with one recombination

(M
"
M

$
Q

#
Q

$
, etc., each with probability r(1®r)}12)

and six genotypes with two recombinations

(M
"
M

$
Q

#
Q

%
, etc., each with probability r#}6).

Thematrix of the conditional probabilities Pr(M rQ)

can therefore be written as

T¯

A

B

a b b b b c

b a b b c b

b b a c b b

b b c a b b

b c b b a b

c b b b b a

C

D

(1)

where a¯ (1®r)#, b¯ r(1®r)}2, c¯ r#. The geno-

types with no recombinations are on the leading

diagonal, and those with two recombinations are on

the other diagonal. The matrix of conditional prob-

abilities for the two parents can then be formed as the

Kronecker product TCT, as in Xie & Xu (2000).

Combining suitable cells of the matrices T
X

or T

gives category probabilities for pairs of dominant

markers in different configurations, e.g. simplex

coupling. Matrix T
X

does not simplify to the category

probabilities for dominant markers given by Wu et al.

(1992), Hackett et al. (1998) and other researchers.

Matrix T does give the same probabilities. The form

Table 2. Three-locus parental genotype to illustrate

calculation of multipoint linkage

Chromosome

1 2 3 4

Locus 1 A B C D
Locus 2 (QTL) A B A C
Locus 3 A B C D

of matrix T is used by Luo et al. (2001) to construct

linkage maps of autotetraploid species using co-

dominant markers.

(ii) Multipoint mapping

The question of modelling bivalent formation has

some important implications for the later section of

Xie & Xu (2000) on multipoint mapping. Their

multipoint model for m markers and a QTL between

markers k and k­1 is

Pr(I
M

rQ¯ i )¯

1TD1T12D2…DkTkQD(i)TQ(k+1)Dk+1…Dm−1T(m−1)mDm1

where D is a diagonal matrix with elements equal to 1

for genotypes compatible with the observed pheno-

types and 0 elsewhere. Again, I will consider seg-

regation in one parent only for simplicity.

Consider a parent with three loci and genotypes

given in Table 2. A, B, C and D will be used to

represent different alleles, to avoid confusion with the

chromosome number. Loci 1 and 3 have all four

alleles distinguishable, but for locus 2 the alleles on

chromosomes 1 and 3 are identical.

Say, for example, that we want to calculate the

probability of a gamete with phenotype Locus 1 : AC,

Locus 2: AC, Locus 3: AD. Let the recombination

frequency be r between loci 1 and 2, and s between loci
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2 and 3. The multipoint formula above would give the

probability of this gamete as

1TD1T12D2T23D31

where D
"
is diagonal with a 1 in the second place (i.e.

from chromosomes 1 and 3), D
$

is diagonal with a 1

in the third place, and D
#

is diagonal with 1s in the

third and sixth places, as this gamete could have

received alleles from chromosomes 1 and 4, or 3 and

4.

The multipoint formula is evaluated (using matrix

T from equation 1) as

r(1®r)

2

A

B

s(1®s)

2
­(1®s)#

C

D

.

The first part of this expression represents the

probability that the individual has inherited alleles

from chromosomes 1 and 3 for locus 1, chromosomes

3 and 4 for locus 2 and chromosomes 1 and 4 for locus

3. The second part represents the probability that the

individual has inherited chromosomes 1 and 3 for

locus 1 and chromosomes 1 and 4 for loci 2 and 3.

However, the fully informative loci 1 and 3 show

that to obtain this gamete there has been a crossover

between chromosomes 3 and 4 and so the bivalent

pairing is chromosome 1 pairing with 2 and chromo-

some 3 pairing with 4, and crossovers occur within

these pairs. Because of this, the individual cannot

have alleles from chromosomes 3 and 4 expressed

together for locus 2, and its AC phenotype must come

from chromosomes 1 and 4. The correct expression

for the probability of this individual is

r(1®r)

2

A

B
(1®s)#

C

D
.

A consistent method for a multipoint analysis would

be to calculate the probability of each sequence of

markers conditional on each possible bivalent pairing

separately, and then to sum over the probability of

each bivalent pairing.

3. Conclusions

The version of matrix T derived here can easily be

incorporated into the model in Xie & Xu (2000) to

give a more realistic representation of the process of

gamete formation in autotetraploids. Their model can

be modified to give a multipoint analysis taking the

process of bivalent formation into account. With

these useful tools, the process of QTL mapping in

autotetraploid species may soon become as practical

as it is in diploids.
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