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2-GROUPS WITH FEW CONJUGACY CLASSES
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Abstract An old question of Brauer that asks how fast numbers of conjugacy classes grow is investigated
by considering the least number Cn of conjugacy classes in a group of order 2n . The numbers d are
computed for n ^ 14 and a lower bound is given for C15. It is observed that Cn grows very slowly except
for occasional large jumps corresponding to an increase in coclass of the minimal groups Gn. Restricting
to groups that are 2-generated or have coclass at most 3 allows us to extend these computations.
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1. Introduction

There is a long history to the question of the possible number k(G) of conjugacy classes
of a finite group G. It began in 1903 when Landau [8] showed that only finitely many
groups G have a given k(G). This was made explicit in 1963 by Brauer [3] (see also [4]),
who showed that k(G) > log2 log2 \G\. In general, k(G) will be much larger than this. For
example, Bertram [1] showed that for a given e > 0 and for almost all integers n ^ x, as
x -> oo, k(G) > IGI1"* for each group G of order n.

In his paper of 1963, Brauer asked what the 'true' growth of a lower bound for k(G) in
terms of |G| might be. One answer to this was provided by Pyber [14], who proved the
lower bound k(G) ^ elog2 |G|/(log2log2 |G|)8. Experimentally, Lopez and Lopez [9,10]
found that k(G) > log3 |G| if \G\ ^ 313, and in fact no group has been discovered for
which this fails. The groups G = PSL(3,4) and G = M22 both satisfy k(G) = [log3 |G|] •

If we restrict our attention to nilpotent groups (in particular, if we restrict to |G|
being a prime power), the ideas of P. Hall immediately give k(G) > alog|G| for some
constant a depending only on p, as described in §2. This was refined by Sherman [16],
who showed that if G has nilpotency class c, then k(G) > cdG]1^ — 1) + 1. Kovads and
Leedham-Green [7] produced, for each odd prime p, a group Gp of order pP with less
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than p3 = (logp |GP|)3 classes. A natural question, originally formulated by Pyber [14],
is whether, for a given p, there exists an absolute constant c and a sequence of p-groups
(Gn), where Gn has order pn and k(Gn) < cn = clogp |Gn|.

The aim of this paper is to address what Brauer asked in his 1963 paper by attacking
the above question with a computer. We focus on 2-groups, where we can make extensive
calculations with the help of the computational software package MAGMA [2].

Let Cn = min{A; : there is a group G of order 2™ with k(G) = k}. Our approach con-
sists of three searches. In the first search, we find cn for all n ^ 14 together with bounds
for ci5. In the second search, we restrict attention to 2-generated 2-groups and find the
smallest number of conjugacy classes for such groups of order 215 and 216. In the third
search, we restrict our attention to 2-groups with coclass at most 3 and with any order.

It appears that d grows tightly with n except for large occasional jumps. We provide
an explanation for this behaviour. The ultimate answer to Brauer's question will depend
on a comparison between the frequency and the size of these jumps.

2. Basic results

If |G| = p2m+e with e = 0 or 1, then a formula of Hall [13] states

fc(G) = m(p2 - l)+pe+r(G)(p-l)(p2 - 1),

where r(G) is a non-negative integer. This formula has several implications. First, by
noticing that the right-hand side of the equality is at least m(p2 — 1) + pe, we get that
k(G) > alog|G|, where a is a constant depending only on p. For p — 2, we obtain
k(G) = 3(m -I- r(G)) + 2e, so that k(G) = \G\ (mod 3). In fact, Poland showed that if
G is a p-group such that r(G) = 0, then |G| ^ p**"1"2 and it has coclass 1. Fernandez-
Alcober and Shepherd [5] recently proved that if p > 11 and r(G) = 0, then |G| ^ pP+1.
Computational evidence (such as that provided by this paper) suggests that there are
bounds on the order and coclass of p-groups with a given r(G), which, if true, explains
phenomena later in this paper. Also, Poland showed that k(G) > k(Q) and r(G) > r(Q)
if Q is a proper quotient of p-group G. We summarize the consequences for Cn- Note that
from this point on we consider exclusively 2-groups.

Lemma 2.1. c ^ s l (mod 3) ifn is even, and Cn = 2 (mod 3) ifn is odd. Moreover,
Cn > Cn-!.

Call a group G of order 2" with k(G) = Cn a best group. We can establish some
properties of sequences of best groups.

Theorem 2.2. Let Gn (n = 1,2,...) be a sequence of best groups. The coclass ofGn

grows without bound as n —» 00.

This follows by combining the following two lemmas.

Lemma 2.3. For each positive integer c, there exists a positive real number otc, such
that if G is a 2-group of coclass c, then k(G) ̂  ac|G|.
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Proof. Shalev's proof [12] of the conjectures of Leedham-Green and Newman shows
that if G is a 2-group of coclass c, then it contains an abelian normal subgroup A of
index bounded by a function /(c). This implies that

fc(G) > k(A)/[G : A] = \A\/[G : A] = \G\/[G : A}2 > |G|//(c)2.

Taking ac — l / /(c)2 gives the result. D

Lemma 2.4 (see [6]). Let Hn be the Sylow 2-subgroup of GL{n,F2). The order of
Hn is 2T(n\ where T{n) = (n - l)(n - 2)/2 and

where en —> 0 as n —>• oo.

Proof of Theorem 2.2. Suppose G™ is a sequence of best groups whose coclasses
form a finite set C. Let a = min{ac | c € C}. Then cn/2n = k{Gn)/\Gn\ ^ a > 0
for all n. In particular, we have k(Hn) ^ cT(n) ^ 2T^n)a, contradicting Lemma 2.4 for
sufficiently large n. D

3. The first search; exhaustive for small n

Theorem 3.1. The values of Cn for n ^ 14 are as follows (Gn a best group):

n ^ r(Gn) coclass(Gn)

1
2
3
4
5
6
7
8
9
10
11
12
13
14

2
4
5
7
11
13
14
19
26
28
29
34
35
37

0
0
0
0
1
1
1
2
4
4
4
5
5
5

1
1
1
1

1 or 2
2
2
2

3 or 4
3 or 4
3 or 4
3 or 4
3
3

The aim of this search is to compute Cn for as many n as possible. We originally used
CAYLEY but later checked our results with the quicker system MAGMA. The databases
of these systems contain all 2-groups of order < 256, and this allows us immediately to
find Cn for n < 8. To extend these results, we use the following refinement of Lemma 2.1.
We write n{G) = log2(|G|).
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Lemma 3.2. IfQ is a quotient of the 2-group G, then 2k(G)-3n(G) ^ 2k(Q) -3n(Q)
ifn(G) is even, whereas 2k(G) - 3n(G) ^ 2k(Q) - 3n(Q) - 1 ifn(G) is odd.

Proof. If \G\ = 22m+e and \Q\ = 22n+f with eje {0,1}, then

(2k(G) - 3n(G)) - (2fc(Q) - 3n(Q)) = 6(r(G) - r{Q)) + (2e+1 - 3e) - (2 ' + 1 - 3/)

= 6(r(G)-r(Q)) + / - e .

Since r{G) > r(Q), this is non-negative except, possibly, if / = 0 and e = 1, in which
case it is at least — 1. •

The p-group generation process of O'Brien [12] creates, for each positive integer d, a
tree whose vertices are the d-generated 2-groups (counted once up to isomorphism). An
edge exists from P to Q if P is isomorphic to Q/'yc(Q), where /yc(Q) is the last non-trivial
term of the lower exponent-p central series of Q. In that case, we call Q an immediate
descendant of P. If there is a path from P to Q, then we say Q is a descendant of P.
O'Brien's process allows us to compute immediate descendants (and so descendants) of
any given 2-group.

We use Lemma 3.2 and O'Brien's trees to compute cn for increasing n. To test, for
instance, if there is a group of order 212 with ^ 31 conjugacy classes, we use O'Brien's
routine to compute all 2-groups Q with smaller order and 2k(Q) — 3n(Q) ^ 26. If our
group existed, then it would be an immediate descendant of such a Q. A computational
check shows that no such Q has an immediate descendant of order 212 with ^ 31 con-
jugacy classes. So C12 > 34 and we find all best groups of order 212 by using O'Brien's
routine to find all groups with 2k(Q) - 3n(Q) ^ 32 and \Q\ < 212.

This works well until we try to find ci5. The bound on 2k(Q) — 3n(Q) becomes so large
that we have to consider too many groups in O'Brien's trees for this computation to be
feasible. The case of 2-generated groups alone (see § 4) took a few months to complete.
The best we have is that 53 ̂  C15 ̂  68.

We have data on the best groups of order 2" (n < 14) that may be obtained by request
from the authors. A few observations are in order. For each n there are 2-generated best
groups. For n = 9,10,11,12, there are also 3-generated best groups (these being the ones
of coclass 4 of those orders). Note that jumps in cn are apparently accompanied by jumps
in coclass. The best groups of order 214 are extensions of the same point group of order
26 by a normal subgroup isomorphic to the direct product C\.

4. The second search; 2-generated groups

Since the search for the best groups of order 215 ultimately involved too many groups
to be feasible, we decided to restrict our attention to 2-generated groups. This permits
a lengthy but successful search.

Theorem 4.1. There are 142 2-generated groups of order 215 with 68 conjugacy
classes. No 2-generated group of order 215 has fewer conjugacy classes. There are 92
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2-generated groups of order 216 with 70 conjugacy classes. No 2-generated group of order
216 has fewer conjugacy classes. Every 2-generated group of order 217 has ^ 74 conjugacy
classes.

This arises by use of the method of the previous section. We inductively construct all
2-generated 2-groups Q with 2k(Q) - 3n(Q) s% 92. The largest of these have order 216.
The groups of order 215 are of coclass 3 or 4. The ones of order 216 are of coclass 4.
Note that if Gn is one of these groups, then r(Gn) = 15. We know of no <i-generated
groups, for d ^ 3, that have the same order as, but fewer conjugacy classes than, the
above 2-generated groups.

5. The third search; groups of coclass ^ 3

The paper of Newman and O'Brien [11] presents a method for obtaining all 2-groups
of coclass 3. Since many of our best 2-groups have coclass ^ 3, we decided to do an
exhaustive study of the number of conjugacy classes of these groups using [11]. All but
1782 sporadic examples naturally fall into 82 families as follows. There are 82 pro-2
groups, which correspond to the infinite ends of the subtrees of coclass ^ 3 groups of
O'Brien's trees for 1 ^ d ^ 3. Mainline groups in family # i are obtained by taking
the exponent-p central quotients of pro-2 group #i . The rest are obtained by taking
descendants of these mainline groups. Above a certain vertex (the periodic root), the
pattern of descendants is conjecturally periodic. This regularity allows us to find the
2-groups of coclass 3 with fewest conjugacy classes for all orders n. Since the largest of
the 1782 sporadic groups has order 214, we need not consider them when working with
n > 14. The case of n < 14 was covered in § 2.

For family #i, for each i, we compute the number fi(n) of conjugacy classes of its
mainline quotient of order 2" for sufficiently large n. For instance, family #2 yields
dihedral groups and so f2{n) =• 2n~2 + 3.

There is a formula for fi(n) of the form a2n + lower terms (a independent of n). For
instance, for family #34, setting x = 2^4\ /34(n) = 2n~12 + ex2 + dx + 9, where the
values of c and d depend on n (mod 4) as follows: if n = 0 (mod 4), then c = 27/128
and d = 51/16; if n = 1 (mod 4), then c = 3/8 and d = 27/8; if n = 2 (mod 4), then
c = 27/64 and d = 33/8; if n = 3 (mod 4), then c = 3/4 and d = 39/8.

It is easy to see then that no group in family #2 beats even the mainline groups in
family #34. We carry this method through with all 82 families. It is interesting to observe
that f29(n) = /34(n) + 6, and lengthy computations show that these are the only two
families that compete for best coclass 3 groups, in the following sense.

Let c\x = min{fc : there is a group G of order 2n and coclass ^ 3 with k(G) = k}. If
the group G has order 2n, coclass ^ 3, and k(G) = ch , then G will be called a best
coclass 3 group.
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Theorem 5.1. For n ^ 14, dk is given by Theorem 3.1, and, for 15 ^ n ^ 26, the
values of c\i are given by

15
16
17
18
19
20
21
22
23
24
25
26

68
76
110
148
242
373
617

1123

1493

4993
6341

11911

The best groups of coclass 3 of order 215 are located in families #30, #32, #35 and
#42. The best of order 216 are in family #42 and of orders 217, 218, 220 and 221 in
family #20. As for n = 19 and n > 22, the following claim is verified for n < 26 and is
expected to hold in general. (A rigorous check of it would be far too lengthy; even the
computational evidence for it takes several weeks to obtain.)

Claim 5.2. Suppose n = 19 or n ^ 22. The best coclass 3 groups of order 2™ depend
on n (mod 4) as follows.

(i) If n = 1 (mod 4), then they are descendants of the mainline group of order 2n~2

of family #34.

(ii) Ifn = 2 (mod 4), then they are descendants of the mainline group of order 2n~z

of family #29.

(iii) If n = 3 (mod 4), then they are descendants of the mainline group of order 2n~4

of family #29.

(iv) If n = 0 (mod 4), then they are descendants of the mainline group of order 2n~5

of family #34.

In each of the four cases, there is a formula for ch of the form ch ' = 2n~13 + bx3 +
ex2 + dx + e, where x = 2tn/4) and where b, c, d and e are rational numbers depending
only on the congruence class of n ( (mod 4)). For instance, it appears that for n = 1
(mod 4), b = 107/14336, c = -11/256, d = 119/16 and e = -81/7.
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