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1. Introduction.
The theory of operational solutions of differential equations in applied mathematics

suggests a method of developing the theory of Fourier and allied series that is simpler for
ordinary applications than the classical development. I t may be useful to those whose
interests lie in such applications rather than in the deeper analytical processes associated
with this subject.

1.1. Type of function considered.
The function whose expansion is required will be assumed to be of bounded variation

and the period will be taken as 2TT. If g (t) denotes the value of the function in the interval
{0, 2n), the associated periodic function f(t) is defined by the relations :

f(t) = 9(t), (0<t<2n), f(t + 2n)=f(t).

The main part of this paper, however, will be concerned with the practical determina-
tion of the Fourier coefficients for a case which is theoretically simple and one most likely to
occur in applications. I t is defined by the relations :

g(t) = gr(t), (tr^<t<tr; r = l , 2 a; to=O,ts=2n),

where gr (t) is a finite linear combination of functions of the type

tpeat cos bt, tpeat sin bt,

p being a positive integer or zero.
Thus gr(t) belongs to the class of functions that are solutions of the ordinary linear

•differential equation with constant coefficients

Q(D)u = 0, (D=d/dt).

The proof of the Fourier expansion for the general function of bounded variation will
be shown to be a natural corollary of the results obtained.

2. Periodic solutions of Q(D)u=0.
If u (t) is a solution of this equation with the property

for all values of t, then it must be of the form

po+ E (pne"» + qne-nit)
n=l

where pn and qn are constants. This rather obvious result may be deduced formally from
the properties of a finite set of linear independent functions. There will, of course, be no
such solution (apart from zero) unless one or more of the numbers

0, ±i, ±2i, ±3t, ...

are zeros of Q(z).
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When the solution is real, it is more appropriate to take it in the form
N

\A0 + E (An cos nt + Bn sin nt)
«=i

where the coefficients An and Bn are real constants.

2.1. The Laplace transform associated with Q(D)u=0.
Let (i) u=g(t) be a solution of the equation

(ii) the values of u and its first m — 1 derivatives at t —10 be denoted by

9o> 9i, 9z, •••> 9m-i respectively ;

(iii) C be a simple contour (e.g. a polygon or circle) enclosing all the zeros of Q(z):
Then

where F(z, t0) = (a^-1 + axz
m-2 + ...am_1)/Q(s) and

The result is well known, the function F(z, t0) being the Laplace transform of g(t) at
t=t0. That the contour integral is a solution, follows from differentiation under the integral
sign. That it is the correct solution is easily deduced by expanding F(z, t0) near z=oo .

The above solution is appropriate for determining g(t) when g0, glt ..., gm_1 are given, but
in the application that is made here to Fourier analysis it is the function g (t) that is given
and the transform that is required. The typical functions occurring in g(t) are tpeat cos bt
and tpeat sin bt, and the transforms for these are easily obtained from that of the simple
function ekt. Thus

(i) i f ^

(ii) if g(t) = tpekt, differentiation with respect to k of the above result shows that

" z-k (z-k)2 (z-k)3 (z-k)**1

(iii) the transforms of tpeat cos bt and tpeat sin bt are the apparent real and imaginary
parts of

1 pjeto(a+ib)
3z-a-ib (z-a- ib)2 '" (z-a — ib)

(i.e., ignoring for the moment the occurrence of i in z). For example :

(i) g (t) = P(t), a polynomial of degree p,

(ii)
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78 C. A. STEWART

(the accent denoting that the apparent imaginary part is taken)

rm. EW m 16(12Z2-1)
T h u s J(s,O) = (4z2+l)3 '

and -F(2, TT)
(4z2+l)2 r (4z2+l)3

3. Fourier Expansions.
In the course of this paper, two main results will be proved. In the first, the Fourier

expansion of the function g(t) specified in § 1.1 is obtained as the sum of the residues of an
associated function of a complex variable ; and in the second, the method of the first is
adapted to establish the Fourier expansion of a function of bounded variation.

The first result may be stated as follows :
Let

(i) g(t) — gr(t), ( J r _ 1 < t<< r , r—1,2,... 8, ts = 0, ts = 2n),

and let/(i) be the associated function periodic in 2TT ;
(ii) the transform of gr(t) at t' be Fr(z, t') ;

(iii) G(z) = F1 (z, 0) -Fs(z, 2TT)e~2"z + *E {Fr+1 (z,tr)-Fr{z, tr)}e-ztr and
l .

(?! (z) = SE\Fr+1 (Z, tr) - Fr (z, tr)} er**r ; Fo (z, 0) =FS (z, 2rr);
o

(v) the residue of H(z) at a pole z0 be p(z0).

Then (i) p(0)+ ^{p(wi) + />(-w)}=^{/(f + 0)+/(«-0)} for all values of t;

(ii) the infinite series above takes the form
00

\AQ-\- E (An cos nt + Bn sin nt)
l

where 7r4n=RG!(iM) = RG1(m): 7r5re= -IG(in)— -IG1(in) (the residue for-
mulae), a modification bemg necessary whenever in(n—0, 1, 2, 3, ...) is a pole
of G(z);

(iii) nAn= f(t) cos nt dt: nBn= f(t) sin nt dt (the integral formulae) ;
Jo Jo

(iv) when a term tp occurs in gr(t), G(z) has a pole at z=0. The only coefficient
affected is Ao, and the contribution to Ao for this term is

t v+1 — t 3>+1

-~— (by the integral formula);

(v) when terms C cos mi, tvsinmt (m=l ,2 ,3 , ...) occur in gr(t), G(z) has a pole at
im. The coefficients affected are Am and Bm. The contributions to these
coefficients are respectively

l(A0' + A'2m) and \B\m for t" cos mt
and ±B'2m &nd ̂ {Ao +A'2m) for fain mt, *

00

where \AQ+ E {An
r cos nt + Bn''sin. nt} is the Fourier expansion of the function

defined to be tp in the interval (tr_1, tr) and zero elsewhere in (0, 27r).
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FOURIER EXPANSIONS 79

Thus irA0' = (tr*+1 - tr_1v+1)/(p+ 1) by the integral formula and A\m is determined by the-
residue formula.

3.1. A particular contour integral.
The following lemma involving a contour integral is the basis of the subsequent develop-

ment.

c

D

y

ni

O

B

N X

A

FIG. 1

LEMMA. Let

(i) F{z) = P(z)IQ(z), where
P (z) = a^™'1 + ô z™"2 +...+ am_lt

Q(z) = zm + b1z
m-i+... + bm.

(ii) FN be the boundary of the rectangle ABCD (Fig. 1) specified by the equations -

x=±N, y=±(N + i),

where N is a positive integer sufficiently large to ensure that all the zeros of
Q(z) lie within the rectangle,

(iii) t be a real variable.
Then, when iV-̂ -co ,

r
J

0,(0<«<2TT),

h(t)^.\ F(z)-^-ldz^\-\a0,(t^Q),

On the boundary zF(z)^-a0 as
On AB where z = N + iy(-N-

1
"tN

which -
0,

Thus IAB^
On CD where z=-N +

1, (t = 2n).

and (t~2TT, <zo=O).

e2"2 - 1

-tN

So

l-e~^N " 1, («=0).

and (t = 0, ao=O).
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On BC where z = x + i(N + J),

foo eix

But -jjj—- dx converges when 0 « < 2 T 7 .
J — 00 e + i

Therefore / B C ->•() when 0«<27r.

Also -s and -5-—

are bounded as a; ranges from -co to + 00 , and therefore

7BC-»0 when <=0 or t = 2ir, if a0 is zero.

Similarly IDA ->0 (0<«2ir) and (0«<2ir, o0=0).

It has been shown therefore that IN(t) tends to zero if

(i) 0 « < 2 T T and (ii) t=0 or < = 2TT, if ao=O. .

There remain the cases t=0 and £ = 2?r when aoj^O.
Let G(z) = F(z)-aQlz.
Then zG (z)->0 as N-><x>, and the above analysis shows that

O (z) -^j—r dz->0 for

Denoting lim Ijy(t) by /(£), we have

I (0) = lim ~ f - 7 ^ - T T dz and / (2TT) = lim 5L f / T . „ dz.

Thus J(2T7)-J(0)=limjJ-; f ^?dz = a0,

^7Tt J „ Z

and by the symmetry of the contour

I f a e~2"2 1 f
71 ~ im27rtJ „ z(c-2M-l) Z X 27riJr

r z ( e - l ) 27r iJ r z ( l -e 2 " 2 )

i.e., I(2-rr) = ̂ a0 and 7(0)= - | a 0 .

^3.2. Application of the lemma.
The poles of the integrand are

0, ±i, ±2i, ±3i, ...±Ni,
«1> a2> a 3 ' • " ' aM>

•where the numbers ar are those zeros, if any, of Q (z) that are not of the form ±ni (rt being a
positive integer or zero).

If p (z0) denotes the residue at z0, the lemma shows that

M N f -K. C=o),
Sp(<xr) + p(0)+ Z{P(in) + p(-in)}-+\ 0, ( 0 < « 2 T 7 ) ,

' r=1 n=1 • I K . (*=2*).
iSome well-known results arise immediately from this fcrmula. For example :
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(i) Let F(z) = ljz.

(ii)
0 , (t=0 or 2TT).

i.e., £ 5™* = f V ' (°<<<27r)'
' W 1

where Br is the Bemouillian function of the first order and the rth degree.
It follows immediately that for

„•!!»»" ~ 2 ( 2 m ) ! " "
where Bm= ( - I)™-1 B2m(0) is the with Bernouilli number,

(iii) .F(z) = l/(z2 + a2) (where a^O or integral ± ) ,

I J giat e - ^^a

l T h e n 2T*I2 + 2ia(e2*«a- 1) ~ 2ja(e-2™«- 1 ) + Z '~2 -* : = 0 )

I . . cos a (w -1) 1 2a " cos nt
I giving ^ ^ - _ _ + _ 27 - j 5
[ sui air air i7 n = 1 a2 - w2

I In particular,
1 2 °°

(«=0): cotai7=—+ -27-77 x a 2 - w

1 2(-
coseca7r=— + - 27 „2

a77 IT i a 2 -w 2

4. Application to Fourier Expansions. Case 8=1.
A special simplicity is attached to the case when g(t) is given as a single function (of

appropriate type) in the interval 0<i<2i7, i.e., the case when s=l (§ 1.1).
Let the transform of g(t) be F(z, t0) at t — t0, and let

I f F(z,0)e<*-F(z,2n)e^~^ ^

Then

^ ? J
= 0 (both integrals being equal to g(t)).

Now TN (t) obviously satisfies the differential equation
D{D2+l)(D2 + 4:)...(D2 + N2) Q(D)u=0,

where F (z, to)=P(z, to)/Q (z), and
P (z, t0) = atf.™-1 + a^™-2 + . . . + am_1; (a0 = g(t0)).
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82 C. A. STEWART

Therefore by § 2
N

TN(t) = $A0+ S{An cos nt + Bn sin nt},
«=i

and is the sum of the residues within FN.

. Then ^ ( f l ^ l . / S ; ! ^ ^ ! „ H ,U{(0) + (2 )} , (< = 0 and t =

Defining the periodic function f(t) by the equations :

f(t) = 9(f), (0<t<2rr);

so that

and

we have shown that

for all values of t.

•4.1. Determination of An and Bn in the non-resonant case.
The case when Q (z) has no zeros of the form ± ni may appropriately be called, the non-

resonant case. Then the coefficients An and Bn may be obtained immediately from the
transforms of g (t) at 0 and 2TT.

Let Gt (z) = F (z, 0) - F (z, 2n), a function with real coefficients when g (t) is real. Then

p (0)=—~— , P {in>) = ~ , p (— in) = ^ •

Thus

7X (iw)} cos nt — I{G1 (in)} sin nt].

Examples :

(i) g(t) = cos i«, J (z, <0) = 1^—j O , (?! (z) = -

, , 1 8w . ti.e., cos^=-2/j-^—- sin »(. .

l ( Z ) (z+1)3 (z+1)2 (z+1) '
^, .. 2(1 — in)3 (I — e~2") in (I — in)2 e~2" 4TT2(1 — in)t

2( l -3w 2 )( l -e- 2 " ) 4(1-5
71 (»2+l)3 (»2+l)2 M2+l '

_2w(3-w2)( l -e-2") Swe-2" 4TT2 we-2"
n~ (n2+l)3 (w2+l)2~ (n2+l) '
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4.2. The resonant case.
When g(t) contains terms of the type V, the integrand has a multiple pole at 2 = 0, and

when it contains terms of the type tv cos mt, tvsuimt (m integral^ 1), the integrand has
multiple poles at z = ±im.

(i)

and the integrand is

and

The value of ^40 may be determined by calculating the residue at 2 = 0, a pole of order
p+1 ; and it is a simple exercise to show in this way that TTA0 is equal to (2TT)P+1I(P+ 1).
However, it is obviously easier to use the integral formula proved in the next paragraph to
obtain this result.

(ii) If g(t) = tp cos mt or tv sin mt (m integral^l) there are multiple poles at z— ±im, the
residues at which determine the coefficients Am and Bm.

By (i) above let the expansion of tp be

%A0'+ S (An' cos nt + Bn' sin nt).
l

It then follows immediately by the integral formulae that for P cos mt

Am
=2\Ao + A 2m) i • "m = r j - " 3m>

and for V sin mt
^ m — 2-" 1m > • " m = 2 ( - " 0 ~ •"• 2m)-

Example. g(t) = t2 cos 3£.

?!(«) = J (Z ,O) -J (8, 27T)

f (2TT)2

1 (z-3»
1

(2-3i)2/
4TT(22-9)

Also 7 r 4 = $ | ! Z + *

4.3. TAe integral formulae.
It has already been shown that
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for all finite values of t, N being finite but sufficiently large to ensure that all the zeros of Q(z)
lie within FN.

The range of integration is finite and we can integrate with respect to the real variable t
from 0 to 2TT, the integrand being in fact an analytic function of both variables within their
ranges.

C2" ,x J, 1 f F(z,0)-F(z,2n) .Thus TTA0=\ gfldt + s-l K ' v ' Idz

J 0
since the residue at «f of the integrand of the contour integral is zero.

Similarly by multiplying through by cos nt and sin nt, integrating from 0 to 2n and
using the results

e*' cos nt dt = ?—- ^- • eli sin nt dt= -
Jn z2 + n* Jnwe find that

(•2i7 rzv

vAn— g(t) cos ntdt, irBn—\ g(t) sin ntdt.
•'o ' J o

It will be found, however, that except for the coefficient AQ in the case of a polynomial,
the residue method is more rapid than the integral method.

For example, let g(t) = sin5 (tj2).
By approximation near t=0 and t—2Tr, we have

= - 15/4,

ow_, m.
IT sin5 (t/2) = 16/15 + 27 480 cos ntj{ (1 - 4w2) (9 - 4w2) (25 - 4w2)}.

l

4.4. Odd and even functions.

(i) If g(t) = g(2n-t), the corresponding periodic function/(£) is even.
(ii) Ifg(t)=-g(2rr-t), the function f(t) is odd.
In the former case we expect that Bn is zero and in the latter that An is zero.

l r u i r

Therefore

gr (2TT - 1 ) = - ^-. f J ( - z, 0) e2('-2"> dz.

Also g(<) =J-\ F(z, 2TT) e^*-2^ dz.

Since the transform F(z, t0) is unique, it follows that
(i) for an even periodic function, F(z, 2n) = —F(-z,0) ;

(ii) for an odd periodic function, F(z, 2TT) — F( - z, 0).

and, except when ni is a pole of F(z, 0),

ng (t) = JP (0) + 2 27 R{F (ni)} cos nt.
l
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| In(ii) G1(z) = F(z,0)-F(-z,0)
I / • 00

'. and irg{t)= - 2 21{F(ni)} sin nt.
« ' i

! Examples :
! (i) p(«) = sini«: J (z ,0) = 2/(4z*+l);

77 sin \t—2 + 4 2 cos w</( 1 - 4M2) .
l

(ii) g (t) = t(t -n)(t-2n). Odd. F(z, 0) = 2TT2/Z2 - 6T7/Z3

< («- TT) (t - 2TT) = 12 2 sin «</m3.
l

5. Discontinuities within the interval. Case ^
We now take the more general case given in § 1.1 when g(t) is given by the relations

,, r = l , 2, . . . , « ; io = O,<s = 277)
and >

Consider the integral ,

— 5——z——— dz

I where 0<<1<<2<2ir ; and F(z, t0) is the transform, say, of a function h(t).

1 r
Then TN (t + 2TT) - TN (t) = ̂ —.\ F{z,tx) e"(t-^ dz

since both integrals are equal to h(t).
Therefore, as before,

TN (t) = | A 0 + 2 (An cos nt + Bn sin nt).
n = l

By § 3, TN(t)^O in the interval common to

t1<t<2n + t1 and t2<t<2Tr + t2,

i.e., in the interval £2<£<2TT + £1.
Using the periodic property of TN(t) we deduce that TN(t) tends to zero also in the

interval t2-2Tr<t<t1. Now

I f F(z,t1)e«*-h>-F(z,tJe'«-W

J * ^ l 7 dz
I f F

= ^i J rs

the latter integral being equal to h(t).
Therefore Ts(t)^-h(t) in the interval common to

0<t-t1<2n and 0<t-t2 + 2Tr<2Tr,

i.e., in the interval tx<t<t2. Also

) . »-e-. i*(«i); and
, i.e., P(«2).

G.M.A.
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Confining our attention to the interval (0, 2TT), we have shown that

0, 0 < i <tv

T(t)=limTN(t)= h(t), < 1 « <
lh(tt), t = «„
0, t2<t

the first interval being non-existent when ^ = 0 and the last when £2 = 2ir. j
The result for the more general case in which [

g(t) = 9r(t) («^i<*<*,, r = l , 2 , ...,'«, <0=0, ts=2ir) |

follows by addition. I
Thus if JV(z, 0) is* the transform of gr(t) at < = 0, then the Fourier expansion of g(t) is the |

limit T (t) of the sum of the residues of ;

*, Fr (z, t^) e»«-*^i) - Fr (z, tr) e»«-'r) j
rfi e 2 « - l ' i

and if /(<) is the periodic function associated with g(t), then i

for all values of t.
Using the more appropriate notation of •

F (z, tr - 0) for Fr (z, tr) and F (z, tr + 0) for ^ r + 1 (z, tr),

we can write the integrand as -
G{z) e*

where G (z) = F (z, + 0) + *~Z{F (z, tr + 0) - F (z, tr - 0)} e-*«r - J (z, 2TT - 0) e-
l

The coeificients are then given by the relation

n(An-iBn) = G(in),
with the appropriate modification when in is a pole of O(z). •

5.1. The integral formulae.
Integrate the relation

from < = 0 to <=2TT.

Then nA0=^-.j '{F(z, tx)e-^-F(z, t^e-^dz

Now h{t) = J-.{ F(z,tx) e
z(t-*J dz, and therefore

.j F(z,t1)dzlz-~j F{z,t1)e~j

since the first integrand has no pole at GO .
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^ h(t)dt=-~j F(z,t2) e-". dzjz,

87

TTA0= h(t)dt.

Again, integration of TN (t) cos nt from 0 to 2TT gives

I
2™

Also f' -L,*\ J. JS 1 C F(z, t<) (z cos nt, + n s in w$,) tft(<) cos w« dt=——. x ' i±i — k 1.< fa
J o 2ITI J _ z1' + w2

27r* J r,.
F (z, tj) ze~ztt

since the first integrand has no pole at oo .
Similarly

f(27,m , J , ! f F (z, th(t) cos nt dt= K '
Jo

cos nt dt = - ?r-.

i.e., cos nt dt.

Similarly

The corresponding result in the more general case when g(t) is given by a set of functions
gr (t) in the various sub-intervals follows by addition.

5.2. Illustrations.
Since eZnni=l, we may, when ni is not a pole of G(z), replace O(z) by the more compact

expression G1 (z) where

Ot (z) = S\F (z,tr + O)-F(z,tr-O)} e-'r.
o

(a) Polynomials.
Suppose gr(t) is a polynomial, r— 1 to s :

\ gr{t)dt,
1 J tr-l

Example 1.

C

FIG. 2

2TT
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A0-h,

where mx and m2 are the gradients of the lines.
ml • . 2/i(l-coswc)
T h u S ^ . =
Example 2.

C(2TT-C)W2

2h sin nc
: C ( 2 T 7 - C ) M 2

(0

The graph consists of four similar parabolic arcs, and it is obvious from the figure that
TTA0=^TTS.

The calculations of An and Bn, (w>0), by the integral formulae are tedious, but by the
residue method we need only the measure of discontinuity of g (t) and its derivatives. Thus

^ . . 0 - 0 0 + TT 2 + 2 (0 0 - 2 - 2 ) ,
01(z) = + —— + — s - + i - + ^ + s—f e-*2"

1 z z2 z3 [z z2 z3 }
(0 -77-0 2 + 2) fO 0 - 2 - 2 1 , n
[Z Z2 ZS j (Z 22 Z )

77 4 sin \nir 77 cos ntr 4 sin f n
+

An= - (1 - cos rnr)jn2,
- vBn = 4 ( 1 - cos |WT7 + cos ri77 - cos fn.77)/w3,

= 16/TI3 if n is of the form 4m — 2 and is otherwise zero,

cos 3< cos 5£
) — +772 - 2 I cos t +

3 2

16 /sin 2< sin i

52 •••

sin 10<

Example 3. fir(«) = sin «, (0<i<7r) ; 0,
This is a resonant case, where the integrand is

(1 - e-™) e
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The poles are 0, ±i, ±2i, ±4i, ±6i, ... , and

1 sini 2 S,cos2mt
77 2 77 x 1 - 4m 2

5.3. Sine and Cosine Series.
If g(t) is given for the interval 0<£<7r, and its specification for the interval 77<<<2T7

is determined by the relation g (2TT -t) = g (t) (so that f(t) —f( -t)), then the Fourier expansion
is a cosine series. Similarly if g(2n-t)= -g(t) (so that f(-t)= -f{t)), the expansion is a
sine series.

This readily follows from the integral formulae or from the fact that
(i) if g (2TT -1) = g (t), then F (z, t0) = - F ( - z, 2n -10),

and
(ii) if g(2Tr-t)= -g(t), then F(z,to) = F( — z,2TT-to).

If therefore

g"'~ \g{2TT-t), (TT<t<2n),

the integrand is
G{z)etz

where G(z) = F1{z, 0) + F1(-z, 0) e-2*2

m - l

+ 2? {Fr+1(z, tr) - Fr(z, tr) }e~'tr + {Fr^{ - z, tr) - Fr{ - z, tr)} e-<*-*l}

- {Fm(z, IT) er» + Fm( - z, TT) e"},
and the expansion is obviously a cosine series.

Also if
m - l

K(z) = F(z,0)+ Z{Fr+1(z,tr)-Fr(z,tr)}.er«r-Fm(z,v)tr»,
l

2
then An=-TLK(in), when in is not a pole of K(z).

77

The corresponding value of G (z) for an odd function/(i) is obtained by replacing F(~z, tr)
o

by -F(-z,tr) and Bn=--IK {in).
Tt

Example. 1.
i t (0

g(t)=\n-2t
U-7T (§77<« 77),

(2) = {1 - Se-
2

^ 4 n = — j { - 1 + 3 COSMTT/3-3 COS 2WTT/3 + cos W77},

. . . 2 ( 8 cos 3£ cos 5t cos It 8 cos 9t cos Hi 1f(t) = -[cost ¥-+-^r + ̂ -2 _ _ + ___+ . . . !

6^3 fsin2t sin4< sin 8t sin Kit
~T (I1 42~ + ^g2 l(

and Bn — —^ {sin n?7/3 - sin 2WT7/3}, giving
TTiv

"I
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Example 2. Express sin t as a cosine series.
The integrand is

Poles are 0, ±2i, ±4A, ±&i, ..., giving

IT

2 smt = 1-227
cos 2mt

5.4. Step Functions.
Let g(t) = cr(tr_1<t<tr, r = l , 2 , . . . ,m: <0=0, *m = 2,r).
It is important to note that the variation of t takes place in the open intervals specified

by the discontinuities. Although the value at tr may be prescribed in an application, this
has no necessary relationship with the determinate value J (cr + cr+1) given by the Fourier
expansion.

The integrand is
r=m cr {e*('-*r-i> - ez(<-fr>}

z(e2«- l ) '

and the Fourier expansion is

™ cr(tr-tr-i) ] % % cr {sin n(t-t^)-sin n(t-tr)} _
r= l 2TT n = 1 r = 1 nn

The use of the above integrand suggests the -method of establishing the Fourier expansion of
a function of bounded variation.

6. Functions of bounded variation.
We recall some essential properties of these functions. Let g (t) be a function of bounded

variation in the interval a^t^.b. Then

(i) The limits g(t + O), g(t-O) exist at all points of the interval. The points of discon-
tinuity are of the first kind and form a set of measure zero.

(ii) If the interval is subdivided at the points

m
E\ g(tr-i) - g(tr) | has a finite upper bound K independent of m and for all choices of tlt
l

(iii) g (t) is integrable (B) between a and b ; i.e., if £/be any point in the interval £,._
the integral is the limit of

l

when m tends to infinity in such a way that max (tr - t^j) tends to zero.

6.1. The Fourier expansion for g(t).
Let g(t) be a function of bounded variation in the interval 0 « < 2 T T and let 9 be a point

interior to the interval.
Divide the interval (0, 6) at the points tlt t2, ..., tm_x («0 = 0, tm=6).
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Let tr' be a point interior to the interval (tr_lt tr), and consider the step-function defined v

by the equations
i m _ / » & ' ) . <r-i<«<*r, r=l,2...m,
h{t>-{ 0, 6<t<2n.

The selection of an interior point does not, of course, alter the value of the limit

that defines the integral of g(t) from 0 to 6, but it will be recalled that in the elementary
cases considered earlier the given functions g(t) were specified only in the open intervals, and
that the values of the Fourier expansions at the ends of the intervals were then determinate.

The Fourier expansion of the step-function suggests the consideration of the finite contour
integral

m
2{flr(«r')(e«"-'.-i>-e«<«-'r>}

" TtoTz dz-

Calculation of the residues as in § 5.4 shows that

tfh fi (f i f / ~i i Jy ifYb ft Ir l ) Q I T I 'M iT f l • om /w ft "} \ \

V a \ T f \ T — T 1 / V VI & \ T I I"-"-*- ' " \ — *V 1 / — i S l l l Iv \V — V— 1 f

l 2TT n = i r = x TITT

This equation may be written
N ^ m - 1

cos n< + j8B sin n«) = I o - 7 m
I I

m
where 7rao= E g(«/) (ir - ^ . j ) ,

_ v g(<r') (sm ntr - sin me^j) » j (</) (cos w<r_! - cos

0 2 w » J ' ' ^ ; z ( e * " l ) > m"27ri

z' (»-=l. 2.

Now in § 3 it was proved that

Recapitulation of that proof will show that the integral tends uniformly to zero in the
interval 0 < 8 < < < 2 T T - 8<2T7-, i.e., for any given e(>0) a value No can be found such that

1 f e"* dz
< e

for all N^NQ and for all values of t in the interval 8^i<27r - 8.
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It may be noted, however, that

J z ( e 2 " * l ) ~ 2 27rt

for all N>0.
Putting t=6 in the residue equation we have

N m - 1

ia 0 + 2 («„ cos n* + £„ sin rrf) = 27 Ir - Im,
1 0

where
0 27rt

r

J

Let Xlt A2, ..., Aj, ... and plt fi2, ..., /xa, ... be two sequences of positive numbers tending
to zero.

Choose tm_x so that 9-tm_1 = XN, and the other points tlt t2, ..., tm_2, so that

max {tr-tr_1)<li,m, r=l,2, ..., {m-2).

Since O<Ap<0-£r<0<27r, (r=0, 1, ..., m-2),

I Z Ir\<{\g(h')\+ Z\g(t'r+1)-g(tr')\}XN

<KXN, (N>N0),

where K is independent of m and for all methods of subdivision ; i.e.,
m - l

lim lim S / r = 0.

Again gr(<m') = ^(0-A;Ajv) (0<&<l) ,

i.e., lim / m = -\g(9-Q).
iV->oo

Also lim a0 when m tends to infinity

\m • \ re
= lim - E g (tr

r) (tr - tr_t) = _ ^ (r) dr,
"• 1 7T J 0

lim an=lim - U (sin w£r - sin wir_1),
7T W

n

)
^ COSML" (<r-L_,), where £/' is some point interior to the

interval (tr_x, tr),
= - \ 9(T) c o s W T dr,

" J o
since g (t) cos rei is of bounded variation and cos nt is uniformly continuous.

1 Ce

Similarly l im/? n =- g(r) ainnr dr. j
irJo 3

Thus when we let N tend to infinity, |

Te
0(t)^\Sg(r)dr+ 2 ("g(r) cos n(t-T)dr= ing(9-0), 1

J 0 n = l J 0 I

when t = 9, and 0, when 0<t<2w. \
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By taking £=2TT and using a similar argument for the finite contour integral we deduce
that T0

e{2n) = ̂ ng( + 0), and therefore since T is periodic T0
e(0) is also %Trg( + 0).

By dividing up the interval from 6 to 2v, we may prove similarly that

,2, „ f a r " (1*9(0 + 0) when«=0,
T^=\ g(r)dT+ 2 g{r) cos n{t-r)&r =Hwflr(2ir - 0) when < = 0 or 2w,

J * " = l j o I 0 whenO<«&0
By addition therefore

! But 6 is any point within the interval. Therefore if f(t) is the periodic function associated
with g(t),

n=\ J00

for all values of t.
NOTE. It has been tacitly assumed above that the infinite series is obtained by letting m and N tend

. to infinity in this order. This is readily justified, however, if we assume that Ap =O(ljp).
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