FOURIER EXPANSIONS

by C. A. STEWART
{Received 30th November, 1950)

1. Introduction.

The theory of operational solutions of differential equations in applied mathematics
suggests a method of developing the theory of Fourier and allied series that is simpler for
ordinary applications than the classical development. It may be useful to those whose
interests lie in such applications rather than in the deeper analytical processes associated
with this subject.

1.1. Type of function considered.

The function whose expansion is required will be assumed to be of bounded variation
and the period will be taken as 2. If g(f) denotes the value of the function in the interval
{0, 27), the associated periodic function f(¢) is defined by the relations :

fO=g9@), O<t<2m), fE+2m)=f().

The main part of this paper, however, will be concerned with the practical determina-
tion of the Fourier coefficients for a case which is theoretically simple and ‘one most likely to
oceur in applications. It is defined by the relations :

g(t)zgr(t): (tr-—1<t<tr 5 7‘:1, 2, sy 83 to=0: ts=277)y
where g, (£) is a finite linear combination of functions of the type
tPest cos bt, tPes sin b,

p being a positive integer or zero.
Thus g,(f) belongs to the class of functions that are solutions of the ordinary linear
differential equation with constant coefficients :

QDyu=0, (D=d/dt).
The proof of the Fourier expansion for the general function of bounded variation will
be shown to be a natural corollary of the results obtained.
2. Periodic solutions of @(D)u=0.
If u (¢) is a solution of this equation with the property
u(t+2m)=u(t)

for all values of ¢, then it must be of the form
N
Pot 2 (Pre™t+gne)
n=1

where p, and g, are constants. This rather obvious result may be deduced formally from
the properties of a finite set of linear independent functions. There will, of course, be no
such solution (apart from zero) unless one or more of the numbers

0, +2, 421, +31,...

are zeros of Q (z).
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When the solution is real, it is more appropriate to take it in the form
N
3A,+ Z'l (4, cos nt+ B, sin nt)
n=

where the coefficients 4, an& B,, are real constants.

2.1. The Laplace transform associated with @(Dyu=0.
Let (i) #=g(t) be a solution of the equation

QD)u=(Dm+b,D"14+b,D" 2+ .. +b,)u=0;
{ii) the values of » and its first m — 1 derivatives at t=t, be denoted by

Jo> J15 o5 +--5 Jm—1 TeSpectively ;

(iii) C be a simple contour (e.g. a polygon or circle) enclosing all the zeros of @ (2).
Then

: 1
= (t—ty)
g(t) 27”( fCF (z: to) e dZ,
where F(z,t))=(apz™1+a.2™2+...a,_,)/Q(z) and

ao=Jo»
ay=g;+b1g,,
ay=g3+b191+ 590,
m-1=Gm-1+b1m2tbefmst ... +bp_1G0 ;
The result is well known, the function F(z,¢,) being the Laplace transform of g(t) at
- t=ty. That the contour integral is a solution, follows from differentiation under the integral
sign. That it is the correct solution is easily deduced by expanding F (z, ¢,) near z=o0 .

The above solution is appropriate for determining g{¢) when g, g,, ..., §,,_; are given, but
in the application that is made here to Fourier analysis it is the function g(f) that is given
and the transform that is required. The typical functions occurring in g(f) are t?e¢ cos bt
and t%est sin bt, and the transforms for these are easily obtained from that of the simple
function e**. Thus
ekty

Py % |
(ii) if g (¢)=¢re*t, differentiation with respect to k& of the above result shows that

p!
sve (z—_’_k)p_rl

(i) if g(¢)=e*, then F(z,t,)=

_t®  pt" Tt p(p-1)t,P?
LRy eyt Ry iy
(iii) the transforms of #¥e3! eos bt and tPe*! sin bt are the apparent real and imaginary
parts of

+ ekto ;

to? 25 P! i
=+ - vt efo(atid)
z—a—1b (z—a—zb)2+ +(z—a—zb)”+1eo ’

(t.e., ignoring for the moment the occurrence of ¢ in z). For example :

i) g(&)y=P{t), a polynomial of degree p,
! (p)
Fatg=F0 P, P2,

2 22 Toppl
(i) g(¢)= sin 1,
Lt %, 2 3\ .
Pt =T {72 g 4%
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(the accent denoting that the apparent imaginary part is taken)
[tz +30) | 2t,(2—f+zi) 2{°-Fz+i(32- )} i

=T
L 22+ (#+ 1) @#+3)?
_16(12:2-1)
Thus F(Z, 0)——W N
2, 2 __ 2 _ 9y
and Pz, m) %z 8m(422-1) 322(42°-3)

7N R PPN R PPN 1
3. Fourier Expansions.

In the course of this paper, two main results will be proved. In the first, the Fourier
expansion of the function g (t) specified in § 1.1 is obtained as the sum of the residues of an
associated function of a complex variable; and in the second, the method of the first is
adapted to establish the Fourier expansion of a function of bounded variation.

The first result may be stated as follows :
Let ’
(i) g@)=g,@), ¢_<t<t,, r=1,2,...8, £,=0, t,=27),
and let f(¢) be the associated function periodic in 27 ;
(ii) the transform of g, () at ¢’ be F,(z,t');

§—~1
(111) G(Z)ZFl (Z, O) - Fs (2, 277) e—2nz+ z {FH-I (z’ tr) _Fr (z> tr)}e—Ztr and
1.

s—1
Gi(2)= 2 {F1(2,8,) = F,(2,4,)} e%'r 5 Fyo(z,0)=F,(z, 2m);
0

et
62712 _ ]_ 4

(iv) H(z)=6 ()
(v) the residue of H (z) at a pole z, be p(z,).
Then (i) p(0)+ g {p(mi)+ p{—nt)}=4{f(t+0)+f(t—0)} for all values of ¢ ;
(ii) the inﬁriite series above takes the form .
140+ %0’ (4, cos nt+ B, sin nt)

"~ where 7d,=RG(in)=RG,(in): wB,= —IG(in)= —IG, (in) (the residue for-
mulae), a modification being necessary whenever in(n=0,1,2,3,...) is a pole
of G(z);

2 2w
(iii) n-A,,:f f@) cosnt dt: anzf f(t) sin nt dt (the integral formulae) ;
0 0

(iv) when a term t? occurs in g,(f), G(z) has a pole at z=0. The only coefficient
affected is 4,, and the contribution to 4, for this term is
trp+1 _ tr—1p+1
‘ p+1
(v) when terms ¢? cos mf, t? sinmié (m=1, 2,3, ...) occur in g,(t), G(z) has a pole at
tm. - The coefficients affected are 4,, and B,,. The contributions to these
coefficients are respectively
1Ay +4,,) and LB, for t? cos mi
and iB',, and {(4,+4’,,) for t? sin mt,

(by the integral formula) ;

o]
where }4, 4+ X {4, cos nt+ B, sin nt} is the Fourier expansion of the function
1

defined to be ¢? in the interval (¢,_,, ¢,) and zero elsewhere in (0, 27).
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Thus 7, = (t,?+1 —t,_,?+})/(p+ 1) by the integral formula and A’',,, is determined by the-
residue formula.

3.1. A particular contour integral.
The following lemma involving a contour integral is the basis of the subsequent develop-
&

ment.
y
c (N+2)i B
ni
(o) N
D A
Fic. 1

Lemma. Let
(i) F()=P()/Q(z), where
Pry=a@™ l+a2™ 24 .+ @y,
Q(z)=zm+bzm 1+ ...+ by,
(ii) I'y be the boundary of the rectangle ABCD (Fig. 1) specified by the equations -
r=+N, y=L£(N+3),
where N is a positive integer sufficiently large to ensure that all the zeros of’
@ (2) lie within the rectangle.
(iii) ¢ be a real variable.
Then, when N—»>w,
1 ot [ 0,(0<<t<2m),
Iy(t) F(z wdzel—%ao,(t:'O),

=5 () 27z
2w ), el + g, (t=2n).

On the boundary zF (z)—a, as N >,
On AB where z=N +iy(- N - i<y<N+1),

etz etN . 0’ (t<2’rr),
ém__-i \ < ;”Nﬁ—-l which — 1’ (t:277)_
Thus 1,50, (t<<2x) and (f=2m, a;=0).
On CD where z= -—N+¢y (_N_%<y<N+%)’
etz e—iN . O, (t>0)’
1@:‘1 I < T which — 1. (t=0).
So Iop—0 (t>0) and (t=0, ag=0).
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On BC where z=x+1(N +1),

I L T R
| Bc|<grf_N| (Z)lgz“,,z;:j .
-] tx
But j ;5;}_*_—1 dx converges when 0<t{<2m.
—o0

Therefore Ip, — 0 when 0<<t< 2.

1 62113:
d
27 + 1 an e2ne +1

Also

are bounded as x ranges from — o to + o, and therefore
Ige—>0 when t=0 or t=2m, if a, is zero.

Similarly Ip, —0 (0<t<27) and (0<t<2m, a(=0).
It has been shown therefore that Iy(t) tends to zero if

(i) 0<t<<2m and (ii) t=0 or ¢=2x, if a,=0.

There remain the cases t=0 and ¢{=2#» when a,40.
Let G(z)=F (z)—ayfz.
Then 26G/(2)—0 as N—o , and the above analysis shows that

i
f G(2) . dz—0 for 0<t<2m.
ry ez 1

Denoting lim Iy () by I(¢), we have

27z
aoe"

1 1
I(O) hm f ;@F—) dz and 1(271’) llm erm 2

; T ay ,
Thus I(271)—I(0)_11mﬁf”-z~ dz=ay,,

-and by the symmetry of the contour .

l ao e~z J‘ @ _

7:.8., 1(277):%0,0 and I(O): _ 70’0

:3.2. Application of the lemma.
The poles of the integrand are

0, +i¢, +2¢, +3¢, ... +N¢,
Oy, Olgy Olgy «vey Opg,
-where the numbers «, are those zeros, if any, of @ (z) that are not of the form +7i (# being a

‘positive integer or zero).
If p(z,) denotes the residue at z,, the lemma shows that

M N - %(lo, (tZO)’
Zple)+p0)+ Z{p(in)+p(-n)} =1 0, (0<t<2m),
r=1 n=1 ] 3a,, (t=2m).

Some well-known results arise immediately from this formula. For example :
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(i) Let F(z)=1/z.

t _ N o —%’ (t=0)’
o —»—ez;d_"’l)ztﬁz L n_ | 0, (0<i<2m),
R C T on=1 BT 1+-%, (t=2n),
ie, % sin mt 22, (o<t<2m),

T
‘l 0 , (t=0 or 2x).
(ii) Let F(2)=1/2? (p integral> 1),
' IN—>O 0<t<2m).
tz
Now =55 2L B, tlom)
where B, is the Bernouillian function of the first order and the rth degree.
It follows immediately that for 0<{t<2n

% cosmb 1 (2m)Em

n=1 NE™ == 2(2 )|B2m (H2m)

® sin né (2m)2m™

nfl,ﬁm—ﬂ (=)= 1m82m+1(t/2ﬂ
= 1 (2m)m

no1 MEM T 2(2m)!
where B,,=(— 1)1 B,,, (0) is the mth Bernouilli number.
(iii) F(z)=1/(2%+a?) (where a0 or integral +),
Iy—0 for 0<i<2m.

1 etat e~tat ®  cosnt

Then et g (1) Tia(e 1), @
.. cosa(r—t) 1 2a = cosnt
N <t<C
giving e p 2 (0<<t<2m).
In particular,
1 2= @
(t:O) COtaﬂT:aﬁ'; . P
© ( l)n

(t=m): cosec a‘rr——a;+" 2 .
4. Application to Fourier Expansions. Case s=1.

A special simplicity is attached to the case when g(t) is given as a single function (of
appropriate type) in the interval 0<<¢<2m, i.e., the case when s=1 (§ 1.1).

Let the transform of g(t) be F(z, t,) at t=t,, and let

1 F(z,0)et — F (2, 2m) e#t-2m
Ty)=5~ f ST dz

Then
Ty(t+27) - Ty (t):i.f F(z,0)et dz —i.f F(z, 2m)ext-20 gy
27t ry 2mi, ry
=0 (both integrals being equal to g(f)).
Now Ty (t) obviously satisfies the differential equation
D(D?+1)(D2+4)...(D*+ N?) Q(Dyu=
where F (2, t,)=P (2, t,)/@ (2), and
Pz, tg)=ag™ t+az™2+...+a,_ 4, (@=9g@y)).
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‘Therefore by § 2
N
Ty®)=%A,+ Z {4, cos nt+ B, sin nt},
n=1

:and is the sum of the residues within I'y.

F(z,2m)} et
62172 1 dz

Also Ty(t)= 1 f F(z, 27) ex(t-2m dz+ 1 f {F(2,0)-
{F(z 0)— F(z, 277 }e‘z
277% e2mz _ |

[ 9@, 0<t<2m),
13{g(0)+g(2m)}, (=0 and t=2m).

Defining the periodie function f ) by the equations :

Let N —>ow. Then TN(t)—>

f(t , (0<t<2m); f(t+2m)=f(t),
g0 that ‘ f(+0) =f(27+0)=g(0)
and f(=0)=f(27 - 0)=g(2m),

we have shown that

14,4+ 2 (4, cos nt+ B, sin nt)=4{f(t+0)+f(t—0)}
for all values of . "
4.1. Determination of A, and B, in the non-resonant case.

The case when @ (z) has no zeros of the form +ni may appropriately be called, the non-
resonant case. Then the coefficients 4, and B, may be obtained immediately from the
transforms of g (¢) at 0 and 27.

Let G, (z)=F (2, 0) — F (2, 2=), a function with real coefficients when g(t) is real. Then

G1(0) . Gy (in)eint . G (—1in)emint .
(0)—~—~ﬂ_ plin)=—10"—, p(=in)=—F—p
Thus
g(t) _60) +—1 z [R{G, (in)} cos nt — I{G, (in)} sin nt].
T T
Examples :
4z cos b, — 2 sin 42 8z
: _ 1 _ zbo zto —
(1) g(t)—-COS 2t> F(Z, t())— 422+1 ’ l(z)_4z2+1 ’
1% 8n
. L, 15 8 .
i.e., COS 2t_7,. %'4”2_ 7 sin nt. .

(ii) g(f)=¢2 .
2 2%, 2

F(z, tO):{z+l +(z+1)2+(z+1)3j eh,
2(l—e ") d4qme~?" 4qe?
GE="GHE IR D)
G (m'):2(1 —m)(1-e?) 4dmr(l—in)Pe® d4n?(l-in)e?
! (n2+1) (n2+1)2 (2+1) 7
A 2(1-3n%)(1—e?") 4(1-nP)er dgple?r
Thn= 1) T A1y mErd
B 20 B-n¥)(1—e?) 8ne ¥ dninpe
S T O RS VO RS VI

7 =2—e 2 (4% +4m+ 2).
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4.2, The resonant case.

When g(¢) contains terms of the type t?, the integrand has a multiple pole at z=0, and

- when it contains terms of the type 1% cos mi, t? sin mt (m integral>=1), the integrand has
multiple poles at z= +im.

(i) If g(t)=t7,
—1 !
F(z, to):t_of_*_?.tip__{_ _|_L

P z T el?
and the integrand is
G (z) et*
e2nz _1°
(2m)?  p(2mpr 2R
where G(z)= zP+1 { " z2 "'+z1’+1fe 202
(2m)?  p(2m)P- p(p-1)...3.2
and GI(Z): 2 zz ——...———75*'-— 5

n4
7B, = 16, (in)= - @7 P2 Z D@7

R )P T PR Ee l
" (n=>1)

The value of A, may be determined by calculating the residue at 2=0, a pole of order
p+1 ; and it is a simple exercise to show in this way that w4, is equal to (2m)P+1/(p+1).
However, it is obviously easier to use the integral formula proved in the next paragraph to
obtain this result.

(ii) If g(t)=1¢® cos mt or ¢? sin mt (m integral>1) there are multiple poles at 2= +im, the
residues at which determine the coefficients 4,, and B,,.
By (i) above let the expansion of t? be

@K .
344+ %’ (4, cos nt+ B,’ sin nt).
It then follows immediately by the integral formulae that for 2 cos m¢

) An=3A¢+4"2m); Bp=1B'ym,
and for ¢? sin mi

Am:%BIZm > BmZ%(’A.O’_Alzm)'
Example. g¢(t)=% cos 3t.
F(z,t)=R { to 2ty 2 g3t

ot o 303/
G, (2)=F(2,0)— F (2, 2n)
o (2m)? 4r
= e 37
7% 4= (z%-9)
@49 (9P

2 2(2 2}
Also "A“_lf 7 3(;7)}’ "Bs‘_%(—gl

y _4(n*+9) _ 47m . _4n? 1 _ .

Thus A ( PRIV ) s n= "m , (n#?ﬁ) 5 and A3-—-§3 +1—8 s B3— §

4.3. The integral formulae.
It has already been shown that

N zt
344+ 2 (4, cos nt+ B, sin nt)=g (t)+ 17} 0 ezqf (zl 2} e
n=1
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for all finite values of ¢, N being finite but sufficiently large to ensure that all the zeros of @ (z)
lie within I'y.

The range of integration is finite and we can integrate with respect to the real variable ¢
from 0 to 2w, the integrand being in fact an analytic function of both variables within their
ranges.

2n
Thus ﬂA(,:f g(t) dt+—f F@0)-F@2m g,
Q

z

=[a0a,

since the residue at o of the integrand of the contour integral is zero.

Similarly by multiplying through by cos nt and sin nf, integrating from 0 to 27 and
using the results
(e — 1)z
A

(e —1)n

2 . P
e**cos nt dt = -
fo 2+n?

27
; f e*tsin nt dt= —
0
we find that
27 2n
wA,,:f g () cos nt dt, wB,,:f g (¢t) sin nt dt.
0 0

It will be found, however, that except for the coefficient 4, in the case of a polynomial,
the residue method is more rapid than the integral method.
For example, let g (t)=sin® (£/2).
By approximation near {=0 and {=2x, we have
9(0)=g'(0)=¢"(0)=g""(0)=g"(0)=0; ¢7(0)=15/4,
9(2m)=g'2m)=g"(2m)=¢"'2m)=¢"(2n)=0; g"(2m)= -15/4,
15/2
O e’

a7 8ind (£/2)= 16/15+ 2 480 cos nt[{(1 — 4n?) (9 — 4n?) (25 — 4n?)}.
1
4.4, Odd and even functions.
(i) If g(¢t)=g (2w —¢), the corresponding periodic function f(t) is even.
(ii) If g(t)= — g (2w —t), the function f(?) is odd.
In the former case we expect that B, is zero and in the latter that 4, is zero.

Now . g(t):L.J‘ F(z,0) e”dz———f F(-2,0) e dz.
2mi ry
Therefore .
g2r—t)= —»——f F(—2z,0) ext-2m (g,
Also g(t) =_‘J‘ F (2, 2m) e#(t-2m gz,
21 ry

Since the transform F (z, ¢,) is unique, it follows that
(i) for an even periodic function, F(z, 27)= - F (-2, 0);
(ii) for an odd periodic function, F(z, 2x)=F(-z,0).
In (i) G1(2)=F(z,0)+F(-2,0)
and, except when ni is a pole of F(z, 0),

mg (8)=F(0)+2 20,‘0 R{F (nt)} cos nt.
1
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In (ii) G,(2)=F (2, 0)— F( z,0)

A

and w ():—221{F(m)}smnt
Examples :
(1) g(t)=sin } it Flz,0)=2/(422+1);
sin J=2+4 2 cos ni/(1 - dn?).
1
(i) gt)y=t(t—n)(t—2m). Odd. F(z,0)=2n22%— 623+ 6/z%
bt~ m)(t— 2m)=12 3 sin nt/n?.
1
b. Discontinuities within the interval. Case s=1.
We now take the more general case given in § 1.1 when g(t) is given by the relations

glty=g,@), (t_i<t<t, r=1,2,...,8; $,=0,t,=27)
and s>=1.

Consider the integral
F( t-t) _ (t—t,)
Ty (t)= 1 f 2, t)e (2, t5) €* 7

ez .} z

where 0<Ct, <<t,<\2m; and F(z, {,) is the transform, say, of a function A(¢).

Then Ty (t+2m)— Ty (t):§}f_’i f Fle, 1)) do
Ty

2mf F(z, ty)e*t—t) d
N :O,
since both integrals are equal to k (t).
Therefore, as before,

© N
Ty)=3444+ 2 (4, cos nt+ B, sin nt).
n=1

By §3, Ty(¢)—0 in the interval common to

b,<t<2m+t; and $,<t<2m+1,,
t.e., in the interval f, << 27 +1¢,.
Using the periodic property of Ty (¢) we deduce that 7'y (¢) tends to zero also in the
interval t, 27 <t<<t;. Now

1 Fz, t)ez(t (A F{z, tz)ez““ﬁ%)
2mi ry g2z _ |

Ty(t)=

dz

intl) 2{t—1,)
+2m. jFNF(z, ty)e : dz,
the latter integral being equal to % (£).
Therefore Ty (t)—£ (¢) in the interval common to

0<t—t, <27 and O0<<t—t,+ 27 <2m,
t.e., in the interval #; <¢<¢,. Also
Tat)——3h@E)+Ah (), te., 3h(@E); and
Ty (bo)—>— 3h () +h(ts), ie., h(Ls).
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Confining our attention to the interval (0, 27), we have shown that

0, 0 <t <ty,
$h(t), t =iy,
T@)=lim Tyt)= h(t), t,<t <ty
thity), t =t
0, by <<t <2m,
the first interval being non-existent when ¢, =0 and the last when £,=2x.
The result for the more general case in which

g(t)zgr (t) (tr~1<t<t’r’ r=1,2, --')‘ S, t0=O’ ts:277)
follows by addition.
Thus if F, (2, 6) is-the transform of g, (¢) at =20, then the Fourier expansion of g(t) is the
limit 7' (f) of the sum of the residues of

§ oot ) et - F, (2, t) et

o1 ez __ ] 4

and if f(¢) is the periodic function associated with g (f), then
T@®)=3{ft+0)+f(t-0)}

for all values of .
Using the more appropriate notation of

F(z,t,—0)for F,(2,¢,) and F(z,t,+0)for F, ;(2,1,),
we can write the intégrand as

21’
where G(z)=F (2, +0)+ 8zg'l{F (,t,+0)— F(z,t.—0)} e~%tr — F'(z, 2m — Q) e~27%,
The coefficients are thlen given by the relation
m(4,—1B,)=G(in),
with the appropriate modification when in is a pole of G(z).

5.1. The integral formulae.
Integrate the relation

1 F(z, t;)ext—t) — F(z, tyyex(tt)
Ty ) =3 fry e dz

from t=0 to t=2=.

Then ”Ao:%f ‘{F(z, t) et — F(z, t,) et} dz/z.
r

Now h(t)zi. F(z, t,)es-% dz, and therefore
2m 'y 1

-t 1 1
— : _ —zty
fo k(¢) dt—2m;J FNF (,1,) dz/z 5 erF (2, 8;) e7*h dzfz

= 5| Fet)esna,

2me ra

since the first integrand has no pole at .
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Similarly
1 1
- _ T —2t,
’ fo h(ty dt= 5 fFNF(z, ty) e~ dz/z,
and therefore

t
mdog= | h(t)dt.
4 ,
Again, integration of T’y (¢) cos nt from 0 to 27 gives
—2ty —zly
et L[ APt et Fty) sty o

; 2 2
T Iy B<4+n

0 22+ n? “
__1__. F (z, 1) ze#h &z
2m ) . 224n?
N

1 ~zt,
~5 F————————(z’ztl) z: L dz,

), B
since the first integrand has no pole at o .

t i
Also f h{t) cos nt dt= —l—f Pz, ty) (2 cos miy +n sin nty) dz
_ 271 ry

Similarly
ft; h(t) cos nt dt= — Q}r—@ FNF—%’??_—){;:Z—% ,
i.e., ‘ A, = " h(t) cos nt dt.
Similarly "

iy
WB”: ) (¢) sin nt dt.
[

The corresponding result in the more general case when g(¢) is given by a set of functions
g,(t) in the various sub-intervals follows by addition.

5.2. Illustrations.

Since e2i=1, we may, when ni is not a pole of G(z), replace G(z) by the more compact
expression G (z) where

s—1
Gy (z)=Z{F(2,t,40)~ F(z,t.—~0)} e
o N
(a) Polynomials.
Suppose g, (?) is a polynomial, r=1 to s :

s (i
ndy=2[ g0,
14 tr—1

s_lrtr_rr ’1‘ r_r,'r
Gl(z):%' {g +1( )z g (t)+g +1(t lz g (t)} e‘”r, go(to):gs(zﬂ)’

m(A, —iB,) =G, (in), (n>0).

Example 1.

O[ [ 2 {
Fic. 2
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_ht . k(27 —1) .
g(t)—-c— , (0<i<o); on o (e<t<2m);
Ay=h,
My —Mg) (1 — e #°
Gl (Z)Z( 1 22)2( ) ,
where m, and m, are the gradients of the lines.

- _ 2h(1—cos nc) _ _2hsinme
Thus A== c@m—cyn® " ¢(2m—c)n?
Example 2.

o T T T 2T , ¢
Fiq. 3

( 12 , (0 <t<<im)

dmt—(t-m Y, (r<t< m)

I “)=i£w2+ (-3 (w<t<in)

i@ -3n)?,  Gr<i<ln).
The graph consists of four similar parabolic arcs, and it is obvious from the figure that

wd y=375.

The calculations of 4, and B,, (n>0), by the integral formulae are tedious, but by the
residue method we need only the measure of discontinuity of g () and its derivatives. Thus
0—0+0+1r 2+2 0 0 -2-2) '

= —3zm

G, (z) " e +l2+22 e fe

[0, —7-0 2+2) 0,0 -2-2)
— U e—Zﬂ — — — e—Szw/Z
T T atet ,
7 4sininr wcosnwr 4 sin dnx
e A
A,= — (1 - cos nm)/n?,

— B, =4(1 - cos }nm+ cos nr - cos Enm)/nd,
=16/n3 if n is of the form 4m — 2 and is otherwise zero.

ft)y=1m2-2 (cos b+ 00332315 + 93;2—5t >
16 /sin 2¢ sin 6 sin 10¢
‘F( P g t 108 >

Example 3. g(t)=sin¢, 0<it<n); 0, (v<t<27).
This is a resonant case, where the integrand is
(1~e27) et

2241 e?re—]

pe(t—m)

CESNCEEA
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The poles are 0, +i, +2¢, +4¢, +61, ..., and ‘

1 sint 2 ®cos2mi
JO= 5+ 2 g

:5.3. Sine and Cosine Series.

If ¢g(t) is given for the interval 0<¢<Cw, and its specification for the interval m<<t<<2n#
is determined by the relation g (27 —t)=g(t) (so that f({)=f(—t)), then the Fourier expansion
i8 a cosine series. Similarly if g(27 —t)= —g(¢) (8o that f(—t)= —f(t)), the expansion is a
gine series.

This readily follows from the integral formulae or from the fact that

(1) if g (27 - t)=g(¢), then F (2, ty)= — F(—z, 2w —1,),
and _
(ii) if (2w —t)= —g(?), then F(z, ty)=F (-2, 2w —t,).

If therefore ) .

g(t):{g'(t)’ (t_i<<t<<t,; r=1,2,...,m; t,=0, t,=m),
g 27 —1t), (m<<t<2m),

the integrand is
G (z) et

e27rz _ 1

where G(z)=F,(z, 0)+ F,(~z,0)e %=
—1
4T (Fyales ) = Fole, t) e 4 {F, 1 (= 2, £,) = By = 2, 8,) ) =521}
r=1

—{F (2, m)y e+ F, (-2, m)e™},

and the expansion is obviously a cosine series.
Also if

m—1
K(@)=F(,0+ & {F7+1(z7‘ )~ F,(Z, t) }ve_Zt' ~F (2, m) e,
. 1

then An:?TRK (¢n), when in is not a pole of K (z).
The correéponding value of G(z) for an odd function f(f) is obtained by replacing F( ~z, ¢,)
by —F(-2,%,) and B,= - % 1K (in).
Example. 1.
( t 0 <t<in)
gl)=1r-2t (r<t<im)
t—m (fr<t<< ),

A():O,
K (2)={1 — Be~m2/3 4 Bg272/3 — =72} /22,

A,,:%{ —1+3 cos nw/3 — 3 cos 2nm(3 + cos nr},
8cos 3t cosbt cosTt 8cosOf coslli ]

. _2f

1.8, f(t)_; lcost— -t et g + 1 +f
6 . o .

“and B"_W {sin n7(/3 - sin 2n7/3}, giving

_6/3 (sin2t sin4f sin 8t sin 10¢
f(t)‘-‘T{ 92 ——42—'+’§——W...}
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Example 2. Express sin ¢ as a cosine series.
The integrand is

1 + Qe~—72 + e—2nz etz

211 et
ert4 ] ezt-2w)
@+l Ter—1

Poles are 0, +2¢, 444, 161, ..., giving

T . ® cos 2mit |
E Slnt —1—2%‘74/”?—1"

5.4. Step Functions.

Let g@)=c (t,_y<<t<t,, r=1,2,...,m: t,=0,%,=2x).

It is important to note that the variation of ¢ takes place in the open intervals specified
by the discontinuities. Although the value at ¢, may be prescribed in an application, this

has no necessary relationship with the determinate value % (c,+¢,.,) given by the Fourier
expansion.

The integrand is

rz'm c, {eZ(t—tr_l) — ez(t-tr)}
re1 2 (eZTIZ — 1) ’
and the Fourier expansion is _
g cr(tr - tr——l) + z’ gs G {Sin n(t - tr—l) —sin n(t - tr)} .
r=1 2 n=1r=1 nw

The use of the above integrand suggests the method of establishing the Fourier expansion of
a function of bounded variation.

6. Functions of bounded variation.

We recall some essential properties of these functions. Let g () be a function of bounded
variation in the interval e <<t<<b. Then

(i) The limits g(¢+0), g(f—0) exist at all points of the interval. The points of discon-
tinuity are of the first kind and form a set of measure zero.

(ii) If the interval is subdivided at the points

b1y bos ooey by, ((g=a,t,=Db),

g | g(t._1)=g()| has a finite upper bound K independent—of m and for all choices of ¢,
1
toy vee b1

(iii) g(¢)is integrable (R) between @ and b ; i.e., if £,’ be any point in the interval?, ,<¢<t,
the integral is the limit of

[ I3
21'9 (tr ) (tr - tr-—l)’

when m tends to infinity in such a way that max (¢, —¢,_,) tends to zero.

6.1. The Fourier expansion for g(t).

Let g(t) be a function of bounded variation in the interval 0<t<(2= and let 6§ be a point
interior to the interval. )

Divide the interval (0, 8) at the points 2, t5, ..., £,y (£,=0, ¢,,=0).
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Let ¢,” be a point interior to the interval (¢,_,, ¢,), and consider the step-function defined
by the equations
jg ) toa<<t<<t, r=1,2..m
| 0 0<t<<2m.

The selection of an interior point does not, of course, alter the value of the limit

n 1
le‘g (tr ) (tr - tr—l)

that defines the integral of ¢ (f) from O to 6, but it will be recalled that in the elementary
cases considered earlier the given functions g (t) were specified only in the open intervals, and
that the values of the Fourier expansions at the ends of the intervals were then determinate.

The Fourier expansion of the step-function suggests the consideration of the finite contour
integral

1 g{g (£, ) (e*t=tr—21) — ez(t—t,)}
1
%‘[Fﬂ 2(62"‘”‘—1) dz.

Calculation of the residues as in § 5.4 shows that

/ N - — _
gg(tr )t =t ) ny 5 g(t,) {sinn(t tr—l) sinn(t—1.)}
1 27 n=1r=1
_1 g(ty) e*t dz dz J‘ g(tn') €2 dz e’(‘ ~6) dz
T 2mi 2(e*—1) 2mi T z(err-1)
n1 1 {g )= 06} et ")
+ 217 2mi z(e?™*—1) dz

This equation may be written

N ~ m~—1
Sog+ Z(ay, cosmt+ B, sinnt)=1y— 1, + 21,
1 1

m
where map= %’g(t/) (t-—1t,_4),
o :g’ﬁg(tr') (sin nt, — sin nt,_4) 8 :7Z,n' g(t,') (cos nt,_, — cos nt,)
n n ’ n 1 n ’
1 . ertdz _1 [ ogin) e de
I°_2m'f (tl)_(m Im_fz_m‘ ry 2E™=1) ’
’ 2(t—t,)
I= f y(tm @) 7" G r=1,2,...,m-1).
r 2m z(e?% — 1)
- ,
Now in § 3 it was proved that

1 e*t dz —4, 1=0,
T 'y ‘[_}_—%’ t:277,

a8 N—»w .
Recapitulation of that proof will show that the integral tends uniformly to zero in the
interval 0<<d<{t<2m — 8< 2w, i.e., for any given ¢(>0) a value N, can be found such that

1 f ot dz —
2mi ) . 2(eF -

for all N>>N, and for all values of ¢ in the interval 8<¢< 27 - 8.
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It may be noted, however, that

1 dz 1 ez gz
Gl T Vit Sl = BT Vs

for all N>0.
Putting ¢=0 in the residue equation we have

N . m—1
Yoo+ (o, cosnt+ B, sinnt)= X I, -1,
1 0

where

1 g(tl)eez dz f {g(tr0) —g(t,)} 2010 dz
’ r 2777/

0— 2”7, 2 (62112 e2‘rrz 1 ) >

I'y
I = 1 J‘ ‘ t Ydz
™ Qi FNz(ez"z 1)
Let Ay, Ag, ..y Ay oo and py, po, ..., py, ... be two sequences of positive numbers tending

to zere.
Choose ¢,_; so that §—¢,_,=2Ay, and the other points ¢,, ¢,, ..., ¢,,_s, 80 that

max (f,—t,_)<pp r=1,2,..., (m—-2).
Since O<)\p<0—tT<0<2n-, (r=0,1,...,m—-2),
| 2 L <{lgtt I+ Z«'l gt —9 ) [FAy
<KA.N’ (N>N )’
where K is independent of m and for all methods of subdivision ; i.e.,
~1
lim lim' % I,=0.
N-»w m—0 0

Again g(t,/)=g(0-kAy) (0<k<1),

t.e.,, limI7I,=—-3g(6-0).

N—w

Also lim «, when m tends to inﬁnity

=lim ~ Zg( (¢, — fg ) dr,

. . m gt ) . .
hrg oy =1lim ; Z' —n'— (sin nf, — sin nt,_1),

—lm g(t )cos nt," (¢, —t,_,), where .’ is some point interior to the

interval (¢,-,,¢,),
2]
:EJ‘ g(7) cos nr dr,
mJo

since ¢ () cos n¢ is of bounded variation and cos #f is uniformly continuous.
8
Similarly lim 8, = }T f g(r) sin nr dr.
0
Thus when we let N tend to infinity,
o g 2] 8
To(t)Ef girydr+ 2 | g{r)cosn(t—7)dr=4%ng(6-0),
0 n=1J 0

when £=46, and 0, when <<t <2=.
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By taking ¢t=2x and using a similar argument for the finite contour integral we deduce
that T % (27)=4mg (+0), and therefore since T is periodic 7?(0) is also 37g(+0).
' By dividing up the interval from 6 to 2=, we may prove similarly that
o o ror V [%frg(0+0) when t=8,
Tg"Ej girydr+ 2 g(r) cos n(t—7) dr=1 iwg (2w — 0) when {=0 or 2=,
¢ n=170 1 0 when 0<<t<C6.
By addition therefore

o Efz"g(f) dv—+,§1 2”9(7') cos n(t~17) dr= [Arlg(6-0)+9(0+0)}, ¢=6,

Vim{g(+0)+g(2m—0)}, =0, 2.
But 6 is any point within the interval. Therefore if f(2) is the periodic function associated
with g(t),
2m w0 27
f f@ydr+ 2 f f@ycosn(t—7)dr={r {ft-0)+f(t+0)}
0 n=14J 0
for all values of ¢. ’

Nore. It has been tacitly assumed above that the infinite series is obtained by letting m and N tend
‘to infinity in this order. This is readily justified, however, if we assume that A, =0 (1/p).

UNIVERSITY OF SHEFFIELD

https://doi.org/10.1017/52040618500035504 Published online by Cambridge University Press


https://doi.org/10.1017/S2040618500035504

