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Abstract
Let F: C → E be a functor from a category C to a homological (Borceux–Bourn) or semi-abelian (Janelidze–
Márki–Tholen) category E. We investigate conditions under which the homology of an object X in C with
coefficients in the functor F, defined via projective resolutions in C, remains independent of the chosen resolution.
Consequently, the left derived functors of F can be constructed analogously to the classical abelian case.

Our approach extends the concept of chain homotopy to a non-additive setting using the technique of imagi-
nary morphisms. Specifically, we utilize the approximate subtractions of Bourn–Janelidze, originally introduced
in the context of subtractive categories. This method is applicable when C is a pointed regular category with finite
coproducts and enough projectives, provided the class of projectives is closed under protosplit subobjects, a new
condition introduced in this article and naturally satisfied in the abelian context. We further assume that the functor
F meets certain exactness conditions: for instance, it may be protoadditive and preserve proper morphisms and
binary coproducts—conditions that amount to additivity when C and E are abelian categories.

Within this framework, we develop a basic theory of derived functors, compare it with the simplicial approach,
and provide several examples.

1. Introduction
1.1. Derived functors in abelian categories

In classical homological algebra, such as for modules over a ring or within the broader context of abelian
categories, we can define left derived functors for any additive functor F: C → E, where C and E are
abelian categories and C has enough projectives. This condition allows us to construct a projective
resolution C(X) for any X ∈ C, as illustrated in Figure 1.

For n ∈ Z, we define

Ln(F)(X) := Hn(F(C(X))).

The functor Ln(F): C → E is called the nth left derived functor of F. Its value at X is sometimes
referred to as the nth homology of X with coefficients in F.

In addition to encompassing well-known examples such as the Tor and Ext functors, this concept is
powerful due to the relationships between the derived functors of different dimensions of a given functor,
as expressed via a long exact homology sequence (see, for instance, [22, 54, 78]). The construction of
this long exact sequence in homology—see, for example the proof in [22]—is partially based on the
Simultaneous Resolution Theorem [22, Proposition 5.2.2], also known as the Horseshoe Lemma [78,
Lemma 2.2.8].

The abelianness of both categories C and E, along with the additivity of the functor F, are crucial
in proving that the derived functors of F are well defined. This proof relies on the concept of a chain
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Figure 1. A projective resolution C(X) of an object X in a normal category: the horizontal sequence is
exact in all Cn for n ≥ 1 and H0(C) = X.

Figure 2. The lowest degrees of a chain homotopy.

homotopy. Recall that for a pair of parallel morphisms f , g: (C, dC) → (E, dE) of positively graded chain
complexes in an abelian category, a chain homotopy from f to g (illustrated in Figure 2) is a morphism
of graded objects h: (C, dC) → (E, dE) of degree 1 such that

f − g = dEh + hdC (1)

holds. Let us outline some key properties of this concept [22, 54].

Theorem 1.1.1. In the abelian setting:

(1) Homotopic chain morphisms have the same homology, so chain homotopically equivalent
complexes have isomorphic homologies.

(2) Any two projective resolutions of an object are homotopically equivalent.
(3) Additive functors preserve chain homotopies.

When C has enough projectives, these properties ensure that the left derived functors of an additive
functor F: C → E are well defined.

1.2. Toward a non-additive setting

The context of semi-abelian categories, as defined by Janelidze–Márki–Tholen [46], and the more gen-
eral homological categories,1 as defined by Borceux–Bourn [5], provide a highly suitable non-additive
framework for homological algebra. Besides the validity of classical homological diagram lemmas [5],
these categories support a well-established homology theory based on simplicially derived functors à
la Tierney–Vogel [72] and Barr–Beck [2]. This has led to extensive literature on general versions of the
Hopf formulae [33, 45] and interpretations of cohomology groups [60, 65], linked with commutator
theory [63, 64], which becomes non-trivial in this non-abelian setting.

Chain complexes and their homology behave as expected [34], but chain resolutions have been largely
avoided in the literature. This is despite the fact that they are indeed available in this context, provided
the category has enough (regular) projectives. The primary reason for using simplicial techniques in this
non-additive context is that the traditional procedure for deriving functors does not work. Our goal here
is to explore the conditions under which chain resolutions can be effectively used.

The key problem is that projective resolutions for a given object are not unique, and the definition of a
chain homotopy involves the additive structure on hom-sets, making it unsuitable for proving uniqueness
up to homotopy in a non-additive context. The primary challenge we face in extending the above defi-
nition to a non-additive setting is how to express Equation (1). For instance, the semi-abelian category

1These are not to be confused with the homological categories of Grandis [39], also called ex3-categories; for instance, the
semi-abelian category Gp of all groups is not homological in Grandis’s sense.
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Gp of (non-abelian) groups is non-additive precisely because the pointwise sum (or product, depend-
ing on the notation used) of two group homomorphisms, although defined as a function, is no longer a
homomorphism. Consequently, Equation (1) does not make sense as such in the category Gp.

We may, however, view this condition differently, in a way that eventually allows us to use the so-
called subtractive structure with which each homological category with binary coproducts is naturally
equipped. Still in the abelian setting, we can rewrite Equation (1) using only a single operation, namely
the difference:2

dEh = ( f − g) − hdC. (2)

This still does not make sense as such in a homological category with binary coproducts, since, like the
sum of group homomorphisms, the difference of group homomorphisms need not be a homomorphism.
However, this viewpoint opens the way to an interpretation inspired by the theory of so-called approx-
imate subtractions [15, 16]. Originally developed in the context of subtractive categories [47, 48], this
theory allows the use of (in some suitable sense) imaginary or approximate differences even when the
hom-sets lack an abelian group structure.

Observe that the difference of two morphisms f , g: X → Y in an abelian category can be rewritten as:

0 �� X � ��p1X ,´1X q��

f´g
��

X ‘ X
∇X � ��

xf,gy
��

X��
ι1

�� �� 0

Y

where the horizontal sequence is exact and where f − g = 〈f , g〉(1X , −1X) (see for instance [35] for fur-
ther explanation). We can mimic this procedure in the context of a pointed category: given any object X
for which the needed (co)limits exist, we let (D(X), δX) be the kernel of ∇X = 〈1X , 1X〉: X + X → X and
call it the difference object of X.

DpXq � �� δX ��

f´g
��

X ` X
∇X ��

xf,gy
��

X��
ι1

��

Y

If now f , g: X → Y , we view the composite 〈f , g〉 ◦ δX as a kind of approximate difference of f and g and
write it as f − g: D(X) → Y . Note that even though this definition requires very little from the category in
which it is made, its usefulness depends strongly on the category’s properties. For our purposes, it will
be convenient to work in a homological category with coproducts, which encompasses the subtractive
setting of [16]—see Section 7.

In Section 8, we will explain how Equation (2), interpreted in terms of approximate differences, natu-
rally leads to the concept of approximate chain homotopy. For these chain homotopies, a general version
of item (1) in Theorem 1.1.1 holds. Specifically, in a homological category C with binary coproducts,
two chain morphisms that are homotopic will always have the same homology. Furthermore, a simplicial
homotopy between two simplicial morphisms will be shown to induce a chain homotopy, in our sense,
between the corresponding chain morphisms of Moore chain complexes (Proposition 11.2.1).

Unfortunately, this does not suffice for item (2) of Theorem 1.1.1 to be valid in general. For this, we
need projective objects to interact well with the split short exact sequences in the category C. Note that
in an additive category with finite limits, whenever we have a split short exact sequence

2Rewriting the equation in terms of just sums seems to lead nowhere—unless, following Grandis [39], we assume that hom-sets
carry a commutative monoid structure, which is in our semi-abelian context would amount to abelianness of the category under
consideration.
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0 �� K � �� k �� X
f � �� Y ����
s

�� 0,

if the middle object X is projective, then so are K and Y . Indeed, both are retracts of X, because X is
the biproduct K ⊕ Y . In a homological category, Y will remain a retract of X, so it is still projective
if X is projective. However, for K to be projective is a non-trivial condition, which may or may not
hold depending on the situation. We say that the class of projectives in C is closed under protosplit
subobjects or that C satisfies Condition (P). As it turns out, a homological category with enough
regular projectives satisfies Condition (P) if and only if a variation on the Horseshoe Lemma holds (see
Section 6). Note that a version of the Horseshoe Lemma is needed anyway if we wish to obtain a long
exact homology sequence relating the derived functors of the objects in a given short exact sequence.
Such a long exact sequence is indeed available—see Section 10.1.

Item (3) in Theorem 1.1.1—preservation of chain homotopies—requires F to have certain properties
that, in the abelian case, correspond to F being an additive functor. Specifically, F must preserve binary
coproducts, proper morphisms (those morphisms whose image is a normal subobject, i.e., a kernel
of some morphism), and split short exact sequences. This is sufficient for compatibility with the sim-
plicial approach (Theorem 11.3.2). When E is an abelian category, preservation of proper morphisms is
automatic; and when C is also abelian, these conditions are equivalent to F being additive.

The condition that F is a right exact functor, common in the abelian setting, can be captured in our
more general framework by requiring it to be sequentially right exact—sending short exact sequences
to right exact sequences—while also preserving binary coproducts and protosplit monomorphisms (i.e.,
the kernel of a retraction is sent to a monomorphism). Under these conditions, we obtain results such as
the long exact homology sequence (Theorem 10.1.4), the Syzygy Lemma (Theorem 10.1.5).

2. Self-contained statement of the main results

This article extends the notion of a derived functor, typically defined for an additive functor between
abelian categories, to a non-additive context. Our objective is to derive functors between (Janelidze–
Márki–Tholen [46]) semi-abelian categories in the same manner as in the abelian setting: by applying
the functor to a projective resolution and then taking homology.

However, the absence of an additive structure on the categories complicates this process, since
the conventional arguments ensuring that these functors are well defined do not hold in this setting.
Consequently, simplicial methods are traditionally employed instead of chain resolutions [33, 34, 65].
This article shows that, under certain conditions, chain resolutions do work after all.

Our aim in the current section is to present the main theorems of the article in a clear and essentially
self-contained manner. These theorems can be understood without prior knowledge of approximate
homotopies or expertise in the semi-abelian context. Any less familiar terminology used here is
explained in Subsection 2.2.

2.1. Three main results

The first result extends the definition of the left derived functors of an additive functor between abelian
categories to a non-additive setting:

Theorem. Let C be a pointed regular category with binary coproducts and with enough projectives
which satisfies Condition (P). Let E be a homological category with binary coproducts. Let F: C → E
be a protoadditive functor that preserves proper morphisms and binary coproducts. Then the formula

Ln(F)(X) := Hn(F(C(X)))

where X is an object of C and C(X) is a chosen projective chain resolution of X, defines a functor
Ln(F): C → E for each n ∈ Z.
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Figure 3. Long exact sequence involving the derived functors of F.

In other words, the left derived functors of F are defined as in the abelian context. The proof follows
steps (1)–(3) of Theorem 1.1.1, adapted for the notion of chain homotopy developed in this article. This
is an application of Theorem 10.0.1.

In fact, when moreover C is protomodular (so that now both C and E are homological categories),
the condition that F is protoadditive is strong enough for the Ln(F) to coincide with the derived functors
obtained via projective simplicial resolutions, once those exist. In particular, we find the following result,
which in the text occurs as Theorem 11.3.2:

Theorem. Let C be a semi-abelian variety (in the sense of universal algebra, as in [14]) for which
Condition (P) holds, with comonad G induced by the forgetful adjunction to Set. Let E be a semi-abelian
category and F: C → E a protoadditive functor which preserves proper morphisms and binary coprod-
ucts. Then Ln(F) is naturally isomorphic to Hn+1(−, F)G, the (n + 1)th simplicially derived functor of F
in the sense of Barr–Beck [2, 34].

The reason for this is two-fold: first of all, any two simplicially homotopic morphisms of simplicial
objects induce homotopic chain morphisms between the Moore normalizations—this is Theorem 11.2.1.
Note that this works despite the fact that the Dold–Kan equivalence (between the categories of simplicial
objects and positively graded chain complexes) is not available here. Second, the normalization of a
simplicial resolution is always a projective chain resolution, by closedness of the class of projectives
under protosplit subobjects (Condition (P)) and the fact that in a homological category, exactness of a
simplicial object agrees with exactness of its normalization [37, 38, 72]. We require Barr exactness of
the category E to guarantee that the normalization of any simplicial object is a proper chain complex,
which is essential for the homology objects to detect exactness [75].

A third key result mimics what happens for a right exact functor between abelian categories,
Theorem 10.1.4 in the text:

Theorem. Let C be a homological category with binary coproducts and with enough projectives which
satisfies Condition (P). Let E be a homological category with binary coproducts. Let F: C → E be a
sequentially right exact functor which preserves protosplit monomorphisms and binary coproducts. Any
short exact sequence

0 �� K � �� k �� X
f � �� Y �� 0

in C gives rise to a long exact sequence in E as in Figure 3 which depends naturally on the given short
exact sequence.

The conditions on C are satisfied, for instance, by the variety of Lie algebras over any commutative
unitary ring (4.2.2), by crossed modules (12.0.1) and more generally by n-cat-groups.
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If the derived functors Ln(F) of a functor F are not additive, like the title of this article indicates, then
what properties do they have? We prove in Section 10 that they are protoadditive functors, which means
that they preserve semidirect products, provided F is a functor between semi-abelian categories which
is itself protoadditive and preserves binary coproducts and proper morphisms (Corollary 10.0.6).

2.2. The context

We now explain the terminology in the statements of those results.
A category is pointed when it has an object that is initial and terminal at the same time. In such

categories, we can define protosplit subobjects: such is a subobject K ≤ X which is represented by a
kernel of a split epimorphism with domain X.

A normal category in the sense of [47] is a pointed regular [3] category where every regular
epimorphism is a normal epimorphism, that is, a cokernel of some morphism.

We mainly work in the context of homological categories. A category C is called (Borceux–Bourn)
homological [5] if it is pointed, regular and (Bourn) protomodular [8]. The protomodularity condi-
tion says that the Split Short Five Lemma holds in C, or equivalently, that whenever we have a split
epimorphism with its kernel as in

K � �� k �� X
f �� Y ,��
s

��

the object X is “covered” or “generated” by the outer objects K and Y in the sense that the inclusions k
and s (where k = ker( f ) and s splits f ) are jointly extremally epimorphic, which means that they do not
both factor through a proper subobject of X. It implies, for instance, that each regular epimorphism is a
normal epimorphism. In other words, the category in question is normal.

A (Janelidze–Márki–Tholen) semi-abelian category [46] is a category which is pointed, (Barr)
exact and (Bourn) protomodular, and which has binary coproducts. This stricter definition ensures, for
instance, good behavior of simplicial objects. (In particular, the normalization of any simplicial object
is a proper chain complex, which means that the images of the differentials are normal subobjects.)

Examples include any abelian category, the category of groups Gp, and more generally any variety
of�-groups [40], of which by definition the signature admits a group operation and a unique constant—
such as any variety LieK of Lie algebras over a ring K or any variety of non-associative algebras over
K [77]. An important example of a homological category which is not semi-abelian is the category of
topological groups. The category OrdGp of preordered groups is known to be normal but not homolog-
ical [24]: a preordered group being a group equipped with a preorder (a reflexive and transitive relation)
for which the group operation is monotone; arrows are monotone group homomorphisms.

Some of the above examples satisfy Condition (P). Indeed, it will be automatic for abelian categories;
it will hold for Gp by the Nielsen–Schreier theorem; for LieK (where K is a commutative ring) it is a
non-trivial result (see Section 4); while in the category of associative algebras over a field, for instance,
it is still an open question Figure 4, 5, 6.

A key concept when we are dealing with derived functors is the notion of a projective chain resolution.
Let C be a pointed category with kernels and let X be an object of C. A projective chain resolution
of X consists of a positively graded chain complex (C, d) as in Figure 6, all of whose objects Ci are
projective (with respect to the class of regular epimorphisms) together with a regular epimorphism
d0: C0 → X such that for each n ≥ 0, the lifting d̄n+1: Cn+1 → Ker(dn) of dn+1 over the kernel Ker(dn) of
dn is a regular epimorphism. Once we assume that the category C has enough projectives, recursively
constructed projective chain resolutions exist for any object of the category.

In the context of a normal category, a resolution of X is an exact sequence as in Figure 1. Exactness
in Cn, for instance, means that the morphism d̄n+1 induced by the kernel of dn is a normal epimorphism,
which is equivalent to saying that the image of dn+1 is the kernel of dn. Here, the interpretation in terms
of homology as in the figure’s caption makes sense.
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In a pointed category, a morphism is proper if it can be factorized as a regular epimorphism fol-
lowed by a normal monomorphism. In a normal category, this means that the monic part of the image
factorization is a kernel, while the epic part is a cokernel. A functor F: C → E between between pointed
categories with kernels and cokernels C and E will be called a sequentially right exact functor, as in
[60], if it sends an exact sequence

K
k �� A

f � �� B �� 0,

so a proper morphism k with its cokernel f , to the exact sequence

F pKq F pkq �� F pAq F pfq� �� F pBq �� 0.

These functors are meant to replace the right exact functors from the abelian context.
If we want to mimic additive functors outside the context of additive categories, we can use protoad-

ditive functors [31, 32]. A functor F: C → E between pointed categories C and E is protoadditive if it
preserves kernels of split epimorphisms.

2.3. The abelian setting

Coming back to the above theorems, we see that the categories C and E satisfy conditions which are
weaker than abelianness. On the other hand, we impose seemingly stronger conditions on the functors
to compensate for the weaker context. In the first theorem, any functor between abelian categories which
preserves binary coproducts is additive. Therefore, the assumption of being protoadditive is redundant
in the abelian setting. And in the third one, in the abelian setting, we only require right exactness of
the functor. Here we have to impose two non-trivial assumptions—preservation of protosplit monomor-
phisms and the preservation of binary coproducts—which are redundant in the abelian case, but just like
protoadditivity turn out to be relatively strong in the non-additive setting.

3. Closedness of projectives under protosplit subobjects

As recalled in the introduction, the first step in the definition of the derived functors of a functor is
the construction of a projective resolution for any given object. We need to prove that any two such
resolutions are chain homotopically equivalent. Crucial for the existence of such a chain homotopy
equivalence is Condition (P) that the class of projective objects is closed under protosplit subobjects.
The aim of the present section is to explain the details, necessary to understand what this condition
means. The actual proof that under Condition (P), a chain homotopy equivalence can indeed always be
constructed is the subject of Section 8.

3.1. Projective and free objects

We start by recalling what are projective objects (relative to the regular epimorphisms) in a category.

Definition 3.1.1. An object P of a category C is said to be (regular) projective when, given a regular
epimorphism p: X � Y and a morphism f : P → Y there exists a lifting g: P → X of f over p:

X

p

����
P

g
��

f
�� Y

a morphism g such that pg = f .
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A category has enough (regular) projectives when each object A is a regular quotient of a projective
object: there exists a projective object P together with a regular epimorphism p: P � A.

Remarks 3.1.2.

(1) Outside the abelian setting, the classes of epimorphisms and regular epimorphisms often do
not coincide. For instance, in the variety of unitary rings, the inclusion i: Z → Q is an epimor-
phism and not a surjection. However, in any variety of algebras, the regular epimorphisms are
precisely the surjective morphisms of algebras.

(2) It is easy to see that in any category, the class of projectives is closed under coproducts and
under retracts.

(3) Recall that a category with finite limits and coequalizers of kernel pairs is regular when its
regular epimorphisms are pullback-stable. It is known that existence of enough projectives in
C implies regularity of C, as soon as the needed (co)limits exist [61, 76].

(4) It is easy to see that an object P in a regular category is projective if and only if each regular
epimorphism X � P is a split epimorphism.

In a variety of algebras, a convenient class of projective objects is the class of free objects: objects
which belong to the image of the left adjoint T to the forgetful functor U to Set. This follows easily from
the definition. In certain varieties—see Example 3.2.6 below—the two classes coincide, but in general,
the converse does not hold. However, in a variety of algebras, an object is a projective object if and only
it is a retract of a free object.

3.2. On condition (P)

The proof of the “classical” Horseshoe Lemma in abelian categories ([22, Proposition V.2.2], [78,
Lemma 2.2.8]) depends on the class of projective objects being closed under biproducts (see for instance
[4, Proposition 4.6.3]). In our present context (where biproducts are not available) this is replaced by
closedness under coproducts combined with the following condition, which in the context of a homo-
logical category we will show to be equivalent to a non-additive version of the Horseshoe Lemma—see
Section 6.

Definition 3.2.1. In a pointed category, a subobject K ≤ X is called a protosplit subobject when it
is represented by a kernel of a split epimorphism: there exist f : X → Y , s: Y → X and a representing
monomorphism k: K → X such that fs = 1Y and k = ker( f ).

Remark 3.2.2. In the setting of a normal category (where every regular epimorphism is normal), this
means there exists a split short exact sequence

0 �� K � �� k �� X
f � �� Y ����
s

�� 0 (3)

whose kernel part is the representing monomorphism k: K → X.

Definition 3.2.3. We say that a pointed category satisfies Condition (P) when the class of projective
objects is closed under protosplit subobjects: given a protosplit subobject K ≤ X, if X is projective, then
K is projective.

Remark 3.2.4. By the closedness under retracts of the class of projectives, we know that the object Y
that occurs in Definition 3.2.1 is projective as well, as a retract of the projective object X.
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Example 3.2.5. Each additive category with finite limits, and thus also each abelian category, satisfies
Condition (P). It is indeed well known that here, the object K in (3) is a retract of X, via the isomorphism
of split short exact sequences involving X ∼= K ⊕ Y . So the claim follows from the closedness of the class
of projective objects under retracts.

Example 3.2.6. A variety of algebras is called a Schreier variety when a subobject of a free object
is again free. Clearly, all Schreier varieties satisfy Condition (P). Indeed, any projective object is a
subobject of a free object and so “projective = free” in this context.

Many examples are known; here are some selected references: groups [49, 66, 59], Lie algebras over
a field [68, 80, 73], non-associative algebras over a field [50, 73], commutative and anti-commutative
algebras over a field [69, 73], Lie p-algebras over a field [73, 80], Lie superalgebras over a field [73, 58,
70], pre-Lie algebras over a field of characteristic zero [29], Akivis algebras over a field [67], modules
over a principal ideal domain [41, Chapter 1, Theorem 5.1], so in particular abelian groups [49, Section
1.2], which are modules over the ring of integers.

Note that a variety of modules need not be Schreier in general, even through by Example 3.2.5, it
always satisfies Condition (P).

We shall later see that, just as in the abelian case, if the domain of a functor F is a Schreier variety,
then each of its derived functors Ln(F) for n ≥ 2 is trivial (Corollary 10.1.6). So while Schreier varieties
do satisfy Condition (P), they are not very interesting from a homological-algebraic point of view. This
means we have to focus on non-Schreier varieties satisfying (P). It seems, however, that Condition (P)
has not yet been studied at all in the literature, so currently examples are scarce. We present a non-trivial
one in Section 4, and another one in Section 12.

Varieties of non-associative algebras over a field need not be Schreier:

Example 3.2.7. Kurosh proved in [50] that the free associative algebra with one generator already
contains subalgebras which are not free. His construction also shows that other types of algebras over
a field are not Schreier: alternative, right- or left-alternative, or Jordan algebras over a field.

Remark 3.2.8. In 3.2.6, the last two examples are abelian categories—where (P) is automatically sat-
isfied by Example 3.2.5. Note, however, that there do of course exist categories of modules over a ring
which are not Schreier.

3.3. Characterization in terms of free objects

We now investigate what happens with Condition (P), if we assume that the middle object X in (4) is
free rather than just projective. A priori, what we find is a weaker condition. However, it turns out that
in any pointed Mal’tsev variety—which [57] admits a ternary operation p such that p(x, x, z) = z and
p(x, z, z) = x—hence a fortiori in any homological variety, the two are equivalent.

Proposition 3.3.1. Let V be a pointed Mal’tsev variety of algebras, with forgetful functor U: V → Set
and its left adjoint T: Set → V. The following conditions are equivalent:

(i) for any protosplit subobject K ≤ X as in Definition 3.2.1, if X is projective then K is projective;
(ii) for any protosplit subobject K ≤ X, if X is free then K is projective;
(iii) for any split epimorphism g: A → B in Set, the kernel of T(g) is projective.

Proof. Since, in a variety of algebras, any free object is projective, (i) implies (ii). The split
epimorphism of sets g in the statement of (ii) induces a diagram

0 �� K � �� k �� X
f ���� Y��
s

�� (4)
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Figure 4. The implication (iii) ⇒ (i).

Figure 5. Constructing a splitting for β.

as in Definition 3.2.1, where X = T(A) and Y = T(B). Since T(A) is a free object on A, we have that (ii)
implies (iii).

We now focus on the proof that (iii) implies (i). So consider a split epimorphism f with section s and
kernel k as in (4). Covering each object with a free object, we obtain the diagram in Figure 4, where the
horizontal sequences are split epimorphisms with their kernel, TU(X) and TU(Y) are free objects and
εX and εY are regular epimorphisms.

The naturality of ε implies that f εX = εYTU( f ) and hence we have the morphism β determined by the
universal property of the kernel of f . We claim that β is a split epimorphism. Then K will be a retract
of K ′, which is a projective object by (iii) applied to the split epimorphism of sets U( f ): U(X) → U(Y).

Let us prove our claim. Since the codomains of εX and εY are projective objects, they are split epi-
morphisms. Since V is a regular Mal’tsev category, the right-hand square is a regular pushout [11,
Proposition 3.2], which means that the comparison (εX , TU( f )) from TU(X) to the pullback X ×U TU(Y)
in Figure 5 is a regular epimorphism.

Let jY : Y → TU(Y) be a section of εY . By the pullback property we obtain a section j′Y of ε′
Y such that

jY f = f ′j′Y .
Since X is projective, we can define a section of εX as a lifting of j′Y over the regular epimorphism

(εX , TU( f )), so that (εX , TU( f ))jX = j′Y . This morphism jX: X → TU(X) is indeed a section of εX , since
εXjX = ε′

Y(εX , TU( f ))jX = ε′
Y j′Y = 1X . We see that

TU( f )jX = f ′(εX , TU( f ))jX = f ′j′Y = jY f .

By the universal property of ker(TU( f )), there exists a morphism jK: K → K ′ such that ker(TU( f ))jK =
jXk. Now by definition of β and jK we have

k1K = 1Xk = εXjXk = εXk′jK = kβjK

and since k is monic this implies that βjK = 1K , proving β to be a split epimorphism.

Proposition 3.3.1 will help us in the next section, where we give a class of examples of semi-abelian
varieties which need not be Schreier but do satisfy (P).

4. Example: Lie algebras

Our aim here is to prove that the semi-abelian variety LieK of Lie algebras over any commutative unitary
ring K satisfies Condition (P).
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4.1. Free Lie algebras

It is well known—see for instance [62, Section 0.2]—how to construct the free Lie algebra T(X) for
a given set X: the elements of T(X) are the (non-commutative, non-associative) polynomials with no
constant term and variables in X such that the binary product, which is simply a linear extension of the
concatenation of monomials with variables in X, satisfies the axioms of a Lie bracket.

Lie algebras over a field form a Schreier variety. The original proof due to Shirshov [68] uses the
following strategy. First find a set which generates the given subalgebra of a given free Lie algebra; then
prove that this subalgebra is freely generated—see for instance [62, Theorem 2.5] for a proof written in
English. The assumption that the coefficients ring is a field is a key assumption in the first step of the
proof. Indeed, we need the modules involved in this construction to always admit a base—which is false
when the ring is not a field. For this reason, the proof does not work for unital commutative rings, as
was already noticed by Shirshov in [68]. Using an idea of Bahturin in [1], whenever K is not a field we
can build an example of a subalgebra of a free K-Lie algebra which is no longer free.

Example 4.1.1 (An explicit construction of a non-free subalgebra). Let us consider a unital commutative
ring K and a set X with m elements, where m> 1. Consider the free Lie algebra T(X) and its subalgebra
H := αT(X), where α ∈ K is a non-invertible element of K, different from 0. By definition of H, the
subalgebra admits a natural grading decomposition H = αT(X)1 ⊕ αT(X)2 ⊕ · · · inherited from the
grading of T(X).

Let us assume that H is a free Lie algebra on a set Y . Then its abelianization Hab := H/[H, H] is
isomorphic to the free K-module

⊕
y∈Y Ky, by composition of left adjoints. However, by the grading

decomposition of H, its abelianization Hab contains

αT2(X)/[αT1(X), αT1(X)] ∼=
{

T2(X)/αT2(X) if α2 �= 0,
αT2(X) otherwise.

In both situations, there are non-trivial torsion elements in the module Hab—which contradicts the fact
that it is a free module. This explains why H cannot be free.

4.2. Lazard’s elimination theorem

We fix a commutative unital ring K and work toward a proof that Condition (P) holds in the category
LieK. We can consider the split short exact sequence

0 �� K � �� k �� T pXq T pfq� �� T pY q ����
T psq
�� 0

where ( f , s) is any split epimorphism f with a section s in Set. We claim that, in this situation, we can
prove that K is a retract of a free Lie algebra and so a projective object. Thanks to Proposition 3.3.1, we
may then conclude that LieK satisfies Condition (P). The proof of this claim is based on the next result
called Lazard’s elimination theorem.

Theorem 4.2.1. [51] Let T(X) be the free Lie algebra over a commutative unital ring K and let A and
B two disjoint sets such that X = A ·∪ B. Then we have an isomorphism

T(X) ∼= T(M(B) × A) �φ T(B)

where M(B) is the free monoid over B and φ is an appropriate action of T(B) on T(M(B) × A).

Proof. See for instance Proposition 10 in Section 2.9 of [7] for a proof.
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The action φ may be codified as a Lie algebra homomorphism

φ: T(B) → Der(T(M(B) × A))

whose codomain is the Lie algebra of all derivations of the free algebra T(M(B) × A).
The main idea behind the proof of this theorem is to consider the split short exact sequence

0 �� K � �� k �� T pA Ÿ Bq g � �� T pBq ����
t

�� 0

where g is such that a ∈ A �→ 0 and b ∈ B �→ b and t its canonical splitting (b ∈ B �→ b). We then
notice that K, as a kernel of g, not only contains the element a, as well as its image through (com-
posites of) all inner derivations induced by elements of B (so adb(a) := [b, a] and adb1 · · · adbn (a) =
[b1, . . . , [bn, a] · · · ] where b ∈ B and bi ∈ B for all 1 ≤ i ≤ n); but in fact, those elements generate K. It
is, however, not clear at first whether K is freely generated by those elements. The theorem tell us that
this is indeed the case. The proof depends on finding a suitable action φ of T(B) on Der(T(M(B) × A)),
taking into account that K is closed under inner derivations induced by the elements of B.

We translate the semidirect product of Theorem 4.2.1 into the split short exact sequence

0 �� T pMpBq ˆ Aq � �� �� T pMpBq ˆ Aq ¸φ T pBq g � �� T pBq ����
t

�� 0.

Theorem 4.2.2. For K any commutative ring with unit, the semi-abelian variety LieK satisfies
Condition (P).

Proof. Let f : X → Y be a split epimorphism in Set and s one of its sections. In order to use Lazard’s
elimination theorem, we define

A := {x − sf (x) | x ∈ X} ⊆ T(X) and B := {s(y) | y ∈ Y} ⊆ T(X).

In the diagram

T pXq
φ

��

T pfq � �� T pY q
T ps|Bq
��

T pA Ÿ Bq
ψ

��

g
� �� T pBq

T pf |Bq
��

the morphism g sends generators in A to zero and generators in B to themselves, while φ and ψ are
defined as:

φ(x) = (x − sf (x)) + sf (x)

and

ψ(x − sf (x)) = x − sf (x), ψ(s(y)) = s(y)

for x ∈ X and y ∈ Y . It represents a vertical, upward-pointing split epimorphism with downward-pointing
section. Taking kernels, via Theorem 4.2.1 we find a vertical, upward-pointing split epimorphism of
short exact sequences as in

0 �� KerpT pfqq � �� ��

��

T pXq
φ

��

T pfq � �� T pY q
T ps|Bq
��

�� 0

0 �� T pMpBq ˆ Aq � �� ��

��

T pA Ÿ Bq
ψ

��

g
� �� T pBq

T pf |Bq
��

�� 0
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This proves that Ker(T( f )) is a projective object, as a retract of the free Lie algebra T(M(B) × A). The
result now follows from Proposition 3.3.1.

5. Chain complexes and homology

We return to the main subject of our article and start working toward a non-additive approach to derived
functors. For the sake of clarity, we recall some straightforward non-abelian versions of well-established
basic definitions of (abelian) homological algebra—see, for instance, [75] or [36] for further details.

5.1. Graded objects

Let C be any category. A graded object in C is a sequence of objects (Cn)n∈Z or, equivalently, a functor
C: Z → C where the set of integers Z is considered as a discrete category. Consider k ∈ Z. A morphism
f : A → B of degree k between graded objects A and B is a collection of morphisms ( fn: An → Bn+k)n∈Z

in C. That is to say, f is a natural transformation from A to Bsk where the map sk: Z → Z sends n to
n + k. Of course, a morphism f : A → B of degree k composes with a morphism g: B → C of degree l to
a morphism gf : A → C of degree k + l.

5.2. Chain complexes

Now let C be pointed, and let 0 denote the constant graded object (0)n∈Z. We shall also write 0 for any
morphism (of whichever degree) that factors over 0.

A chain complex (C, d) in C is a graded object C together with a morphism d: C → C of degree −1
(its differential) such that dd = 0. So d is a sequence

¨ ¨ ¨ �� Cn`1

dn`1 �� Cn
dn �� Cn´1

�� ¨ ¨ ¨
in which the composite of any two successive morphisms is trivial. A chain complex (C, d) is bounded
below when there exists i ∈ Z such that Cn = 0 for all n< i and positively graded when this i is 0.
Sometimes, we omit the differential d in our notation and write C for a chain complex (C, d).

A chain morphism f : (C, dC) → (E, dE) from a chain complex (C, dC) to a chain complex (E, dE)
is a morphism f : C → E of degree 0 such that dEf = fdC. Chain complexes in C and chain morphisms
between them form a category which we write Ch(C).

Any zero-preserving functor F: C → E between pointed categories C and E induces a functor
F: Ch(C) → Ch(E) between the respective categories of chain complexes.

5.3. Exact complexes, proper complexes, and homology

We assume that C is pointed with kernels and cokernels. We say that a chain complex (C, d) is exact
at Cn or exact in degree n when the lifting d̄n+1: Cn+1 → Zn(C) of dn+1 over the kernel Zn(C) of dn is a
regular epimorphism.

¨ ¨ ¨ �� Cn`1

dn`1 ��

d̄n`1 ��

Cn
dn �� Cn´1

�� ¨ ¨ ¨

ZnpCq
�	� kerpdnq

	�

The complex C is exact when it is exact in all degrees: the lifting d̄ of d over ker(d): Z(d) → C is a
regular epimorphism. In the context of a normal category, this is equivalent to saying that it consists of
short exact sequences spliced together.
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Figure 6. A projective resolution of X.

A chain complex (C, d) is proper when d admits a factorization as a regular epimorphism e followed
by a normal monomorphism m.

¨ ¨ ¨ �� Cn`1

dn`1 ��

en`1 ����

Cn
dn �� Cn´1

�� ¨ ¨ ¨

Impdn`1q
�	� mn`1

	�

This means that each dn+1 is a proper morphism. Clearly, every exact complex is proper.
Given a proper chain complex (C, d) in a normal category C and n ∈ Z, the nth homology object

Hn(C) of C is the cokernel of d̄n+1: Cn+1 → Zn(C).

¨ ¨ ¨ �� Cn`1

dn`1 ��

d̄n`1 ��

Cn

d̄n

��

dn �� Cn´1
�� ¨ ¨ ¨

ZnpCq

cokerpd̄n`1q ���

�	�
kerpdnq

	�

Zn´1pCq
�	� kerpdn´1q

	�

cokerpd̄nq
���

HnpCq

	�

Hn´1pCq

(5)

All homology objects together form a graded object H(C) = Coker(d̄), in fact, a chain complex with
zero differentials. For each n ∈ Z, the operations Zn and Hn define functors from Ch(C) to C such that
if f : C → E is chain morphism, then

ker(dE
n )Zn( f ) = fnker(dC

n )

and

Hn( f )coker(d̄C
n+1) = coker(d̄E

n+1)Zn( f ).

In a normal category, proper chain complexes are precisely those in which homology may detect
exactness so that a proper complex C is exact if and only if H(C) = 0; see [75] for further details.

6. A non-additive Horseshoe Lemma
6.1. Projective resolutions

As recalled in Section 1.1, a particular type of chain complex which plays a central role in the construc-
tion of the additive left derived functors are the projective resolutions of an object. We first consider this
notion in the context of a pointed category with kernels and then specialize to pointed regular categories
and homological categories.

Definition 6.1.1. Consider an object X in a pointed category with kernels. A (regular) projective res-
olution of X consists of a positively graded chain complex (C, d) as in Figure 6, all of whose objects
Ci are projective, together with a regular epimorphism d0: C0 → X such that for each n ≥ 0, the lifting
d̄n+1: Cn+1 → Ker(dn) of dn+1 over the kernel Ker(dn) of dn is a regular epimorphism.
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Figure 7. A lifting of a morphism x.

As in the abelian setting, the existence of projective resolutions is guaranteed when enough projective
objects are available; see for instance [22] for a full proof. The idea is to take a projective cover d0: C0 →
X of X: the object C0 is the first object of the resolution. We then take the kernel ker(d0): Ker(d0) → C0

of d0 and cover this object with a projective object C1. The induced composite is d1: C1 → C0. The
procedure continues by recursion, and we find:

Proposition 6.1.2. A pointed category with kernels has enough projectives if and only if each object
admits a projective resolution.

For this reason, we will assume that our categories have enough projectives. Since this implies regu-
larity of the category as soon as it has finite limits and coequalizers of kernel pairs, we will assume this
condition as well.

Remark 6.1.3 (Trivial resolution for a projective object). If X is projective, then it admits the chain
complex C where C0 = X and Cn = 0 for all n �= 0 as a projective resolution.

Example 6.1.4 (Projective resolutions in varieties of algebras). We consider a pointed variety V, and as
in Proposition 3.3.1 denote the counit of the adjunction T � U by ε. Since its components are regular
epimorphisms, any object admits a projective resolution.

In the case of a pointed Schreier variety, we can find a “short” projective resolution which is trivial in
degrees greater than 1. Indeed, as mentioned in Example 3.2.6, in such a category, any projective object
is a free object, and any subobject of a free object is again free. So if X is an object and d0: C0 → X a
surjective algebra morphism where C0 is free object, then its kernel C1 is again free, and the construction
stops: we may take all other Cn equal to zero.

In order to define the left derived functors of a functor, we first of all need that any morphism x: X → Y
in the domain category induces a morphism of projective resolutions f : C(X) → E(Y) over x, also called
a lifting of x, which means that xdC

0 = dE
0 f0 as in Figure 7. This is possible thanks to the next result, of

which the proof is straightforward, as in the abelian context—see for instance [54].

Lemma 6.1.5. In a pointed category with kernels, suppose projective resolutions C(X) and E(Y) of
objects X and Y are given. Then any morphism x: X → Y lifts to a morphism of projective resolutions
f : C(X) → E(Y).

Note that an object X may admit several non-isomorphic projective resolutions. However, thanks to
the above, we know that between them, we can always find a morphism of projective resolutions over
1X . In the abelian case, such an f happens to be a chain homotopy equivalence. In order to recover this
result, we need an appropriate notion of chain homotopy, valid in a non-additive context. This will be
the subject of Section 8.

In a normal category, the concept of a projective resolution considered above may be characterized
in terms of homology objects as in the abelian case.

Remark 6.1.6. Consider an object X in a normal category. A chain complex C
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Figure 8. The diagram to be filled with resolutions of X and of Y .

¨ ¨ ¨ �� Cn`1

dn`1 �� Cn
�� ¨ ¨ ¨ �� C1

d1 �� C0
�� 0 �� ¨ ¨ ¨

is a projective resolution of X if it is projective in all degrees, while H0(C) = X and Hn(C) = 0 for all
n �= 0. Here, the morphism d0: C0 → X is nothing but coker(d1): C0 → X = H0(C). This is the viewpoint
of Figure 1.

We now restrict our attention to the context of a homological category, where a version of the
Horseshoe Lemma is available.

6.2. The Horseshoe Lemma in homological categories

The remainder of the present section is dedicated to obtaining a non-additive version of the so-called
Horseshoe Lemma, which is essential in the construction of the long exact sequence of derived functors
(Section 10.1, [22, 54]). We will see that the availability of this result is related to Condition (P). Given a
diagram such as the one in Figure 8 where the vertical sequence is exact and the bottom exact sequence
represents a projective resolution E such that H0(E) = Z, we would like to find projective resolutions of
X and Y and morphisms such as in Figure 9 where all vertical sequences are exact. In a homological cat-
egory, this is indeed possible—as soon as Condition (P) holds; note that since in this context, biproducts
are not available, the classical abelian proof strategy cannot work here.

Proposition 6.2.1 (Half Horseshoe Lemma in homological categories). In a homological category with
enough projectives which satisfies Condition (P), consider a diagram as in Figure 8 where the vertical
sequence is exact and the horizontal sequence is a projective resolution of Z. Then there exist projective
resolutions of X and Y , respectively, which complete the diagram in Figure 9 depicting a vertical short
exact sequence of horizontal exact sequences.

We say “half” because unlike the abelian case we only start with an arbitrary resolution of Z, not of
Z and X, as one does in the abelian case.

Proof. The proof is by recursion on n ∈ N. Let us start with the first step, n = 0.
We consider Figure 10 where the bottom square is a pullback. Being pullbacks of normal epimor-

phisms, p0 and p1 are normal epimorphisms as well. The morphism between the kernels Kp0 and X is an
isomorphism by [9, Lemma 1]. Notice that the normal epimorphism p0 is split, by some section i, since
E0 is a projective object. Since by assumption the category has enough projectives, P is the quotient, via
a normal epimorphism ε0, of a projective object P0. The composite β0 = p0ε0, as a normal epimorphism
with codomain E0, is a split epimorphism with a section we denote i0. Taking the kernel of this split
epimorphism β0 will show us that X is a quotient of a projective object, namely Kβ0 via ε0.
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Figure 9. The diagram of Figure 8 filled.

Figure 10. Take the pullback P and a projective cover of it.

Figure 11. Construction of dC
n and dD

n .

Since the vertical sequence on the left is a split short exact sequence where P0 is a projective object,
Condition (P) implies that the kernel object Kβ0 is a projective object as well. Finally, since the top left
square is a pullback, ε0 being a normal epimorphism implies that the induced morphism ε0 is a normal
epimorphism as well. If we set C0 = Kβ0 , then X is a quotient of Kβ0 via ηC

0 = ε0 and if we set A0 = P0,
then Y is a quotient of P0 via ηA

0 = p1ε0.
For the recursion step, let us consider Figure 11 where we suppose that partial projective resolutions

X and Y are defined respectively until the projective objects Cn and An. On the one hand, notice that
we defined dC

n = ker(ηC
n−1)η

C
n where ηC

n is a normal epimorphism by assumption. We defined dA
n in an

analogous way. On the other hand, we have dE
n = ker(ηE

n−1)η
E
n by exactness of the projective resolution E

of Z at the level n − 1. Hence, the sequences are projective resolutions up to level n − 1.

https://doi.org/10.1017/S0017089525000011 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089525000011


440 Maxime Culot et al.

Figure 12. Part of Figure 11 on which the (3 × 3)-lemma is applied.

Figure 12 shows a (3 × 3)-diagram where we have three horizontal short exact sequences (by defi-
nition) and two vertical short exact sequences on the right (by assumption). By the (3 × 3)-Lemma [9,
Theorem 12], the vertical sequence with the dashed arrow is a short exact sequence as well. We return
to the situation of the the base step, with KηC

n
, KηA

n
and KηE

n
playing, respectively, the roles of X, Y , and

Z, and the normal epimorphism ηE
n+1: En+1 → KηE

n
playing the role of coker(dE

1 ).

Remark 6.2.2 (Degreewise split short exact sequence). Like in the abelian context, the previous proof
leads us to a short exact sequence of chain complexes

0 �� CpXq � �� �� ApY q � �� EpZq �� 0 (6)

where for each n ≥ 0 we have a split short exact sequence

0 �� Cn
� �� �� An

� �� En
������ 0.

However, in the current context, An need not be a product of Cn and En.

Remark 6.2.3. Suppose the vertical sequence in Figure 8 is split exact, and that a splitting γ−1: Z → Y
is given. Then the morphism i in Figure 10 can be chosen to be induced by γ−1 in such a way that
γ−1coker(dE

1 ) = p1i. Now i0 is any lifting of i over ε0. Repeating this procedure, we see that the sequence
(6) is split exact. In other words, the procedure of Proposition 6.2.1, applied to a split short exact
sequence in C, yields a split short exact sequence of chain complexes.

Condition (P) plays a key role in the previous proof. Actually, it is not only sufficient, but also
necessary:

Proposition 6.2.4. If, in a homological category with enough projectives C, whenever we consider
the diagram of Figure 8 as in Proposition 6.2.1, it can be completed into a short exact sequence of
resolutions as in the conclusion of that result, then Condition (P) holds for C.

Proof. Consider a split short exact sequence

0 �� K � �� k �� X
f � �� Y ����
s

�� 0

where X is a projective object. Then Y is a projective object as well. We prove that K is also projective.

https://doi.org/10.1017/S0017089525000011 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089525000011


Glasgow Mathematical Journal 441

Since C has enough projectives, by Proposition 6.1.2 we may consider a projective resolution of Y .
By assumption, we can construct suitable projective resolutions of K and X; in particular, we obtain the
diagram

0 �� C0

cokerpdC
1 q
���

� �� α0 �� A0

cokerpdA
1 q

���

β0 � �� E0��
j

��

cokerpdE
1 q

���

�� 0

0 �� K � �� k �� X
f � �� Y ����
s

�� 0

whose horizontal sequences are short exact. Since X and Y are projective objects, the normal epimor-
phisms coker(dA

1 ) and coker(dE
1 ) are split. As a result, and since a homological category is always regular

Mal’tsev [5], we are in a similar situation as in the proof for (ii) ⇒ (i) of Proposition 3.3.1. We may
thus choose suitable sections of coker(dA

1 ) and coker(dE
1 ) which restrict to a section of coker(dC

1 ). This
shows that K is a retract of the projective object C0. Hence, K is projective as well, and (P) holds in the
category C.

7. Approximate differences

As mentioned in Subsection 1.2, the non-additive context does not allow us to properly define an addi-
tion between parallel arrows—certainly not one which forms a group structure. However, we can define
a notion of approximate difference, which may still be available in a non-additive context. This section
explains what we need to make this work: it is inspired by the theory of so-called approximate subtrac-
tions [15, 16]. Originally developed in the context of subtractive categories [47, 48], this theory allows
the use of (in some suitable sense imaginary or approximate) differences even when the hom-sets have
no abelian group structure on them.

Observe that the difference of two morphisms f , g: X → Y in an abelian category may be
rewritten as

0 �� X � ��p1X ,´1X q��

f´g
��

X ‘ X
∇X � ��

xf,gy
��

X��
ι1

�� �� 0

Y

(7)

where the horizontal sequence is exact and where f − g = 〈f , g〉(1X , −1X) (see for instance [35] for fur-
ther explanation). We can mimic this procedure in the context of a pointed category: given any object X
for which the needed (co)limits exist, we set (D(X), δX) be the kernel of ∇X = 〈1X , 1X〉: X + X → X and
call it the difference object of X.

DpXq � �� δX ��

f´g
��

X ` X
∇X ��

xf,gy
��

X��
ι1

��

Y

If now f , g: X → Y , then we view the composite 〈f , g〉δX as a kind of approximate difference of f
and g and write it f − g: D(X) → Y . Note that even though this definition needs very little from the
category where it is made, whether it is useful depends strongly on the category’s properties. For our
purposes, it will be convenient to work in a homological category with coproducts, which encompasses
the subtractive setting of [16].
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Example 7.0.1 (Groups). For any group X, the kernel D(X) is a subgroup of the free group X + X. We
can prove that it is generated by elements of the shape

xx−1 and yy−1

for x, y ∈ X and where we write ( · ) and ( · ) for the elements which belong, respectively, to the first or
second copy of X inside the coproduct X + X.

Example 7.0.2 (Lie algebras). In the category LieK, it is easy to see that for two algebras X and Y , the
coproduct X + Y is the set of (equivalence classes, with respect to anticommutativity and the Jacobi
identity, as well as the relations that hold in X and in Y) of all (non-commutative, non-associative)
polynomials with variables in X and Y (see for instance [77, Section 10] for a more detailed explanation).

The elements of D(X) “are” polynomials generated by monomials of three distinct types: a first one,
coming from the vector space structure, where we have z − z and z − z for z any (non-associative) word
with letters in X; a second, coming from the anticommutativity of the Lie bracket, where we have zz and
zz; and a third type induced by the Jacobi identity, where we find monomials of the shape z1(z2z3) +
z2(z3z1) + z3(z1z2), for words with letters in X—here we need to exclude the situation where the zi belong
to the same copy of X.

7.1. Calculus of subtraction

For now, we assume that C is a pointed category with functorially chosen kernels and binary coproducts.
This allows us to define the difference object functor D: C → C. Given a morphism h: X → Y , we let
D(h) be the unique induced arrow in the diagram

DpXq � ��δX ��

Dphq
��

X ` X
∇X ��

h`h

��

X

h

��

��
ι1

��

DpY q � ��
δY

�� Y ` Y
∇Y �� Y��
ι1

��

(8)

We will also need the natural transformation ς : D ⇒ 1C defined for X in C by

ςX := 〈1X , 0〉δX: D(X) → X.

To see that ς is indeed natural, so that fςX = ςYD( f ) for any arrow f : X → Y , it suffices to take a look
at the diagram

DpXq � �� δX ��

Dpfq

��

ςX


	

X ` X
x1X ,1X y ��

f`f

��

x1X ,0y
�


X

f

��

X

f

��

DpY q � �� δY ��

ςY


	

Y ` Y x1Y ,1Y y
��

x1Y ,0y
�


Y

Y

Lemma 7.1.1. Under the above assumptions on C, the functor D: C → C preserves the zero morphism.
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Approximate differences are compatible with composition:

Lemma 7.1.2. Under the above assumptions on C, we have

l( f − g) = lf − lg and ( f − g)D(h) = fh − gh

whenever these equalities make sense.

Proof. The second equality is a consequence of the commutativity of (8), while the first follows
immediately from the universal property of the coproduct.

Remark 7.1.3. For future use, we take note of the equality f − 0 = fςdom( f ) which holds for any
morphism f .

For the moment it is not so clear whether the definition of f − g encodes a “difference” as in
the abelian context, in the sense that f = g if and only if f − g = 0. Under certain conditions on the
surrounding category, this does indeed happen.

Lemma 7.1.4. Under the above assumptions on C, we have

f = g ⇒ f − g = 0.

If, in addition, C is a normal category, then f − g = 0 implies f = g.

Proof. For the first implication, as mentioned in [15, Section 3.1], this follows from the fact that
〈f , f 〉 = f 〈1X , 1X〉 while δX is the kernel of 〈1X , 1X〉, so that

f − g = 〈f , f 〉δX = f 〈1X , 1X〉δX = 0.

If C is a normal category, then as already mentioned in [15, Introduction], the codiagonal 〈1X , 1X〉 is
the cokernel of δX . By assumption, we have that 〈f , g〉δX = 0. Hence, 〈f , g〉 factors through 〈1X , 1X〉 via
a morphism h so that 〈f , g〉 = h〈1X , 1X〉 = 〈h, h〉 and f = h = g.

As a consequence, normality can be characterized in terms of approximate differences.

Proposition 7.1.5. A pointed regular finitely cocomplete category is normal if and only if for any two
given morphisms f , g: X → Y ,

f − g = 0 ⇒ f = g.

Proof. Lemma 7.1.4 shows that the implication holds under the given assumptions. For the converse,
it suffices to prove that the coequalizer of f , g: X → Y is a cokernel of f − g: D(X) → Y . This implies that
all regular epimorphisms are normal. If indeed h( f − g) = hf − hg = 0, then hf = hg by assumption, so
that the universal property of the coequalizer implies the universal property of the cokernel.

7.2. Subtractive categories

Next to the above property, we will also need that

f − 0 = g − 0 ⇒ f = g.

Since fςX = f − 0 = g − 0 = gςX by Remark 7.1.3, this happens as soon as ςX is an epimorphism. We ask
slightly more, because then we find ourselves in a known situation: the context of subtractive categories.
We will not use the original definition of subtractivity here, but rather an equivalent formulation [16,
Theorem 5.1], valid for pointed regular categories with binary coproducts:
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Definition 7.2.1. A pointed regular category with binary coproducts is called subtractive when for each
object X, the composite

1X − 0 = 〈1X , 0〉δX = ςX: D(X) → X

is a regular epimorphism.

We see that the natural transformation ς is a (component-wise) regular epimorphism if and only if
we have a subtractive category. Via this short observation it is easy to see that any abelian category is
subtractive. Indeed, in this setting, δX = (1X , −1X), and the domain of the difference is D(X) = X.

Almost by definition, subtractive categories form a context in which a difference of two morphisms
may be expressed as an approximate difference. The disadvantage of Definition 7.2.1 is that it does not
immediately show the relationships with other categorical-algebraic conditions. Subtractive categories
were introduced in [47] as a categorical characterization of subtractive varieties of universal algebras,
studied earlier in [74], in a context which is not necessarily regular and where binary coproducts need
not exist. A relation r = (r1, r2): R → X × Y in a pointed category is said to be left (right) punctual [10]
if (1X , 0): X → X × Y (respectively (0, 1Y): Y → X × Y) factors through r. A pointed finitely complete
category C is said to be subtractive, if every left punctual reflexive relation on any object X in C is right
punctual.

By [16, Theorem 5.1], in a pointed regular category with binary coproducts, this agrees with
Definition 7.2.1. The arguments in [47] further show that any pointed protomodular category is sub-
tractive so that any additive category with finite limits, any homological category in the sense of [5],
and in particular any semi-abelian category [46] is subtractive.

It is explained in [47] that a variety of algebras is subtractive when the corresponding theory contains
a unique constant 0 and a binary operation −, called a subtraction, subject to the equations x − 0 = x
and x − x = 0. So, for instance, any pointed variety of algebras whose theory contains a group operation
is an example.

7.3. A stronger context for subtraction

Since we are eventually taking homology in the codomain of a functor F: C → E, we shall be working
with minimal assumptions on C (a pointed regular category with binary coproducts, with enough pro-
jectives that satisfies Condition (P)) and use the stronger but natural context of a homological category
for E. Homological categories are a suitable framework for our calculus of differences for four reasons:

(1) they admit kernels and cokernels of proper morphisms;
(2) they are subtractive;
(3) they are normal;
(4) the functor D: E → E preserves normal epimorphisms.

Our aim is now to prove that the fourth point does indeed hold. Here, we again use that a homological
category is always regular Mal’tsev. Recall [11, 19, 30] that a regular category is Mal’tsev if and only
if any split epimorphism of regular epimorphisms is a regular pushout—see the proof of Proposition
3.3.1 which recalls what this means.

Lemma 7.3.1. If C is a pointed regular Mal’tsev category with binary coproducts, then the functor
D: C → C preserves regular epimorphisms.

Proof. If h is a regular epimorphism, then h + h is a regular epimorphism as well. Hence if C is
regular Mal’tsev, then in the diagram (8) defining D(h), the square on the right is a regular pushout. Let
P denote the pullback of ∇Y and h and write h∗(∇Y): P → X for the induced arrow. It is then easy to see
that on the one hand, the kernel of h∗(∇Y) is D(Y), while, on the other hand, the square
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DpXq δX ��

Dphq
��

X ` X

ph`h,∇X q
����

DpY q �� P

is a pullback. It follows that the arrow D(h) is a regular epimorphism.

Remark 7.3.2. The functor D need not be exact, not even in the context of a semi-abelian category. We
consider the alternating group A3 as a normal subgroup of the symmetric group S3. In the notation of
Example 7.0.5, we have that for (12)(12) ∈ D(S3) and (123)(132) ∈ D(A3) the conjugate

(12)(12)(123)(132)(12)(12) = (12)(13)(132)(12)(12)

in D(S3) is not in A3 + A3 and therefore not in D(A3).

7.4. Differences and the functor D

Even though the functor D is engaged in the construction of the approximate difference, outside of the
additive context it need not interact well with those differences. It is indeed not true that D( f − g) is
equal to D( f ) − D(g) in general. If this were the case, then by Lemma 7.1.1 we should have D(ςX) =
D(1X − 0) = D(1X) − D(0) = ςD(X). However, in Gp,

D(ςX)
(
(xx−1)(xx−1)

) = x−1x �= xx−1 = ςD(X)

(
(xx−1)(xx−1)

)
holds for all x ∈ X by Example 7.0.5.

Remark 7.4.1 (Compositions of ςX). We know that in general, ςD(X) �= D(ςX). However, thanks to the
naturality of ς , for any object X we have

ςXςD(X) = ςXD(ςX): D2(X) → X.

We will also write this composition ς 2
X since its domain is D2(X). By induction, for all n ≥ 2 we find the

equality

ςXςD(X) · · · ςDn−1(X) = ςXD(ςX) · · · Dn−1(ςX): Dn(X) → X (9)

and we will denote this morphism ς n
X .

By convention, we will extend the notation ς n
X to all natural numbers by letting ς 0

X = 1X (since its
domain will be D0(X) = X) and ς 1

X = ςX (since its domain will be D(X)). Note that in a subtractive
category, all the morphisms ς n

X are regular epimorphisms (as composites of such).
For any f : X → Y and all n ∈ N, we have

fς n
X = ς n

Y Dn( f ) (10)

so that the ς n
X form a natural transformation ς n: Dn ⇒ 1C.

8. Approximate homotopies

Recall that given a pair f , g: (C, dC) → (E, dE) of parallel morphisms of positively graded chain com-
plexes in an abelian category—see Figure 13—a chain homotopy from f to g is a morphism of graded
objects h: (C, dC) → (E, dE) of degree 1 such that

f − g = dEh + hdC

holds.
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Figure 13. The lowest degrees of a chain homotopy.

Figure 14. Two liftings of a morphism x.

In an abelian category, the lifting of a morphism x: X → Y to a morphism of resolutions of X and Y
given in Lemma 6.1.5 is unique up to a chain homotopy (see for instance [54] for a full proof). Given two
such liftings as in Figure 14, a homotopy is obtained through a recursive construction, which depends
on projectivity of the objects of C and the exactness of the bottom sequence—any projective resolution
having both features. In the first step, for instance, h0 is obtained as a lifting over the epimorphism d̄E

1 of
the lifting of f0 − g0 through the image of dE

1 . That lifting does indeed exist, because by the exactness of
the bottom sequence, the image of dE

1 is the kernel of its cokernel, while

coker(dE
1 )( f0 − g0) = (x − x)coker(dC

1 ) = 0.

This argument uses that the domain of a difference of two morphisms with a projective domain (in this
case, the domain of f0 − g0) is still a projective object, which is true in all abelian categories, because
there the domain of a difference of two parallel morphisms is just the domain of those morphisms them-
selves. In a semi-abelian category, this is not automatic. For the difference object D(X) to be projective
as soon as X is, we are led to assuming that the category satisfies Condition (P).

8.1. Towards a definition

We let C be a normal category with binary coproducts and enough projectives which satisfies Condition
(P). Let C(X) and E(Y) be projective resolutions of, respectively, X and Y , two objects of C. Given a mor-
phism x: X → Y , we know from Lemma 6.1.5 that a morphism of projective resolutions f : C(X) → E(Y)
exists such that H0( f ) = x. Let us now assume that g: C(X) → E(Y) is another such morphism (Figure 14
again). We follow the example of the abelian context, to recursively construct what should amount to
a chain homotopy from f to g. Since the standard definition does not immediately make sense here,
we shall simply proceed with the construction itself and take what comes out as a starting point for a
non-additive definition.

Construction of h0.
From Lemma 7.1.4 and Lemma 7.1.2, it follows that the composite coker(dE

1 )( f0 − g0) is zero. Hence,
f0 − g0 lifts over the image of dE

1 via a morphism α0 as in Figure 15. By the assumption that the class
of projective objects is closed under protosplit subobjects, the difference object D(C0) is projective.
Hence, since the bottom chain complex is exact at each level, there exists a lifting h0 of α0 over d̄E

1 . The
construction ensures that

dE
1 h0 = f0 − g0.

We remark that this equality is the same in the abelian context. The only novelty here is the domain
D(C0) shared by h0 and the difference f0 − g0.
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Figure 15. Construction of h0.

Figure 16. Construction of h1.

Construction of h1.
The construction of h1, the second morphism in the homotopy, depends on the same strategy and the
same preliminary results about differences of morphisms: see Figure 16. Since

dE
1 (( f1 − g1) − h0D(dC

1 )) = dE
1 ( f1 − g1) − dE

1 h0D(dC
1 )

= ( f0 − g0)D(dC
1 ) − ( f0 − g0)D(dC

1 ) = 0,

there exists a unique morphism α1 such that

ker(dE
1 )α1 = ( f1 − g1) − h0D(dC

1 ).

Using the exactness of the bottom chain complex and the fact that D2(C1) is projective, we obtain a
lifting h1 of α1 over d̄E

2 . We find

dE
2 h1 = ( f1 − g1) − h0D(dC

1 ).

Construction of h2.
We repeat the same strategy once again: we have

dE
2

(
( f2 − g2)ςD(C2) − h1D2(dC

2 )
)

7.1.2= dE
2 ( f2 − g2)ςD(C2) − dE

2 h1D2(dC
2 )

def. h1= dE
2 ( f2 − g2)ςD(C2) −

(
( f1 − g1) − h0D(dC

1 )
)

D2(dC
2 )

7.1.2= dE
2 ( f2 − g2)ςD(C2) −

(
( f1 − g1)D(dC

2 ) − h0D(dC
1 )D(dC

2 )
)

= dE
2 ( f2 − g2)ςD(C2) −

(
( f1 − g1)D(dC

2 ) − h0D(dC
1 dC

2 )
)

= dE
2 ( f2 − g2)ςD(C2) −

(
( f1 − g1)D(dC

2 ) − h0D(0)
)

7.1.1= dE
2 ( f2 − g2)ςD(C2) −

(
( f1 − g1)D(dC

2 ) − 0
)

7.1.3= dE
2 ( f2 − g2)ςD(C2) − ( f1 − g1)D(dC

2 )
(
1D(C2) − 0

)
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7.1.3= dE
2 ( f2 − g2)ςD(C2) − ( f1 − g1)D(dC

2 )ςD(C2)

7.1.2= dE
2 ( f2 − g2)ςD(C2) − ( f1d

C
2 − g1dC

2 )ςD(C2)

= dE
2 ( f2 − g2)ςD(C2) − (dE

2 f2 − dE
2 g2)ςD(C2)

7.1.2= dE
2 ( f2 − g2)ςD(C2) − dE

2 ( f2 − g2)ςD(C2)

7.1.4= 0.

Therefore, by the exactness of the bottom chain complex and by the fact that D3(C2) is projective, we
obtain a lifting h3 of the unique morphism induced by the kernel of dE

2 over d̄E
3 . In summary, dE

3 h2 =
( f2 − g2)ςD(C2) − h1D2(dC

2 ).

General case.
The construction of h2 already gives us all the tools for defining hn when n ≥ 3. Following essentially
the same strategy (which now involves Equation (10) as well), we find a lifting hn that satisfies

dE
n+1hn = ( fn − gn)ς n−1

D(Cn) − hn−1Dn(dC
n ).

By the convention explained in Remark 7.4.1, this general formula agrees with the cases n = 1 and
n = 2. However, the case n = 0 differs slightly. In summary: with the previous assumptions and notation,
we have a collection of morphisms (hn)n∈N where hn: Dn+1(Cn) → En+1 such that{

dE
1 h0 = ( f0 − g0)

dE
n+1hn = ( fn − gn)ς n−1

D(Cn) − hn−1Dn(dC
n ) for n ≥ 1.

(11)

In the context of a pointed category with kernels and binary coproducts, we can do exactly the same
thing, but the notation is slightly different (d0 instead of coker(d1), see Remark 6.1.6). This leads us to
the following definition.

Definition 8.1.1. Let C be a pointed category with kernels and binary coproducts. Consider morphisms
f , g: C → E between positively graded chain complexes C and E. An (approximate) (chain) homotopy
from f to g is a sequence of morphisms (hn: Dn+1(Cn) → En+1)n∈N for which Equations (11) hold. We
write h: f � g.

Two positively graded chain complexes C and E are (approximately) chain homotopically equivalent
(C � D) when chain morphisms φ: C → E and ψ : E → C exist, together with approximate homotopies
1C �ψφ and 1E � φψ .

We proved:

Theorem 8.1.2 (Homotopy unique existence of projective resolutions). Let C be a pointed category
with kernels and binary coproducts for which Condition (P) holds. Any lifting of a morphism x: X → Y
in the sense of Lemma 6.1.5 is unique up to an approximate chain homotopy.

When, moreover, C has enough projectives, then for any object X ∈ C there exists a projective
resolution, unique up to an approximate chain homotopy equivalence.

This result is of key importance in ensuring that the non-additive left-derived functors we consider
in Section 10 are well defined.

Remark 8.1.3 (Extension to bounded below chain complexes). By renumbering, Definition 8.1.1
extends to bounded below chain complexes.
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Remark 8.1.4 (Comparison to the abelian case). The equalities in (11) are expressed in a non-additive
context. In an abelian category, we recover the usual: a collection of morphisms (hn: Cn → En+1)n∈N

such that
{

dE
1 h0 = ( f0 − g0)

dE
n+1hn = ( fn − gn) − hn−1dC

n for n ≥ 1.

8.2. Basic stability properties

First of all, it is easy to see that the approximate homotopy relation is compatible with pre- and post-
composition with chain morphisms. Indeed, consider a chain homotopy h: f � g: C → E. Lemma 7.1.2
implies that if α: A → C is a chain morphism, then (hnDn+1(αn))n is an approximate homotopy from fα
to gα, while if β: E → B is a chain morphism, then (βn+1hn)n is an approximate homotopy from βf to βg.

Lemma 7.1.4 implies that 0: f � f for any chain morphism f , while 0: f � g entails f = g in any normal
subtractive category. In particular, the homotopy relation is always reflexive. We next prove that is also
symmetric. Here, we need the following construction.

For any object X, we consider the twist morphism twD(X): D(X) → D(X), the restriction of 〈ι2, ι1〉 to
D(X):

DpXq
twDpXq

��

� �� δX �� X ` X
∇X ��

xι2,ι1y
��

X

DpXq � ��
δX

�� X ` X ∇X

�� X

It is natural, in the sense that for any morphism l: X → Y ,

D(l)twD(X) = twD(Y)D(l).

Moreover, for any arrows f , g: X → Y , the equation

( f − g)twD(X) = 〈f , g〉δXtwD(X) = 〈f , g〉〈ι2, ι1〉δX = 〈g, f 〉δX = g − f

holds.

Lemma 8.2.1 (Symmetry of the approximate homotopy relation). In any pointed category with kernels
and binary coproducts, f � g implies g � f .

Proof. Consider h: f � g. We construct an approximate homotopy from g to f by recursion. For the
base step, we let h′

0 := h0twD(C0) so that

dE
1 h′

0 = ( f0 − g0)twD(C0) = g0 − f0.

For n ≥ 1, we assume that h′
n−1 := hn−1Dn−1(twD(Cn−1)) is defined and satisfies

dE
n h′

n−1 = (gn − fn)ς
n−1
D(Cn) − h′

n−2Dn−1(dC
n−1).

https://doi.org/10.1017/S0017089525000011 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089525000011


450 Maxime Culot et al.

Figure 17. Comparison between Zn( f ) − Zn(g) and Zn( f − g).

If now h′
n := hnDn(twD(Cn)), then

dE
n+1h′

n = (
( fn − gn)ς n−1

D(Cn) − hn−1Dn(dC
n )

)
Dn(twD(Cn))

= ( fn − gn)ς n−1
D(Cn)D

n−1(twD(Cn)) − hn−1Dn(dC
n )Dn−1(twD(Cn))

= ( fn − gn)twD(Cn)ς
n−1
D(Cn) − hn−1Dn−1

(
D(dC

n )twD(Cn)

)
= (gn − fn)ς

n−1
D(Cn) − hn−1Dn−1

(
twD(Cn−1)D(dC

n )
)

= (gn − fn)ς
n−1
D(Cn) − hn−1Dn−1(twD(Cn−1))D

n(dC
n )

= (gn − fn)ς
n−1
D(Cn) − hn−1

′Dn(dC
n ).

Remark 8.2.2 (Symmetry in the abelian case). It is well known that if h: f � g, then −h: g � f in any
abelian category. This agrees with what we do in the above proof, because here the morphism twD(X) is
simply −1X . To see this, it suffices to recall that δX = (1X , −1X).

8.3. Approximate homotopy and homology

If, in an abelian category, two chain morphisms f , g: (C, dC) → (E, dE) are homotopic, then Hn( f ) =
Hn(g) for all n (see for instance [22]). As recalled in Section 1.1, the construction of the left-derived
functors crucially depends on this fact.

The usual (abelian) proof simplifies because the homology functors are additive. This is no longer
true in a non-additive setting. The reason is that the kernel functor need not preserve differences. More
precisely, in a pointed finitely complete category with binary coproducts, Zn( f − g) and Zn( f ) − Zn(g)
need not agree. As depicted in Figure 17, there is a canonical comparison kC

n , the unique morphism for
which D(ker(dC

n )) = ker(D(dC
n ))kC

n . Hence,

Zn( f − g)kC
n = Zn( f ) − Zn(g).

This morphism kC
n need not be an isomorphism in general. For this reason, the non-additive proof of the

compatibility of chain homotopy with homology is slightly more involved.

Theorem 8.3.1. If, in a normal subtractive category, f � g, then Hn( f ) = Hn(g) for all n ∈ N.

Proof. In a normal subtractive category C, suppose that h is a chain homotopy f � g: (C, dC) →
(E, dE). Consider n ≥ 1. We observe that, by definition of Hn, it suffices to show

Hn( f )coker(d̄C
n+1) = Hn(g)coker(d̄C

n+1).

By the construction of the functors Zn and Hn as in Diagram (5), this is equivalent to

coker(d̄E
n+1)Zn( f ) = coker(d̄E

n+1)Zn(g).
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Figure 18. Homotopy versus homology.

Since C is normal, by Lemma 7.1.4 and Lemma 7.1.2, it suffices that

coker(d̄E
n+1)Zn( f ) − coker(d̄E

n+1)Zn(g) = coker(d̄E
n+1)(Zn( f ) − Zn(g)) = 0.

Since C is subtractive and by definition of ς n (see Remark 7.4.1), the equality

coker(d̄E
n+1)(Zn( f ) − Zn(g))ς n

D(Zn(C)) = 0

is sufficient for this to happen.
We prove that (Zn( f ) − Zn(g))ς n

D(Zn(C)) lifts over d̄E
n+1 as in Figure 18:

ker(dE
n )d̄E

n+1hnDn+1(ker(dC
n ))

= dE
n hnDn+1(ker(dC

n ))
def. hn= (( fn − gn)ς n−1

D(Cn) − hn−1Dn(dC
n ))Dn+1(ker(dC

n ))
7.1.2= ( fn − gn)ς

n−1
D(Cn)D

n(ker(dC
n )) − hn−1Dn(dC

n )Dn(ker(dC
n ))

= ( fn − gn)ς
n−1
D(Cn)D

n(ker(dC
n )) − hn−1Dn(dC

n ker(dC
n ))

= ( fn − gn)ς
n−1
D(Cn)D

n(ker(dC
n )) − hn−1Dn(0)

7.1.1= ( fn − gn)ς
n−1
D(Cn)D

n(ker(dC
n )) − 0

7.1.3= ( fn − gn)ς
n−1
D(Cn)D

n(ker(dC
n ))(1Dn(Zn(C)) − 0)

= ( fn − gn)ς
n−1
D(Cn)D

n(ker(dC
n ))ςDn(Zn(C))

(10)= ( fn − gn)D(ker(dC
n ))ς n−1

D(Zn(C))ςDn(Zn(C))

7.4.1= ( fn − gn)D(ker(dC
n ))ς n

D(Zn(C))

7.1.2= ( fnker(dC
n ) − gnker(dC

n ))ς n
D(Zn(C))

def. Zn= (ker(dE
n )Zn( f ) − ker(dE

n )Zn(g))ς n
D(Zn(C))

7.1.2= ker(dE
n )(Zn( f ) − Zn(g))ς n

D(Zn(C)).

Since ker(dE
n ) is monic, this implies that

d̄E
n+1hnDn+1(ker(dC

n )) = (Zn( f ) − Zn(g))ς n
D(Zn(C)).

To complete the proof, we still have to verify the case n = 0. Here, we can use essentially the same
strategy as above. We have:

ker(ηE)d̄E
1 h0D(ker(ηC)) = dE

1 h0D(ker(ηC))

= ( f0 − g0)D(ker(ηC))

= f0ker(ηC) − g0ker(ηC)

= ker(ηE)(Z0( f ) − Z0(g)).
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Since ker(ηE) is monic, we have d̄E
1 h0D(ker(ηC)) = Z0( f ) − Z0(g), which proves that Z0( f ) − Z0(g) lifts

over d̄E
1 .

9. Functors preserving approximate homotopies

In the abelian context, additive functors (see Section 1.1) are the ones which admit derived functors,
essentially because being compatible with the addition in the hom-sets, they preserve chain homotopies.
The aim of this section is to find convenient conditions on functors so that they preserve approximate
homotopies. This will allow us to define non-additive derived functors in Section 10.

9.1. Subtractive functors

A first idea is to replace the condition that

F( f + g) = F( f ) + F(g) by F( f − g) = F( f ) − F(g).

We will call such a functor subtractive. Formally, this amounts to the following:

Definition 9.1.1 (Subtractive functor). Let F: C → E be a functor between pointed categories with ker-
nels where, in addition, C admits binary coproducts. We say that F is a subtractive functor if it preserves
finite coproducts and F(δX) = δF(X) for all X ∈ C.

Remark 9.1.2 (Equivalent characterization of subtractive functors). When both C and E are normal,
this is equivalent to asking that binary coproducts and split short exact sequences of the form

0 �� DpXq � �� δX �� X ` X
∇X � �� X ��
ι2

�� 0

are preserved.

This is not quite enough, though, for our purposes, because a problem occurs which is non-existent in
the abelian case: we need preservation of proper morphisms, in order to guarantee that the derived func-
tor will detect exact in the codomain of F—something which is not implied by subtractivity. Combining
these ingredients, we find:

Proposition 9.1.3. Let C be a pointed category with kernels and binary coproducts. Let E be a normal
subtractive category, and let F: C → E be a subtractive functor which preserves proper morphisms. If
f , g: (C, dC) → (E, dE) are chain homotopic in C, then Hn(F( f )) = Hn(F(g)) for all n.

Proof. As for additive functors in the additive context, any subtractive functor will preserve approx-
imate chain homotopies: if h: f � g, then F(h): F( f ) � F(g). The result follows from Theorem 8.3.1
applied to the category E.

9.2. Protoadditive functors preserving coproducts

We now consider a convenient class of subtractive functors: the protoadditive functors of T. Everaert
and M. Gran [31, 32].

Definition 9.2.1. A functor F: C → E between pointed categories C and E is protoadditive if it preserves
kernels of split epimorphisms.
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Remark 9.2.2. From the perspective of Definition 9.2.1, protoadditivity of a functor appears to be
a weak kind of left exactness property. When C and E are normal categories, it is equivalent to the
condition that F preserves split short exact sequences: for any split short exact sequence

0 �� K � �� k �� X
f � �� Y ����
s

�� 0

in C, the image

0 �� F pKq � ��F pkq �� F pXq F pfq� �� F pY q ����
F psq
�� 0

by F is a split short exact sequence in E.
Once C and E are abelian categories, any split short exact sequences is canonically induced by a

biproduct. This implies that a functor between abelian categories is protoadditive if and only if it is
additive—so that this left exactness aspect becomes invisible.

The articles [31, 32] provide a list of examples: the reflector of commutative rings to reduced com-
mutative rings, for instance, or any reflector from a category of topological semi-abelian algebras to
Hausdorff algebras over the same theory. In Section 12, we focus on one in particular: the connected
components functor in the context of crossed modules.

Lemma 9.2.3. Any binary coproduct-preserving protoadditive functor F: C → E between pointed
categories with kernels C and E, where C admits binary coproducts is a subtractive functor.

Proposition 9.2.4. Let C a pointed category with kernels and binary coproducts. Let E be a normal
subtractive category, and let F: C → E be a protoadditive functor which preserves binary coproducts
and proper morphisms. If f , g: (C, dC) → (E, dE) are chain homotopic in C, then Hn(F( f )) = Hn(F(g))
for all n.

10. Derived functors

We arrive at the main purpose of this article: to define derived functors in a non-additive context. In a
pointed regular category C with binary coproducts and enough projectives which satisfies Condition
(P), by Theorem 8.1.2, any two projective resolutions of the same object X ∈ C are approximately
chain homotopically equivalent. We let E be a homological category with binary coproducts so that
any two chain homotopic morphisms in it have the same homology. If we now consider a subtrac-
tive functor F: C → E which preserves proper morphisms as in Section 9, then for any n ∈ Z we may
write

Ln(F)(X) := Hn(F(C(X))).

As explained in Section 9, the assumptions on the categories and on F imply that we recover the essence
of all three points valid in the abelian setting, mentioned in Theorem 1.1.1. And indeed, together with
the obvious extension to morphisms in C, the above procedure defines a functor Ln(F): C → E.

Theorem 10.0.1. Let C be a pointed regular category with binary coproducts and with enough pro-
jectives which satisfies Condition (P). Let E be a normal subtractive category, and let F: C → E be a
subtractive functor which preserves proper morphisms. Then Ln(F): C → E is a functor for each n ∈ N.

Proof. We already explained that up to isomorphism, this procedure is independent of chosen reso-
lutions and liftings. It is clear that identities are preserved. Composites are preserved as well: if f : X →
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Y , g: Y → Z and gf : X → Z lift to C( f ): C(X) → C(Y), C(g): C(Y) → C(Z) and C(gf ): C(X) → C(Z),
respectively, then both C(g)C( f ) and C(gf ) are liftings of gf , which makes them chain homotopic by
Theorem 8.1.2. Hence, Ln(g)Ln( f ) = Ln(gf ) by Proposition 9.1.3.

Definition 10.0.2. The functor Ln(F): C → E is called the nth (non-additive) left derived functor of F.

Of course, in the abelian setting, this agrees with the classical definition. We always have:

Proposition 10.0.3. Let F be any functor as in Theorem 10.0.1. If P is a projective object of C, then
L0(F)(P) = F(P) and Ln(F)(P) = 0 for all n ≥ 1.

Proof. Remark 6.1.3 tells us that the chain complex which is P in degree zero and 0 elsewhere is a
projective resolution of P. The functor F applied to it gives a chain complex whose homology is F(P)
in degree zero and 0 elsewhere.

Protoadditive functors often lead to protoadditive derived functors:

Proposition 10.0.4. In the situation of Theorem 10.0.1, suppose moreover that F is a protoadditive
functor between homological categories. Then for each n ∈ N, the nth left derived functor Ln(F): C → E
is protoadditive as well.

Proof. By Proposition 6.2.1 and Remark 6.2.3, any split short exact sequence

0 �� K � �� k �� X
f � �� Y ����
s

�� 0 (12)

in the category C admits a split short exact sequence of resolutions

0 �� ApKq � �� �� CpXq � �� EpY q ������ 0.

The functor F applied to it yields the split short exact sequence of proper chain complexes

0 �� F pApKqq � �� �� F pCpXqq � �� F pEpY qq ������ 0

in the homological category E. The induced long exact homology sequence [5, Theorem 4.5.7] falls
apart into the needed split short exact sequences of derived functors.

Remark 10.0.5. Note that we are assuming that the functor F preserves binary coproducts. In the
unlikely situation that a level-wise coproduct of any two projective resolutions in C is again a reso-
lution (exactness is not guaranteed in general), the left derived functors Ln(F) of F preserve binary
coproducts as well—which, as a consequence of Proposition 10.0.4, makes them subtractive functors.

Recall [6, 13] that in a semi-abelian category, the middle object X in a split short exact sequence (12)
may be seen as a semidirect product K � Y of the outer objects K and Y , with respect to the induced
internal action of Y on K. Here, the above result may be reformulated as follows:

Corollary 10.0.6. Let C be a semi-abelian category with enough projectives which satisfies Condition
(P). Let E be semi-abelian and F: C → E a protoadditive functor which preserves binary coproducts and
proper morphisms. Then

Ln(F)(K � Y) ∼= Ln(F)(K) � Ln(F)(Y)

for each n ∈ N: the left derived functors of F preserve semidirect products.
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When the target of F is abelian, this becomes:

Corollary 10.0.7. Let C be a semi-abelian category with enough projectives which satisfies Condition
(P). Let E be an abelian category and F: C → E a protoadditive functor which preserves binary
coproducts. Then

Ln(F)(K � Y) ∼= Ln(F)(K) ⊕ Ln(F)(Y)

for each n ∈ N.

Proof. This follows from the fact that in an abelian category, the middle object in any split short exact
sequence is a biproduct of the outer objects.

10.1. Syzygy Lemma and long exact sequence in homology

We proceed by proving some basic results that hold for functors which are right exact in an appropriate
sense. Indeed, outside the abelian context, the concept of a right exact functor bifurcates. The following
notion [60] is appropriate for our purposes:

Definition 10.1.1 (Sequentially right exact functor). A functor F: C → E where C and E are pointed
categories is called sequentially right exact when for each short exact sequence

0 �� K � �� k �� X
f � �� Y �� 0 (13)

in C, the sequence

F pKq F pkq �� F pXq F pfq� �� F pY q �� 0

is exact.

Example 10.1.2. If C is a semi-abelian category and F: C → E is the reflector from C to a full replete
regular epi-reflective subcategory E of C, then F is sequentially right exact. This is the situation
considered in Section 12 (where F = π0).

This means, in particular, that the morphism F(k) is proper. Note that in a category with kernels
and cokernels, this is equivalent to the definition given in Subsection 2.2. In particular, sequentially
right exact functors preserve proper morphisms. Hence, for such a functor between categories C and
E as in Theorem 10.0.1, it suffices that it is, in addition, subtractive for the theorem to be applicable.
Furthermore, protoadditivity of F follows as soon as it preserves protosplit monomorphisms. Examples
of such functors include the connected components functors of Section 12 (see [25, 31] for further
details).

We are now ready to prove versions of a few key fundamental results such as the existence of a long
exact sequence in homology (see for instance [78, Theorem 2.4.6] for the abelian case) or the Syzygy
Lemma [78, Exercise 2.4.3].

Lemma 10.1.3. Let C be a homological category with binary coproducts and with enough projectives
which satisfies Condition (P). Let E be a homological category with binary coproducts. If F: C → E is a
sequentially right exact functor that preserves protosplit monomorphisms and binary coproducts, then
L0(F) ∼= F.
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Proof. Being a sequentially right exact functor, F preserves cokernels of proper morphisms. Hence,
L0(F)(X) = H0(F(C(X))) ∼= F(X) for all X in C.

Theorem 10.1.4 (Long exact homology sequence). Let C be a homological category with binary
coproducts and with enough projectives which satisfies Condition (P). Let E be a homological category
with binary coproducts. Let F: C → E be a sequentially right exact functor that preserves protosplit
monomorphisms and binary coproducts. Any short exact sequence (13) in C gives rise to a long exact
sequence in E as in Figure 3 on page 10, which depends naturally on the given short exact sequence.

Proof. The proof goes as in the abelian setting. By Proposition 6.2.1, in the homological category
C, we have a resolution of the given short exact sequence with a split short exact sequence at each level.
Since these are preserved by any protoadditive functor, we obtain a short sequence of proper chain
complexes in E. It suffices to apply [5, Theorem 4.5.7] in the homological category E to find a long
exact sequence as in Figure 3. The shape of the tail of the sequence (which a priori consists of the
functors L0(F)) follows from Lemma 10.1.3.

A direct consequence of this result is the Syzygy Lemma. Recall that an object �(X) is called a
syzygy of an object X if it fits a short exact sequence of the shape

0 �� ΩpXq � �� �� P � �� X �� 0 (14)

where P is a projective object. In a normal category with enough projectives, each object X admits a
syzygy �(X).

Theorem 10.1.5 (Syzygy Lemma). Under the assumptions of Theorem 10.1.4, if �(X) is a syzygy of
X ∈ C, then

Ln+1(F)(X) ∼= Ln(F)(�(X))

for all n ≥ 1.

Proof. By Proposition 10.0.3, we have Ln(F)(P) = 0 for all n> 0. To conclude, we apply
Theorem 10.1.4 on the short exact sequence (14).

The case of Schreier varieties (such as the category of groups, for instance) merits some special
attention, because in such a category, a syzygy is always a projective object.

Corollary 10.1.6. Under the assumptions of Theorem 10.1.5, if C is a Schreier variety, then Ln(F) = 0
for all n ≥ 2.

11. Simplicial homotopy versus approximate chain homotopy

As explained in the introduction and in greater detail in Section 7, outside the additive context, we
cannot define homotopy via (1). This difficulty in defining a suitable notion of chain homotopy led the
authors of [34] to use simplicial methods—following [2, 42, 43]—rather than chain complexes in the
context of semi-abelian homology. Barr and Beck [2] derived functors F: C → E where E is an abelian
category, and Inassaridze [42, 43] considered such F where E is the category Gp of groups.3 In [34],
both approaches are extended to the case where E is any semi-abelian category—although at the time,
Inassaridze’s work was not yet known to the authors of [34]. Aside from the ad hoc strategy of fixing a

3The approach in [53], however, is fundamentally different.
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functorial choice of resolutions once and for all, this was the only general approach to homology readily
available in this context. The existence of standard simplicial tools in the semi-abelian context naturally
led the authors of [36] and [38] to use simplicial methods for proving results in homological algebra.

Our aim in this section is to investigate under which conditions the simplicially defined derived
functors of [34] agree with those of Section 10. We start by recalling some basic definitions.

11.1. Simplicial objects and homology

When C is an abelian category, we have the well-known Dold–Kan–Puppe equivalence [26, 27], which
asserts that the category of simplicial objects in C (denoted s(C)) and the category of positively graded
chain complexes in C (denoted Ch+(C)) are equivalent. In a semi-abelian category, this need no longer
be the case. For instance, in [20], Carrasco and Cegarra provide an explicit description of s(Gp) as being
equivalent to the category of hypercrossed complexes of groups, which differs from Ch+(Gp). This fact
was generalized by Bourn [12] to semi-abelian categories.

We can, however, still associate a chain complex to any simplicial object, even in a non-abelian
category. Indeed, the Moore functor N: s(C) → Ch+(C) can be defined for any pointed category with
pullbacks C. It has been shown in [5, 34] that if C is, in addition, exact and protomodular, then N
maps any simplicial object to a proper chain complex—hence, the concept of homology of a simplicial
object, defined as the homology of the associated Moore chain complex.

For the sake of convenience, we recall some of the details. A semi-simplicial object A = (An)n≥0 in
a category C is a family of objects, together with face operators ∂A

i : An → An−1 for i ∈ [n] = {0, . . . , n}
where n> 0, such that

∂A
i ∂

A
j = ∂A

j−1∂
A
i

holds if i< j. A quasi-simplicial object is a semi-simplicial object equipped with degeneracy
operators σA

i : An → An+1 for n ≥ 0, such that

∂A
i σ

A
j =

⎧⎪⎨
⎪⎩
σA

j−1∂
A
i if i< j

1An if i = j or i = j + 1

σA
j ∂

A
i−1 if i> j + 1

Finally, a quasi-simplicial object is called a simplicial object if the degeneracy operators satisfy

σA
i σ

A
j = σA

j+1σ
A
i

when i< j.
A (quasi-)simplicial morphism from A to B is a family f = ( fn: An → Bn)n≥0 of morphisms of C,

such that

fn−1∂
A
i = ∂B

i fn and fn+1σ
A
i = σB

i fn.

Let A be a (semi-)simplicial object in a pointed category with pullbacks C. The Moore chain complex
or normalized chain complex N(A) is the chain complex defined by Nn(A) = 0 for n< 0, N0(A) = A0

and

Nn(A) := Ker((∂A
l )0≤l≤n−1: An → An

n−1) =
n−1⋂
l=0

Ker(∂A
l : An → An−1)

when n ≥ 1. We denote the canonical inclusion κA
n : Nn(A) → An. The boundary morphism dA

n : Nn(A) →
Nn−1(A) is the restriction of ∂A

n : An → An−1 to the appropriate kernel, and zero when n ≤ 0. Clearly,
(N(A), dA) is a chain complex, so the above definition gives rise to a functor N: s(C) → Ch+(C) where
for a given simplicial morphism f = ( fn)n, the chain morphism Nn( f ) is defined by restricting fn to the
kernels Nn(A) and Nn(B).
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If in addition the category C is homological, then the functor N will preserve and reflect exactness,
that is, the image of an exact quasi-simplicial object by N is an exact chain complex and vice versa [37,
Theorem 3.9].

11.2. Simplicial homotopy

Given simplicial morphisms f , g: A → B, a (simplicial) homotopy h from f to g consists of a family of
morphisms (hi: An → Bn+1)0≤i≤n in C satisfying

∂B
0 h0 = fn and ∂B

n+1hn = gn,

∂B
i hj =

⎧⎪⎨
⎪⎩

hj−1∂
A
i if i< j

∂B
i hi−1 if i = j �= 0

hj∂
A
i−1 if i> j + 1

and σB
i hj =

{
hj+1σ

A
i if i ≤ j

hjσ
A
i−1 if i> j

(15)

for each n ≥ 0. We write h: f � g.
In the abelian setting, the Dold–Kan–Puppe equivalence extends to homotopies: through the equiv-

alence, homotopic simplicial morphisms correspond to homotopic chain morphisms (see for instance
[78, Theorem 8.4.1]). One implication remains true in semi-abelian categories: if h: f � g: A → B, then
an approximate chain homotopy N( f ) � N(g) exists (Theorem 11.2.1). In particular, then HnN( f ) =
HnN(g), so that we recover a result of [36, 38].

Given a simplicial homotopy h: f � g: A → B, our aim is now to construct an approximate chain
homotopy h:N( f ) � N(g). We first observe that from the simplicial identities and the definition of a
simplicial homotopy, we may deduce

∂B
i (σB

j fn − hj) =

⎧⎪⎨
⎪⎩

(σB
j−1fn−1 − hj−1)D(∂A

i ) if i< j

fn − ∂B
i hi = fn − ∂B

i hi−1 if i = j or i = j + 1

(σB
j fn−1 − hj)D(∂A

i−1) if i> j + 1

for any 0 ≤ i< n − 1, so that

∂B
i (σB

j fn − hj)D(κA
n ) = 0 (16)

when i< j or i> j + 1. Furthermore, by Lemma 7.1.2, we have

∂B
i (σB

j fn − hj)D(κA
n ) = ∂B

i (σB
j fnκ

A
n − hjκ

A
n ).

Construction of h0.
By the definition of the simplicial homotopy h, the morphism σ B

0 f0 − h0: D(N0(A)) → B1 satisfies

∂B
0 (σB

0 f0 − h0) = f0 − ∂B
0 h0 = f0 − f0 = 0.

Hence, a unique morphism h0: D(N0(A)) → N1(B) exists (see Figure 19) such that

ker(∂B
0 )h0 = σB

0 f0 − h0.

Now

dB
1 h0 = ∂B

1 ker(∂B
0 )h0 = ∂B

1 (σB
0 f0 − h0) = f0 − g0.

Construction of h1.
It suffices to consider the morphism(

(σB
1 f1 − h1) − (σB

0 f1 − h0)
)

D2(ker(∂A
0 )) = (σB

1 f1 − h1)D(ker(∂A
0 )) − (σB

0 f1 − h0)D(ker(∂A
0 ))
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Figure 19. Diagram for h0.

which, thanks to (15), (16) and naturality of ς , is such that

∂B
0

(
(σB

1 f1 − h1) − (σB
0 f1 − h0)

)
D2(ker(∂A

0 ))

= ((σB
0 f0 − h0)D(∂A

0 ) − 0)D2(ker(∂A
0 ))

= (σB
0 f0 − h0)D(∂A

0 )ςD(A1)D
2(ker(∂A

0 ))

= (σB
0 f0 − h0)D(∂A

0 )D(ker(∂A
0 ))ςD(N1(A)) = 0

and

∂B
1

(
(σB

1 f1 − h1) − (σB
0 f1 − h0)

)
D2(ker(∂A

0 ))

= (( f1 − ∂B
1 h1) − ( f1 − ∂B

1 h0))D2(ker(∂A
0 )) = 0.

Consequently, there exists a unique morphism h1: D2(N1(A)) → N2(B) such that

κB
2 h1 = (

(σB
1 f1 − h1) − (σB

0 f1 − h0)
)

D2(ker(∂A
0 )).

By Lemma 7.1.2,

ker(∂B
0 )dB

2 h1 = ker(∂B
0 )(N1( f ) − N1(g)) − ker(∂B

0 )h0D(dB
1 ),

and since ker(∂B
0 ) is monic, this implies

dB
2 h1 = (N1( f ) − N1(g)) − h0D(dB

1 ).

For n ≥ 2, the morphisms that we must consider are slightly more complicated, since they will involve
the natural transformation ς .

Construction of h2.
When n = 2, we put

h̃2 :=
(

(σB
2 f2 − h2)ςD(A2) −

(
(σB

1 f2 − h1) − (σB
0 f2 − h0)

))
D3(κA

2 ).

Then there exists a unique morphism h2 such that κB
3 h2 = h̃2. We find

dB
3 h2 = (N2( f ) − N2(g))ςD(N2(A)) − h1D2(dA

2 ).
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Figure 20. Diagram for hn.

Construction of hn.
We can proceed similarly for defining hn when n ≥ 2:

h̃n :=
(

(σB
n fn − hn)ς n−1

D(An) −
(
(σB

n−1fn − hn−1)ς n−2
D(An)

− ( · · · − ((σB
2 fn − h2)ςD(An) − ((σB

1 fn − h1) − (σB
0 fn − h0))) · · · )

))
Dn+1(κA

n )

= (σB
n fn − hn)ς

n−1
D(An)D

n(κA
n ) − (

(σB
n−1fn − hn−1)ς n−2

D(An)D
n−1(κA

n )

− ( · · · − ((σB
2 fn − h2)ςD(An)D

2(κA
n )

− ((σB
1 fn − h1)D(κA

n ) − (σB
0 fn − h0)D(κA

n )) · · · ))
)

Using again the Equations (16) and (10), we can prove that ∂B
i h̃n = 0 for all 0 ≤ i ≤ n. Therefore, there

exists a unique hn such that κB
n+1hn = h̃n as in Figure 20. Finally, by definition of hn and of hn−1 for n ≥ 2

and by using again the Equation (16) and Lemma 7.1.2, we find:

dB
n+1hn = (Nn( f ) − Nn(g))ς n−1

D(Nn(A)) − hn−1Dn(dA
n ).

This proves the next result.

Theorem 11.2.1. Let f , g: A → B be simplicial morphisms in a semi-abelian category. If f and g are
simplicially homotopic, then the chain morphisms N( f ) and N(g) are approximately chain homotopic
(Definition 8.1.1).

By Theorem 8.3.1, we thus recover:

Corollary 11.2.2. Let f , g: A → B be simplicial morphisms in a semi-abelian category. If f � g then we
have HnN( f ) = HnN(g) for all n ≥ 0.

11.3. Simplicial resolutions versus chain resolutions

Simplicial objects can be used to define simplicially derived functors. Our aim here is to compare these
with the chain derived functors of Section 10 in contexts where both are available.
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Recall that an augmented simplicial object (S, ∂S
0 ) is a simplicial object S together with a morphism

∂S
0 : S0 → S−1 such that ∂S

0 ∂
S
0 = ∂S

0 ∂
S
1 . In the context of a homological category,4 an augmented simplicial

object (S, ∂S
0 ) is a (projective) simplicial resolution (of the object S−1 ) when the sequence

¨ ¨ ¨ �� Nn`1pSq dS
n`1 �� NnpSq �� ¨ ¨ ¨ dS

1 �� N0pSq BS
0 �� S´1

�� 0 (17)

is exact (so that, in particular, S−1 = H0(N(S))) and n ≥ 0 implies that Sn is projective.
Barr and Beck [2] use comonads to construct resolutions (which are potentially not of the above

kind, depending on the chosen comonad), while Tierney and Vogel [72] use a recursive construction
(for something more general involving a semi- or quasi-simplicial object). Here, it suffices to recall
that in each case, any two given resolutions are homotopically equivalent, so that they can be used to
define derived functors. For instance, if C is a variety of algebras and G is the comonad induced by the
forgetful adjunction to Set, then each object X of C admits a canonical simplicial resolution we denote
(G(X), ∂G(X)

0 ). Here, the definition recalled above does indeed agree with Barr and Beck’s [37, Theorem
4.11]. For any functor F: C → E where E is a semi-abelian category and for each n ≥ 0, we may define
the (n + 1)th simplicially derived functor Hn+1(−, F)G of F via

Hn+1(X, F)G := Hn(N(F(G(X)))),

for X in C. Note the dimension shift which is there for historical reasons; see, for instance, [34, 36] for
further details.

On the way to proving that under certain conditions, these derived functors may be obtained via
projective chain resolutions, we are now going to explore when the normalization N(S) of a simplicial
resolution (S−, ∂S−

0 ) of an object X is a projective chain resolution of X. As explained above, in a homo-
logical category, we always find an exact sequence (17) of the right shape. We just need that all the
objects Ni(S) are projective.

This depends on a dimension shift argument, based on the concept of décalage of an augmented
simplicial object. Given such an (S, ∂S

0 ) in a homological category C, its décalage is the augmented
simplicial object (S−, ∂S−

0 ) obtained by leaving out the S−1, all the ∂S
0 : Sn → Sn−1 and all the σS

0 , so
that S−

n−1 = Sn, ∂S−
i = ∂S

i+1: Sn+1 → Sn, etc. Those left out morphisms conspire to a split epimorphism of
simplicial objects, and thus a short exact sequence

0 �� ΛpSq � �� �� S´ pBS
0 qn� �� S ����

pσS
0 qn

�� 0 (18)

in s(C). Since the functor N is exact (see [37, Theorem 3.9]), we obtain a split short exact sequence of
chain complexes

0 �� NpΛpSqq � �� �� NpS´q � �� NpSq ������ 0. (19)

By [37, Lemma 3.6], we have HnN(�(S)) = Hn+1N(S) for all n ≥ 1, essentially by the long exact homol-
ogy sequence induced by this short exact sequence of chain complexes and the fact that HnN(S−) = 0
when n ≥ 1. However, the following stronger result holds as well and does in fact follow immedi-
ately from the definition of the Moore complex and (18): for all n ≥ 1, we have Nn−1�(S) = NnS and
d�S

n = dS
n+1. From this, it is easy to deduce that Nn(S) = (�n(S))0 for all n ≥ 1.

If now Condition (P) holds in C, then if a simplicial object S in C consists of projective objects, so
does S−, and hence �(S) as well, by the exactness of (18). By induction, it follows that all objects of
N(S) are projective.

4The concept of a (semi-)simplicial resolution goes back at least to [2, 27, 71, 72] and makes sense in contexts, far more general
than homological categories. The current setting allows a simpler presentation by means of an exact chain complex [37, Theorem
4.11], while sufficing for our purposes.
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In conclusion: the normalization of a projective simplicial resolution S(X) of an object X is a
projective chain resolution of X.

Proposition 11.3.1. Let C be a homological category with enough projectives that satisfies Condition
(P), and let X be an object of C. For any simplicial resolution S(X) of X, the Moore complex N(S(X)) is
a projective chain resolution of X.

Since the projective chain resolution N(S(X)) will be approximately chain homotopically equivalent
to any projective chain resolution C(X) of X, it is useful to compare the results of applying a functor to
both S(X) and C(X). If the functor F is protoadditive, we can apply it level-wise to (18) and observe that
F(�(S(X))) =�(F(S(X))). Consequently,

F(Nn(S(X))) = F((�n(S(X)))0) =�n(F(S(X)))0 = Nn(F(S(X)))

for all n ≥ 1, which implies

Hn(N(F(S(X)))) = Hn(F(N(S(X))))

for all n ≥ 0. Therefore:

Theorem 11.3.2. Let C be a homological category with binary coproducts and enough projectives that
satisfies Condition (P), let E be a semi-abelian category, and let F: C → E be a protoadditive functor
that preserves binary coproducts and proper morphisms. Then, for any object X, any choice of simplicial
resolution S(X), and any chain resolution C(X), we have

Hn(N(F(S(X)))) = Hn(F(N(S(X)))) = Hn(F(C(X))).

If moreover C is a variety of algebras and G is the comonad induced by the forgetful adjunction to
Set, then for each n ≥ 0, the derived functor Ln(F) is naturally isomorphic to Hn+1(−, F)G.

In the next section, we consider an example of this situation in the context of crossed modules.

12. Example: crossed modules and n-cat-groups

The category XMod of crossed modules [56, 79], being a variety of �-groups [40], is a semi-abelian
category with enough projectives [46]. More generally, such is the variety n-Cat-Gp of n-cat-groups
[52] for each n ≥ 1. It is known that XMod is not a Schreier variety: in [21, Proposition 5], a projective
object is given that is not free. On the other hand, in [25] we find:

Theorem 12.0.1. In the category XMod of crossed modules, the class of projectives is closed under
protosplit subobjects.

It is further shown there that more generally, the non-Schreier variety n-Cat-Gp of n-cat-groups
satisfies Condition (P) for each n ≥ 1. This is a consequence of the fact [25] that the category of internal
crossed modules [44] in any semi-abelian variety of universal algebras whose class of projectives is
closed under protosplit subobjects again satisfies Condition (P). For each n ≥ 1, the category n-Cat-Gp
is equivalent to the category Catn(Gp) of n-fold categories in Gp, and the result follows by induction
from the equivalence between internal crossed modules and internal categories.

A concrete example of a protoadditive functor in the context of crossed modules is the connected
components functor π0: XMod → Gp. Let us recall [18, 55] that any crossed module (T , G, φ) can be
viewed as follows as an internal category in Gp. Its underlying reflexive graph occurs in the diagram
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0 �� T � �� k �� T ¸ G
d � ��

c
�� G ����e�� 0

where k = ker(d), ce = 1G, and ck = φ, and the semidirect product is taken with respect to the given
action of G on T . Hence, π0 ((T , G, φ))may be defined as the coequalizer of d and c, or equivalently [34,
Proposition 3.9] as the cokernel of ck = φ. The functor π0 is left adjoint to the discrete crossed module
functor D: Gp → XMod, which associates to a group G the (discrete) crossed module 0 → G. This
implies, in particular, that π0 preserves all coproducts. Moreover, Gp can be viewed as the subvariety of
XMod consisting of the discrete crossed modules. From this last observation, it follows that π0 preserves
proper morphisms: actually, it is sequentially right exact (see Example 10.1.2). Finally, as shown in [31],
the functor is protoadditive.

By Theorem 10.0.1, the non-additive derived functors of the protoadditive functor π0: XMod → Gp
are well defined. By Theorem 11.3.2, these are equivalent to the simplicially derived functors (in the
sense of [2]) of the functor π0, which are known to be expressible in terms of Hopf formulae [31, 33].
This provides a new perspective on these Hopf formulae, and more generally on the Hopf formulae of
[31, Theorem 3.3], which may now be obtained as the chain derived functors of the natural composite
of connected components functors:

n-Cat-Gp → (n-1)-Cat-Gp → . . .→ 1-Cat-Gp � XMod → Gp.

Something very similar happens in [28]. Further details, including detailed proofs and a general result
for internal crossed modules in any semi-abelian category that satisfies Condition (P), are given in the
article [25].

13. Further questions

The condition that the class of projective objects is closed under protosplit subobjects is quite new and
not yet very well understood. We have seen that it holds for Lie algebras over a commutative unitary ring,
for of crossed modules, and more generally for n-cat-groups, besides all Schreier varieties of algebras
and all abelian categories. It is not clear how common this condition is, and what its implications are.
We list here some further problems that we believe are worth investigating.

(1) Characterize those varieties of algebras that satisfy Condition (P).
(2) For a protoadditive functor whose domain satisfies Condition (P), simplicially derived func-

tors are equivalent to our chain derived functors. Protoadditive functors between semi-abelian
categories are relatively rare compared to additive functors between abelian categories. (For
instance, there are no non-trivial protoadditive reflections of the category of groups [23].) Find
new examples and characterizations to better understand them.

(3) In general, explore the relationship between the chain derived functors of a functor between
semi-abelian varieties of algebras and the simplicially derived functors of the same functor.

(4) Explore approximate chain homotopy from a homotopy-theoretical perspective. In forthcoming
work, we already checked that it can be characterized by means of a cylinder object, but we did
not yet examine the homotopy theory of the category of chain complexes with respect to this
notion (i.e., quotient out the homotopy relation) from a general, abstract perspective. Natural
questions in this context include, whether there exists a Quillen model structure [61] (or perhaps
a weaker, one-sided version of this notion such as the one considered in [17]) on the category of
chain complexes with respect to approximate chain homotopy, and whether the derived functors
can be computed by means of this model structure.

(5) We did not investigate how to deal with right derived functors or with duality in general. Neither
did we study those functors which typically lead to cohomology groups, as in [60, 65] for
instance. Here the question arises, for which kind of abelian object A of a semi-abelian category
C, the functor Hom(−, A): C op → Ab satisfies the conditions considered in this article.
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