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Abstract

‘We prove in generic situations that the lattice in a tame type induced by the completed cohomology
of a U (3)-arithmetic manifold is purely local, that is, only depends on the Galois representation
at places above p. This is a generalization to GL; of the lattice conjecture of Breuil. In the
process, we also prove the geometric Breuil-Mézard conjecture for (tamely) potentially crystalline
deformation rings with Hodge—Tate weights (2, 1, 0) as well as the Serre weight conjectures of
Herzig [‘The weight in a Serre-type conjecture for tame n-dimensional Galois representations’,
Duke Math. J. 149(1) (2009), 37-116] over an unramified field extending the results of Le
et al. [‘Potentially crystalline deformation 3985 rings and Serre weight conjectures: shapes and
shadows’, Invent. Math. 212(1) (2018), 1-107]. We also prove results in modular representation
theory about lattices in Deligne—Lusztig representations for the group GL;(IF,).
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1. Introduction

One of the most important developments in the Langlands program in recent
years has been the p-adic local Langlands correspondence for GL,(Q,).
Unfortunately, extending this correspondence even to GL,(K) has proven to be
exceedingly difficult and all evidence suggests that the desired correspondence
will be much more complicated. On the other hand, there has been some progress
on several avatars of the p-adic local Langlands correspondence, namely,
(generalized) Serre weight conjectures, geometric Breuil-Mézard conjecture,
and Breuil’s lattice conjecture. These conjectures inform our understanding of
what the sought after p-adic correspondence should look like. In this paper, we
prove versions of each of these three conjectures for GL;(K) when K/Q, is
unramified.

1.1. Breuil’s lattice conjecture. Motivated by Emerton’s local-global
compatibility for completed cohomology, [CEG+16] constructs a candidate
for one direction of the p-adic local Langlands correspondence for GL,(K).
Namely, they associate to any continuous n-dimensional @p—representation P
of Gal(K/K) an admissible Banach space representation V(p) of GL,(K)
by patching completed cohomology. However, the construction depends on a
choice of global setup, and one expects it to be a deep and difficult problem to
show that the correspondence p — V (p) is purely local.

In [Brel4], Breuil formulates a conjecture on lattices in tame types cut
out by completed cohomology of Shimura curves which is closely related
to the local nature of V(p). This conjecture was proven subsequently in
the groundbreaking work of Emerton—Gee—Savitt [EGS15]. Our first main
theorem is a generalization of Breuil’s conjecture to three-dimensional Galois
representations and the completed cohomology of U (3)-arithmetic manifolds.

Specifically, let p be a prime, F/F* a CM extension (i.e. F a totally imaginary
quadratic extension of a totally real field F*) unramified everywhere, and
r: Gg — GLs (@p) a Galois representation. Let A be the Hecke eigensystem
corresponding to r, which appears in the cohomology of a U (3)-arithmetic
manifold. Choose a place v|p of F* which splits in F, and let H be the
integral p-adically completed cohomology with infinite level at v. One expects
completed cohomology to realize a global p-adic Langlands correspondence
generalizing the case of GL,,q. That is, by letting ¥ denote a place of F
above v and by letting G, be the absolute Galois group of Fy, the GL;(F3)-
representation on the Hecke eigenspace H[A] corresponds to rlg, via a
hypothetical p-adic local Langlands correspondence (when the level outside v
is chosen minimally). In particular, the globally constructed object H[X] should
depend only on r|g,. .
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Suppose that r is tamely potentially crystalline with Hodge—Tate weights (2,
1, 0) at each place above p. For simplicity, in Section 1, we suppose that r
is unramified away from p, although our results hold if r is minimally split
ramified. Assume that each place v|p in F* splits in F and fix a place v|v
for all v|p in F*. Let o(t) be the tame type corresponding to the Weil-
Deligne representations associated with r|g, for all v|p under the inertial
local Langlands correspondence. Throughout Section 1, the tame type o (7) is
assumed to be sufficiently generic. If r is modular, then by classical local-global
compatibility, H [A]1[1/ p] contains o (7) with multiplicity one.

THEOREM 1.1.1 (Breuil’s conjecture, cf. Theorem 5.3.5). Assume that p is
unramified in F* and that ¥ satisfies Taylor—Wiles hypotheses and is semisimple
at places above p. Assume that the level of H outside p is minimal with respect
to r. Then, the lattice

o) :=o(r)NH[M C o(7)

depends only on the collection {rlgFﬁ}m e

Let H be the mod p reduction of H so that H is the mod p cohomology
with infinite level at places above p of a U (3)-arithmetic manifold. We prove the
following ‘mod p multiplicity one’ result (cf. Theorem 5.3.4).

THEOREM 1.1.2 (Theorem 5.3.4). Keep the assumptions of Theorem 1.1.1. Let
o ()7 be a lattice in o (t) such that its mod p reduction & (t)° has an irreducible
upper alcove cosocle. Then Homg (o (t)?, H[A]) is one-dimensional.

These theorems should be compared to [EGS15, Theorems 8.2.1 and 10.2.1]
in dimension two. In the special case where p is split in F* and 7 is irreducible
above p, both theorems were proven by the first author in [Lel8].

The main ingredients used in [EGS15] are the Taylor—Wiles patching method,
the geometric Breuil-Mézard conjecture for potentially Barsotti-Tate Galois
deformation rings (building on the work of [Breld]), and a classification of
lattices in tame types (extending [Brel4, BP13]). When we began this project,
only the first of these tools was available in the case of GL;. The analogue of
potentially Barsotti—Tate Galois deformation rings are potentially crystalline
deformation rings with Hodge-Tate weights (2, 1,0). In [LLHLM18], we
develop a technique for computing these Galois deformation rings when
the descent data is tame and sufficiently generic. We discuss in Section [.2
the geometric Breuil-Mézard conjecture for these rings. The representation-
theoretic results are discussed in Section 1.3.
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Several key differences which distinguish our situation from [EGS15] are
worth mentioning. Breuil’s conjecture for GL, gave an explicit description of the
lattice o (1) in terms of the Dieudonné module of r |GF;' We prove abstractly that
o (t)"is ‘purely local’ (Theorems 5.2.3 and 5.3.5) but without giving any explicit
description of the lattice. The lattice o (7)° is determined by the parameters of
the Galois deformation ring but in a complicated way.

Let o(7)? be a lattice in o (t) whose reduction has irreducible cosocle o.
To prove Theorem 1.1.2, we show that a certain (minimal) patched module
My (o (7)?) is free of rank one over the local Galois deformation ring (with
patching variables) R, (t) (Theorem 5.1.1). In fact, this result is also a key step
in our proof of Theorem 1.1.1. In loc. cit., the analogue of this result is Theorem
10.1.1 where they show that the patched module of any lattice with irreducible
cosocle is free of rank one. In our situation, it is no longer true that all such
patched modules are cyclic. Rather, this is only true when the cosocle o is upper
alcove in every embedding. As a consequence of this, one can deduce that the
isomorphism class as an R, (t)-module of M, (o (7)?) is purely local for any
lattice o (7)?; however, it need not be free.

For the proof that M., (o (7)?) is free of rank one when o is upper alcove,
we induct on the complexity of the deformation ring. The simplest deformation
rings resemble those for GL, and so we follow the strategy similar to [EGS15].
For the most complicated deformation rings, we build up M, (o (7)?) from its
subquotients relying on the description of the submodule structure of reduction
o (1)’ discussed in Section 1.3 and crucially intersection theory results for
components of mod p fiber of the Galois deformation ring.

1.2. Serre weight and Breuil-Mézard conjectures. There is an analogous
global context for a mod p Galois representation 7 : G — GL;(IF) whose
corresponding Hecke eigensystem m appears in the mod p cohomology
with infinite level at v of a U (3)-arithmetic manifold. One expects H[m] to
correspond to r|g, via a hypothetical mod p local Langlands correspondence.
Furthermore, if we let W,(r) be the set of Jordan—Holder factors in the
GL;(OF;)-socle of H[m] and 7|GF5 is tamely ramified, [Her09, GHS18] predict
that W, (7) = W’ (7| Ir:)s where Ir, denotes the inertia subgroup of Gp, and
W (7| 1) 1s a set which is explicitly defined in terms of 7|, (Strictly speaking,
the Hecke eigenspace H[m] is a smooth representation of G(F)), where G+
is a reductive group having a reductive model G, over O+ together with an

isomorphism 5 : G,(Op+) — GL3(Op,).). We have the following version of the
weight part of Serre’s conjecture (cf. Theorem 5.3.3).
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THEOREM 1.2.1 (The weight part of Serre’s conjecture). Assume that p
is unramified in F' and that v satisfies Taylor-Wiles hypotheses, has split

ramification, and is semisimple and sufficiently generic at places above p. Then
W, () = W(Fly,.).

In [LLHL.M18], we prove this theorem with the additional assumption that p
is split in F*. The strategy is to show the numerical Breuil-Mézard conjecture
for the simplest deformation rings (where the shape has length of at least 2)
using [LLHLM18, Section 6.2]. The key new tool is a more conceptual and
robust combinatorial technique for computing the intersection between the
predicted weights W’ (7| 1) and the Jordan—Holder factors of a type and which
is developed in Section 2. This allows us to inductively prove that all predicted
weights are modular.

Using a patching functor which is constructed globally, we show that the
generic fibers of tamely potentially crystalline deformation rings of Hodge—Tate
weight (2, 1, 0) are connected for p generic and deduce the full numerical Breuil—
Meézard conjecture for these Galois deformation rings. Using the numerical
formulation, we prove the following geometric version of the Breuil-Mézard
conjecture (cf. [EG14], Proposition 3.6.1).

THEOREM 1.2.2 (Proposition 3.6.1). Assume that 7|GFa is semisimple and
sufficiently generic. There is a unique assignment o +—> p(o) taking Serre
weights o € W?(7|Gpﬁ) to prime ideals in the unrestricted framed deformation

ring RT_D‘GF~ such that the special fiber Spec (ﬁ;GFN) of the potentially crystalline
framed devformation ring RFTI(;FN of Hodge-Tate w%ight (2, 1, 0) and tame type t

is the reduced underlying subscheme of

U Spec (R, /p(0)).

€W 1, )NIH(E (@)

Moreover, this is compatible with any patching functor.

1.3. Representation theory results. In order to deduce Breuil’s lattice
conjecture from the Breuil-Mézard conjecture, we need (and prove) new results
on integral structures in Deligne-Lusztig representations, which may be of
independent interest. The main theorem (Theorem 4.1.9) is a classification of
integral lattices with irreducible cosocle in tame types, by means of an extension
graph, which plays a key role in the proofs of Theorems 1.1.1 and 1.1.2.

We now briefly describe the extension graph. In Section 2.1, we introduce a
graph on the set of p-regular Serre weights (with fixed central character), with
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vertices corresponding to p-regular Serre weights and adjacency between
vertices described in a combinatorially explicit way. We then show in
Lemma 4.2.6 that two vertices are adjacent if and only if the corresponding
Serre weights have a nontrivial GL;(IF,)-extension between them, justifying the
terminology. This gives a natural notion of graph distance dg, between two
p-regular Serre weights. Theorem 4.1.9 states the following.

THEOREM 1.3.1 (Theorem 4.1.9). Assume that R is a sufficiently generic
Deligne—Lusztig representation of GL3(F,). (In particular, the Jordan—Holder
factors of R occur with multiplicity one.) If o is a Jordan—Holder factor of R, let
R be the unique lattice up to homothety with cosocle o. If o, o' € JH(R) and
that dgpn (0, 0') = d, then:

(1) o’ is a direct summand of the dth layer of the cosocle filtration of R

(2) ifo” € JH(R) is such that dgpn(0, 0”) =d + 1 and dgpn(0’, 0”) =1, then
R’ hasa subquotient which is isomorphic to the unique nonsplit extension
ofa’ by o”; and

(3) if R” C R’ is a saturated inclusion of lattices, then p?R® C R is also a
saturated inclusion of lattices.

The argument is involved, using a mixture of local and global techniques, but
we can distinguish two main steps in its proof. In the first step (Sections 4.2.3
and 4.2.4), we prove the first two items of Theorem 1.3.1 in the case when o is a
lower alcove weight of defect zero (cf. Definition 2.3.8 and Theorem 4.2.16). The
proof uses methods from the modular representation theory of algebraic groups,
embedding R’ ina Weyl module with non- p-restricted highest weights. The key
local argument is a careful study of the restriction of algebraic representations
to rational points (Proposition 4.2.10), which lets us constrain the submodule
structure of (part of) the GL;(IF,)-restriction of an algebraic Weyl module in
terms of the extension graph. This method does not work for all weights o €
JH(R), as the corresponding lattices will not always have simple socle and thus
cannot be embedded into a Weyl module.

In the second step (Section 4.3), we reduce the theorem for the remaining
lattices to the case treated in the first step. We relate the first two items and
the last item of Theorem 1.3.1. The last item, a statement in characteristic zero,
is amenable to an inductive analysis. First, we show that for a fixed weight
o € JH(R), item (3) of Theorem 1.3.1 actually implies the other two items
(cf. Proposition 4.3.16). This crucially uses Theorem 1.3.1(3) in the case d = 1
(cf. Proposition 4.3.7), which is proved using the computation of deformation
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rings in [LILHL.M18], combinatorics of Section 3, and the Kisin—Taylor—Wiles
patching method. This argument follows the suggestion in [EGS15, Section B.2]
that tamely potentially crystalline deformation rings strongly reflect aspects of
local representation theory through global patching constructions.

Next, we show that the first two items of Theorem 1.3.1 applied to R and its
dual in the case of lower alcove defect zero weights imply Theorem 1.3.1(3)
in the case of lower alcove defect zero weights. From this starting point, an
inductive argument proves Theorem 1.3.1(3), thus concluding the proof of
Theorem 1.3.1.

1.4. Notation. If F is any field, we write G ¢ o Gal(F/F) for the absolute
Galois group, where F is a separable closure of F. If F is a number field and v
is a prime of F, we write G, for the decomposition group at v and I, for the
inertia subgroup of Gp,. If F is a p-adic field, we write I to denote the inertia
subgroup of G .

We fix once and for all an algebraic closure Q of Q. All number fields are
considered as subfield of our fixed Q. Similarly, if £ € Q is a prime, we fix
algebraic closures Q, as well as embeddings Q < Q,. All finite extensions of
Q, will thus be considered as subfields in @e- Moreover, the residue field of @(
is denoted by F,.

Let p > 3 be a prime. For f > 0, we let K be the unramified extension of
Q, of degree f. We write k for its residue field (of cardinality ¢ = p’) and

Ok = W(k) for its ring of integers. For r > 1, we set e, & p/" — 1 and fix a
. i 1 = .
compatible system of roots , o (—=p)= € K. We write e for e; and 7 for 7.

Define the extension L = K (;r) and set A & Gal(L/K). The choice of the root
7 lets us define a character

oy Ay — W(k)™

g(m)
H —_—

whose associated residual character is denoted by w,,. In particular, for f = 1, w,
is the mod p cyclotomic character, which will be simply denoted by w. If F,,/Q,,
is a finite extension and Wr, < Gp, denotes the Weil group, we normalize
Artin’s reciprocity map Arty, : F) — W}‘i in such a way that uniformizers
are sent to geometric Frobenius elements.

Let E C @p be a finite extension of Q,,, which will be our coefficient field. We
write O for its ring of integers, fix an uniformizer @ € O, and let my = ().

We write F & O/mg for its residue field. We will always assume that E is
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sufficiently large. In particular, we will assume that any embedding o : K < @p
factors through E C @I,.

We fix an embedding oy : K <> E. The embedding o, induces maps Og <~ O
and k — T; we will abuse notation and denote all these by oy. We let ¢ denote

the pth power Frobenius on k and set o; & 0o o ¢~'. The choice of o gives

oy o 0powy : Ix — O*, a fundamental character of niveau f. We fix once and
def — .

foralla sequence p = (Pn)nen Where p, € Q,, satisfies p,fﬂ = p, and py = —p.

We let Koo £ |,y K (pa) and Gx, & Gal(@,/Ko).
Let p : Gk — GL,(E) be a p-adic, de Rham Galois representation. For o :
K — E C Q,, we define HT, (p) to be the multiset of o-labeled Hodge-Tate

weights of p, that is, the set of integers i such that dimg (,0 Qo k (Cp(—i))GK #0
(with the usual notation for Tate twists). In particular, the cyclotomic character
has Hodge—Tate weights 1 for all embedding o < E.For u = (u;); € X*(1),
we say that p has Hodge—Tate weighs u if

HT,, (0) = {115 Harjs - -5 M j)-

The inertial type of p is the isomorphism class of WD(p)|,,, where WD(p) is
the Weil-Deligne representation attached to p as in [CDT99], Appendix B.1 (in
particular, p — WD(p) is covariant). An inertial type is a morphism 7 : Ix —
GL, (E) with open kernel and which extends to the Weil group Wi of Gx. We
say that p has type (i, t) if p has Hodge—Tate weights © and inertial type given

by (the isomorphism class of) 7.

Let G & GL3,p, denote by T C G the torus of diagonal matrices, and write

W (respectively W,, respectively W) for the Weyl group (respectively the affine
Weyl group, respectively the extended affine Weyl group) of G. We let X*(T)
denote the group of characters of 7, which we identify with Z? in the usual way.
Let R (respectively R") denote the set of roots (respectively coroots) of G and
Agr C X*(T) the root lattice. We then have

W, = Ag x W(G), W = X*(T) x W(G). 1.1)

Let ] and &) be (1, 0,0) and (0, 0, —1), respectively. Let G be SL; ¢ With
torus 79, Let Ay = X*(T*") denote the weight lattice for G, Let X°(T)
denote the kernel of the restriction map X*(T) — Ay. We write ¢; and &,
for the images of ¢| and ¢ in Ay, respectively. We define in a similar fashion
the various Weyl groups W9, W, W for G, Note that we have canonical
isomorphisms W = W% and W, = W,

Let S be a finite set. For each v € S, let Fy be an unramified extension of
Q, of degree f, and let ky be the residue field of Fy. Let J be the set of ring
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homomorphisms [ [;_g kv — F. If we fix an embedding o3 : ky — I and set o3 ;
to be 039 0 ¢, then 7 is naturally identified with the set of pairs (7, i) with
v € S and iy € Z/f;. In applications, S will be a finite set of places dividing
p of a number field F. Sometimes, S will have cardinality one, in which case
we might drop the subscripts from f; and ky and denote the single unramified
extension Fy of Q, by K.

Let G, be the algebraic group [ [;. s Resi,r, GLs with T, the diagonal torus
and center Z,. Let G be the base change G, xr, IF, and similarly define T and Z.
There is a natural isomorphism G = [, 7 GL;3 ¢. One has similar isomorphisms
for T, Z, X*(T), R, R, where R (respectively R) denotes the set of roots
(respectively coroots) of G. If u € X*(T), then we correspondingly write y =
> icq Mi = D _yes My We use similar notation for similar decompositions. Again,
we identify X*(T) with (Z*)7 in the usual way and let ¢ ; and &}, be (1,0, 0)
and (0, 0, —1), respectively, in the ith coordinate and 0 otherwise. Let R € R
(respectively R”'™ C R") be the subset of positive roots (respectively coroots)
of G with respect to the upper triangular Borel in each embedding. We define
dominant (co)characters with respect to these choices. Let X7 (T) be the set of
dominant weights. We denote by X,(T) C X7 (T) the subset of weights A €
X% (T) satisfying 0 < (A, ") < p — 1 for all simple roots a € R*. We call
X1 (T) the set of p-restricted weights. Let n; € X*(T) be (1,0, —1) in the ith
coordinate and 0 otherwise, and let n" be ) ., n; € X*(T). Let n; € X*(T) be
(2, 1, 0) in the ith coordinate and O otherwise, and let n be Ziej n; € X*(T).
Then 7 is a lift of the half-sum of the positive roots of G. _

Let W be the Weyl group of G with longest element wy. Let W and W be the
affine Weyl group and extended affine Weyl group, respectively, of G. Let A, C
X*(T) denote the root lattice of G. As above, we have identifications W = W7,
w, =w7, W = W7 and isomorphisms analogous to (1.1).

The Weyl groups W, E, W, act naturally on X*(T'). The image of A € X*(T)
via the injection X*(T') — @ is denoted by #,. Our convention is that the dot
action is always a p-dot action, thatis, bw - u =t w(pn +n) — 7.

Recall that for (o, n) € R™ x Z, we have the root hyperplane H,, o {r:
(A+n, oY) = np}. An alcove (or sometimes p-alcove) is a connected component
of the complement X*(T') ®z R\ (U(w) H,,). We say that an alcove C is p-
restricted if 0 < (A + n,a¥) < p for all simple roots « € R* and A € C. If
C, C X*(I) ®z R denotes the dominant base alcove, we let

W EweWw: o - C, is dominant}

and _
={we W w - C, is p-restricted}.
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Let w, = (Wy;) € @T be the element woyf_,. The discussion in this paragraph
also applies for G, from which we define the dominant base alcove Cj, W*, and
W, for G.

There is a Frobenius action on X*(T'), denoted by 7 and an induced action of
7 on W defined by 7w (w) (w (1)) = w(w(A)). If A € X*(T), then w(A)y;; = Aviv1
under the standard identification and similarly 7 (s)y;; = sy, for an element s
of one of the Weyl groups above.

Let Gy be [[;.s Resi,r,SLs with torus T5". Let G*' be the base change
G xp, IF, and similarly define T%. Let Ay, = X*(T*") denote the weight
lattice for Qder. Let X°(T) denote the kernel of the restriction map X*(T) —» A we

We write €, ; and &, ; for the images of ¢] ; and ¢} ,, respectively. We define in a

.. . . ~ der ~~ der,+ -~ der,+
similar fashion the various Weyl groups W', W W™ W=, W, for G*

(and Wder+ Wld * for G), with analogous product decompositions.

Let o, B, ¥ T denote the generators for the affine Weyl group W, of GL; given
by reflection over the walls of Cy with &, 8 € W, and y is the affine reflection.
Note that «, 8 satisfy a(¢}) = ¢, and B(g]) = €.

Let S; denote the symmetric group on {1, 2, 3}. We fix an injection S; —
GL;(Z) sending s to the permutation matrix whose (k, m)-entry is 6 ¢, and
8k.semy € {0, 1} is the Kronecker § specialized at {k, s(m)}. We will abuse notation
and simply use s to denote the corresponding permutation matrix. We consider
the embedding X*(T) — GL3(F((v))) defined by A — v* where then v is
the diagonal matrix with entries v®, v”, v°, respectively. In this way, we get an
of square matrices of the same size, we write ]_[;f’:o Bij=By-By----- B,.

Let V be a representation of a finite group I" over an E-vector space. We write
JH(V) to denote the set of Jordan—H®older factors of the mod @ -reduction of an
O-lattice in V. This set is independent of the choice of the lattice.

If R is aring, we let Irr(Spec (R)) denote the set of minimal primes of R.

2. Extension graph

In this section, we give a description of the extension graph of generic

irreducible representations of the group G = G,(F,) and describe the

constituents of the mod p reduction of generic Deligne—Lusztig representations
of G. This also gives a description of the set W’(p) of predicted Serre weights
defined by Herzig [Her(09]. In Section 3, we use these descriptions to prove
the Serre weight conjectures. The distance in the extension graph also plays an
important role in computing the cosocle filtration for the reductions of lattices
in tame types in Section 4.3.
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2.1. Definition and properties of the extension graph. The surjection
X*(T) — Ay identifies p-restricted alcoves of GL; and SL;. Let Cy and C,
denote the p-restricted lower and upper alcoves, respectively, of the weight space

of GL; so that A & {Co, C1}7 is naturally identified with the set of p-restricted
alcoves for G (or G*" when convenient). Our alcoves are fundamental domains
with respect to the dot action, so the base alcove will have a vertex at —». For
notational convenience, we sometimes write 0 and 1 instead of Cy and C; so
that A is identified with {0, 1}. We recall some notions from Section 1.4. Let
X (T) denote the set of p-restricted weights of G and C; € X (T) ® R denote

the lowest alcove (Cy);c7. We consider @der = Ay X W acting via the p-dot

. ~ der, ~ d .
actionon A, ® R. Let W}~ Tc W™ denote the set of elements which take C,
to an element of A. There are six elements of W*"", namely id, (12)¢_, ),

(23)t_(ey—ey)>» (123)1_,, (132)1_,, and (13)7_ (., tey)-

Observe that the inclusion A, — @der (respectively X*(T) — E) induces
an isomorphism " : A, /A, —> @der/ﬂger (respectively ¢ : X*(T)/Ax(=
X*(2)) > W/W,). Let P C A, x W™ be the subset of pairs (e, @) with
W (—r N (w) + Ag) = WW'. We similarly define P € X*(T) x @T Note that
restriction gives a natural surjection P —» P4,

LEMMA 2.1.1. The map
B:P* - A, x A
(@, W) > (0, 7(W) - Cy)
is a bijection.

Proof. The map f is a bijection because (*" is a bijection and ﬂ‘a’“ acts simply
transitively on the set of alcoves for G*'. O

Let u be an element of C,/(p — 7)X°(T). We will often have some lift of 1
in X*(T) in mind, but what we write will not depend on the choice of this lift.
We define a map

Pe — X*(T)/(p — )X (T) (2.1
(w0, W) = W - (n—n+a),

where (o', w') € P is a lift of (w, w). The map (2.1) does not depend on the
choice of lift. Then we define

T, L Ay x A= XD/ (p — )X (T)

to be the composition of B~! with (2.1).
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DEFINITION 2.1.2. We say that a weight A € X*(T) is p-regular if (. + 1,
aV) ¢ pZ for all positive coroots a” € R"™.
Note that a p-regular element belongs to a unique alcove.

Define A}, to be the set
{weéwzw—ku—nego}
(taking the image of j« — 1 in Ay,). Let Tt, be the restriction of T, to Ay, x A.
We establish some basic properties of Tt,,.
PROPOSITION 2.1.3. (1) (Any lift of) Tv,(w, a) in X*(T) is p-regular and is
in alcove w~(a).

(2) The map %, is injective.
Proof. For (1), suppose that (o', w') € Pisaliftof B~ (w, a). Then u—n+a'is
p-regular in alcove C,, by definition of A}, so that Tv,(w,a) = W' - (u —n+ ')
is p-regular in alcove 7' (a) = w - C,,.

For (2), suppose that Tt,(w,a) = v, (v, b). Let (', w') and (V',X") € P
be lifts of 87! (w, @) and B! (v, b), respectively. Then w'- (u —n+w') = X' - (u—
n+v’) (mod (p—m)X°(T)), from which we conclude from the definition of Pd"

that w'|z = V'|z (mod 3X*(Z)). Combining this with the fact that a = b from
(1) and using ¢, we see that W’ = X’ (mod X°(T)). This implies that v = v. [

PROPOSITION 2.1.4. Let u € X*(T) be a character. We have

T, (4 x A)
_JreXi(M/(p— m)X%T) : Ais p-regular and 22)
B h—p+mlze(p-mX(@D]|

Proof. The inclusion of the left-hand side of (2.2) in the right follows from
Proposition 2.1.3(1) and the formula for ‘t,,. We show now the reverse inclusion.
Let A be an element in the right-hand side of (2.2). Then we let

e a € A denote the unique alcove that contains 7 (1);
e o € X*(T)besuchthat (A — u+n)|z =1 — pr |z
e w € A, be the image of ';

o (o', W) € P bealift of B~ (w, a); and
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evbed—wW - (n—n+o) € A
Then (w'~'(v) + ', W) € P is alift of B~ (w'~'(v) + w, a) so that
T, (w ') +w,a) = A

in X*(I)/(p — m)X°(D). O

PROPOSITION 2.1.5. Let  — n be a lift of Tx, (¢, Cy) and B~ (e, C,)) = (¢, W).
Then
Tu(v,a) = Ktu(w’l(v) +¢&,a)

Jor (v,a) € Aﬁ, x A, where w € W is the image of .

Proof. Let (v, X") € P be alift of 87! (v, a). Similarly, let (¢/, w’) € P be a lift
of (¢, w). Then

Tu,a) =% - —n+)

=X W - (m—n+e)+v)

=XW - -(u—n+e&+w'Q))

= Tt#(wfl(v) + ¢, a). O

Recall that a Serre weight is an irreducible F,,—representation of G. Each

Serre weight is obtained by restriction to G from an irreducible algebraic
representation of G of highest weight A € X,(T), and this process gives a
bijection between from X(T)/(p — w)X°(T) to the set of Serre weights of
G (as described in [Her09, Theorem 3.10]; cf. also the beginning of Section 4.2).
If A € X|(T), we write F(A) for the Serre weight corresponding to A. We say
that a Serre weight F is p-regularif F = F (1) where A € X(T) is p-regular (cf.
Definition 2.1.2). Given € C,, and (w, a) € A}, x A, we get a corresponding
p-regular Serre weight F (Tt (w, a)). Propositions 2.1.3(2) and 2.1.4 show that
F(%r,(—)) induces a bijection between the set A}, x A and the set of p-regular
Serre weights of G with the same central character as F'(u — ).

DEFINITION 2.1.6. We say that (w, a) and (v, b) in A}, x A are adjacent if
there exists j € J such that both ¢; = b; and w; = v; fori € J withi # j,
a; #bj,and

w; —v; € {0, £(e1; — &2,;), £&1,j, £&2,/). 2.3)

If F and F’ are p-regular Serre weights, we say that they are adjacent if we
can write F' = F(%t,(w, a)) and F' = F(%v,(v, b)) for some p-regular . €
Cy/(p — 7)X°(T) and some (w, a) and (v, b) which are adjacent in Al x A.
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By Proposition 2.1.5, this definition does not depend on the choice of the lowest
alcove weight u € C,. Indeed, if F = F(%v,(w,a)), F' = F(%x,(v, b)) are
adjacent p-regular Serre weights and A € C, such that F(A — n) and F(u — 1)
have the same central character, then F (T, (w(w —¢€), a)) = F(%r,(w, a)) and
F(Zvy(wv—e), b)) = F(%r,(v,b)) forsome w € Wande € A, and (w(w—
€),a), (w(v — ¢), b) are again adjacent since the set in (2.3) is W-invariant.

REMARK 2.1.7. Geometrically, A}, is the intersection of A, with a translate of
a p-alcove, and two pairs (w, a) and (v, b) are adjacent if and only if w and v
are either equal or neighbors (that is, differ by a W-conjugate of a fundamental
weight) and either @ # v and a and b have different labels in the unique
component where w and v differ or ® = v and @ and b differ in exactly one
component. Note that for any (w, a) € A}, with all its neighbors in A}, there
are 7*7 adjacent vertices.

Definition 2.1.6 endows A}, x A with a graph structure with edges given
by adjacency. By the above description, this graph is connected and thus it is
endowed with a metric. By Proposition 2.1.4, any u € C,, thus endows the set
of p-regular Serre weights with the same central character as F(u — n) with
a metric. By Proposition 2.1.5, the metric on a fixed set is independent of the
choice of u.

DEFINITION 2.1.8. Given p-regular Serre weights F', F’ with the same central
character, we denote their distance by dgp,(F, F'). In particular, F' and F’ are
adjacent if and only if dgp, (F, F') = 1.

We conclude this section by showing the relation between p-regular Serre
weights and G-extensions. We start by recalling the following definition.

DEFINITION 2.1.9. Let A € X*(T') be a weight. We say that A lies n-deep in its
alcove if, for all ¥ € RY'", there exist integers m,, € Z such that pm, + n <
(A+n,aY) < p(mg + 1) — n. We have the analogous definition for weights in

X*(T).

For instance, a dominant weight A € X*(T) lies n-deep in alcove C if n <
(A+n,av)y < p—nforalli =0,..., f — 1 and all positive coroots ¥ € R""*.

A Serre weight F is said to be n-deep if we can write ' = F(u) for some
© € X (T) which is n-deep. We call the graph on the p-regular Serre weights
defined by adjacency the extension graph. The terminology is justified by the
following theorem.
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THEOREM 2.1.10. Let F, F' be Serre weights which are both 6-deep. Then
Ext;,(F, F') # 0 ifand only if F and F' are adjacent.

Proof. This is Lemma 4.2.6, whose proof only uses modular representation
theory and does not rely on any results from other sections. O

REMARK 2.1.11. We partition the set of vertices (w, a) into two sets, according
to the class X;a; mod 2 (by interpreting a; € {0, 1}). This makes the extension
graph into a bipartite graph.

2.2. Types and Serre weights. Now suppose that S contains exactly one
element v, and let K be F;. An inertial type is a representation 7 : Ix — GL3(E)
with open kernel which extends to the Weil group of K. An inertial type is tame
if it factors through the tame inertial quotient. All our tame inertial types are
defined over O and we use T : Ix — GL;(FF) to denote the reduction to the
residue field.

Tame inertial types have a combinatorial description which we will now recall
(cf. [Her09, (6.15)] or [GHS18, Definition 8.2.2]). Let (w, u) € W x X*(T). As
in [Her09, (4.1)] or the paragraph preceding [GHS18, Definition 10.1.12], for
any (v,0) € X*(T) x W, define

O (w, p) = (ewr (o)™, o (1) + pv — own (o) 'w(v)) 2.4)

and we write (w, u) ~ (w’, u') if there exists (v, o) such that ©?(w, pu) = (w’,
). The following describes all isomorphism classes of tame inertial types for
K.

DEFINITION 2.2.1. Define an inertial type 7(w, ) : Ix — GL3(O) as follows:
If w= (so,...,57-1), then set s, = soS;_157—»---51 € Wand e € X*(T) such
that ey = po and or; = s7's; ' .. .s;l(u_,) for 1 < j < f — 1. Let r denote the
order of s;, and set f' = fr. Then,

Yock<ro1ay, pl
tw ) @o 2.5)
1<i<3
where a© = Zj:ol o;p’ € Z*. Note that (w, u) ~ ((s, 1,..., 1), @) and T (w,
w) = t((s., 1,..., 1), a) by construction.

DEFINITION 2.2.2. Let T be a tame inertial type.

(1) We say that t is regular if the characters appearing in the right-hand side
of (2.5) are pairwise distinct.
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(2) We say that t is n-generic if there is an isomorphism 7 = t(s, A + n) for
some s € W and A € X7 (T) which is n-deep in alcove C,;.

(3) We say thatp : Gx — GL;(IF) is n-generic if p*|;, = T for a tame inertial
type t which is n-generic.

(4) A lowest alcove presentation of T is a pair (s, u) € W x X*(T) where
u € C,such that T = 7(s, u +n) (which by definition exists exactly when
7 is 0-generic).

REMARK 2.2.3. The notion of genericity given in [LLHLM18, Definition 2.1]
is slightly different than Definition 2.2.2(2). In particular, an inertial type which
is n-generic in the sense of Definition 2.2.2(2) is a fortiori n-generic in the
sense of [LLHLM18]. Furthermore, our notion of genericity differs from that
of [GHS18, Definition 10.1.12] by a shift by .

REMARK 2.2.4. If 7 is 1-generic, then t is regular.

Now let S have arbitrary (finite) cardinality rather than one. For s € W and
un € X*(T), we can define sy and py in the evident way. Then we set ts(s, 1) to
be the collection (t3(sy, U7))7es-

The notions of regular and n-generic are extended in the evident way to a
collection t5(s, ) of tame inertial types. Similarly, there is an evident notion of
n-generic for a collection pg of Galois representations oy : G, — GL3(F) for
veS.

We now introduce the Deligne—Lusztig representations which are relevant for
this paper. See also [GHS18, Section 9.2] and [LLHL19, Section 2.2], though
we note that our context is slightly more general than [LLHL19, Section 2.2]
since S may have size greater than one. Let (s, u) € W x X*(T) be a good

pair [LLHL19, Section 2.2]. Following [GHS18, Propositions 9.2.1 and 9.2.2],

we can attach to (s, i) a genuine Deligne-Lusztig representation R,(u) of G &

G, (F,) defined over E (taking E to be sufficiently large). Note that R, (i) is
denoted as R(s, n) in [GHS18].

DEFINITION 2.2.5. Let (s, ) € W x X*(T) be a good pair and let n > 0. We say
that R,(u) is n-generic if there exists an isomorphism R;(u) = Ry (u') where
u' — nis n-deep in alcove C,, (note that the evident generalization of [LLHL19,
Lemma 2.2.3] implies that (s, ©’) is good). By [GHS18, Proposition 9.2.1] and
the evident generalization of [LILLHL19, Proposition 2.2.4], when n > 0, then
Ts(s, p) is n-generic (cf. Definition 2.2.2(2)) if and only if R,(u) is n-generic.
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By inflation, we consider R,(x) as a smooth [ [_s GL3(Op,)-representation.
We recall some basic results on R,(u). Let o(ty) be a smooth GL;(Op)-
representation associated with ty as in [CEG+16, Theorem 3.7], and let o (t5s)
be the [ [;_s GL3(Op,)-representation Q)-_s 0 (7).

PROPOSITION 2.2.6. Let p —n € X*(T) be 1-deep in alcove C,,. Then:
(1) [DL76, Theorem 6.8] R;(w) is irreducible.
(2) [LLHLI19, Corollary 2.3.5] o (ts) can be taken to be R;(1).

We conclude this section with some background on Serre weights associated
with semisimple Galois representations. Let Ts be a collection of tame
representations Ty : Ip, — GL3(F) which extend to Gpr. By [GHSI1S,
Proposition 9.2.1], one attaches to Ty an E-valued representation V(Ty) of
GL;(ky). Let V(T s) be the G-representation Q);_s V (Ty). When T is Ts(s, 1)
for a good pair (s, u), V(Ts) is isomorphic to R;(u) [GHS18, Proposition
9.2.3]. We write ps|, for the restriction to inertia of the collection ps.

Let w, & wot_, € E Recall the self-bijection R on p-regular Serre weights
defined in [GHS18, Section 9.2]:

R(F(M) = F (i, - 2).

DEFINITION 2.2.7 [GHS18, Definition 9.2.5]. Let ps be a collection of 2-
generic semisimple Galois representations py : Gp — GL3(F). The set of
predicted weights for ps is defined to be

def

W @s) £ |R(F) : F € HV(sli, )} -

If 75 is a collection of tame inertial types 7y : Ir, — GL3(O), we furthermore
define

W (Bs, 1s) S W (Bs) NIH(0 (1s)).

REMARK 2.2.8. The condition that pg|;., is 2-generic is to ensure that

the elements of JH(V(psli,)) are all O-deep so that R is defined (cf.
Lemma 4.2.13).

Recall from [GHS18, Definition 7.1.3] that there is a subset W, () € W’ (p)
of obvious Serre weights of p. The set Wy, (ps) is defined in the evident way.
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2.3. Combinatorics of types and Serre weights. Recall the notation pg
from the previous section. We will always assume that p; is 2-generic and
semisimple for all ¥ € S in what follows. The following proposition describes
Wonv (D) 1n terms of the extension graph.

PROPOSITION 2.3.1. Assume that pg is a collection of semisimple Galois
representations. Suppose that psli,, = Ts(s, 1), where & — 1 is 3-deep in C,,
Then Wy, (pg) is the set

{F(‘Zt,\(s(a)), w(@) - Cy)) : W= wt 1, € ﬁr,der}.

Proof. This follows from [LLHL19, Corollary 2.2.13 and (2.6)]. O

DEFINITION 2.3.2. Define

(81 + &2, O)a (81 — &2, O)a (82 — €1, O)
Z‘0 é (O’ 1)’ (813 1)’ (SQv 1)
(O’ 0)9 (815 O)’ (827 O)

Define ¥ £ 7 c A, x A.

The set of predicted weights W’(pg) and the Jordan—Holder factors of a
Deligne—Lusztig representation R () will be described in terms of the ‘triangle’
Xy inside Ay x {Cy, C,} (see Figure 1).

DEFINITION 2.3.3. Define the following subsets of X;:

Eobvdéf (81 +8270)9 (81 _8270)9 (82_8170)
0 (09 1)’ (817 1)7 (827 1) ’
i &5\ T

We say that (w, a) € X' is obvious (respectively inner) in component i if (w;,
a;) € X5™ (respectively (w;, a;) € Zim).

We define an involution r of A}, x A by r(w, a) = (w, a’) with ¢; # a] for
alli € J.

PROPOSITION 2.3.4. Let n € X*(I). Suppose that V(psli,) = Rs(u + v)

where v € A and p + v — n is 3-deep in alcove C,. Then W (ps) is
F(Zv,(t,sr(X))).
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(w,a) = (e1 + €2, Co)

(w,a) € {(e1,C0), (e1,C1)} (w,a) € {(e2,Cp), (e2,C1)}

(w,a) = (e1 — €2, Co)

(w,a) € {(0,Cp), (0,C1)} (w.a) = (e2 —€1,C0)

Figure 1. The set X.

Proof. By Proposition 2.3.1, Wy, (ps) 1S given by

[F(Ttupu(s(@), m(@) - Cp)) : 0 = wi_g1,, € W)

Since v € Ay, we have Tv,4, (s(w), T (W) - C,) = Tr,(s(w) +v, m(W) - C,). By
the generalization of Jantzen’s formula in [Her09, Appendix, Theorem 3.4], the
reduction of R (w+v) is given in terms of reductions of Weyl modules. The fact
that i+ v — 7 is 3-deep implies that these Weyl modules decompose in a generic
pattern. Hence, W’(py) is given by [GHS18, Proposition 10.1.8], which is

~,+.der

F({Tr,(ts(w), @) |0 = wt_z-1, € W, t(@) - C; 1 a}).
This set is precisely F (Tt (t,57(X))). ]

PROPOSITION 2.3.5. Ifv € X*(T) such thatv+n € A, and u+v —n is 3-deep
in alcove C, then JH(R;(n + v)) = F (3, (t,5(X))).

Proof. Sincetjo R o%r, = T, or, F (T, (w, a)) € JH(R,(A — 1)) if and only
if F(Tr,(r(w,a))) € RAUH(R,(A))) = W'(ps) where V(plis) = Ry(A). The
result then follows from Proposition 2.3.4. O
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DEFINITION 2.3.6. For any w € ﬁ we set Ry(u) o R, (u + w(0)), where
w € W is the projection of w.

There is an action of E on Ay, x A where it acts through ﬂder on just the first
factor (via the usual action, not the dot action). By Propositions 2.3.4 and 2.3.5,
we have the following.

PROPOSITION 2.3.7. Let w € W 1, and assume that jx+w~"(0) — 1 is 3-deep in
C,. Then the set JH(Rg-1(w)) is F(‘Stﬂ(ﬁ) 2. Ifw e W, and V(Psli,,) =
Rw(u), then the set W' (pg) is F (Tt (w(r(X)))).

For the rest of this section, fix a character u such that 4 — 5 is 3-deep in C,,
and an element s € W.
For (sw,a) € A}y x A, weleto") = F(Tr,(sw, a)). When the pair (s, /1)

(s, 1)
(.a) to

lighten notation. Let w € W t, such that sw~'(X) C A}, x Aand pu+sw"(0)—
n is 3-deep. Then the map

is clear from the context, we will simply write o, , instead of o

W (X) = JH(R,5-1 (1)) (2.6)

w (C() a) - O_(w’l(w) a)

is a bijection by Proposition 2.3.7. Similarly, if V(psls, ) = Rs(n), then the
map

r(%) - W (ps) (2.7)
(s,

r(w,a) = 0,4,

is a bijection.

DEFINITION 2.3.8. We say that o € JH(R,z-1 () #-1(w)) is an outer (respectively
inner) weight for R o Ryz-1() in component i € J if 0 = 0@-1(0).0) With
(wi,a;) € X3 (respectively (w;, @;) € Xi™). We define the defect of o with
respect to R as

Defr (o) =4 #{i € J such that o is an inner weight of R in component i}.
(2.8)
Similarly, if V(ﬁsllFs) = R,(u), we say that o0 € W'(pg) is an obvious
(respectively shadow) weight for ps in component i € J if 0 = 0, With
(wi,a;) € Zg™ (respectively (w;, a;) € Xi™). We define the defect of o with
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Table 1. The graph X.

O(e1+£2.0)
O(e1—£,.0) O(£1.0) 7(0.0) O(2,.0) O(ey—£1.0)

=

respect to pg as

/

o0.1

Def; (o) «f #{i € J such that o is a shadow weight of 5 in component i }.

(2.9)

We give the set X, the structure of a graph in Table 1. We write EOJ for
the corresponding product graph. The above bijections respect the notion of
adjacency for JH(R,z-1 (1)), W’ (ps), and X .

We now describe the intersections of JH(R,z-1 (1)) and W’ (ps) for o5 rs =
Ts(s, 1) in terms of the action of ﬁ on Ay, using Proposition 2.3.7. We first
introduce a subset of ﬂ, the admissible set, which appears in Corollary 2.3.11
and again in Section 3.

Recall from Section 1.4 that W denotes the extended affine Weyl group of

G¥ GL; r. The choice of the dominant base alcove endows W with a Bruhat

order which is dengted by <. We also have the natural generalization of the
Bruhat order < on W associated with the choice of the dominant base alcove.

DEFINITION 2.3.9. Let A € X*(T'). We define
Adm(r) = {0 € W | @ < 1,4, for some s € W}.

Similarly, for a weight u = (u;); € X*(I), define

Adm(p) = [ [Adm(u;) c W.

J

REMARK 2.3.10. For combinatorics of weights as in this section, we use the
dominant base alcove and the corresponding affine reflection y = = ¢ 9 1)(13)
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as a generator for W', When working on the Galois side, as in Section 3, the
antidominant base alcove appears naturally, and the analogous set Adm" () for
the antidominant base alcove plays an important role (see Definition 3.1.1 and
the discussion before). The affine generator for the antidominant choice of base
alcove is y = (13)#1,0,—1). Note that in [LLHLM18], everything is in terms of
antidominant and so what we call Adm(n) there, we denote by Adm" () here.

For i € W, define ¥ = o N @(r(EO)). Similarly, for w € ﬂ, let

Xy Yyni (r(E)). One can directly compute these sets using Figure 1. For

example, using Figure 2, one can check that X' is empty if and only if w is not
in Adm(n)X°(T) (in essence, [LLLHL19, Proposition 4.4.2] is a generalization
of this fact). Otherwise, see Table 2 for a description of X.

COROLLARY 23.11. Let w € W,_t,. Assume that both @ — n and p +
sw='(0) — n are 3-deep in C,. The set RUJH(R,(1))) N JH(Rz-1 (1)) is the
set of weights 0" where (w,a) € Zg-1. Similarly, the set JH(R, (i — 1)) N

(w,a)
RAH(Rz(u — 1))) is the set of weights cr((;’,’;)) where (w, a) € 2.
Proof. By Proposition 2.3.7, one can reduce the case where s = id. In that
case, (2.6) and (2.7) imply that the set of Serre weights in the intersection
RAOH(R; (1)) N JH(Rz-1(w)) 1is ‘It,l(ﬁ"(z) N r(X)). We conclude by
noting that w~'(X) N r(X) = r(Xg-1). The statement for JH(R, (i — 1)) N
RAUH(R,z(u — 1))) is proved similarly. I

LEMMA 2.3.12. If (w,a) € Ay, x A\ r(X), there exists W € W t, such that
(w,a) € w (X)) and w ¢ Adm(n).

Proof. We can work one component at a time and, thus, reduce to the case where
#J = 1. This can then be checked directly using Figure 2. O

COROLLARY 2.3.13. Let A € X (T) be 5-deep and w — n € C, be 3-
deep. If F(A) ¢ R(JH(R;())), then there exists a 3-generic Deligne—Lusztig
representation Ry (') such that F()) € JH(R, (') but

RUH(R; (1)) NTH(R, (1)) = V.
Proof. If the central characters do not match, that is, (A — u +n)|z ¢ (p —

) X*(Z), then any Deligne-Lusztig representation which contains F (1) works.
Otherwise, by Proposition 2.1.4, there exists (sw,a) € A}, x A such that
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Table 2. Intersections.

23

Wty Xy wi_; po
v afa = ta0.-1) {(e1 + 22,00} apay™ =t 1o {0, D}
By B = ta.—10 {(e1, D} afy*B=tci10 {(e2—€1,0)}
aytap =toi-1 {(e2, D} Bytay® =to-1y {(e1 —&2,0)}
pay* {(e1 — 2,0, (0. D} apy” {(e2—£1,0), (0, D}
afa {(0. 1), (0, 0)}
po 2o e @ el @
o { 0D, OO0, (e 1)} Id {@, D (e, D (&2, 1)}
(€2,0), (&2 —£1,0), (&1, 1) (0,0) (1,0) (£2,0)

Not all elements of Adm(n)z_, appear in the table. There is an order-three symmetry
of Adm(n)¢_; induced by the outer automorphism of W, and we include at least one
representative for each orbit.

(s,0) ~

O(a) = F (). Moreover, since F(1) ¢ RAOH(R;())), we have (w, a) ¢ r(X).
By Lemma 2.3.12, there exists w € W ¢, \ Adm(n) such that (w, a) € w'(X).
We take s’ = sw™' and u’' = 4+ sw~'(0) so that Ry (') = R,z-1(w). Since (v,
a) e wH(X), w— w~'(0) isin W(X), where ¥ denotes the image of X in A, .
A direct computation shows that since A is 5-deep, p +sw~'(0) — 7 is 3-deep in
C,. By Proposition 2.3.7, we have that F(1) € JH(R,(u')). By Corollary 2.3.11
and the remark before it, we have that R(H(R,(u))) NJH(R, (1)) = @. O

3. Serre weight conjectures

In Sections 3.1-3.3, we improve results of [LLHLM18] on Kisin modules
and étale p-modules with descent data. Most of these results are generalized
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Bytayt Ba off apytp
Bay™* Bap afyt

a-reflection [-reflection

Figure 2. The standard apartment of SL;. Labeled alcoves are alcoves in Adm(n).

to GL, in [LLHL19]. In Section 3.2, we prove a key structure result relating
the Frobenius of a Kisin module with tame descent data to the Frobenius of
the corresponding étale ¢-module (Proposition 3.2.1). This plays an important
role in computing the Galois representation associated with semisimple Kisin
modules (Proposition 3.3.8) and later establishing an explicit geometric Breuil—
Mézard conjecture (see Section 3.6). The remainder of Section 3.3 is devoted to
bounding reductions of potentially crystalline representations of type (n, t) for
the purpose of weight elimination (Theorem 3.3.12).
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In Section 3.4, we connect the results of Sections 3.1-3.3 with the
combinatorics of Serre weights from Section 2.3. In particular, Proposition
3.4.2 describes the intersection of the set of predicted weights of a semisimple o
with the set of Jordan—Holder constituents of a Deligne—Lusztig representation,
as a function of its shape. In Section 3.5, we prove the Serre weight conjectures
for semisimple p by matching the number of predicted Serre weights to the
number of irreducible components of the Galois deformation rings which were
computed in [LLHIL.M18, Theorem 3.5.3]. In Section 3.6, we prove a geometric
Breuil-Mézard conjecture which assigns to each (predicted) Serre weight a
prime ideal of the universal framed deformation ring (Proposition 3.6.1). In
Section 3.6.1, we make this assignment explicit for certain tamely potentially
crystalline deformation rings. The explicit ideals play an important role in the
proof of Breuil’s lattice conjecture in Section 5.

Throughout this section, we assume that S = {7} unless otherwise stated and

write K £ F;. We drop the subscript v from notation in this situation. The set
J is identified with the set of embeddings K < E and also with Z/fZ using
our chosen embedding oy (cf. Section 1.4). For i € J, we will use the word
component i and embedding i interchangeably.

3.1. Background. In this subsection, we recall some basic facts on Kisin
modules with tame descent data. We start with the following involution
on @, which naturally appears when passing from Kisin modules to Gg_-
representations. We let ﬁv (respectively WV) be the partially ordered group

which is identified with ﬂ (respectively VT/) as a group, and whose Bruhat order
is defined by the antidominant base alcove (and still denoted as <).

DEFINITION 3.1.1. Define a bijection @ — @* between W~ and W as follows:
(1) Forw = (w;) € W, define w* = (w}) € W by wi = w;l_l_j.
(2) Forv = (vj) € X*(I), define v* = (v}) € X*(I) by v = vy_y_;.
(3) For w = wr, € W', define @* € W by &* = r,-w*.

Note that & + w* is an antihomomorphism of groups. For j € J, we write

for the jth component of w*.

Let T be a tame inertial type which we always assume to be 1-generic. Fix a
lowest alcove presentation (s, i) for 7 (Definition 2.2.1).
Ifs = (so, ..., 857-1) and u = (;)ogj<r—1 € X*(T), we take

def
St = SoSf—1Sf—2--"81 € w
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and @, ) € X*(T) such that e, ) ; = s, 's; ' ...S;l(Mj_{_nj) forl1<j< f-1
and & )0 = o + No. Let r € {1, 2, 3} be the order of s,, and write K’ for the

. . def
unramified extension of Q, of degree f' = fr.

REMARK 3.1.2. In [LLHLM18], the notion of lowest alcove presentation does
not appear. Everything is written for presentations of the form t((s;, 1,..., 1),
o ,) (see, for example, the beginning of [LLHLMIS, Sections 2.1, 6.1]). In
the notation of loc. cit., & ) ; = (ai1,j, a2, as ;). The element

def (s*1 *1. .s;ll,sflsgl...s;lz,...,sfl, Hew

has the property that s’ (e ,)) = i + 7, and, hence, @5 (((s,, 1,..., 1),
ai,y)) = (s,u + n). The element s, is called the orientation of o
[LLLHLLM18, Definition 2.6 and equation (2.2)].

If r = 1, we say that t is a principal series type. Otherwise, we write t’ for the
base change of 7 to K'/K (which is just t considered as a principal series type
for Gg/). We record the relevant data for t’. Define o, ,, € X *(T)HomK . F) =~
X*(T)" (using a choice of embedding o : k' < [ extending oy) by

def _
Wy kg = 57 (@) for0<j<f—1,0<k<r—1

If T (w’, ') is the analogous construction of tame types over K’ for (w’,
W) € (W x X*(T))" as in Definition 2.2.1, then v/ = tx/(1, oczw)) by direct
comparison using equation (2.5). The orientation s, € W' of a{, ,, in the sense
of [LLHLM18, Definition 2.6] is given by

St = 55 sy for0<j < f—1,0<k<r—1 3.1)
(compare with [LLLHL.LM18, Proposition 6.1]).
T . .

Let L' = K'(,) = K'((—=p)» ) and A’ & Gal(L'/K') € A ¥ Gal(L'/K).

Note that 7 defines a O-valued representation of A’. For any complete local

Noetherian (-algebra R with residue field ' finite over F, let &, g &

(W) ®z, R)[u']l. We endow &/ g with an action of A as follows: for any g
inA, glu) =& (”’) u’ and g acts trivially on the coefficients; if o € Gal(L'/Q,)

is the lift of Frobenlus on W (k') which fixes 7,, then o/ generates Gal(K'/K)
acting in natural way on W (k') and trivially on both " and R. Set v = (u/)prf’l,
and note that

(S = (Wk) ®z, B[V
Asusual, ¢ : G — &y g acts as o on W (k'), trivially on R, and sends u’ to

)P,
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If 7 is a principal series types, let Y%7 (R) be the category of Kisin modules
over L’ with tame descent of type T and height in [0, /] as defined in [CL18,
Section 3]. More generally, we have the following.

DEFINITION 3.1.3. An element (O, ¢on, {2}) € Y®"I7(R) is a Kisin module
(M, pom) over Sy x [LLHLMI18, Definition 2.3] with height less than &
together with a semilinear action of A which commutes with ¢gy such that for
each0<j< f—1

MY mod u' =1V Qo R

as A’-representations. In particular, the semilinear action induces an
isomorphism toy : (o/)*(9) = M (see [LLLHLM18, Section 6.1]) as elements
of Y1017 (R).

REMARK 3.1.4. As explained in [LLHLM18, Section 6.1], the data of an
extension of the action of A’ to an action of A is equivalent to the choice of an
isomorphism tgy : (o/)*(9) = M satisfying an appropriate cocycle condition.
We will use both points of view interchangeably.

REMARK 3.1.5. The appearance of 7" in the definition is due to the fact that
we are using the contravariant functors to Galois representations to be consistent
with [LLHLM18] as opposed to the covariants versions which appear in [CL18,
EGH13]. In [LLHLM18], we did not use the notation 7". Instead, we included
it in our description of descent data by having a minus sign in the equation before
Definition 2.1 of loc. cit. The notion of Kisin module with tame descent data of
type t here is consistent with what appears in loc. cit.

DEFINITION 3.1.6. An eigenbasis of M € YI®"-7(R) is an eigenbasis f' =
B’ j for 9 considered as a Kisin module with descent data of type 7’ in the
sense of [LLHLM18, Definition 2.8], which is compatible with the isomorphism
ton: by letting g/Y" = (fl/(j/), fé(j/), fg(j/)) then

M ((0y )

j’ (09) i j'+f U'+f '+ /)
{fl/(”’ fz/ J ,f3/(1)}' {fl/(J f)’ fz/ J f)’ fS/(J f}
for all 0 < j° < f' — 1, where the isomorphism on the left-hand side is

obtained from [LLHLMIS, Lemma 6.2]. For short, the compatibility above will
be written as 1 (8'Y) = B’V . (See also [LLHL19, Definition 3.2.8].)
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3.2. KEtale @-modules with descent data. The main result of this subsection
is Proposition 3.2.1, describing the Frobenius action on étale ¢-modules with
tame descent data.

Let O¢ g (respectively Og ;1) be the p-adic completion of (W (k")[v])[1/v]
(respectively of (W (k)[u'1)[1/u’]). Recall from [LLHLM1S8, Section 2.3]
that for a complete local Noetherian (J-algebra R, we have the category
@- Mod%,(R) (respectively @- Modzl‘cl 1 (R)) of étale (¢, O¢, K/®Z R)-modules
(respectively étale (¢, Og. L/®Zp R)-modules with descent data from L to K').
There is an analogous definition of @- ModEt (R) and &- ModCld 1 (R). Given (N,
tan) € YM7(R), the element 9 ® O ;. is naturally an object @-Mody, ,,(R).

We define an étale p-module M € @- Mod‘f;é (R) by

def(m®05L)A !

with the induced Frobenius. This defines a functor from Y0/} ’(R) to
@-ModS (R). Finally, recall the functor &) : @-Mod$ (R) — ®/-Mod$ W (R)
from [LLHLMI18, Section 2.3]. It is obtained by considering the f-fold
composite of the partial Frobenii which act on M©.

Let R be a local, Artinian (-algebra with finite residue field F. We have the
usual functor V% from ®-ModS (R) to representations of G_ over R. Recall
from [LLHLM18, Section 6.1] the functor

v YOI (R)Y — Repgr(Gy.)

which is defined as (I, ton) > Vi (M). From now onward, we write Ty for
the functor which was written as Td’;, in [LLHILMIS, Section 6.1].

We can now state the main result of this section, which is a sharpening of
[LLHLM18, Proposition 2.26].

PROPOSITION 3.2.1. Let t be a 1-generic type with lowest alcove presentation
(s, p). Let M € Y7 (R) and B be an eigenbasis of M. Let 5o = (Sor, ;) j De the
orientation for T and write AY) = Matg (d)é;t),xonﬂle))forj €{0,..., f—1}. Let
= (M ® O¢ 1)~ € @-Mod{ (R).
Then there is a basis § = () ; for M such that

Mat;(py) = AVsTv"+,

Proof. The proof is a direct computation using [LLHILM18, Propositions 2.26
and 6.1].
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or,j7) be as in the discussion after Remark 3.1.2. Let gy =
(197, 197, £199) be an eigenbasis for 90T and write A" < Maty, (%)

im” +1(3))
forO< j < f/— 1.
Forany 0 < j/ < f/ — 1, set

Let e, ,, and (s,

f'-1

(") ’ i 3
A = Z“(w),—j’ﬂ‘p €z,
i=0

where —j’ 4 i is taken modulo f’ (compare with [LLHLM18, Section 2.1]).
Then
(') def

PO (s 197, e (190, s f1O0)
is a basis for M'V) & M1 /uDA=" for0 < j' < f — 1.

Forany 0 < j' < f/—1, adirect computation (using [LLHLM18, Proposition
2.13]) shows that the matrix for ¢>§\’4), s MY MY with respect to the

bases above is

(D)

5, AY )(Sor J’ ) "u )pa“ ”ra(s "

or,j'+1

U glUh ('

, ..
Since pag, —ag, l)a(s,u),f’—lfj” this is same as

v

1 o . M
s A(])(S(/)r,j’ﬂ) V¥ - (3.2)

or,j +1

Define B by B = {Y"s’ . (reordering the basis vectors). Let j' = j + if for

or Jj’
0 < j < f — 1. Then the matrix for qb(’ ) with respect to ,3 is given by

o —1p . % *
AY(s! ~,U(A"'<f/) @s-1- = A(’)s;‘v“fﬂf (3.3)

or, j —H)
using equation (3.1), Remark 3.1.2, and the fact that AY” only depends on j’
mod f (cf. [LLHLM18, Proposition 6.9]).

Finally, recall that the eigenbasis g8’ is required to be compatible with tgy :
(a/)*(M) = M as in Definition 3.1.6, which glves t(])(ﬂ/(”) = BUHNs
Hence, ,B descends to a collection of ordered bases (f )0< j<s—1 of the MO =
(ON[1/u'])*=HY such that the matrix for the partial Frobenius map M) —
MU is given by equation (3.3). O

PROPOSITION 3.2.2. Let M € Y'*(R) and let M = (M @ O 1)*=" €
@-Mody (R) be the associated étale p-module over K.
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If § is a basis of M and BY &f Mat,c(qu\j/;) are the matrices of the partial
Frobenii, then the étale ¢’ -module £y(M) is described by

f-1
Matjo (1,0) = [ [/ (BY 7).

Jj=0

LEMMA 3.2.3. Let p : Gx — GL;(IF) be semisimple and 0-generic. Let M €
P/ Mod;’,(k) (F) such that Vig(M) = plg,... Assume that there exists sy € W,
L = (X)) € X{(T), and a basis for M such that the ¢’ -action on M is given
by Dsy'v* where D € T(F) and p &f j:ol p'x; € X*(T). Then by letting
s=(s9,1,...,1) e W,

V(oli) = Rs().

Proof. Let k be the order of sy and write & = (w1, W2, u3) € X*(T). Then

k-1
X Zm* pf(k 1- m)H -
¢’ (er) = (l_[ DSO'%‘)) 0 Ve

m=0
k—1
FE
— = st .
- (1_[ Ds6”“<i>> v ¢ e
m=0

_ . . A 3 Z:;I—OP 13 m+1(l)
Hence, p|;, is isomorphic to P;_, w,, . The lemma now follows

from (2.5). L]

3.3. Semisimple Kisin modules. The statement of [LLHLM18, Theorem
2.21] gives a classification of Kisin modules with descent datum which can arise
as reductions of potentially crystalline representations with Hodge—Tate weights
(2,1,0)/. In this subsection, we identify Kisin modules which correspond to
semisimple Galois representations in an explicit way (Theorem 3.3.12).

For I’ /F finite, let Z(F") C GL3;(IF'[v]) be the Iwahori subgroup of elements
which are upper trlangular modulo v. Recall from Section 3.1 the partially
ordered group W W (respectively W) which is identified with W (respectively
W) as a group but whose Bruhat order is defined by the antidominant base alcove
(and still denoted as <). For any character u € X*(T), we define Adm" (u) as in
Definition 2.3.9 but for antidominant base alcove.

Let & be a positive integer. As before, let T be a 1-generic tame type with fixed
lowest alcove presentation (s, ©). Recall from [LLHLM18, Definition 2.17] the
notion of shape.
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DEFINITION 3.3.1. Let t be a principal series type, and let w = (W, Wy, ...,
Ws_1) € W'. A Kisin module 0t € Y77 (F") has shape i if for any eigenbasis
B, the matrices (AY)), = (Maty (¢é§3’sw“(3>))j have the property that AY) €
T(F)w,; I(F).

For a nonprincipal series type, we define the shape of a Kisin module 2 €
Y017 (F") in terms of its base change BC(9M); see [LLHL19, Definition 3.2.11]
or [LLHLM18, Definition 6.10] for details.

For any A € X*(T) effective (that is, A; = (a; ;); with a; ; > 0 for all i, j)
and & > 0, let Y»* C Y7 denote the closed substack defined in [CL18,
Section 5] (cf. also [LLHLM18, Section 2.2]). Then for any finite extension
F'/F, Y**(F) C Y!""-*(F") is the subgroupoid consisting of Kisin modules with
shape in Adm" ().

DEFINITION 3.3.2. Let T be a 3-generic type with lowest alcove presentation
(s, n) and let p : Gy — GL;3(IF). Assume that there exists 97% € Y77 (FF) such
that T}, (ﬁﬁ) = Dl - We define w(p, T) € Adm"(n) to be the shape of ﬁﬁ.

This is well defined because there exists at most one Kisin module 901, with
height in [0, 2] such that Td’;(ﬁp) = gy, (see [LLHLM18, Theorem 3.2] for
a principal series type and Section 6.2 and the discussion before Lemma 6.13 in
loc. cit. for the general case).

REMARK 3.3.3. More generally, if #5 > 1, for i = (iy)7es, we define w* as
the collection (W%)scs, where each W% € W is as in Definition 3.1.1. Similarly,
if ts is a collection of 3-generic tame inertial type and ps is a collection of

Galois representations, we let W (o, Ts) o (W (03, T5))ves-
We now introduce the notion of semisimple Kisin module of shape w.
DEFINITION 3.3.4. Let 9 € Y'%"7(F"), where F'/F is a finite extension. We

say that 0 is semisimple of shape @ = (ib;) if there exists an eigenbasis g of M
such that

AY e T(Fv])w;

forO<j< ff—1.
PROPOSITION 3.3.5. If90 is semisimple of shape W, then Ty (ON) is semisimple.

Proof. If M is semisimple, we can choose a basis such that AV e T (F'[v])w,
where IF'/FF is a finite extension. Using this basis, we see by Propositions 3.2.1
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and 3.2.2 that the matrix for the étale ¢/-module go(M[1/u'12=") lies in
T (F' (v))s for some s € W. If s has order d, then Tdﬁ(ﬁ) restricted to the
unramified extension of K, of degree d is a direct sum of characters (as p 1 d)
and so T d(sm) is semisimple. L]

PROPOSITION 3.3.6. If 0 is semisimple of shape @ = (W), then there exists
an eigenbasis B such that

AV =W, for0<j< f-2, AV D eTE )W, .

Proof. See [LLHL19, Proposition 3.2.16]. (|

DEFINITION 3.3.7. For any & = (w;t,,) € W, define M() € @-ModS (F)
to be the free étale p-module over O¢ x ® IF of rank three such that the matrix of

¢§\I/{ :M(w)(j) _)M(w)(jﬂ-l)

is given by w;v* (with respect to the standard basis).

PROPOSITION 3.3.8. Let (s, ) be a lowest alcove presentation of . If M €
YIORLT(F) is semisimple of shape W € W then

Ty )1 = Vi (M@ 142D 10 = T(w, v+ 1)

where Ws*t,» = w*t,«. (Note that since both Td’g(ﬁ) and Vi, (MWs* 1,5 4,+))
are tame, they canonically extend to G.)

Proof. This is the special case when n = 3 of [LLHL19, Corollary 3.2.17]. For
the sake of completeness, we include an argument here.

The first isomorphism follows from Proposition 3.3.6 combined with
Proposition 3.2.1.

Let w,v satisfy ws*f,» = w*f.. One easily checks that the ¢7-action
on gy(M(w*tyeiy)) € qu Mody,,, (F) is given by Hj:o] w; P’ ) using
Proposition 3.2.2.

Let s € W. The ¢/ -action of eo(M ((st,4,wm(s)~")*)) € &/-Mod! Wi () is
given by

f-1 f-1
) 1 =1 plsji+n) — ¢ l_[ =1, plj+n;) | =1
nsj_le s;'v =S/ w; v Ly

j=0 j=0

We conclude that go(M(w*typyr)) = SO(M((sthr,,wn(s)*l)*)). Therefore,
Vi MW*tye ) = Vi (M (st (s)71)%).
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As (w,v+1n) ~ (swr(s)~!, s(v + 1)), by [LLHL19, Proposition 2.2.4] and
[Her09, Lemma 4.2], we reduce to the case where w; = 1 fori # f — 1. The
second isomorphism then follows from Lemma 3.2.3. 0

PROPOSITION 3.3.9. Let p, 0 be semisimple representations of Gg. Assume
that there exists 9 semisimple of shape W such that T;,(ON) = Plck,,- Then

?'lix = Pli if and only if there exists a semisimple m of shape W such that
TOM) = Ploy,, -

Proof. This follows from counting unramified twists using Proposition 3.3.6.
O

The remainder of the subsection is devoted to results used for weight
elimination.

LEMMA 3.3.10. Ifp : Gx — GL3(F) admits a potentially crystalline lift of type
(X, 1), then so does p* (after possibly replacing E with a ramified extension).

Proof. Fix a characteristic 0 lift p of p which is potentially crystalline of type
(A, 7). Then by enlarging the coefficient ring of p, we can always find a lattice
whose reduction is semisimple by [Enn, Lemma 5(2)]. I

The following two theorems are key inputs in weight elimination by giving
an upper bound on the semisimple representations which are reductions of
potentially crystalline representations of type (A, T).

THEOREM 3.3.11. Let p : Gy — GL3(F). Assume that p has a potentially
crystalline lift of type (A, ©) where A € X*(T) is effective. Assume that either
(1) t is a regular principal series type or (2) . = n and t is 3-generic. Then,
for a sufficiently large h, there is a Kisin module 0 € Y'©"*(F) of shapeﬂ:

(Wo, Wi, ..., Wr_1) € Adm" (L) such that T}, (ON) = Ploy.,- In particular, M €
YT (F).
Proof. See [LLHL19, Theorem 3.2.20]. O

THEOREM 3.3.12. Let p be a semisimple representation of G x and assume t is
a 1-generic tame type. Assume that either (1) p is a direct sum of characters or
(2) A = n and T is 3-generic.

If there exists a Kisin module M e Y+ (F) such that Tdﬁ(ﬁ) = Dley,,, then

—
there exists a finite extension F' /I and a semisimple Kisin module 9N € Y** (")
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such that (after extending scalars) T (ﬁ/) = Dl - Furthermore, we can take
F =T in case (2).

REMARK 3.3.13. Theorems 3.3.11 and 3.3.12 together say that for a fixed 3-
generic type 7 the set of semisimple p|;, which arise as reductions of potentially
crystalline representations of type (1, v) are in bijection with a subset of
Adm"((2,1,0))/. In fact, it turns out that this admissibility condition exactly
captures those semisimple p which are reductions of crystalline representations
of type (n, t). Checking this is equivalent to checking that the potentially
crystalline deformation ring of type (n, 7) of the semisimple p corresponding to
W € Adm"”((2, 1, 0))/ is nonzero. When @ is such that £(w;) > 1 for all i, this
nontriviality follows from [LLHLM18, Table 7]. When K = Q,,, [LLHLM18,
Section 8] shows the nontriviality for all admissible w. For general unramified
K and admissible w, the nontriviality of the deformation ring will follow from
Theorem 3.5.3.

Proof of Theorem 3.3.12. We first treat the case where p is a direct sum of
characters. Let Mgy = 9[1 /u'] be an étale p-module with descent datum
for L'/K (that is, a semilinear action of A). Since there is an equivalence
of categories between étale p-modules over L’ with descent datum to K and
Gk, -representations (cf. [LLHLMI1S, page 24] for principal series case and
Section 6.1 in general), if p is a direct sum of characters, then My = M; &
M, & M, where each M, is stable under ¢ o4, and the descent datum.

Let Y}\;fdd be the Kisin variety parametrizing lattices in Mgy which lie in Y*7.
[LLHL.M18, Definition 3.1] defines Y X/fdd in the principal series case. In general,

Y }Vfdd is the closed subscheme of fixed points of Y j’\\,&d under the natural action of
o/. The torus T = G? acts on My by scaling individually in each factor. As a
consequence, we get an algebraic action of T on the projective variety Yﬁ;fdd.

Any such action has a fixed point over some finite extension F'/FF. Let m c

Y}\;fdd (F’) be a T-fixed point. Let x; : T — G,, denote the projection onto each

. S def o\ i
coordinate and set im: = (zm’) . Then

M =M, ® M, & M,. (3.4)

. . . =/ .
Since the T'-action commutes with ¢4, and A, each 9, is stable under both;
hence, ﬁ: is a rank-one Kisin module with descent datum. Any choice of
eigenbasis which respects this decomposition shows that M s semisimple.

Because 90 is in Y**(F'), it is semisimple with an admissible shape W €
Adm” (A).

https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2020.1

Serre weights and Breuil’s lattice conjecture in dimension three 35

Now suppose that 7 is 3-generic, but p is not necessarily a direct sum
of characters. In this case, the Kisin module 9t of type (1, r) is unique by
[LLHL.M18, Theorem 3.2]. We make a base change to the unramified extension

I?/K of degree 6. Let 7 be the base change of t to K, and let 901 = BC(IM) be

the base change of the Kisin module 9t. Since 9 is the unique Kisin module of
type (1, T), by the above argument, it must be semisimple.
Recall the notion of gauge basis [LLLHLM18, Definition 2.22]. Fix a gauge

basis 8 of 901 and let B be the induced gauge basis on 9. The eigenbasis f,

for 90t which puts the partial Frobenii in the form as in Proposition 3.3.6 is also
a gauge basis. By [LLHLM18, Theorem 4.16], # and f, differ by embedding-
wise scaling by torus elements. We conclude that the matrices for the partial
Frobenii with respect to B and hence 8 are monomial. Since the only monomial
matrices Z(F)WZ(F) are T (F[[v]])iW, we see that M1 is semisimple. O

3.4. Shapes and Serre weights. We continue to assume S = {v}. We
compute V (p|;,) in terms of shape for a semisimple p. This will effectively
allow us to determine W’ (o) NJH(o (1)) for a 3-generic tame type t (Proposition
3.4.2) via the combinatorics of Section 2 (especially Corollary 2.3.11).

PROPOSITION 3.4.1. Let (s, iu) be a lowest alcove presentation of T. Let M e
YORT(F) be semisimple of shape W = (W;) € W". Then

V(T (M) = Ry (1 + 1)

Proof. By Proposition 3.3.8, Td)tj(ﬁ)llk = T(w, v + n) where Ws*t, = w*t.
By [GHS18, Proposition 9.2.3],

V(T3 OM5) = Ry(v +1n).

Finally, an easy calculation shows that Rz«( + n) = R,(v + 1) using
Definition 2.3.6. O

PROPOSITION 3.4.2. Let T be a 3-generic type with lowest alcove presentation
(s, w) and let M € Y'"M 7 (F') be semisimple of shape W = (W) € Ev. Letp :
Gk — GLs3(F) be semisimple and 3-generic and assume that plg, = Ty ().
Then

W (P, 1) € W(p) NTH(@G (1)) = {687 2 (0, a) € Ty} C THR, (1 + 1))

(w,a)

Proof. This follows from Corollary 2.3.11 and Proposition 3.4.1. O
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REMARK 3.4.3. There is an explicit list of elements of Adm" (2, 1, 0) given in
[LLHLMI18, Table 1]. The effect of the involution w + w* is, in addition, to
reverse the order of components, to reverse the order of the word, and to turn
y = (13)v8%~Dinto y*. In particular, (-)* defines a bijection between Adm" (2,
1,0) and Adm(2, 1, 0).

3.4.1. Type elimination results. We assume throughout that p : Gy — GL;(F)
is 6-generic.

PROPOSITION 3.4.4. Let t be a 1-generic tame inertial type. If p is 6-generic
and arises as the reduction of a potentially crystalline representation of type
(n, T), then

Wi (P, T) # 0.

Proof. First, assume that 7 is 3-generic. By Theorem 3.3.11 combined with
Lemma 3.3.10, there exists It € Y77 (F) such that Tdfi(ﬁ) = 0%|g., - In fact, by
Theorem 3.3.12, we can take 901 to be semisimple of shape i = (W;) € Adm" ().
By Proposition 3.4.2 and Table 2, we conclude that

W (p™, 1) # 0.

If 7 is not 3-generic, then Proposition 3.4.5 shows that p does not arise as the
reduction of potentially crystalline representation of type (n, t) for any such
T. O

PROPOSITION 3.4.5. Letn > 4 and assume that p : G — GL3(F) is n-generic.
Assume that p arises as the reduction of a potentially crystalline representation
of type (1, T) where t is a 1-generic tame inertial type. Then t is (n — 3)-generic.

Proof. By Lemma 3.3.10, we can assume that p is semisimple. The result
follows now from [LLHL19, Proposition 3.3.2]. O

3.5. Serre weight conjectures. We are now ready to prove an abstract
version of the Serre weight conjecture as well as a numerical Breuil-Mézard
statement. In this section, we allow S to have arbitrary (finite) cardinality.

3.5.1.  Setup and summary of results. Recall from Section 1.4 that S is a finite
set and Fy is a finite extension of Q, for each v € S, and kj is the residue field of
F5;. For Definition 3.5.1, we will not require that F5 be an unramified extension
of Q,. In applications, F will be a fixed global field, S will be a set of places in
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F, and F; will be the completion at ¥ of F. Let o g be a collection (p3)3cs where

Py 1 Gp, = GL3(IF) is a continuous Galois representation. Let R~ = RD denote
the unrestricted universal framed deformation ring of p5. Fix a natural number h
and let

= <®R5D)[[x1, ..o x]l and  Xoo = SpfRe.
veS
If 7y is an inertial type for G, then let R = R’ be the universal framed
deformation ring of p; of inertial type 7y and (parallel) Hodge—Tate weights (2,
1,0). If ts = (13)3es, then let

Roc(ts) = QQRT @40 R and  Xuo(ts) = SpfR (1)

TeS ves
Let d 4 1 be the dimension of X, (ts) (the dimension is independent of ts by

[Kis08, Theorem 3.3.4]). We denote by E? , R., and so on, the reduction of
these objects modulo @ .

Let K be the group GL3(Op,) and K be the product [ [_¢ K. Results toward
the inertial local Langlands correspondence (cf. Proposition 2.2.6(2)) associate
a @p—valued Ky-representation o (ty) to a 1-generic tame inertial type 7y (and
o (ty) can be realized over O).

DEFINITION 3.5.1. Let Repg(O) denote the category of continuous K-
representations over finitely generated (O-modules and Mod(X,,) the category
of coherent sheaves over X .

A weak minimal patching functor for ps = (py)ves 18 defined to be a nonzero
covariant exact functor M, : Rep, (O) — Mod(X,,) satisfying the following
axioms:

(1) For each v € &S, let 75 be an inertial type for Gp,. Let o(ts) be the
K -representation X);_s0 (7). If o(ts)° is an O-lattice in o (ts), then
My (0(ts)°) is p-torsion-free and is maximally Cohen—Macaulay over

oo(TS)-

(2) If M (R (w)) is nonzero, then p; has a semistable lift of type (1, uz)
forallv € S.

(3) If o is an irreducible | [;_g GL3(ky)-representation over I, the module
M (o) is either 0 or maximal Cohen—Macaulay over its support, which
is equidimensional of dimension d.

(4) The locally free sheaf M (o(rs)°)[1/p] (being maximal Cohen—
Macaulay over the regular ring Rw(rs)[l%]) has rank at most one on
each connected component.
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Assume that a weak minimal patching functor M., for pg exists. Following

[GHS18, Definition 3.2.6], let WBM(pg) be the set of irreducible G-

representations (recall that G & [[;csGLs(ky)) o over F such that My (o)

is nonzero (note that a priori this set depends on the choice of M,). For a
finitely generated R,-module M with scheme-theoretic support Spec A of
dimension at most d, define e(M) to be d! times the coefficient of the degree d-
term of the Hilbert polynomial of M (considered as an A-module). In particular,
e(M) is the Hilbert—Samuel multiplicity of M as an A module when dim A = d
and is O otherwise.

We now assume that for all v € S, F; is an unramified extension of Q,,. Recall
Definition 2.2.7 of W’(pg).

THEOREM 3.5.2. Suppose that ps is semisimple and 10-generic and that M, is
a weak patching functor for pg. Then for all Serre weights o, e(M(0)) = 1 if
o € W' (pg) and e(M,(0)) = 0 otherwise. In particular, WM (pg) = W' (ps).

THEOREM 3.5.3. Let K/Q, be a finite unramified extension of degree f.
Let p : Gg — GL5(F) be a continuous, 10-generic, and semisimple Galois
representation, and let T be a tame inertial type. If T is not 1-generic, R7is 0. If ©

. . . . =7 def .
is 1-generic, then the number of irreducible components of R; = R/ is equal
to the number of elements in W'(p, t). The ring R is a normal domain and

is Cohen—Macaulay. Moreover, E; is reduced and its components are formally
smooth of the same dimension.

The proofs of Theorems 3.5.2 and 3.5.3 appear in Section 3.5.3.

3.5.2.  Types, weights, and the Breuil-Mézard philosophy. In this subsection,
we describe the basic inductive argument toward the proofs of Theorems 3.5.2
and 3.5.3.

Recall that we have a length function ¢ : WY — Z.

LEMMA 3.5.4. Let K/Q, be a finite unramified extension of degree f. Let
0 : Gx — GL3(F) be a semisimple Galois representation. Let T be 5-generic
with lowest alcove presentation (s, ). Assume that V(pl;,) = Re(u + 1)
where W = W(p, t) = (Wo, ..., Ws—1) € Adm" (n) with £(W;) > 1 for every j.
Then ﬁ; # 0 and the number of irreducible components of E; is equal to the
number of elements in W*(p, ). The ring R is a normal domain and is Cohen—
Macaulay. Moreover, E; is reduced and its components are formally smooth of
the same dimension.
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Proof. By Proposition 3.4.1, our hypotheses imply that there exists a Kisin
module Dﬁ € Y™™ (IF) such that T d(f)ﬁ ) = Plgy, and that w = w(p, 7). In
[LLHLM18, Sections 5.3, 6], we gave an explicit presentation for R whenever
the length of w; is at least 2 and the type t is 5-generic. For each shape, there
were at most two cases depending on ﬁ;. By Propositions 3.3.9 and 3.3.12,
whenever p is semisimple, ﬁﬁ is semisimple in the sense of Definition 3.3.1,
and so ﬁﬁ lies in the special locus for the given shape.
We claim that
#lrr(Spec (R)) = [ [ 2™

J
and that E; is reduced and Cohen—Macaulay. Indeed, from Table 7 in loc. cit.,

we see that ﬁ; is the completion of a tensor product over I of rings of the form
F[X], F[X, Y]/ XY at the maximal ideal generated by the variables X, Y. Since
such a tensor product is Cohen—Macaulay, so is its completion by [Stal9, Tag
07NX]. Since such a tensor product is reduced and excellent (being a finite type
[F-algebra), its completion is reduced by [Stal9, Tag 07NZ]. Finally, we also
note that since each irreducible components of such a tensor product is smooth,
the completion of the irreducible components stay irreducible and are formally
smooth.

This implies the remaining propertles (see the proof of [LLHLM18, Corollary
8.9]. Note that the reducedness of R implies that R7 is a normal domain).

Finally, we compare this with the size of W’ (p, r) which is [ ], e #E(“,;) by
Proposition 3.4.2 using Table 2. 0

COROLLARY 3.5.5. Suppose that for each v € S, py : Gr, — GL3(F) is
a semisimple Galois representation and vy is a 5-generic tame inertial type
satisfying the hypotheses of Lemma 3.5.4. Let ts be (ty)yes. Then e(R(15))
is equal to #W’ (D, Ts).

Proof. This follows immediately from Lemma 3.5.4 and [EG14, Lemma 2.2.14]
and properties of tensor products of representations. O

PROPOSITION 3.5.6 (Weight elimination). Suppose that for each v, py : G, —
GL;(IF) is a 10-generic Galois representation. Then

WM @) € W (BS).

Proof. Suppose that o is a Serre weight such that o € WBM(ps) \ W’ (p2).
Note that WBM (5 5) satisfies the (evident generalization of) [Enn, Axiom (WE)]
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by 3.5.1(2). By [Enn, Theorem 8] and [LLHL19, Remark 2.2.8], o is 10-
generic implies that o is 3-generic. Then o € JH(o(ts)) for some collection

Ts o (t3)7es of 1-generic tame types (for example, taking a tame principal series
type containing o). Since pg is 10-generic, we see by Proposition 3.4.5 and
Definition 3.5.1(1) that M, (o (ts)) # 0 implies that 75 is 7-generic. By Lemma
4.2.13 (whose proof only uses modular representation theory and is independent
of the results in Section 3), o is 5-deep.

By Corollary 2.3.13, 75 above can be taken so that W?(ﬁlf, Ts) = ¢ and
o € JH(o(ts)). By Proposition 3.4.4, p> is not the reduction of a potentially
crystalline representation of type (3, T7) for some v € S. By Proposition 3.3.10,
Oy 1s also not the reduction of a potentially crystalline representation of type (y,
;) for some v € S. Then X (ts) = @ and M. (0 (ts5)°) = 0 for any O-lattice
o (ts)°in o (ts). By exactness of M., M, (o) = 0 which is a contradiction. [

REMARK 3.5.7. Instead of appealing to [Enn], one can show that provided that
D is generic enough, every element of WBM () appears as a Jordan-Holder
factor of the reduction of some 1-generic tame type as follows. Even though
not all Serre weights come from the reduction o (zs) for a collection ts of 1-
generic tame types, they do occur in the reduction of V; ® o(ts) where A is
sufficiently large (independent of p). The results of Section 3.3 hold also for
potentially crystalline representations of type (A3 + 1y, T)zes (possibly with a
stronger genericity hypothesis), and then the same argument as in the proof of
Proposition 3.5.6 gives the result.

Given a collection ts of tame inertial types and a O-lattice o (15)° in o (5s),
we write o (t5)° to denote the reduction of o (15)° modulo @ .

LEMMA 3.5.8. Suppose that for eachv € S, py : G, — GL3(F) is a semisimple
Galois representation and vy is a 5-generic tame inertial type satisfying the
hypotheses of Lemma 3.5.4. Let ts = (ty)yes. Let 0(ts)° be an O-lattice in
0 (ts). Then either Mo (G (ts)°) = 0 or e(Ms (5 (15)°)) is equal to e(Ro(1s)),
and the alternative does not depend on the lattice.

Proof. The generic fiber of X, (ts) is irreducible since its special fiber is
reduced (see Lemma 3.5.4). Then since M. (o(ts)°) is maximal Cohen—
Macaulay over X, (ts), either M, (o (ts)°) has full support on X, (rs) or
My (0 (1s5)°) is 0. The lemma now follows from the proof of [LLHLMIS,
Proposition 7.14]. 0
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LEMMA 3.5.9. Suppose that py : G, — GL3(F) is semisimple and 1-generic
forallv € S. If o € W(ps) has defect 8, then there are tame inertial types ty
and T}, satisfying the hypotheses of Corollary 3.5.5 such that if ts = (Ty)yes and
75 = (T9)ves, we have

(1) o€ W?(ﬁs» IS) - W?(ﬁSV T!S);
Q) #W(Bs. 15) = 2 and #W’ (5g. 75) = 2°¥1;

(3) all Serre weights in W' (pg, ts) and W' (ps, t5) have defect at most § and
if 8§ > 0, o is the unique Serre weight in W' (p g, T5) with defect §;

4) if 8 =0, for any o' € W'(ps) of defect O which is adjacent to o, one can
choose the Tt above so that W' (ps, t5) = {o, o'}.

Proof. This is essentially a consequence of results in Section 2.3. Suppose that
V(ﬁsl,Fs) = R,(u) with u — n 7-deep in alcove C,, and label W'(pg) by r(X)
as in Proposition 2.3.4. Let 0 = (Wy)yes = (W;)icy € Adm(n) and s be the
tame inertial type with lowest alcove presentation (sw~!, u + sw='(0) — n),
where w € W is the image of . Then u + sw~'(0) — 5 is 5-deep in alcove C,
so that 75 is 5-generic. Corollary 2.3.11 says that

W' (s, Ts) = {0y i (@, a) € [ [r(Z50)
ieJ

where Xy = Zo N @ "(r(Zo)). If €(w;) > 1 for all i, then ts satisfies
the hypotheses of Corollary 3.5.5 (noting that £(w) = £(w*) by the proof of
[LLHL19, Lemma 2.1.3], where the lengths are as elements of W and W
respectively).

Let (w, a) = ((w;, a;)); be such that o = or((s(;)’f a)). We will construct the required
types by appropriately choosing (w;);.

If (w;,a;) € ESbV, we can find an element w; € Adm((2, 1,0)) such that
Lw;) = 4 and Yy-1 = {(w;, @)} If (w;,a;) € X™, we can find an element
w;t—; € {afa, /3)/3, ayo) such that Ewi—l contains exactly {(w;, a;), r(w;, a;)}.
This choice of (W;);es gives a type Ts = (T3)yes such that o € W'(pog, Ts),
#W'(ps, ts) = 2%, and all weights in W’ (pg, Ts) have defect at most §.

To construct t5 satisfying (2) and (3), we proceed similarly. We first deal with
the case § > 0. In this case, we can find a j, € J such that Z(@,«O) = 3, and
consider any W’ < W, of length 2. Then

21571 C Ew/_—l
Jo 10
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and has size 4 (see Table 2). Furthermore, Y51\ X1 C X*. Let W' be such
70 Jo

that w; = w; if i # jo and W’ is the element chosen above. Then the type 7§
such that o (t5) = R,y (1) satisfies items (2) and (3).

Finally, assume that § = 0. Let o’ € W’(p5) be a defect 0 weight adjacent to o,
and write o’ = 0,(/"’, . Then there is a unique j, € J such that (), @/,) # (w;,.
aj,). There are six possible pairs {(w;, a;), (a)’ a’)} € X > which are adjacent
in Table 1, each of which is X' ! for some length 3 nonshadow element w w’; (see
[LLHLMlS Table 1]). We let 'L'S be the inertial type corresponding to w’ such
that w; = w; fori # j, and W’ ", chosen as in the previous sentence. This gives
the type satisfying items (2), (3), and (4). L]

REMARK 3.5.10. From Table 2, we see that the type ts constructed in Lemma
3.5.9 is uniquely characterized by requiring that o € W’(pg, ts) and #W’ (0,
Ts) = 2°. We call it the minimal type of o with respect to .

In what follows, our pg = (Py)ves Will be assumed to be 10-generic so that
Proposition 3.5.6 applies. We observe that if ts is a 3-generic tame type, then
o (ts)° is multiplicity free for any choice of lattice o (ts)°. Then

eMu(T(15))) = Y e(My(0))

oelH(o(ts))

by Definition 3.5.1, and, in fact,

eMw(@(15)) = Y. e(My(0)).

TeW!(5%.7s)

Finally, observe that if o5 is 10-generic and W’ (pg, Ts) is nonempty, then 75 is
7-generic by Proposition 3.4.5.

LEMMA 3.5.11. Suppose that py : G, — GL3(F) is semisimple and 10-generic
forall v € S. If there exists o € WEM(pg) with defect 0, then for allo’ € W' (ps),
e(My(c")) = 1. In particular, WBM(ps) = W’ (ps).

Proof. We first prove the lemma assuming o’ has defect 0 by induction on d =
dgph(o, 0'). By Lemma 3.5.9, one can choose a 1-generic tame type ts such that
W'(ps, ts) = {o}. Note that s is then 7-generic under our assumptions. Then
e(My (o)) = 1 by Corollary 3.5.5 and Lemma 3.5.8. This establishes the case
d=0.

Suppose that o' € W’(ps) has defect 0 and that d > 0. Then there is a
o” € W'(pg) adjacent to o’, with defect 0, and such that dgpn(o, 0") =d — 1.
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We choose a type t5 as in Lemma 3.5.9(4) for the adjacent weights o’
and ¢” and an O-lattice o(tg5)° in o(rg). Then by inductive hypothesis,
M. (0"), and hence M, (0 (t5)°), is nonzero. By Corollary 3.5.5 and Lemma
3.5.8, e(M(0(t5)°) = 2. We deduce from the inductive hypothesis that
e(My (o)) = 1.

We now prove the general case of the lemma by induction on the defect.
Suppose that ¢’ € W’(p) has defect § > 0. We choose s as in Lemma 3.5.9
(and an O-lattice o (t5)° in 0 (1)) taking o to be o’. By Lemma 3.5.9(2) and
(3), W'(ps, ts) contains a weight of lower defect. The inductive hypothesis
implies that M, (6 (7s)°) is nonzero. By Lemma 3.5.8 and Corollary 3.5.5,
e(M,(5(1s)°)) = 2°. By Lemma 3.5.9(3) and induction, e(M,, (5 (1s)°)) —
e(My,(c")) is the number of weights in W’ (pg, ts) \ {o’}, which is 2° — 1. We
conclude that e(M,(¢0")) = 1. ]

LEMMA 3.5.12. Suppose that py : G, — GL;(IF) is semisimple and 10-generic
forallv € 8. If o € WBM(D5) has defect § > 0, then there exists o’ € WBM(p5)
with defect less than é.

Proof. Choose ts and 75 as in Lemma 3.5.9 and fix lattices o (ts)° and o (t5)°.
Then M, (o(ts)°) and My (o(t5)°) are nonzero. Hence, by Lemmas 3.5.8
and 3.5.9(2) and Corollary 3.5.5, e(Mx(5(t5)°)) — e(Mx(T(15)°)) = 2°. By
Proposition 3.5.9(1), e(M (0 (75)°)) —e(M (G (15)°)) is the sum of e(M . (0"))
as o’ runs over the Serre weights in W’(ps, 75) \ W'(Ps, Ts). By Lemma
3.5.9(3), the Serre weights in W' (0, t5) \ W'(Ps, Ts) have defect less than
8. We conclude that there must be a Serre weight o' € WBM(55) of defect less
than §. O]

3.5.3. Proofs

Proof of Theorem 3.5.2. Since M, is nonzero, there is a Serre weight o €
WBM(5s) € W(ps) by Proposition 3.5.6. By induction on the defect using
Lemma 3.5.12, we can assume, without loss of generality, that the defect of o is
0. The theorem now follows from Lemma 3.5.11. I

REMARK 3.5.13. Our axioms for M, imply that if 0 € JH(o (ts)), then the

support of M (o) is a (possibly empty) union of irreducible components of
Spec R (Ts). As Spec Ry (Ts) is the preimage of

Spec @RéF C Spec @Rg
veS eS8
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inside Spec R, we have shown thatif o € WBM (), then the scheme-theoretic
support of M (o) is irreducible with generic point given by the preimage in Ry
of a prime ideal in @;_s RS

We now give two examples of weak minimal patching functors using the setup
from [LLHLM18, Section 7.1]. Recall the definitions from loc. cit. of F/F*,
Z‘;, G p+, and 1, (see also Section 5.3). Suppose that 7 : Gy — GL;3(IF) is

e automorphic (of some weight) in the sense of [LLLHIL.M18, Definition 7.1];

e satisfies the Taylor—Wiles hypotheses in the sense of [LILHL.LM18, Definition
7.3]; and

e if 7 is ramified at a finite place w ¢ X, of F, then w|p+ splits in F (we say
that 7 has split ramification outside of p).

Then [LLHLMI18, Proposition 7.15] constructs a weak minimal patching
funcNtor for 7 in the sense of [LLHILM18, Definition 7.11], which we will denote
by M. Let h be the corresponding integer.

For each v € X', choose a place v of F lying above v. Let S, be the set

{v:ve Zf) Let Ps, be (Dy)ves, where we define py o 7l : Gr — GL3(IF).
Define R, Rx(ts,), and so on, as before with respect to & above. Let K be
I1 s, K73 as before. From the proof of [LLLHL.19, Proposition 4.2.6] we have the
following.

PROPOSITION 3.5.14. Let My, : Repy (O) — Mod(X ) be the functor My o
Yes, b Then My, is a weak minimal patching functor for Ps,-

Proof. Definition 3.5.1(2) follows from the proof of [LLHL.19, Proposition
4.2.6]. The remaining properties follow easily from definitions and [LLLHLM18,
Proposition 7.15]. O

Now suppose that p > 3 and K/Q, is a finite extension. Let p : Gx —
GL;(IF) be a continuous Galois representation with a potentially diagonalizable
lift of type (n, 7) such that R is formally smooth. For example, if p is 6-generic
and semisimple, we can take t so that if w(p, t) = (W,;);, then £(w;) = 4 for
all j. We now construct a weak minimal patching functor for p (here #S = 1 in
the notation of Definition 3.5.1).

[EG14, Corollary A.7] constructs a CM extension F/F*, a choice of
places S, above 2:{ as before, and an automorphic Galois representation
7 : G — GL;(F) satisfying the above itemized properties such that there is
an isomorphism K = Fy and rlg, = p for all v € S,. Fix a place v € S,
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and let R, be RD R, resiy 2o B3 X1, ..., x, 1. Note that Ry is as defined
in Section 3.5.1 (by increasing &, and the assumptlon of formal smoothness
of RY) and we identify R, with erc R, estweRig, X1, xu]l. Let

= SpfR, as usual. We abusively let K be the group GL3((9 k) (the meaning

of each K will be clear from the context). Fix a lattice o (7)° in the K-module
o (7).

Let M, be the weak minimal patching functor for 7 constructed above. The

following proposition follows from the construction of ¥ and Proposition 3.5.14.

PROPOSITION 3.5.15. Assume the above setup. Let My, : Repy(0O) —
Mod(X ) be the functor

Mooo ntgo - ® @ o(7)°

+ +
veX, veX, v'#Fv

Then M, is a patching functor for p.

COROLLARY 3.5.16. Suppose that ps is a collection of continuous Galois
representations satisfying the properties of p in Proposition 3.5.15. Then there
exists a patching functor for ps.

Proof. We can take the completed tensor product of the patching functors
constructed in Proposition 3.5.15 for each p5. O

Proof of Theorem 3.5.3. Suppose that T is not 1-generic. We claim that R} =
0. It suffices to show that after restriction to Gk for any unramified extension
K’'/K, p does not have a potentially crystalline lift of type t and Hodge-Tate
weights (2, 1, 0). Moreover, after such a restriction, 7 is still not 1-generic and p
is 10-generic. We can then assume, without loss of generality, that t is a principal
series. By [LLHL19, Remark 2.2.8], t is not 2-generic and p is 10-generic in
the sense of [Enn, Definition 2.2]. Then p does not have a potentially crystalline
lift of type T and Hodge—Tate weights (2, 1, 0) by [Enn, Proposition 7].

If 7 is 1-generic and R7 # 0, then Proposition 3.4.5 implies that 7 is 7-generic.
Proposition 3.4.2 implies that W’(p, ) # @. Suppose that t is 1-generic and
W?(p, 1) # §. By Proposition 3.5.15, a patching functor M, for p exists. For
any Og-lattice 0 (t)° C 0(1), M (0 (7)°) # 0 by Theorem 3.5.2. This implies
that R7 is nonzero.

We now show that if 7 is 1-generic and R} # 0, then

e(R)) = e(Mx(5(7)%)). (3.5)
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As R; # 0, we deduce from Proposition 3.4.5 that 7 is 7-generic. The proof of
(3.5) is now obtained by a direct generalization of the arguments of [LLHLM18,
Section 8]; so we only explain the key details. There is a ring R of the same

dimension as E;[[X 1, ... X37]l which is a power series ring over the completed

tensor product over [F of rings R in [LLHLM18, Section 8] and Ee%i l{; for some

M and @ from [LLHLM18, Table 7], and which admits a surjection to ﬁ;[[X I
..., X37]l. Then we have

e(RY) = e(M (@ (1))

for any O-lattice o(t)° C o(t) by computing both sides using [LLHLM18,
Table 7, Propositions 8.5 and 8.12] and Theorem 3.5.2 (using that p is 10-
generic). The proof of [LLHLM18, Proposition 7.14] implies

e(M (T (7)) < e(R,).

Then we must have that e(R?) = e(R,I[X1, ..., Xa/I) = e(Ry) by the above
surjection. Furthermore, R7 is reduced and Cohen-Macaulay by the same
argument as in the proof of Lemma 3.5.4. Then R;[[X 15 ..., X371l is isomorphic
to R7 by [LLHLM18, Lemma 8.8] and the desired properties of R; hold because

they do for ﬁg. The desired ring-theoretic properties of R} follow from the proof
of [LLHL.M18, Corollary 8.9]. ]

REMARK 3.5.17. Since the number of irreducible components of E; is equal

to #W'(p, 1), E; is reduced, and M, (o (7)°) has full support over Roo(7), the
proof of Theorem 3.5.3 shows that the irreducible support of M, (o) must be
different for each o € W*(p, 7).

3.6. The geometric Breuil-Mézard conjecture. We now show that weak
minimal patching functors can be used to assign components in deformation
rings to Serre weights.

PROPOSITION 3.6.1. (1) Let p be as in Theorem 3.5.3. There is a unique
assignment o > p(o) for o € W(p) such that p(o) C RS is a prime
ideal and

Spec (Ry) = | ] Spec (R /p(0)) (3.6)

ceW!(B,7)
for any tame type T where the right-hand side is given the reduced scheme
structure. Moreover, the image of p(o) in ﬁ; is a minimal prime ideal and

(3.6) is the decomposition of ﬁ; into irreducible components.
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(2) If My, is a weak minimal patching functor for ps = (Py)ves, then the
scheme-theoretic support of Moo(Q)yes 07) is Spec (Roo/ D g5 P(07) Rec)-

Proof. We first prove uniqueness. Suppose there is such an assignment. This
closely follows the procedure of induction on the defect with respect to W' (p)
in the proof of Theorem 3.5.2. If the defect of o € W’(p) is 0, then by letting
be the minimal type of o with respect to p, we have #W’(p, ) = 1 by Lemma
3.5.9. Then we must have p(o) = Anang E;. If the defect of o is § > 0, then
choose 7 to be the minimal type of ¢ with respect to p as in Lemma 3.5.9. Then
by induction and Lemma 3.5.9(3), there is a unique component of Spec (E;)
whose defining ideal is not p(c’) for some o’ € W’ (p, t) of lower defect. Then
p (o) must be this defining ideal.

We now show existence of an assignment. By Proposition 3.5.15, there is a
weak minimal patching functor M, for p, which we fix. By Remark 3.5.13,
the generic point of the scheme-theoretic support of M, (o) is of the form
p'(0) Ry for some prime ideal p'(o) C RﬁD. We claim that ¢ +— p’(0) is an
assignment satisfying (3.6). Indeed, since the generic fiber of R7 is connected by
3.5.3, Spec R (7) is the scheme-theoretic support of M, (o (7)°). On the other
hand, M., (5 (1)°) is filtered by M, (o) for o € W’(p, ) so that the support of
M (o (1)°)is

L Spec (Ro/p'(0)Re0). 3.7)

oecWl(p,1)

Equation (3.7) is a decomposition of R, (7) into irreducible components by
Remark 3.5.17. Finally, we observe that this statement descends to ﬁ;.

We now show part (2). Suppose that M, is a weak minimal patching functor
for ps. Let 0 = @5 500 € W'(ps). Again by the proof of Theorem 3.5.2,
the scheme-theoretic support of M. (0) is Spec Rso/ (D 5.5 P(0)5Rs) for some
prime ideals p(o)y C REF. We will show that p(o)y = p(oy), where p is the
assignment in part (1). We induct on § = Def;_(0). If § = 0, then one can
choose 7s as in Lemma 3.5.9 so that Ry (ts) = Rs/p(0). We conclude that
p(0)y = p(op) for all T € S in this case. Suppose that § > 0. Again choose
7s as in Lemma 3.5.9. Then by the inductive hypothesis, for any weight ¢’ =
Qs 0k € W?(pg, ts) with o’ 2 o, the scheme-theoretic support of M., (c”) is
R/ (D 55 P(07) Rs). Since the generic fiber of Spec (@5e sRy) is connected
by 3.5.3, by item (1), the scheme-theoretic support of M, (o (ts)°) is

U Spec (Roo/(z p(os)Roo)). (3.8)

o'W’ (Ds.ts) veS
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From this, we see that since e(My,(0)) = 1, the scheme-theoretic support of
M (o) is forced to be Spec R /(D 55 P(0%) Ro)- O

We have the following refinement of Proposition 3.6.1(2).

LEMMA 3.6.2. Assume that p is 10-generic. Let ts = (Ty)3es be a collection of
tame inertial types and let V be a subquotient of 7 (ts)° for some O-lattice
0(1s)° in o(ts). Define the closed subscheme X (V) — Specﬁoo to be
the reduced subscheme underlying |, v, SUpp(Moo(0)). Then the scheme-
theoretic support of M, (V) is X (V). In particular, if M, (V) is a cyclic Ry-
module, then M, (V) = R../I(V), where

def

IV)E (1) Anng, (Mw(0))-

oeJH(V)

Proof. Since p is 10-generic, there is nothing to prove unless 7 is 7-generic. The
proof now follows exactly as in the second paragraph of the proof of [EGS1S5,
Proposition 8.1.1]. We recall the argument. The support of M, (V) is (the
topological space) X (V) since Mo (V) is filtered by M (o) for o € JH(V).
It suffices to show that the scheme-theoretic support of M.,(V) is reduced. The
scheme-theoretic support of M, (V) is generically reduced (since the same is
true for M, (o (ts)°)). Now since each M (o) is maximal Cohen—Macaulay
over R, (ts) (by Definition 3.5.1(3) and the fact that dim Ry (ts) = d) and
the maximal Cohen—Macaulay property is preserved under extension (by the
characterization of depth in terms of Ext groups), M.,(V) is maximal Cohen—
Macaulay over Roo(ts). This guarantees that the scheme-theoretic support of
M, (V) has no embedded associated primes and, hence, is reduced. O

3.6.1. Matching components. Recall that Proposition 3.6.1 gives a canonical

parametrization of the irreducible components of the special fiber of the

potentially crystalline deformation ring R7 in terms of W?(p, 7). Given a lowest

alcove presentation (s, — 1) of T = t(s, u), we will define in item (4)
Ry

below explicit rings Rgr 5 » building on [LLHLMI8, Sections 5.3.1, 8]. The
rings E;—;f.l;;v will be formally smooth modifications of E;. Thus, Proposition

3.6.1 gives a bijection between minimal primes of Fg II’ZV and W’(p, 7). On the
other hand, by Corollary 2.3.11, the data (s, ) gives a description of W’(p,

T) as a&’,ﬁf)) , for (w,a) € Xy. In this subsection, we will make the bijection

between minimal primes of E%D_Ig and Xy explicit. This will be needed in

Section 5, where we need to check relations between ideals corresponding to
various subquotients of & (t)° for certain lattices o (7)°.
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We begin by recalling the relationship between R and R_.. 5 For the rest of
this section, we assume that p is 10-generic. Recall that we have chosen a lowest
alcove presentation (s, w — n) of T = t(s, u). We assume that RZ # 0, and,
thus, 7 is 7-generic and there exists a unique M e Y7 (F) such that Tdﬁ(ﬁ) =
Ploy., - Let W = W(p, 7) be the shape of O and let M & ON[1/u'])2=". We
also recall the notion of gauge basis [LLHLM18, Definitions 4.15, 6.11], and
we fix a gauge basis B for 9. We also fix a framing (that is, a basis) for 7.
Recall from [LLHLM18, Definition 2.11 and Section 6] (see also the discussion
after [LILHL.19, Definition 3.2.8], which is more aligned with the notation of
this paper) the notation A® & Mat, (@onts,,,.,3))» for an eigenbasis B of a Kisin
module 90t with descent data of type 7 and s, € W the orientation of T = (s, ).
We say that A is the matrix of the ith partial Frobenius ¢g§;a~70r,i+1(3) with respect
to the eigenbasis f.

We have the following canonical diagram (cf. [LLHLM18, Diagram (5.9)]:

Spf(Rer ) i SpERA YDyl (3.9)
f.s. r f.s. r f.s.
Spf(RY) = st(RYm Gyt [Spf(ﬁeﬂf‘Nv) /G ]% Yoo
@ - Mod::? [ ®-Mode.

where f.s. stands for a formally smooth morphism. We explain the diagram as
follows:

(1) Ry~ Ry, are defined in [LLHLMIS8, Sections 4.3, 5.2, 6.2]. They

parametrize various deformation problems of o and 9t with extra data such
as framings on Galois representations and gauge bases on 9t. We note that
in loc. cit., we used the symbol p for what we call 5 in this paper.

2) @—Modéj/l— (respectively <;l5—M0dé‘ﬂ'D ) denotes the groupoid of étale -
modules deforming M (respectively deformations with a basis on the
associated G g_ -representation).

3) 7% is the groupoid whose values on a local Artinian F-algebra A is given
by the groupoid of pairs (94, j4) where M, € Y77 (A) and j4 : My R4

F = 91 is an isomorphism in Y”*(F). The groupoid 5;%3 parametrizes
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the same data plus the data of a gauge basis lifting B. By [LLHLMI1S,
Theorem 6.12], there is an action of G3f on Eﬂj by scaling the gauge
basis, and one has [_%}/G”] = Y— By [LLHLM18, Theorem 4.17

and Section 6.2], Dsm is representable by Rsm = ® (ReXpl)p flat red /77y

Over Rﬁ, we have a universal pair (9N, Biv) and, hence, the universal
matrices of partial Frobenii A"V, By construction, (R;’:p])p'ﬂa" red /oy
is a quotient of the power series ring over I generated by (suitable
modifications of) the coefficients of the entries of A®'™ subject to
certain ‘finite height’ equations. The map 1, is the map sending M to

(mt““”[i,])A=‘.

(4) Thering R s = ® RexP . We recall the description of each component
ring from [LLHLM18] (see also Table 3). We let (a, b, c) € IF“ be the mod

p reduction of sfflfl (Myo1-) € X¥(T) =

(1) When £(w;) > 1: ﬁeﬁ)lﬁi is the quotient of the power series ring
over [F generated by (suitable modifications of) the coefficients of the
entries of A" by an explicit list of relations given by [LLHLM18,
Section 5.3 and Table 7]. In this case, we even have the rings ;npl IV
and diagram (3.9) can be lifted to a diagram over O with the same
properties; cf. [LLHLM18, Diagram (5.9)].
Note that, strictly speaking, [LILHLLM18, Table 7] only has entries
for w; belonging to a certain set of representatives under the action
of the outer automorphisms of Wa.

(2) When €(w;) = 1: By symmetry, we may assume w; = «at;. The
matrix A®"Y has the form

*
o Cci1  Cip ey, Ci3
A(z),umv = UC;I Cy + Ud22 Co3
V(3 VC3p c33 + UC;S

~

Set C32
series ring

def c3pc5) —dacai SHexpLV .
=g We define Ry ;. to be the quotient of the power

~ *
Fllcii, ciz, €13, €22, €23, €31, €32, €33, Ao, Cip
—% * —k * —:
— [c,], &5 — [63], 55 — [c53]11
by the following relations:

.~ ~
cricas =0, C33C11C32 = C13C31C32,
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. . . . . 1,V
Table 3. Universal matrix, presentation, and component labeling for the ring ﬂ% B

[T AT (W, @) € oy C(ana) i
) ot +
oy [ :,’fp'.' ve, 0 ] (&1 +£,0) (en) BY'B
vt
v(esr +vdy) vey  cly
cnen =0; (&2, 1) (c2) @
(=1 =a+c)cjes = (=1 = b+ )expey =0
>
vien 0o 0 (e1+£2.0) (c2) ay'e
By V(s + vlay) P
v(caiess(csy) ™ + vdz) ey, ex
=0; (e, 1) (c33) B
(<1 —a+0)encyy + (b= )dyen =0
. -1 et s et -
ape z(.). W d“’.”(cj )“ +c)y (0,0) (en) ¥
ey, vdy
©,1) ((a = b)eazeny — (a = ¢)cyydsz) id
cul(a=biexes = (a=c)eydsy) =0
cen(ey)” o3+ e, (e, (c12,¢31) v'B
vy, 0 €23+ vd3
b ven vey,  exien(cs)” + vdss
(g1 —£2,0) (c31,d33) Bytep
0,0) (c12,¢22) ay*
ci(a - b) (b - c)dxcs,) = 0;
(-l —a+c)ency, = (-1 —a+bendys
0, 1) (c22, (b = ©)ds3ch, + (a — b)ezidaz) a
@) lenen e, e (e2.1) (. cn) v
0 vdy ve3,
B vey, ves €33+ vd33
(82— £1,0) (dxn, c3) ay*pa
cress =03
C —cnds) =0;
(0,0) (cin,e13) By
©,1) ((a = b)encsy = (a = e)dandss, ci3¢3; — cndss) B
. (e, D (cir, c13.c31) By'B
:p’.’ ;‘2 : ﬁ;'z Z” (62,0) (€11, €31, €32y — doacan) v aB
o 1’,[3' ::w 2 @)l “C‘ + vt (&2, 1) (ci1, 365, = dnear, (@ = b)epda + (=1 —a+ cexcyy) y'e
e 2 21 16 T Vs (&2 —1.0) (c23, 2, 65, — dacs1) apypa
e L ©.0) (1 c13,629) Bey”
see §3.62 for the relations among CE)) 10— et 025, @ = D)sidn + @~ B)ency — o)) Ba
(£1.0) (Ciiyi- 120, C21,C31,€23) By*pa
cn + vey, ci €3 (e, 1) (s, ez, e, (=1 —a+ eners = (=1 —a+ b)epcy, eacis —eney) | By'B
a vey  en+ucs, o (62,0) (Ciry 123, C12.€31,€32) ay*ap
ves ve; 33+ Ucyy (&2, 1) (12, €22, €115 (@ = b)eaers = (=1 = b + c)eazcyy, 21632 = €3163,) ayta
see §3.6.2 for the relations among coefficients (0,0 (Ciiyi-1.23, €13,€23,€12) apay”
©.1) (€23, €33, €22, (a = b)eai 32 — (@ = €)€31€59, €32€13 — €12€53) apa

Data relevant to Theorem 3.6.4. The first column records the components of the shape
w = w(p, t). The second column records the form of the matrix of partial Frobenius
AY=1-) and the presentation of the ring Fﬁléj,.,i in terms of the entries of AV ~1-9.
The fourth column records the prime ideal ¢, ., in the statement of Theorem 3.6.4.
The last column records the element 7+ € W, that occurs in Proposition 3.6.9, which
controls the minimal type t’ of the weight given by the third column with respect to p.
Thus, T/ = 1(sz*, u + 52*(0)). Note that w(p, rl’)V: w(p, )z~ '. Finally, the structure
—expl,

constants that feature in the presentation of Ry ., are given by (a, b, c) € F; with
(a,b,c)=s;"(n;) mod p.

https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2020.1

D. Le et al. 52

Table 3. (continued)

_ - @
Wyoioit-1 AU-1=D (wi, @) € Xy Wy, = a0 N Cwil) z
cen(csy)™ e c13 + ey
vczl n 23 + vdys
vesy vch,  caeas(cy) ! + vdss
af c12c23 — cncyz = 0; 0,1), (0,0) (c22) @

cncy = 0;
e —dyen = 0;
cin((a = b)esidyy — (b = c)dyzes)) = 0;
(=1 —a+c)eicy, = (-1 —a+b)ends;

e () enesn + vej, i3
0 vda Ve
ey, Ve c33 + vda3
701 0,1), (0,0 3¢k, — cq1d-
B cnen = 0 (0, 1), (0,0 (c13c; — cnds3) B
dy(cizcyy —cndsz) =05
cn((a —b)exncs; — (a - c)dxnds;) = 0;
(1+a—c)excsych, = cis((a = b)exncsy; — (a — )dndss)
o cin et ocy, i3 (&2, 1), (£2,0) (c32€5, — daacsi, cir) va
vy cxn+ vdyn 3
ves vexp () ezreas + vk,
see §3.6.2 for the relations among coefficients (0,1), (0,0) (c11€53 = €13¢315 €23) Ba
¢+ vy 2 €13 (&1, 1), (e1,0) | (c33, ¢, €31, €23 = carcnz) | By*B
id Ve ¢+ ey, 3
vesy ve32 €33+ Uy
see §3.6.2 for the relations among coefficients (&2, 1), (£2,0) | (c115 €22, €12, Chp€31 = C32621) | @yt

(0,1), (0,0) | (c22, €33, €23, €35c12 — €c13¢32) | afa

Further data relevant to Theorem 3.6.4. The description of the columns is the same as
that in Table 3.

b—c
* * ~ ~
011d22€33 = —— (5 C13C32, C13¢23¢3 =0,
a—2>
~ *
c3c3163 =0, Cy1C33 = (C31C23,
. a—c¢ . (—l—a+c¢c) -
C12C33 = C13C32, C0C33 = - (23C3,
-b : (=1 —a+b) i
and

(a — b)C13C31d22 =+ (C — b)C13E32C;] + (—1 —a+ C)C23C31CT2 =0.

These equations come from [LLHLM18, Proposition 8.11] and its
proof, by restoring the units c7,, ¢3,, and c3; (which were set to be 1 in
loc. cit.); the first six equations above are deduced from the equations
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appearing in the statement of loc. cit. (where dy, above is denoted
by ¢, in loc. cit.), the seventh and eighth equations above appear
in the proof of loc. cit., and the last equation above is implicit in
loc. cit. (where we solved c3; using the p-saturation of the 2 by 2
minor condition). In particular, E%p 11,; is a formal power series ring
over the ring R appearing in [LLHLM18, Proposition 8.11].

(3) When £(w;) = 0, the matrix A" has the form

*
- ¢ + vey; C12 C13
A@univ _ Ve oy + UC;Q 2
VC3g VC3 €33 + vy,

1.V . _ .
We define E%pﬁi to be the quotient of F[lc;;, ¢f, — [ci,], 1 < i, Jj,

k < 3] by the relations

CiiCjj = 0 fori ;é 7 C11C3 = 0 C31Cyp = O,
c3scp =0, C12C23 = C22C13, C11C32 = C12C31,

C€21C33 = C31C23,
and

(=1 —a+c)cse+ (=1 —a+b)ency,
— (=l —a+c)enen =0,
(@ —b)cizen + (=1 = b+ c)csscl, — (@ — b)cyzez =0,
(b — o)t + (@ — c)cricy, — (b — c)cipea =0,
011C§2C§3 + CQ2CTIC;3 + C33CT1C;2 - CT1C23C32 - C;2013031 - C§3012C21

+ c13¢3021 = 0.

These equations come from [LLLHL.LM18, Corollary 8.4] by restoring
the units ¢}, (which were set to be 1 in loc. cit.) and we added the
equation cypc33; = 0, which was missing in loc. cit. and which is
obtained by the 2 by 2 minor condition on A®""V_ In particular,
F%lf :’; is a formal power series ring over the ring R appearing in
[LLHLM18, Corollary 8.4].

Note that each object with a superscript O receives a @3 -action, corresponding
to changing the framing on the Galois representation.
We now justify the diagram:
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e We claim that there is a canonical isomorphism [Spf(ﬁr—’ﬁi‘]) /GI/;:I =

—exp

S f(Rm & ) When £(w;) > 1 for all i, this is [LLHLM18, Theorem 5.12,

Theorem 6.14 and Table 7]. When £(@;) < 1 for some i, this follows from the

same arguments as [LILHLM18, Section 8] together with Theorem 3.5.2, as

explained in the proof of Theorem 3.5.3. This justifies the existence and the

properties of the first row of Diagram (3.9). It is clear from the construction
expl,V

that the G -actlon on D preserves Spf(Rim 5 ). Let (M -, Bw,-) be the
restriction of (9™, B*Y) to Spf(R%.LB ). Thus, the map 1, sends My, to
det

U) T (mw T[ ])A l

. . — =3 .
e The second row is obtained from the first row by quotienting by the Gmf -action
coming from scaling the gauge basis and, hence, inherits all properties from
the first row. The top squares are Cartesian.

e The second column is obtained from the first column by quotienting by the
GL; action coming from changing the framing of the Galois representation;
hence, the bottom square is Cartesian.

The following proposition finishes our justification of the diagram.

PROPOSITION 3.6.3. Assume that_‘c is 3-generic and that M e YW(F) is
semisimple of shape W = (W;). Let B be a gauge basis for 9. Then the map

1LY - 915—M0dé’H

is a monomorphism.

Proof. We need to prove that the map on the groupoids of F[e]/(¢?)-points
Yy (Flel/ (7)) — @-Mod L (Fle]/ ()

induced by i, is fully faithful. But this follows from [LLHL19, Proposition
3.2.18], noting that the right-hand side is equivalent to Repg,2(Gk, )z in
loc. cit. O

Diagram (3.9) gives a bijection between the set of minimal primes
Irr(Spec (E;)) and Irr(Spec (F%i’;)) =1 Irr(Spec( gﬁ w )) By Proposition
3.6.1, this set is in bijection with the set p(o) for o € W’(p, 7). On the other
hand, by Proposition 3.4.2, we have a bijection

[[Z% =W
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(s,

(w,a) — O o)

The following theorem is the main result of this subsection, which computes the
above bijections in terms of the explicit rings.

THEOREM 3.6.4. Assume p is 10-generic. Via the above bijections, we have

f-1

[1=5 — [Tire(Spec (Ry5)) — Iir(Spec (Ry))
i=0 i

—expl,V (s,10)
((")i’ a,-)) ((c(‘”f 1-is@f—1- ,)Rm ; )i p(U(w u))

. . . LV )
where ¢, 4, is the minimal prime ofﬁ%oﬁfflﬂ_ given by Table 3.

REMARK 3.6.5. Note that Table 3 only gives the ideals ¢, ) < ﬁ;zple s
for a set of representatives for Wy_;_; € Adm"((2, 1,0)) for the action of the

outer automorphisms of W". This is sufficient because this action corresponds
to changing the lowest alcove presentation of 7.

We now describe the strategy of proof. The main idea is that by the proof
of Proposition 3.6.1, the prime p(o) can be characterized by the relation (3.6)
for a specific type v’ (inducting on defect of o). Namely, one can use the
minimal type t’ of o with respect to p. For this type, each component of
w' = w(p, t’) has length > 3. Furthermore, the minimal type t’ has the property
that Spfﬁ1 C Spfﬁi inside Spfﬁu Thus it suffices to determine the subset

—expl,

of Irr(Spec (Ryy 5 )) which occurs in R_. This is achieved by matchmg the
universal étale p-module over a union of 1rredu01ble components of Rﬁ p ¥ with

the universal étale ¢-module living over R (or rather R—f N,)
The precise formulation of this matchlng mechanism is glven by the following.

LEMMA 3.6.6. Lett =1(s, ) and v/ = t(s’, ). Assume that R, R%/ #0, and

the running hypothesis that p is 10-generic. Consider diagram (3.9) for RZ, RT ,
constructed using the above presentations. We decorate the objects that occur m
the diagram for t’ with the same symbol as those in the diagram for t but with
a superscript’ added (so we have, for example w', My o, and so on) Assume

that there are ideals I (respectively 1') of Rzm Z (respectlvely R—/ ) such that

e [, I’ are intersections of minimal primes.

o There is an isomorphism Rsm /I = ﬁeﬁlY//[’
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e There exists an isomorphism of étale p-modules between the base change of

Mg, to Fmpl v /I and the base change of M . to R o0 P / 1" compatible with
the above ring homomorphism.

Let J (respectively J') denote the intersection of minimal primes in E;

(respectively ﬁ;) which correspond to I (respectively 1'). Then, J and J’

. . . _D
induce the same ideals in Rﬁ.

Proof. Our hypotheses imply that there is an isomorphism

—expl,V —expl,V

Spf(Ror s /1) ~ Spt(Roy. /1) (3.10)

~

- ModétH

Pulling this back along the map @- Modé/:/lf’D — &- Modé‘H gives a commutative

diagram
Spf(E’mf YT ~ Spf(R;f ; /1) (3.11)
fs fs
SPE(R./J) SRS /')
SP“\ //Sp )

et O
- ModH

where _we use [LLHLM18, Proposition 3.12] to see that the natural map
Spf(R ) > &- ModiD is a monomorphism (as p 10-generic 1mphes ad(p)

is cyclotomic free). But this implies that Spf(R /J) and Spf(R / J') define
the same subfunctor of @- Modﬂ] and, hence, also the same subfunctor of
Spf(R ). O

In practice, we will apply the lemma by matching matrices of partial Frobenii.
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COROLLARY 3.6.7. Keep the notations and setting of Lemma 3.6.6. Assume that
there exists 7 = (Z;); € W, with corresponding Z* = (Z}); € W, and z is the
image of 7 in W such that s' = sz* and W' = u + s7*(0). Write (I,); for the
. . . LV .. . . i .
collection of ideals in E%p @, giving rise to I, write A for the matrix of the
ith partial Frobenius of My . with respect to By ., and let (I]); and A'D be the
analogous objects for t'. Assume the following:
. . LV ~ LV .. .

e The isomorphism E%p = /I = E%g@, /1" is induced by a collection of

. . LV . —explV

isomorphisms E%p o/l = R%g =/ 1
e Foreachi,

A(filii) mod If—l—i = A/(filii)gf_l_l‘ mod I}—l—i

via the above isomorphisms.

Then the same conclusion as Lemma 3.6.6 holds.

Proof. This follows from Lemma 3.6.6, Proposition 3.2.1, and the fact that
’ZS*[H_* = S/*tur*. D

REMARK 3.6.8. Note that the second condition in Corollary 3.6.7 implies in

particular that ' .
(Z(l))i = (Z/([)’Zi)i’ (3.12)

where Z(Z),Z/m denote the reductions modulo the maximal ideal. We now
explain how, in the situations where we apply Corollary 3.6.7, we can always
arrange this.

If we have p semisimple and t, t/, 7 as in Proposition 3.6.9, then

w=w"z. (3.13)

Furthermore, for any choices of gauge bases g, ', for My, and My -,
respectively, one has A" e T (F)w; and A" e T (F)w; by Proposition 3.3.6.

Let 917 _ denote the element of Y7 (F) with eigenbasis Byy such that the partial

w,T
7 (i)~

Frobenii is given by (A Z;);. (Note that 93?;5’, € Y"*(F) because it has shape
W € Adm”(n).) Since Zs*1,» = §"*1,», (MG )*=" = (Mg )*=" by Proposition
3.2.1. Thus, Ty (9 ) = p. By the triviality of Kisin variety (see [LLHLM18,
Theorem 3.2]), zm;m = 9M;.. and Boy defines a gauge basis of My ;. Thus, by
replacing Bon by Bon (this can be done by scaling by an element of 7 (F) by
[LLHL19, Proposition 3.2.22]), we can then ensure that condition (3.12) holds.
In all the matching that we perform below, we will always assume that the gauge

bases have been chosen so that condition (3.12) holds.
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The following proposition describes all the types t’ for which we need to
perform some matching with t.

PROPOSITION 3.6.9. Assume that p is 10-generic. Let T = t(s, ) be a tame
inertial type such that R% # 0, and let w = w(p, T) = (W;);. Let (v, a) = (s,
ai))l. e[l Yy and o = a(((f;:gf e W’(p, 7). Let T’ be the minimal type of ¢ with

respect to p; cf. Remark 3.5.10. Then we have the following:

e For7* = (Z¥); € W, as given by Table 3, we have t' = t(s’, ') where

’ k

s'=sz", p=pu+s7°0)

o w(p, )7 =w; and
e Wi(p,t)C W(p, ).

Proof. This is immediate by computing the pairwise intersections among X,
w;(r(X)), and 77 (Xp). O

Proof of Theorem 3.6.4. By Proposition 3.6.9 and the proof of Proposition 3.6.1,
for each o € W’(p, t) with minimal type T’ with respect to o, we need to show
that the intersection of minimal primes

f-1 /-1
0, (Bem) £ 0 )
i=0 i=0

(w,0)eZNTH(X) (wi,a;) € ZoNZ; (Zo)

of ﬁ% 1,wv corresponds to the intersection of primes (1), .y . P(0") of E;. But
this follows from Corollary 3.6.7 (which allows us to work for each i separately)
and the explicit computations in Section 3.6.2. O

We record the following lemma, which follows from Theorem 3.6.4, for future

use. Let w = w(p, 7). Suppose that £(w;) > 2 forall 0 < i < f — 1. Let
N &S @4 — @), and Ry & &, Ollx;, y;1/(x;y; — p). In this case, there
exists a formally smooth map Ry — RSXPIUNJV, which we fix. We think of Ry as a

subalgebra of ReXp "V Foro € W(p, 1), let pl(0) C RexP "V be the prime ideal
corresponding to the welght o. The minimal prime ideals of Rexlolwv containing
w are of the form ((z;)_, + (@ ))Re"pl v

& Wherez; € {x;, y;} forall  <j<N.
Define (o) so that p(e) = (5 @), + (@) R
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LEMMA 3.6.10. Assume that p is 10-generic and that £(w;) > 2 forall 0 <i <
f — 1. Foro, and o, € W'(p, 1),

#({Zj(ffl)}y:1A{Zj(ffz)};v:]) = ngph(m, 02),
where A denotes the symmetric difference.

Proof. From the aBa, aff, and Ba rows of Table 3, we check that if o, o0, €
W?(p, t), then p*P! (o)) + pP!(0,) is a prime ideal of R%p 1&,7v of height
dgph(ala 02) + 1.

On the other hand, the height of the intersection of ((z‘,-) i+ (w)) =+ ((Z;-) i+ (zzr))
is easily seen to be

()AL + 1 0

For convenience, we list in Table 4 the length 4 shapes and their universal
vy —expl,V
families over Ry 5 -

3.6.2.  Explicit computations. In this section, we record the matching of
matrices of partial Frobenii needed in the proof of Theorem 3.6.4. We are
always in the setting of the theorem. In particular, we have two types 7, 7’ with
chosen presentations related by the element 7* together with matrices of partial
Frobenii AV~ A'/=1=) We will fix i throughout.

We will frequently recall presentations of rings from [LLHIL.M18], and since
we work in characteristic p, all occurrences of the symbol e in loc. cit. will
become —1 here. We let (a, b, ¢) and (a’, b/, ') € ]Ff7 be such that

(av b’ C) = S[_I(Mi) mod P, (a/’ b/v C/) = (S,/)—I(I‘L:) mod p-

Note that (a’, b’,¢’) = Z;_1-i(a, b, c). These are the structure constants that
feature in the presentation of our explicit rings. We will also replace occurrences
of the symbols ¢;; in loc. cit. by d;; as we wish to decorate objects associated
with 7/ with a prime superscript.

Case Wy_;_; = aft;. From [LLHLMI1S, Table 5], the matrix of the partial
Frobenius AY~!=) has the form
cien(cl) ™ cn ci3 +ucty
vey, 2 €23 + vd3
ves vey,  (careas(es) ™ + vdss)
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. . . . —expl,V
Table 4. Universal matrix and presentation for the rings Rg; By for extremal and
RUFSE
shadow shapes.
;‘7}714,1 A1) }7}7]4,1 AU=1-0)
vely vcl, 0
vt 00 0 v2ch; 0
aBay vic), wch 0 Byay vch, uch, + vy, o
vy, vck, o
(=1=0"+c")cyel — (=1 =a’ +¢')cjpel =0
i 3t uds
Ay ovdy,  cl 0w veh,
ByBa 0 1/2(7'3 0 yafa 0 0 vzcgg
0 ’uzcaz veyy
(@ = c)el5eh; = (@ = b')chyel, =0
v 0 0
velp 0 wdly v(ch, +vdy) )y chy
ayaf vel, ¢y vdy afyp vzcgl 0wl
0 0 1/2(‘3g
(=1 =a" + b)) chy = (b =)y ch =0
)T dile) T + vl ”d'nl [P <l .
0 v W )+ 1)y Cipcia(er)
afa vyt vch, vdy ByB 1}20;1 veyy
¢}y (@ = b')chsch, = (@ = )ehydyy) = 0 (B =) ¢y = (=1 —a + b)cid; ) =0
vel) vch, 0
Ve, 1 vds, 1 [&
yay e (e3)7 W(Chsdhy (53T + 0ey) 3
(=1 =d" +)clychy = (1 =B +)efidy,) =0

The relevant data for the type 7’ occurring in the proof of Theorem 3.6.4. The first
column records the components of the shape W’ = w(p, t’). The second column
records the form of the matrix of partial Frobenius A’/~!=" and the presentation of

. v . .
the ring Ry -, in terms of the entries of A’/~!~". The structure constants that
Wy

. . —expl,V
feature in the presentation of Ry
Ru/A

~are given by (a’, V', ) € F; where (a’, ',

c) = (s)""(n;) mod p. Note that (s))~"(u}) =Z;_1-i(a,b,c) mod p.

. —expl,V . . —x
The ring Rﬁ,mf,l,,- is the quotient of F[c12, 13, ¢, €23, do3, 31, d33, 5 — [€]5],
* —k * = :
3 — [€31], ¢35, — [¢3,11] by the relations
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cyci3 — dzepn = 0;
ci2((b — o)dsz3cs, + (a — b)csidaz) = 0;
(—1 —a -+ C)C23C>3k2 = (—1 —a -+ b)C22d33.

Note that all equations except for the last one are mod @ reductions of equations
in [LLHLM18, Section 5.3.3]. We explain how to justify the last equation
from the computations in [LLHLM]18, Section 5.3.3], which was implicit in
[LLHL.M18, Table 7]. For the remainder of this paragraph, we adopt the notation
of loc. cit. We have ¢, ((a — b)c31¢h; + (b — ¢)c5,¢y;) = pz*. From the equation
Che13 — peicty — chzern = 0, replacing p by (z) 7' (cia((a — b)esichy + (b —
c)c3,css)), we deduce that c¢3 is a certain multiple of c,. Finally, using the
equation c¢jyc23 = ¢xc13 and canceling out ¢y, (as it is a unit after inverting p),
we get an equation solving c,3 in terms of the remaining variables. The mod @
reduction of this equation gives the last equation above.

—expl,V
The minimal primes of Rim iy, are

0.0 = (€12, 2);  Ceny = (€12, €31);  Cey—en0) = (€31, d33)

and
co1y = (e, (b —c)dsscs, + (a — b)csidys).

, LV . . .

(Note that in E%i #5,_,_,» there are no more relation than those listed in (3.14).

Indeed, let R be the quotient of Fllcya, 13, €22, €23, do3, €31, d33, €3 — [C)5],
—[c5,1, ¢35, — [c3, 111 by the relations (3.14). Then the discussion above proves

xpl,V . .
that there is a surjection R — Ee P . A direct check on the relations (3.14)
xpl, V

shows that R is reduced, equ1d1men31onal of the same dimension as Rzm B
and with the same Hilbert—Samuel multiplicity. Therefore, the surjection is an
isomorphism; see Lemma 3.6.11.) We need to perform matching for the ideals

def . . .
C0.0s C(er.1)s Cler—e2.005 T00) = €0.1y N €(0.0)- We provide details for the matching of
the ideal ¢(o ) in Table 3. We have

—expl v _ _ _
gy{ W l/C(O 0 — IF[[st C31, d337 C13 [013]’ C;l - [621]’ c;kz - [032]]]

and

0 0 vl
AV mod ¢ = |vek, 0 vdy
ves ucy,  vdss
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On the cher hand, %}714 =afayt;,7F =ayt, (@, b, c)=(c—1,a,b+ 1),
and A’V~1=) has the form

vzci"[ 0 0

vicy, veyy 0

vidy  vey,

Now we note thatZy_;_; = #_1,0,1y(123) and
0 0 wvch vzc’l’[ 0 0\ /0 0 v!
ves, 0 wvdy | = | vieh, vk 0 1 0 O
vey uek,  vdss vid;, veh, 5] \0 v 0

under the isomorphism

—expl,V ~ =expl,V
Rﬁ,{;}f—l—i/c(o'o) = RS)’R BT/

given by the change of variable

% __ % % __ % 7

G =Cy, Cjy=c), di =y,
— / * —_ /% — ’

G =C, Cp=cy, dyp=dy.

Such a change of variable is allowed, provided the units that are matched with

—/ %

each other agree modulo the maximal ideal because ¢, = ¢5,, ¢;] = C};, and
¢5 = Cx, as elements of F (see Remark 3.6.8). Thus, 3.6.7 applies and we are
done with this case. The matching for ¢, _., 0 can be performed in a similar
fashion.

Next we provide details for the matching of ¢, ). We have

—expl v /c ]F[[sz, €23, d237 d337 CT3 - [EE]’ C;l - [Ezl]: c;z - [532]]]
(e1,1) = .

im —i
e (=1 —a+)exch, — (=1 —a + b)cxnds)
Moreover,
0 0 vel,
AV mod ey = | ve5, € c 4 vdy
0 v, vdss

On the other hand, zﬂ}fH =afypt,z; =y*B, (@, b, c)=(c—1,a+1,b)
and A’Y~1=) has the form

vich 0 0
1(f=1-=i) _ 2 q/ /% /
A = | vey, '2" vidy ¢y Oy

! /%
v-cy, 0 wvci

https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2020.1

Serre weights and Breuil’s lattice conjecture in dimension three 63
. jpexplV . . ’ o ’ /% —I%1 Ik — 1
The ring Rgy 5, | is the quotient of Fllcy,, dy, ¢35, ¢3, €1 — [€11] 3 — [,
’ —/ % .
¢33 — [c5311] by the relation

(=1 —d' + b)) iy — (B — )y e = 0.

Now we note that

0 0 veh vich 0 0 0 0 v!
vey e e tudy | = |veh +vidy sy | fv 00
0 ek, vds; vicy, 0 w3/ \0O 1 0

under the isomorphism
—expl,V ~
ﬁ~ﬁf—l—i/c(8]’l) = Rﬁ’,w’,
given by the change of variable
/ / /
C = Cp3, €23 = Cyy, dy = 21
V] * o % * /% * %
dyz=c3, C3=cl], 5 =0¢, G =ci

We finish the matching in this case.

Finally, we explain the matching of the ideal to, & co.1y N co.0 = (c22). We
have

—expl,V /r0 _ ]F[[C127 d237 C31, d337 CT3 - [ET:{]’ C;l - [531]7 C;z - [532]]]
0o — .

MWy
o (cr2((b — ©)ds3¢3, + (a — b)caids))
Moreover,
o cien(cy)™ e dynen(ch) T+ vl
AV mod oy = ves, 0 vdy3

VC3 vey, vds;

On the other hand, w}_l_i =afat;,Zf =a, (@, b,c) = (b,a,c)and A’V~17D
has the form

/ AN 7\ —1 o 7%\ —1 /%

Gt cu o Cucxnlcs) 1 (e5) ™+ vcl;
r(f—1-i) __ /% /
A =10 veys VCys
/% / I
vey) vcs, vdi,

. —expl,V
The ring Ry -,
g M Wy

¢ty — [¢55]11 by the relations

1 1 / / / / * —k * —k
s the quotient of F[[c},, ¢}s, ¢%,, dis, ¢35 — [¢5], €5, — [C3,],

(@ = b)chyeh, — (@' — ¢)eyydyy) = 0.
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(We remark that the form of the (3, 3) entry of A’/~!=" is as above because
in the notation of [LLHLMI18, Section 5.3.1], we have ¢33 = —yi;ci3¢5;, = 0
mod p since ¢3¢, = ¢i1¢s; mod p and ;¢ =0 mod p.)

Now we note that

csicnn(cy,)™ e dpen(ch) T el

ves, 0 vdy3 =
vCsg vcs, vds;3
’ o 7k —1 I 7x\—1 /%
ci o Cucynlcs 3¢ (e5) 7+ ucl; 0 10
— /% /
=10 veys VChs 1 00
/ *x / !
vey) ves, vdi, 0 01
under the isomorphism
—@l,v ~ Eexpl v
RUS RS 0= fon Wy
given by the change of variable
cn=Ccy, c1=7¢h, dpn=dy,
I * % * Ik * %
dy=dy, ch=c, G =cy, C3=c
Case Wy_y_; = at,. From [LLHLMI8, Table 5], the matrix of the partial
Frobenius A== has the following form:
cn ¢+ e, Ci13
vey cxn +vdn €23
VC31 VC3p 33+ UC;k3
~  def —d . .
Set Ty N 251 Recall from item (2) above that Ry  is the quotient
2[ -
of

Fllici1, c12s €135 €22, €23, €31, Ca2, €33, o, CTz - [E)]k2]7 0;1 - [Ezl]a C§3 - [E;@]]]

by the following relations:

.~ ~
cricas =0, C33C11C32 = €13C31C32,
donct. — b—c , . -0
C11d22C33 = — €5 C13C32, C13C23C3 = U,
a—>b
=0 " _

C23C31C3 = U, Cy1C33 = C31C23,

. a—c . . (=-l—a+c¢c) -
C12C33 = C13C32 C0C33 = ——— . C23C3

BT a—b ’ BT (=l—a+b) ’
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and
~ * *
(a = D)cizeaidan + (¢ — b)eiscncy + (=1 —a + c)exesic, = 0.

1,V . . . . .
(Note that ﬁ%‘t @,_,_, 1s formally smooth of relative dimension three over the ring

R defined in [LLHLMI18, Proposition 8.11].)
We provide details for the matching of the ideal ¢, ;). We have

2L /c Fllca, €23, €32, da, ¢31 — [T3], €1y — [€1,], 55 = [€33]]]
(er,) =
Ry, i) e ((_1 —a+b)enc; —(—1—a+ c)cz3632)

and
0 vey, 0
AV mod Ceny = | v65, cn+vdyn e
0 Ve VChs

On the other hand, w}-fH =afyB.zi =ByTB, (@, b, c)=bB—-1,a+1,¢)
and A’Y~1=D has the form

vicly 0 0
/ /% /
v(ey, 2"‘ vdy) €y O
/ /%
vocy, 0 wvcl}
1 1 / ’ / / /% —/ * /% _/*
The ring R A the quotient of (¢}, , dy,, ¢35, €5, ¢ — [€11], ¢35 — [C)

ey — [e5510 by the relation
(=1 —d + b)) 5y — (B —)cychy = 0.

We now note that

0 ver, 0 vich 0 0 0 v o
vey, cntudn o | = | vicy +udy) o v 0 0
0 Ve vy, vich, 0 w3/ \0O 0 1

under the isomorphism

—expl v —expl,V
smw ' ,/%1 =

given by the change of variables
* /% * /% — !
Ch=Cll, 5 =0y, dn=dy,

— / — ! * /%
C3 =Cp3 O3 =0C3  C33 = C53.
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. . . def ~
We now explain the matching of the ideal tv,, = Cey.0) N C(er1y = (€11, C32). We
have

Hexpl,V / - Flcis, 23, €31, daa, €75 — [ETZ], ) — [Ezl], €y — [@3]]
M, W —i €
e ’ c31((@a — b)cizdy + (=1 —a + ¢)cfye3)

Moreover,

*
. 0 vey, ci3
AV mod w,, = | ves, vds» C23
* \—1 * \—1 *
vey vdyesi(cl) c23031(c3) ™ + vek,

On the other hand, WFH =aya,zf =yTaand (@', b, )= (b,c—1,a+1)
and A’Y~1=D has the form

veyd veh, 0
’ ’ /%
UGy ] vd;, 1 €23
/ / Jk\ — / I /%) — / % /
Ve3¢5, (633 V(cdy(c33) 7 +ue) o

—/ % —/ %

. pexplV . : / / l / /% /%
The ring Ry, , s the quotient of F[[c},, 5, d},, 3, ¢} — [€]1], €35 — [c53],

1
¢y — [c55]1 by the relation
(=1 —a' + )clych — (1= b+ eyidy,) = 0.

Now we note that

0 vel, i3
*
UGy, Ud22 C23
-1 -1
vesr vdpesi(cy)” caacs(c5) T + vy
veyd Ve, 0 01 0
_ / ’ /% —1
= vey, 1 deZ1 ch; 0 0 v
/ / /% — / ! /%) — /% /
V3365, (€33) v(cdy(c33) ™ +vesy) 3 v 0 0
under the isomorphism
—expl,V ~ 5expl,V
RIS /e, Rﬁ’,w}._l_i
given by the change of variables
* % — * %
Cy =Cp3, €31 =C33, Cpp =0
— — — ¥ Sk
dp =0y, Ci3=Clh, C3=dy, C53=c5p.
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Case Wy_;_; = t;. From [LLHLMI18, Table 5], the matrix of the partial
Frobenius AV 1= has the following form:
¢+ ey C12 €13
VCy Coo + UC;z C3
vC3 vC3) €33 + VChy

Recall from item (3) above that ﬁ%f l’ﬁVFH is the quotient of F[c;;, ci, — [Cf, ],
1 <1, j, k < 3] by the relations

CiiCjj =0 fori 75], C“C23=0, C31€22=0,
c33cip =0, C12C23 = C22C13,  C11C32 = C12C31,

C21C33 = C31C23,

and

(—l—a+c)hen+ (=1 —a+b)epcy; — (=1 —a+c)eisezn =0
(a —b)cien + (=1 = b+ c)essc)y, — (@ — b)eizez =0

(b —c)cticn +(a —c)ericy, — (b —c)cipey =0

Cl1CYHC F €C] 033 + €33C7 €3 — €11C23C3 — €3,C13631

k
— C3C12C21 + €3¢0 = 0.

LV . . . . .
ote that Rew . _1s formally smooth of relative dimension three over the rin
(Note that M1, y g

R defined in [LLHIL.M18, Corollary 8.4].)
We provide details for the matching of ¢(,0) = (c11, €22, €33, C13, €23, C12).
We have

—expl,V

R, /00 = Fllcy, g —[eg), 1<j <i <3, 1<k <3

and
ve; 0 0
A(filii) mod C0,00 = | VC2 UC;Z 0
vC31 UC3 UC§3
On the other hand, ', _; = afayt, and A’ 1D hag the form

vier 00 0
2. /%
vicy, veys 0

2.7 / /%
V7C3 VUC;p O3
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We note thatZy_;_; = £, 1, and

vey, 0 0 vl 0 0 v 0 0
* _ 2.7 /%
vey vey, 0 ) = 112621 ve,, 0 0 10
* / / / *x
UC3 UCxm  UCH, vicy, vy, C5 0 0 v

under the isomorphism
—expl,V ~
Rﬁvwffl—i/c(o’o) = Row w, |
given by the change of variables

ci=c; forl<j<i<3, ¢ =cp forl<k<3.
: ] . def
We now explain the matching for the ideal tv, = 0.0 Neo.n = (c22, €33, €23,
C§3C12 - 013C32). We have

—expl,V
ﬁ,ﬁfflf;

/mo — F[[CB’ C21, €31, C32, C)lk] - [ETI]v C;2 - [532]7 C;S - [E§3]]]
(c13((a@ — ¢)c55e31 — (b — ©)eznean))

(we have used the relations

(a —c)cyei — (b —c)cppe =0

* *
C33C12 — C13C32 = 0, C33C11 — C13C31 = 0,

. . —expl,V
holding in Ren 5 /10,). Moreover,

—1 —1
c13e31(c5) 7 Fuet,  ciaen(cyy) 13

AV mod oy = vy Vs, 0
VC3 UC3) UCSkS
On the other hand, W,_;_; = afa =7ZF, (@', b, ¢’) = (¢, b,a) and A’V ~'"9 has
the form
¢y i)™ efdi (e T+ el
0 Ve VCh,
vesy vc, vd,

—/ % /% —/ %

. expl,V . . / / / / /%
The ring R is the quotient of F[[c},, )3, ¢%,, dis, €15 — [C13], 55 — [Cxsl,

= ~
m Wy
—/ %

¢4t — [c5111 by the relation
c’“((a’ — b))y, — (@' — )y 33) =0.

‘We now note that

* \—1 * * \—1
c13c31(c33) " + e, cizen(cy;) C13

vy ves, 0

VC3 UC3 UC;}
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/ o /%y —1 / ’ 7x\—1 /%
c o Ccp(cy cjydi;(c3) + ey 0 0 1
=10 veh) VCh, 010
vely vch, vd, 1 00

under the isomorphism

—expl,V ~ 5expl,V
M.+ 1 / 0 — Rmr ~r
JW ] Wy

given by the change of variables

! / ’
Ciz3 =Cpy, €2 =Cy3, C31 = d33,
— * % * o )k * %
€3 =C3, Cjp =Cp3, Cp =Cps €33 =C3p.

Case W;_,_; = Bat, and efat,: The computations of these two cases are very
similar to those we already performed and are left to the reader.

3.6.3. Ideal relations in deformation rings. In this subsection, we collect
some results about sums of intersections of minimal primes in the potentially
crystalline deformation rings RJ. These computations play a crucial role in
Section 5.1, where they are used to compute the value of a patching functor
on certain representations as the limit of the value of the patching functor on
simpler pieces of the representation.

Thanks to Theorem 3.6.4, all computations that we need to perform can be

done on the rings E‘%’ IT}Z_I_‘, given in Table 3. We continue to adopt the notation
and setting of Theorem 3.6.4.
We will frequently make use of the following.

LEMMA 3.6.11. Suppose we have a surjection of rings g : S — R. Assume that
R and S are equidimensional of dimension d, have the same number of minimal
primes, and S is reduced. Then g is an isomorphism.

Proof. The first two hypotheses imply that the kernel of g is nilpotent since g
induces an isomorphism between the underlying topological spaces of Spec (R)
and Spec (5). But since S is reduced, this kernel must in fact be 0. I

. . —expl,V
Ideal relations in Rﬁ,id

LEMMA 3.6.12. In the ring E%%lif, we have

(tog N ¢(ep,0)) + (09 N €e,,0)) = 10o.
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Proof. An elementary check on the list of generators of the ideals tvg, ¢, o) and
C(e,.0) (cf. Table 3) shows that

100 N €0 2 (€33, €23, €22), 109 N Cey0) 2 (€33, €22, C13C32 — C12C35).

In particular (again by looking at the list of generators of tv,), we have (tvy N
Cer.00) + (109 N ¢(e,.0)) 2 10g. The reverse inclusion is obvious. O

LEMMA 3.6.13. In the ring E%}Tl{dv, we have

109 N €ey,0) N Cer 0 = (€22, €33)-
Proof. We let R be the ring with the same presentation as ﬁ%p 1i,dv except that all
c;; are set to 1. As explained in [LLHLM18, Corollary 8.4], there is a natural

e eV . 5o .
identification of R% .4 Wwith the power series over R with three variables, and

. L 1V . .
we can work with the ring R instead of F%p . - All the ideals that we consider

come from R and are given by generators with the same name.
From Table 3, we immediately obtain (¢, ¢33) € 109 N ¢, .00 N Ce,.0), and,
hence, we need to prove that the surjection

ﬁ/(czz, c33) —» ﬁ/(mo N €ep,0) N Cen,0)) (3.15)

is an isomorphism. The ring on the right-hand side is equidimensional of
dimension glree and has four minimal primes. By Lemma 3.6.11, it suffices to
show that R/(ca, c33) is reduced, is equidimensional of dimension three, and
has four minimal primes.

Now R/(cy, c33) is the quotient of the power series ring Fl[cy;, ¢;;, 1 <, J,
< 3, i # j] by the ideal generated by the following elements:

C11C23, C12C23, C11C32 — €12€31,
C31C23, C23C32, KC11 = C21C12,
C11 — €13€31, €11 — C12€21 — C13C31 — €23C32 + €21C13C32

for some x € F* depending on (a, b, ¢). By standard manipulations, we conclude
that R/(ca, c33) is isomorphic to the quotient of the power series ring F[[c;;,
1 <1, j, <3, i# j] by the ideal generated by the following elements:

C31C23, C23C32, C12€23,

cii(cin — ci3en),  cislkes — ccn),  c(cin — ci3c3);
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.. ~ def ~  def .
hence, by wrltmg Ci1p = Ci1p — C13C32, C31 = KC31 — C21C32, WE obtain

Flici2, ¢31, €23, €13, €21, c32l

R/(cn,c33) = —=——= = — e~ .
(C12€31, C12€23, C12C21, C31C23, C31C13, €23C32)

This latter ring is easily seen to be equidimensional of dimension three and has
four minimal primes. It is furthermore reduced since it is the quotient of a power
series ring by an ideal generated by square-free monomials. O

From Lemma 3.6.13, the same argument used in the proof of Lemma 3.6.12
gives the following.

. Ry
LEMMA 3.6.14. In the ring Eeg_id , we have
(tog N tog, N C(ey,0)) + (1og N 1O, N ce0)) = W0 N Cep0) N Cey 0

Proof. From Table 3, we immediately deduce that (toy N 1o, N c,.0) 2 (€33)
and (tog N1o,, Nc,.0) 2 (c22). The conclusion now follows as in Lemma 3.6.12
by noting that (sz, C33) = 10y N C(er,0) N C(ey,0)- O

. . —expl,V
Ideal relations in Ry , .

LEMMA 3.6.15. Consider the ring ﬁ%‘i’tv (cf. Table 3) and let 1,, « 0.0 N

0,1 M €e,00-
Then

(1) 14, = (€165 — c13¢31, €23C31, €23(C3265; — dancsy)),
(2) ¢, N0 NCe,0 = (Cir, C13¢31),
(3) .1y Nc,0 = (23, €115 — C13€31).

Proof. As in the proof of Lemma 3.6.13, it suffices to work in the ring R which

. 1LV
has the same presentation as ﬁ%p « except that all ¢}; are set to 1. Recall that

~  def e
C3» = c3 —dxncs in R.

We start with item (1). From Table (3), we easily deduce
IAO 2 (c11 — €13€31, €23C31,4 023532),
that is, a surjection

R/(c11 — cizcsn, ea3csn, C23E32) - R/IA(, (3.16)
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which we claim is an isomorphism. Note that, by construction, the ring R /1,
has three minimal primes, and it is equidimensional of dimension three.

__From [LLHLM18, Proposition 8.11], we immediately deduce that the ring
R/(c11 — c13¢31, €23€31, €3C32) 18 isomorphic to the quotient of the power series
ring Fl[c3y, ¢13, dx, T, C23]] by the ideal generated by the following elements:

—b
€233, (@ —b)cizcnidan + (¢ — b)eiscxn + (=1 — a + c)exes

C13C31C23, C13C31dx — C13C32, (23C3y,
that is, by the ideal generated by

b—c. ~
013<031d22 - a bC32 ,  023C31, (C23C3,

or, equivalently, the ideal generated by

b—c_ b—c.
ciz| cadn — p cn ), 33, sl cnidn — p C3 ).

b b

In other words, by an evident change of variables, we have
E/(Cu — C13631, €3C31, €3C) EFIX, Y, Z, W, ), /[ (XY, YZ, WZ)

and the latter ring is equidimensional of dimension three and has three
irreducible components. It is, moreover, reduced since the ideal of relations
is generated by square-free monomials.

The argument to prove (2) is completely analogous and we only sketch it. It is
immediate to obtain from Table 3 the inclusion ¢, 1)N¢,0)NC,.0) 2 (€11, €13€C31).
From [LLLHLM18, Proposition 8.11], we see that R /(c11, c13¢31) is isomorphic
to

Fllcis, c23, €31, €32, daall/ (c13¢31, €13C32, €31€23C32, €31 (K Co3 — C13d2)) =
= Fllci3, €23, c31, C32, dn ]|/ (c13¢31, €13C32, €31€23),
for some k € F* depending on (a, b, ¢). The conclusion is obtained by an

analogous argument to the previous case.
The proof of item (3) is similar and left to the reader. (Note that ¢ 1) N

€00 =2 (c23,c11 — ci3c3) and use the explicit presentation of R given by
[LLHLMI18, Proposition 8.11] to check that R/(ca3, c;1 — cy3¢3;) is reduced
with two irreducible components of dimension three.) O
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LEMMA 3.6.16. In E%TZV, we have

Lao N e 1y) + Tag Nyt N Ceymir,0) = Lags 3.17)
(cer, 1y N e,00 N ey N Co,1) + (S N 0,00 N Cer0) N Ceena))

= Cer.1y) N €0,0) N Cey.05 (3.18)
(c0.1) N €0.0) N Cep.00) + (€0.1) N €0,0) N Cey—e1.0)) = €01y N €00 (3.19)

. ~  def .
Proof. We work in R and set c3; = 30— dynesr. An elementary check on the list
of generators of the ideals 1, ¢(,.1), C(e,—e,,0» and ¢, 1) shows that

(g Ny 1) 2 (e — ci3e3t, €3631),  (Lag N €y 1y N Ceger0) 2 (€23632),

and we deduce (again by looking at the list of generators of 1,,) that
(IA() N c(81,1)) + (IA() N C(sz,l) N C(sz—sl.())) 2 IAo'

The reverse inclusion is obvious.

Similarly, (¢11) € ¢¢,.1)N€0.0) N C(er.0)NEep.1y and (11 —€13¢31) S Cey.1yNE0.0)N
C(e2,00 N €0,1)- Henee, (ecey, 1M €0,00 N €e2,00 M €0,1) F (€e,1) M€0,0) M€z, 0) Ve, 1) 2
Cer. 1) N €0,0) N Cer,0)-

The proof of item (3.19) is similar and left to the reader (note that ¢, —c3¢3; €
(c,1) N €,0) N €eyp0) and c23 € (0,1 N 0,0 N Cey—e1.0)))- O

REMARK 3.6.17. The ideal relation appearing in Lemmas 3.6.15 and 3.6.16

are compatible with the outer automorphism of WY, Explicitly, define § «
(123)¢(0,0.—1y and let W +— Sws " be the corresponding outer automorphism on
W". Then § acts on Yy and the ideal relations of Lemmas 3.6.15 and 3.6.16 hold
for shape B with ¢, 4, replaced by ¢(5«)-1(4,).4;)- As an example, for shape g, the
relation (3.19) becomes (C(sl,l) M €0 N C(O,O)) + (c(gl,]) N 00 N c(sl—sz,O)) =
Cer,1) M CGer,0)-

4. Lattices in generic Deligne—Lusztig representations

The aim of this section is to classify lattices with irreducible cosocle in generic
GL;(IF,) Deligne-Lusztig representations, providing the crucial representation-
theoretic input to deduce Breuil’s lattice conjecture from the weight part of Serre
conjecture. The main result (Theorem 4.1.9) states that the submodule structure
of lattices with irreducible cosocle can be predicted using the extension graph
introduced in Section 2.
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Outline of the proof. Let R be a generic Deligne—Lusztig representation. We
have two main steps in the proof of the classification theorem: first, by local
algebraic methods, we describe the reduction of lattices with irreducible cosocles
isomorphic to a lower alcove weight with defect zero (Theorem 4.2.16). Second,
in Section 4.3, we introduce another notion of distance related to the second part
of Theorem 4.1.9, which we call saturation distance. It turns out that this notion
is closely related to the submodule structure of the reduction of lattices.

Using a crucial global input coming from the geometry of Galois deformation
rings, we show that

(1) if measured from o the graph and saturation distances coincide, then the
reduction of the lattice with cosocle isomorphic to o is as predicted in
Theorem 4.1.9 (Proposition 4.3.16);

(2) measured from a lower alcove weight of defect zero, the saturation
distance and the graph distance coincide (Proposition 4.3.17, which uses
Theorem 4.2.16).

In contrast to the other notions of distance that we introduce, the saturation
distance involves lattices in characteristic zero, making it far more flexible.
Taking advantage of this flexibility, we finally show by an induction on defect
that the saturation distance and the graph distance coincide, completing the proof
of Theorem 4.1.9.

Structure of Section 4. For R as above and o € JH(R), let R° denote the
umque (up to homothety) O-lattice in R with irreducible cosocle o and write
R’ to denote its reduction modulo . The first main step is in Section 4.2.
The argument uses the modular representation theory of algebraic groups to

embed R’ into the G = G, (F,)-restriction of a tensor product V,, of algebraic
Weyl modules with non-p-restricted highest weight (see Section 4.2.2 for the
definition of V,,). The content of Section 4.2.3 is the description of V,,|g provided
by Theorem 4.2.7. This theorem describes the Jordan—Holder constituents of
V.lc and the existence of nontrivial extensions between constituents at graph
distance one (cf. the key technical result Proposition 4.2.10). The embedding
of R” in V,, is constructed in Section 4.2.4. One first proves the existence of a
nonzero (and unique up to scalar) morphism R - V,, (Proposition 4.2.15); an
inductive argument, using the description of the submodule structure of Vg,
then shows that the image of this morphism contains all the constituents of r.
The submodule structure of R’ is then obtained from that of 7%

The second part of the proof of Theorem 4.1.9 is the content of Section 4.3.
The key insight is the introduction of the auxiliary notion of saturation distance
on JH(R) in Section 4.3.1 which relates the position of saturated lattices in R°.
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Using a global input, we give in Section 4.3.1 a first coarse relation between
the saturation and the graph distance (cf. Corollary 4.3.8). Subsequently, we
prove in Section 4.3.2 that the three distances are actually equal provided that
o verifies an appropriate condition relating its defect, its graph distance, and its
saturated distance (we say that o is maximally saturated in R). In particular, if
o is maximally saturated in R, the structure of R is predicted by the extension
graph (Proposition 4.3.16).

We are hence left to prove that all constituents of R are maximally saturated.
This is shown by an induction argument in Section 4.3.3. The proof of Theorem
4.1.9 concludes this section.

4.1. The classification statement.

4.1.1. Some generalities. Let C be a nonzero finite abelian category over F. Let
M be a nonzero object of C. A decreasing (respectively increasing) filtration
on M is a collection of subobjects .#"(M) C M (respectively .#,(M) C M)
for n € 7Z such that .Z"*' (M) C .#"(M) (respectively .%,(M) C F,41(M))
for all i. A filtration % is exhaustive and separated if F"(M) = 0 for i
sufficiently large (respectively small) and .#"(M) = M for n sufficiently small

(respectively large), and this property will always be assumed to hold. We
write gr: (M) o ;i—%;) (respectively grfz (M) e %) and omit .% from
the notation if it is clear from context. A filtration is semisimple if g’y (M)
(respectively grf’ (M)) is semisimple for all n € Z. By shifting the filtration,
we will assume that gr';; (M) = 0 (respectively gr;ff (M) = 0) forn < 0 and
that gr%[ (M) # 0 (respectively grb? (M) # 0). The length of a filtration is the
maximal £ € Z such that gr';' (M) # 0 (respectively gr,” (M) # 0).

The socle of M, denoted as soc(M), is defined to be the maximal (with respect
to inclusion) semisimple subobject of M. The radical of M, denoted as rad(M),

is the minimal (with respect to inclusion) subobject of M whose corresponding

quotient is semisimple. The cosocle of M is cosoc(M) &y /rad(M). We

inductively define the radical and socle filtration on M: we set rad® (M) = M

and let rad" (M) & rad (rad”*](M)), and set soc_; (M) = 0 and let soc,(M)
be the inverse image, via the canonical projection M — M /soc,_;(M), of
soc (M /soc,_1(M)) € M/soc,_(M). Then the radical (respectively socle)
filtration is a decreasing (respectively increasing) semisimple filtration.
Moreover, gr?ad(M) = cosoc(M) and gry(M) = soc(M). Since formation
of cosocle (respectively socle) is right (respectively left) exact, the filtration
induced from the radical (respectively socle) filtration on a quotient object
(respectively subobject) is the radical (respectively socle) filtration. The lengths
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of the radical and socle filtrations coincide, and we call this value the Loewy
length of M and denote it by ££(M). Any semisimple filtration has length at
least ££(M), and we say that it is a Loewy series if its length equals £€(M). If
Z is a decreasing Loewy series, then we necessarily have

rad"(M) € F" (M) < s0Cem)—n—1(M) 4.1)

foralln € {0, ..., ££(M)}. We say that M is rigid if rad" (M) = socvry—n—1 (M)
for all n.

We say that M is multiplicity free if every Jordan—Holder factor of M appears
with multiplicity one. We now suppose that M is multiplicity free. We say that
o € JH(M) points to o’ € JH(M) if there exists a subquotient of M which is
isomorphic to a nontrivial extension of o by ¢’. We say that a subset S C JH(M)
is closed if 0 € S and o points to ¢’ imply that o’ € S.

PROPOSITION 4.1.1. The assignment of JH(N) to a subobject N C M gives a
bijection between subobjects of M and closed subsets of JH(M).

Proof. Ttis easy to see that JH(N) is a closed subset of JH(M). Suppose that S C
JH(M) is a closed subset. Let N be the minimal subobject of M with S C JH(N).
Suppose that JH(N) \ S is nonempty and contains o. If ¢’ € JH(N) points to
o, then ¢’ is not in § since S is closed. By replacing o by o’ repeatedly, we can
assume, without loss of generality, that o does not point to o for all " € JH(N).
Let N’ be the maximal subobject of N such that ¢ ¢ JH(N’). This maximality
implies that the socle of N/N’ must be isomorphic to o. By the assumption
above, there is no subobject of N/N’ which is an extension by o, and, therefore,
N/N' is isomorphic to o. Then the existence of N’ contradicts the minimality
of N. (|

Suppose that M is multiplicity free and that .% is a decreasing (respectively
increasing) filtration on M. For o € JH(M), we define d%(c) (respectively
dﬁ (o)) to be the unique value n such that Home (o, gr'; (M)) (respectively
Homg (o, gr;? (M))) is nonzero. For .# semisimple, we say that o € JH(M)
F -points to o' € JH(M) if o points to ¢’ and the (shifted) induced filtration
on the subquotient which is isomorphic to a nontrivial extension of o by ¢’ has
length 2.

If M is multiplicity free, we can attach a directed acyclic graph I" (M) and a
subgraph I’z (M) of I' (M) (respectively I'” (M)) of I (M)) where the vertices
are in bijection with the Jordan—Holder factors of M and there is an arrow o —
o’ in I'(M) if o points to ¢’ and an arrow 0 — ¢’ in ' (M) (respectively in
rm)ifo # -points to ¢’. An extension path (in M) is a directed path in
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I'(M) and an extension path in .7 is a directed path in 'z (M) (respectively
I"'7 (M)). The following proposition is immediate from the definitions.

PROPOSITION 4.1.2. Let N be a subquotient of M. If % is a semisimple
filtration on M, then it naturally induces a semisimple filtration on N. Moreover,
T (N) (respectively I'z(N) and I'”7 (N)) is the maximal subgraph of I' (M)
(respectively I'z(M) and I'7 (M)) with vertices corresponding to TH(N).
LEMMA 4.1.3. Suppose that M is multiplicity free and o € JH(M). Ifdf:d(o) >
0 (respectively dy; (o) > 0), there is a o' such that d?,fd(a/) = dﬁfd(a) -1
(respectively d;) (0') = d);" (o) — 1) and ¢’ rad-points to o (respectively o soc-
points to a’).

Proof. We consider the radical filtration; the socle filtration is analyzed similarly.
Let d = d¥ (o). Then the radical filtration on rad’~'(M) is a shift of the
radical filtration on M by definition and induces the radical filtration on
rad’! (M)/rad“”rl (M). Then there is a 0’ € JH(grfagl(M)) which rad-points to
o, otherwise o would not be in the radical of rad’~' (M) /radd“(M ) which is

griaa (M). -

COROLLARY 4.1.4. Suppose that M is multiplicity free and o € JH(M). Then
there is an extension path in the radical (respectively socle) filtration of length
df:d (o) (respectively d), (o)) ending (respectively beginning) with o.

Proof. The case d (o) = 0 (respectively d};°(c) = 0) is trivial. The induction

rad

step follows from Lemma 4.1.3. O

LEMMA 4.1.5. Suppose that M is multiplicity free and F is an increasing
semisimple filtration on M. If o points to o', then d;, (o) > d, (o).

Proof. Let d be dﬁ (0). By Proposition 4.1.1, .%,(M) contains o’ as a Jordan—
Hoélder factor. Thus, di (6) > di (o). If diJ (o) = d;J ('), then there is
a subquotient of M which is isomorphic to a direct sum of o and o’. This
contradicts the fact that o points to ¢”. O

PROPOSITION 4.1.6. Suppose that M € C is multiplicity free. Then M is rigid
if and only if for every o € JH(M), there is an extension path in the radical
(respectively socle) filtration of length ££(M) —1 —df:d (o) (respectively LL(M)—

1 — d}; (0)) beginning (respectively ending) with o.

https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2020.1

D. Le et al. 78

Proof. First, suppose that M is rigid. There is an extension path P, in the radical

filtration of length df:d (o) ending at o by Corollary 4.1.4. By rigidity, this is an

extension path in the socle filtration of length df:d (o) =0(M) —1—d}/ (o).
Now suppose that there is an extension path in the radical filtration of length

24(M) — 1 — d¥ (o) starting with . Then

rad
d(o) = ee(M) — 1 —d (o)

by Lemma 4.1.5. The reverse inequality is implied by (4.1), and we conclude
that gry, (M) and gryy(,,_,_, (M) are isomorphic and, thus, that M isrigid. [

The following is self-evident.

PROPOSITION 4.1.7. Let M € C be multiplicity free. Then the dual object M* in
the dual abelian category C* is also multiplicity free. A decreasing filtration %
on M gives rise to an increasing filtration F* on M*. Then the map sending o €
JH(M) to o* € JH(M™) extends to isomorphisms of directed graphs I'(M) >
I'(M*) and 's(M) = I'Z"(M)* where —* denotes the transpose of a directed
graph. In particular, if 0y — oy — --- — 0, is an extension path in ¥, then
of — o | — -+ — o] is an extension path in F*.

4.1.2.  The main result. We now use the notation from Section 4.1.1 with C
the category of finite F[G]-modules. Let R be a 2-generic Deligne-Lusztig
representation of G over E. By [Her(09, Appendix, Theorem 3.4] (see the proof
of Proposition 2.3.5), R is residually multiplicity free. We will show that the
elements in JH(R) are p-regular in Lemma 4.2.13. If 0 € JH(R), then there
exists a unique (up to homothety) O-lattice R € R with irreducible cosocle
isomorphic to o by [EGS1S5, Lemma 4.1.1], and we write R’ to denote its
reduction modulo z . In Section 2, we defined a distance function dg,, on p-
regular Serre weights. We now want to relate the graph distance to the submodule

structure of R” . To simplify notation, we fix R and write d’, (o) for dX ().

DEFINITION 4.1.8. Let V be a set of (isomorphism classes of) weights ¢ =
F(w) with u p-regular. Let 0 € V. Let I" be a directed graph with vertex set V.
Then we say that I is predicted by the extension graph with respect to o if there
is an edge from «; to «; if and only if dyp, (K1, &2) = 1 and dgpr (0, K1) < dgpn (o,
k7) (see Definition 2.1.8).

Our main result on the representation theory side is the following.

THEOREM 4.1.9. Let R be as above and 13-generic. Let o € JH(R). Then
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(1) dgpn(o, k) =d7, (k) forall k € JH(R), in particular,

a

LU(R") = 2Defr(0) + 3(f — Defr(0)) + 1;

(2) Twa(R) is predicted by the extension graph with respect to o ;
3 r (EG) is predicted by the extension graph with respect to o ;
4) R’ is rigid; and

5) ifk € JH(R) and R* < R° is a saturated inclusion, then plen€© ) RO ey
R is a saturated inclusion.

REMARK 4.1.10. By Proposition 2.3.5, every maximal geodesic in JH(R)
starting from o has the same length. Then item (4) follows from items (1)
and (2) and Proposition 4.1.6. Furthermore, (3) and Proposition 4.1.1 give a
classification of submodules of ?, from which one can easily deduce items
(1) and (2).

The proof of Theorem 4.1.9 will be carried out in the following subsections.

4.2. Injective envelopes. We now relax our hypotheses on G, but keep much
of the related notation. Let G, be a connected reductive group over IF,, and let
G be the base change G, xp, . Assume that G is split and isomorphic to
G, xy, F, where G is a connected split reductive group over IF,. Let G be the
derived subgroup of G, and let G*" be the base change G5 xp, F. Assume that
G is simply connected. Let G (respectively G*') be the finite group G,(F,)
(respectively QS“(IFP)). Let F : G — G denote the relative Frobenius with
respect to G,. There is an automorphism 7 of G_, and hence its based root
datum, so that Fox : G — G is the relative Frobenius with respect to G,,. This
definition of 7 is consistent with the special case introduced in Section 1.4. Let
h be the Coxeter number of G. We will eventually specialize to the case where
G is a product of copies of GL; so that & = 3.

We define Proj(o) to be the projective hull of o in the category of F[G]-
modules. As [F[G] is a Frobenius algebra, we have an isomorphism Proj(o) =
Inj(o) where Inj(o) denotes the injective envelope of o (again in the category of
F[G]-modules; cf. [Alp86, Section 6, Theorems 4 and 6]).

4.2.1.  Algebraic groups, Frobenius kernels, and finite groups. In this section,

we compare injective envelopes of weights for representations of Frobenius
kernel and of finite groups. One goal is to prove that, under genericity conditions,
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the graph distance introduced in Section 2.1 can be characterized in terms
of nonvanishing of Exté—groups (Lemma 4.2.6). We, moreover, introduce and
describe a non-p-restricted Weyl module V,, which will play a key role in the
proof of a particular case of Theorem 4.1.9.

Let G, denote the Frobenius kernel of G and G,T denote the product of
T and G, in G. We similarly define G and G{*T". The G-representation
L(p) remains irreducible when restricted to G,T and G, (cf. [Jan03, 11.3.10
and I1.9.6]) and we will use the standard notations L;(u) = L(u)|g,, Zl (w) =
L(w)|g,r (cf. loc. cit.). We write Ql (p) to denote the injective envelope of the
irreducible representation Zl () in the category of G, T -modules. It restricts to
an injective envelope of L;(u) in the category of G,-modules. As in the case of
the finite group G, it is isomorphic to a projective cover of L;(u) as well. We
recall the following important result.

THEOREM 4.2.1. Assume that p > 2(h—1) and that G has no factors of type A,.
Then Q 1() has a unique G-module structure which will be denoted by Q(1)
in what follows. In partigulan socg Q1(w) is isomorphic to L(p) since L(w) is
the unique extension of L,(w). Assume that u € X(T) is h — 2-deep. Then

Q1(W)le = Proj(F(w)) = Inj(F (). (4.2)

Proof. The first part of the theorem is well known; cf. [Jan03, I11.11.11]. In what
follows, we deduce the isomorphism (4.2) from [Pil93, Lemma 6.1] (where it is
stated when G is semisimple). It suffices to show that Q(u)|g is injective and
its socle is F (u).

Claim 1. Let M be a G-module. Then socguwr(M|ger) = socg(M)|ger. The
analogous statement holds true for G,T and G{*T*" and for the finite groups
G and G*".

def

Proof of Claim 1. Let Z = G/G*" (respectively Z, et QI/Q‘?ST). For e €
{4, 1}, the group Z, is diagonalizable, and, hence, by the Hochschild—Serre
spectral sequence [Jan03, 1.6.9(3)], the restriction functor Resg;c, (which is
exact) induces a canonical isomorphism h

Extig.(M, N) — H°(z EXUf e (M | gter, N |gaer)) 4.3)

oo

for all i € N and all G,-modules M, N. Since the G -restriction of an
éer
with the formation of socles and cosocles. By [Jan03, 11.9.6 (11)], this implies

the required statement for the groups G, T, G T*".

irreducible G,-module remains irreducible, we conclude that Res ;. commutes
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. def . . . .
Since Z = G/G*" has order prime to p, we also have a canonical isomorphism

Ext,(M, N) — HO(Z EXC o (M | geer, NlGder) 4.4)

Gdcr

for all i € N and all G-modules M, N which implies the statement in the case
of finite groups. O

Claim 2. Let v be a p-restricted weight. Then Ql(v)|Gdeerer is the injective
envelope of Li(v) | goeraer @s a G4 T* -module.

Proof of Claim 2. By Claim 1, the socle of /Q\I(U)Igtlierlder is isomorphic to
L) géerper. It suffices to prove injectivity. By [Jan03, I1.9.4], it is enough to
prove injectivity for the restriction to GI*. As G¥" and G, are both finite and

Gder is closed in G,, we deduce that Resgj‘er maps injectives to injectives (since

it has an exact left adjoint, cf. [Jan03, 1.3. 5 1.8.16]). ]

We are now ready to prove (4.2). We show that Q;(u)|g is an injective G-
module with socle isomorphic to F(u). By [Pil93, Lemma 6.1] (which also
holds in the nonsplit case; cf. the final remark of [Pil93, Section 11]) and Claim
2, we have

01 () lger = Inj(F (1) [ geer) (4.5)

so that Q1 (p)|ger 1s an injective G*"-module with socle isomorphic to F (1) [ er «
We first show injectivity. The functor of G/G™ -invariants is exact on the
category of G/G*"-representations. We hence obtain a canonical isomorphism

Homg (e, Q1(1)lc) = (HomGr(o, QI(M)IGm))G/GM’

and Homg (e, Q,(1)|c), being the composite of two exact functors, is therefore
exact.

The socle of Q;(u)|g contains a submodule isomorphic to F(u) and its
restriction to G*' is isomorphic to F (u)|geer. Thus, the socle of Q;(uw)|g is
isomorphic to F(u). (We are grateful to the referee for simplifying the argument
in our first version.) L]

Recall that an irreducible G-module L(x), with k € X7 (T), is said to be p-
bounded if («, «") < 2(h—1) p for all coroots « € R"; a G-module is p-bounded
if all its Jordan—Holder factors are p-bounded. Similarly, a G-module is defined
to be m-deep if the highest weights of all its Jordan—Holder factors are m-deep.
The following lemmas will be used several times in the rest of this section.
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LEMMA 4.2.2 [Pil97, Lemma 3.1]. Let M be a G-module. If M is 3(h —1)-deep
with p-bounded highest weight, then

soc (M)|g = soc?(M|g), radl;(M)|g = rad;(M|g).

Proof. The statement on the socle filtration for G*" and G*" follows from the
proof of [Pil97, Lemma 3.1]. While loc. cit. assumes that G5 is split over
F,, the proof applies setting n = 1 and using that L(pA;)|ger is isomorphic
to L(7wA;)|ger rather than L(A)|qer. By duality, noting that M is 3(h — 1)-deep
if and qnly if its linear dual M* is 3(h — 1)-deep and that soc},,, ,(M*) =
(M /rad,(M))* for e € {G*", G*"}, we obtain the analogous statement for the
radical filtration (recall that ££(M) is the Loewy length of M). The general case
follows from Claim 1 in the proof of Theorem 4.2.1. O

COROLLARY 4.2.3. Let u € X (T) such that Q,(un) is 3(h — 1)-deep. Then
soci (Q1(W)6 = soc (Ij(F(w))),  rad;(Q1(w))6 = radg(Inj(F (1))
Proof. This follows from Theorem 4.2.1 and Lemma 4.2.2. O

Ifv,k € X*(T), we let m,(v) & dimp(L(k)),. Moreover, we write v € L (k)
as a shorthand for (L(k)), # O.

LEMMA 4.2.4 (Translation principle). Assume that p > 2(h — 1). Let A, & €
X (T). Assume that for all weights v € L(§), the weights A + v belong to the
same alcove as ). Then we have the following isomorphism of G-modules:

(1) L) ®r L(§) = @ueL(g)L()\ + l))@mg(v),
2) OV ®r L) = @veL(s)Ql()‘ + v)ﬂéms(v)'

Proof. We first prove item (1). The isomorphism holds upon restriction to GJ*"
by [Pil93, Lemma 5.1]. As the LHS and RHS of (1) have the same central
characters, the Q‘fer—isomorphisms extend to G-isomorphisms by (4.3).

We now switch to item (2). By the same argument as above, we deduce from
[Pil93, Lemma 5.1] a G, T -equivariant isomorphism

i) ®: L) = P 01(h+ ). (4.6)

veLi ()

https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2020.1

Serre weights and Breuil’s lattice conjecture in dimension three 83

By item (1) and the isomorphism socg (Q(A)) = L()A) from Theorem 4.2.1, we
have a G-equivariant injection

veL(&) veL(§)

=L} ®r L(§) — Q1(M) ®r L(§). (47)

We claim that in the full subcategory of p-bounded G-modules, the functor
Homg (e, Q;(1) ®r L(§)) is exact. Granting the claim we deduce from (4.7)
a G-equivariant morphism

P 21+ 1) — 0,(h) @ L&)

veL(§)

which is injective since it is injective on socles. The morphism is hence an
isomorphism by (4.6) (note that fl(é)v = L), for all v € X,(T) since
& € X(T)) and item (2) follows.

We prove the claim. It will be enough to prove that for any irreducible, p-
bounded G-module L(k), one has

Extg (L(k), 01(4) ®r L(§)) = 0. (4.8)

As L(k) is p-bounded, we can write k = k© + pw, where k© € X,(T) and
w, € Xi(T) satisfies (o, ) < 2(h — 1) for all coroots ¥ € R". Recall
that Q1 (M)[g,r = QI(A). As Ql (A) is injective as a G,-module, the Lyndon—
Hochschild-Serre spectral sequence [Jan03, 1.6.6(3), 1.6.5(2)], together with
(4.6), provides us with an isomorphism

Extg (LK), Q1(%) ®r L(§))
= Extgyq, (L(pw,), Homg, (Li(k®), 01() & L1(8)))

@©mg (v)
= Extyq, (L(pa)K),HomGI (LI(K(O)), P oo+ v)) )

veLi(§)

[

A () Smg (v)
~ JExt. (L(wK), L(H—K>) it 4+v—k® e pXO(T)
= ¢ p

else.

As (w,,aV) < 2(h — 1) < p — 2 for all coroots o™ € R, it follows that w, lies
in the lower p-restricted alcove; in particular, there are no algebraic extensions
between L(w,) and L(w) for any @ € X°(T). This establishes (4.8). ]
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4.2.2.  The case of GL;. We now describe the modules Q(u)|g in more detail
in the case G, is [ [;.s Resy;r, GL3 as in Section 1.4 and v € X (T'). We recall
the alcove labeling for SL; in [Hum06, Section 13.9] and write

o <A B, C, D, E, F,G, H I, J).

If X € &7, let wy € W, be the unique element such that wy - Co = X. Fori € J,

we define Wy, € W, in the evident way. For X € 7, we also define Wy € W,

in the evident way. In what follows, we let f &ef #7.

Assume from now on that p > 5 and p is 2-deep. Let u be wp - p and
write u® as the sum ), u;*. Let Q;(u;) be the GL; p-module defined in
Theorem 4.2.1. It is rigid with Loewy length ££(Q;(i)) = 6+ 1 and is endowed
with a Weyl filtration (see [Jan03, I1.11.13, I1.11.5(5), 11.4.19] and also [Hum06,

Section 13.9]) with submodule V,, & V(u® + pn)) and the GL; sr-module
obtained by extension of scalars from the Weyl module for GL;, with the
highest weight u;” + pn;. Moreover, the socle filtration of Q;(u;) (see [Humo06,
Section 13.9] for a concise reference, [AMO01, Proposition 8.4] and its proof and
[Jan03, Section I1.D.4]) and V,,, (cf. [BDM1S5, Section 4], and Table 6) is known.
(The condition that w is 2-deep is to guarantee that all V,,, has maximal length;
their Loewy length in this case is 3 4 1.) In particular, one sees that V,, is a
multiplicity-free submodule of Q;(u;). Then the G-modules Q;(w) and V,, are
defined to be the tensor products ), Q(u;) and ), V,,, respectively.

The module Q; () is rigid with Loewy length ££(Q;()) = 6 f + 1. The socle
filtration on Q(w) is the tensor product of the socle filtrations Fil on Q;(u;) for
i € J, and the graph I"(V,) is the product [ [, I"(V,,). In particular, V,, is rigid.
Let Fil be the unique increasing Loewy series for Q,(u); its restriction to V,, is
the unique Loewy series for V,.

Recall that an irreducible F[G]-module F is said to be n-deep if we can write
F = L(w)g,) for some u € X, (T) which is n-deep. A F[G]-module is defined
to be n-deep if all its Jordan—Holder constituents are n-deep.

LEMMA 425. Letpu € X*(T),n € N, and w € E If u is n-deep in alcove a,
then W - u is n-deep in alcove W - a. In particular, if © € X,(T) is n-deep, then
Qi(w) and V,, are n-deep. If u € X,(T) is n + 2-deep, then Q,(u)|g and V,|c
are all n-deep.

Proof. The first two claims are easy. To prove the final claim, first note that the

Jordan—Holder factors of Q;(u)|g and V, | are the same, and so it suffices to
prove the claim for L|; where L € JH(V,). Suppose that L is isomorphic to

https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2020.1

Serre weights and Breuil’s lattice conjecture in dimension three 85

L) and A = A° + pw,. Then
LigZLA +mwy) = @ L(A + )" (®

cel(nw))

by Lemma 4.2.4(1). The result now follows from the fact that |{(e, &")| < 2 for
any ¢ € L(7ww;) and any positive root &« € R* of a simple factor of G. O

Assume that p is 6-deep. By Corollary 4.2.3, the socle filtration on
Inj(F(u)) is given by (Fil, Q())|g. Since Inj(F(w)) is rigid (it is isomorphic
to Proj(F(w))), this is the unique increasing Loewy series. One can use
Lemma 4.2.4 to compute gr, Inj(F (1)). We do this in the case n = 1 to compute
G-extensions, justifying the name ‘extension graph’ introduced in Section 2.

LEMMA 4.2.6. Assume that u; is 6-deep for all i and let o & F (). Then dgph (o,
k) = 1 if and only if Exth(K, o) # 0, in which case the dimension of the Ext'
group is 1.

Proof. Since u is 6-deep, Q,(u) is 6-deep by Lemma 4.2.5 so that Q(u)|g =
Inj(F (1)) by Corollary 4.2.3. It suffices to show that [gr; O(u)|c : ] < 1 and
that dgpn (0, k) = 1 if and only if [gr; Q;(u)|g : k] = 1. Note that gr; O, () =
D (er, 01(ni)®Q,.; L(1)). Let i, be the element of W, so that A o w;‘ -,u
is in A. The length of gr, O,(n) is 3 f with Jordan—-Holder factors of the form
L(w - u) for 3f choices of w. Writing w as t, w, with W, € @T the 3 f
choices of w correspond to w_ = 0, &} ;, or &, for some i € J, with W, the
unique element in ﬂj so thatt, w, isin W, and w, w, - A = Ws,Ww, - A.

It suffices to show that

LW - wla

is multiplicity free and contains exactly the weights of the form F(Zv,,(w,
(Wp,; W, - A))) with @ a permutation of ww_. (Here, w as the first argument of
%t,.4, 1s understood to be the image of w in A,,.)

‘We have isomorphisms

LW -l =L, -pn) ® L(tw_,)|s
D FE o w9

wel(rw- ;)

1

where the second isomorphism follows from Lemma 4.2.4. On the other hand,
the pair (w, 7 (W4 ;w, - A)) is B(w, W, w,) with B as in Lemma 2.1.1 since we
have that ¢, (W, ;w,) € W,_. Then by definition, we have

F (%t (0, 1(Wiw,-A)) ZF(W i, (A+w)) = F(Wi-pt+wiw,w), (4.10)
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where w w, is the image of w,w, in W. We conclude by combining (4.9)
and (4.10). I

4.2.3.  Study of the Weyl module V,|c. We now assume that i € X, (T) is such
that u € B and push the analysis in Lemma 4.2.6 further to describe V| in this

case. Recall that G o Resy;/r,GL; and that G o G, xg, F.Recall that T C G

is the diagonal torus, and A, is the weight lattice of G*'. Let A, € Ay be the
convex hull of the W-orbit of n'. Explicitly, we have

Aq/ = {(Vi)i €Ay, vi €{0, £e1;, &2, :|:77;, E(e1; — &2,),
+(2e1; — &24), (&1 — 282,1’)}} .
We define the subgraph A_,, ;) € 4, X A as follows:

Ay & {(a),a) €A, x A : a =0if w; = wny; for some w € W}.

The main result concerning V), is the following.

THEOREM 4.2.7. Let n € X,(T) be a p-restricted weight such that p is 2-deep
in alcove B.

(1) The translation map Tty : AL x A — X(T)/((p — 1)X°(T))
induces a bijection:

‘Itvﬂ :Aﬁ(n’,(» — JH(VM|G)

((,(), a) (rd O(w,a)+
(2) We have

1 ifd= dgph(O“(o,D, O(w.a))

[gr(il)| :Ow,a]‘ .
d\YullG (@.0) 0 Lfd < dgph(a(o,l ) U(a),a))
fOl all (Cl), a) € _1‘<(n’.0)'

(3) Assume that p is 6-deep. Then there exists a G-submodule U C V, | such
that:

(a) U is multiplicity free;
(b) JH(U) = JH(V,.|c);

(c) if we denote the restriction Fil |y by Fil, for any o € JH(U), we have
[gr,(U) : o]l = 1ifand only if d = dgn (00,1, 0); and
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@) if (w,a), (&,a) e ALy 0y then 0, q) points 10 0y o) (With respect
to U) ifand Ol’lly l.fdgph(o'(o’l), U(w,a)) 2 dgph(U(O,L)v G(w’,a’))) and
deph (O(w,0), Ow.ay) = 1. In particular, I'(U)*® (that is, the graph
obtained from I'(U) by reversing the direction of the edges) is
predicted by the extension graph with respect to o y).

Proof of 4.2.7(1) and (2). We first show that the image of Trvy, contains
JH(V,|g). Let w € W, such that [V, : L(w - u)] # 0. It suffices to show
that Tvy, contains

JH(L(W - w)lg)- (4.11)

The proof is similar to that of Lemma 4.2.6. There is a decomposition w = f,,_ W

where w, € @T Again, L(w - t)|g is isomorphic to L(w, - 1) @ L(ww_)|g,
which is isomorphic to

@ F(Wy - p+ &)®mme-©

eeL(mw-)

by Lemma 4.2.4. As in the proof of Lemma 4.2.6, the summand F (W, - u + &)
1S O(wye 7 (@, -@,-4))- Then (4.11) is contained in the image of Try, by an analysis
of the weights of L(;rw_). Indeed, W - w is in one of the alcoves in the set {A,
B,C,D, E, F,G}Y sothat w_; can be taken to be one of 0, &, ;, &,;, and n; for
all i, and if w_ is n/, then W, ; = Wg;.

Item (1) follows from (2) and the above paragraph. We now prove item (2).
With w as above, we define n;(w;) € N by

[grn,'(ﬁi)(vu,') : L(wl : /'Ll)] # 0.
Let 0 < d < 3f. Since V, is multiplicity free, it suffices to show that

P L@ wl (4.12)

Z,‘ ni (Ei):d

contains weights of the form o, ,, with multiplicity one if (w, a) € A <(1.0) and
the distance between (w;, a;) and (0;, 1;) is ny—1;(W,-1;) foralli. If v € L(mw_)
is a permutation of ww_, then it appears in L (7 w_) with multiplicity one. Thus,
O(e,n (@, )-4) appears in (4.12) with multiplicity one. A casewise analysis, using
the fifth column of Table 5 and the description of the socle layers of V, in
[BDM15], shows that the distance from (v;, 7 (W, ,-1; - W .-1;) - A) to (0;, 1;)
is 1, -1;(Wr-1;). For example, if n,-1;(W,-1;) = 2, then w_ ,-1; is 8/1’7T,1i or 8/2,71,11.
and W, ,-1; is trivial. Then v; is a permutation of &, ; or &, ;.

We now move to the proof of Theorem 4.2.7(3). We start with the following
preliminary lemma.
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Table 5. Comparison between alcoves C;, affine Weyl group elements w; and the graph.

171;,' ;Vd_hl' w-_ 171;1’ -A ((1), a)zri
id id fo A 0,0
(13)1_(e1 421 (13)1_(e; +e1) ) B (0, 1)
(123)t_, (123)t_, le, C (s(£5),0); s € S3
12)t,, (A2)t—(;-e,-1) Iy, E (s(&5),1); 5 € 83
(132)1_,, (132)1_y, le; D (s(£1),0); 5 € 83
(23)t,, (23)t e ers1) | e F (s(g),1); s €83
A3ty | ADtrey) | lej+ey J (s(e] +&)),1); s € S3and (0,1)
W,‘ W,«,J, W,‘,_ W[ -B (0.), a)m’
(I3t epveyy | (13)1 ey o A (0,0)
(132)1_ay+ax) | (13Dt 2e-1) fer E (s(e)),1); s €83
(23)t_a, (23)1_y, I, C (s(£),0); s € S3
(123)1_ (@420 | (123)_2ey41) I, F (s(g)), 1); 5 €83
(12)1_q, (12)1¢ g, D (5(£7),0); 5 € 83
(13)t_35145)) U3t rey) | lejrey G (s(e] +€),0); s € §3 and (0,0)

For each element @* in the first column, we consider the decomposition W; = w; _ -
w; + with (W; 4); € E+. In the fourth column, we write the alcove containing w; -
A. In the fifth column, we write the with coordinate of the points in the graph (with
origin p + ') corresponding to an irreducible constituent of (), L(w; - u;))|g. Similar
comments apply to the second half of the table. Note that in this case, we consider the
decomposition W; = w_; - W, ,; with W, ; € ET{EB and the graph has origin in ©° + 7.
Finally, we have set oy and o, € X*(T) to be (1, —1, 0) and (0, 1, —1), respectively.

LEMMA 4.2.8. Let u € X (T) be a p-restricted weight which is 2-deep in alcove
B. There exists a G-submodule U C V,|g such that JH(U) = JH(V,,|g) and

1 ifd = dgn(00,1), Ow.a)

[gr (U)| :Ow,a]z .
¢ @ 0 ifd # dgn(00,1), Ow.a)s

(4.13)

where gr is with respect to Fil R S| |u. In particular, U is multiplicity free.

Proof. The notation in this proof is complicated by necessity. To illustrate the
simple underlying idea, we first present the proof in the case that f = #J = 1.
We have the following:

gry (V) = L(Wgwg - )
gr, (V) = L(Wgwg - ) ® L(Wrwp - 1)
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Table 6. Graph of V(1 + pn’).

G
L+p=2.3-p+2)8L0)

— T~

E F
Letp-2x-p+ly-p+DBL(E}) Lyep=1.24p=1.x-p+2)8Lig;)

A

c D
LO=1a=pF198L(E}) \Lr:w—z\ \—/v—zv/ Lvztp-Ly+DLE,)
B

(L)
/ Lietp-2y.3-p+2)8L0y) \
c D
xy20eL0y (4

J

H 1
Le+p-2041y+D8LRs; -1) Liy-la-1a-p+2)8L2#,+1)

The graphs of V(1 + pn’) when f = 1 (and u is 2-deep). In the first (respectively
second) diagram, u € X,(T) is upper alcove (respectively lower alcove). For each
alcove, we write below the unique weight L such that L(x, y, z) 1 L. We remark that
gr (V(u® + pn') = gri(Q1(w)) if w = (x, y, z) is upper alcove, while gr; (V (u® +
pn’) @ L(u®) = gr, (Q(w)) if u = (x, y, ) is lower alcove.

gri(V,) = L(Wcwp - 1) ® L(Wp - 1) ® L(Wpg - 1)
gro(V,) = L(u).

For the alcove a, there is a decomposition w, as the product 7, w,  where
W, € W, and w, _ € X*(T). Let > be Wy - . Then

L(W,i0p - 1W)|g = Ly - A) = L(Way - A+ pwa_)ls
= (L(Way - 1) ® L(pw, )l

= (L(Was - A) ® L(wa_)lg

= P Ly r+o)g™"
w€L(wa,—)

= @ F (%t 4, (o, 5))@’”%.7((»),
weLl(wq,—)

where a is the unique pX*(T)-translate of a lying in {A, B}. The third
isomorphism above follows from the Steinberg tensor product theorem, and the
fifth isomorphism follows from Lemma 4.2.4(1). We see then that gr,(V,)|c is
isomorphic to the multiplicity-free direct sum of F(%t;,,(w, 0)) where w is a
permutation of 0, &, or &,. Similarly, gr,(V),)|g is isomorphic to the multiplicity-
free direct sum of F(%t,,,(w, 1)) where w is a permutation of &, or &;. Finally,
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gr;(V,)|g is isomorphic to P, ) F (Ttiyy(@, 0))™7 @ Then, we can take U
to be the preimage of @, v F (Tty4y(w, 0)) in V|g. It is then easy to check
that U satisfies the required properties.

We now proceed to the general case. Let i € 7. We have an exact sequence of
G-modules

0 — rad(V,,) = V,, & L(u” + pn)) — 0,

which gives the exact sequence

0—rad(V,)® ® Vi, = Vi — L+ pn) ® ® Vi, — 0.
J#i J#i

Then L(11;” + pn)) ® @ ,..; Vii,|g is isomorphic to

L) @ (Vi ® L(12) ® X) Vi lo-
i, i
Then we claim that

®&m, ()
Vu-ni ® L(n;'[l) = @ ‘//’vrri'::l;

weL(ll;)

as G-representations. We have an embedding

Vi ® LOLL) = Q1) @ L) = P 01(ps + )=, (4.14)

weL(1l;)
where the last isomorphism follows from Lemma 4.2.4. Since

(1) V., ® L(n,;) contains all the Jordan—Holder factors of the right-hand side
of (4.14) with highest weights in alcove G (using Lemma 4.2.4) and

Omy (@) .. . .
() @ocroy ) Vints is the minimal submodule of the right-hand side

Wxitw
of (4.14) containing all the Jordan—-Holder factors (counted with
multiplicities) with highest weights in alcove G (using the cosocle
filtration of V), 4s),
®m s

. S (@) .
there is an injective map @,y ) Vit <> Vi, ® L(1;;) which must be an

isomorphism since the domain and codomain have the same length.
Let U; be the preimage of

D LuMH®Vi® Q Vil

weL(n)), 0#0 J#L i
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in V,|g. Let U be the intersection M;U;. We claim that U has the desired
properties. If d < dgph(00.1), O(w,a)), then (4.13) holds by Theorem 4.2.7(2). If
d= dgph(a(O,Dy O'(a,’u)), then [grd(VH|G) : U(w,a)] =1land [grd(U,-) . U(a),a)] =1 for
all 7 by the proof of Theorem 4.2.7(2). We conclude that [gr,(U) : 0(,.q] = 1.
We now suppose that d > dgpn(0(0,1), Ow.q) and use the notation of the
proof of Theorem 4.2.7(2). Suppose that o, . is a Jordan—Holder factor of
LW - w)|g N gry,(U). Then there is some i such that n,-1;(W,-1;) > d; where
d; is the distance from (w;, ;) to (0;, 1;). More precisely, n,-1;(W,-1;) is 3 and
(w;, a;) is (0;, 0;). However, one can check as in the proof of Theorem 4.2.7(2)
that L(w - u)|g N gr,(U,-1;) does not contain any weight of the form o, ,) with
(i, a;) = (0, 0;). O

PROPOSITION 4.2.9. Let A, 6 be 6-deep in an alcove in {A, B, C, D, E,
F, G}. Then Extlc;(L(G), L())) is at most one-dimensional, and it is one-
dimensional if and only if A and 6 are linked and lie in adjacent alcoves (that is,
there exists iy € J such that A; = 6; for all i # iy and A;, and 6, lie in different
alcoves sharing a face).

Proof. We immediately reduce to the case of GL;. Using (4.3), it suffices to
consider the case of SL;, where the result follows from [And87, Section 4.1].
O

Let u € X (T) be a p-restricted weight 6-deep in alcove B. Let w, y € W,

be elements such that the alcoves containing A 5. u,0 &f y-uwarein {A, B,
C, D, E, F, G}Y and Exté(L(Q), L(})) # 0. Note that A, 6 are both 6-deep
in their alcove by Lemma 4.2.5.

Let iy € J be as in Proposition 4.2.9. Let M be a nonsplit extension of L(9)
by L(A), which is unique up to isomorphism by Proposition 4.2.9.

PROPOSITION 4.2.10. If Fy and F, are in the socle and cosocle of M|g,
respectively, with [M|g : Fol =1 = [M|g : Fi] and dgpn(Fy, F\) = 1, then there
is a subquotient of M |g which is a nonsplit extension, unique up to isomorphism
by Lemma 4.2.6, of F, by Fy.

Proposition 4.2.10 will be proven in several steps. Let A be A’ + pw, and
6 = 0° + pw, so that 1° and 0° are in X, (7) and w; and w, belong to {0, ¢/ ,,
€» '} . We begin with an algebraization lemma.

LEMMA 4.2.11. With M and i, defined as above, assume, moreover, that A; is

p-restricted for all i # iy. Then there is an injection M — Q;(A\°) ® L(pw;) =
(®isi, Q1(1) ® Q1(A)) ® L(pw,) whose restriction to G is an injective hull.
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Proof. The proof follows closely the argument of [Pil97, Lemma 3.1] (which is,
in turn, based on [And87, Lemma 2.2]). There is an injection

soc M = L(A°) ® L(pw,) — 0:(A°) ® L(pw;).
This extends to an injection M < Q;(1°) ® L(pw;) since
Extg (L(0), 01(A°) ® L(pw;)) =0

by the proof of (4.8). Both Q;(A°) ® L(pw,) and M are 6-deep by Lemma 4.2.5.
By Lemma 4.2.2, the restriction to G of the map M — Q;(A°) ® L(pw,) is an
isomorphism on socles and is, thus, essential. The restriction Q;(A°) ® L(pw,)|g
is an injective object by Lemma 4.2.4 and Theorem 4.2.1. O

We begin with the following special case of Proposition 4.2.10, from which
the general case will follow by the translation principle.

PROPOSITION 4.2.12. If A; is p-restricted for all i # iy, the conclusion of
Proposition 4.2.10 holds.

Proof. We assume that dg,n(Fp, F1) = 1. Fix nonzero maps Proj(F;) — M|g
and M|g — Inj(Fp), unique up to scalar. If suffices to show that the composition

Proj(Fy) — M|c — Inj(Fyp) (4.15)

is nonzero. The first map factors through Proj(F) /radz(Proj(Fl)) since the
Loewy length of M|g is 2. The second map factors as M|g — Inj(M|g) —
Inj(F,) where the second map is a projection to a direct summand. Applying gr,
to the composition

Proj(F,)/rad®(Proj(F,)) — M|g < Inj(M|g) — Inj(F),

we obtain
Fy — gri(M|g) <= gr; Inj(M|g) — gr, Inj(Fp), (4.16)

where the grading is with respect to the socle filtration. It suffices to show that
the composition (4.16) is nonzero.

By Lemma 4.2.4, F, (respectively F) is isomorphic to F().) where A’ = A%+
&, (respectively F(6° + g,)) for some ¢, € L(w,) (respectively &y € L(mwwy)).
Then using Lemma 4.2.11, (4.16) can be rewritten as

L(0°+&0)lc — L) = (gr; (Q1(A°) Q@ L(pwy)))lc — (gr; Q1(X°+e)la.

where the second map is the restriction of a map of G-modules. By Lemma 4.2.2,
the socle filtrations of Q;(A°) ® L(pw;,) and Q(A°) ® L(mw,) both induce the
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socle filtration on Q;(A°) ® L(pw;)|g. Applying Lemma 4.2.4 to Q;(A°) ®
L(mw;) and using the description of Q(A° + v) in [Hum06, Section 13.9],
we see that the graded pieces of the socle filtration of Q;(A°) ® L(ww,) are
ar, (Q I(AO)) ® L(rw,). We claim that the graded pieces of the socle filtration
of 0;(A\") ® L(pw;) are gr, (Q;1(A")) ® L(pw,). Taking the tensor product
of the socle filtration on Q;(A°) with L(pw,) gives a semisimple filtration
F (as follows from Steinberg’s tensor product theorem). Moreover, since the
restrictions Q(A°) ® L(rw,)|g and Q;(A°) ® L(pw,)|s are isomorphic, Lemma
4.2.2 implies that the dimensions of the graded pieces of the socle filtrations
of 0,(A\°) ® L(nw,) and Q,(1°) ® L(pw;,) agree. A dimension consideration
implies that F is the socle filtration.
In particular, we have

er, (2149 @ L(pw) = P (L(pon) @ (er, 016 @ Q) LG)).
i i

The algebraic map L(9) < gr,(Q;(A°) ® L(pw,)) factors through the direct
summand

L) ® (gr; @1(A))) ® L(pw,)

0
by alcove considerations, where A% & i Mi- (Note that A; = A and 6, = ),
for all i # ip.) Additionally, the map Fy, — gr, Inj(Fy) = (gr, Q1(1"))|g factors
through the direct summand
L) ® (gr, 012 )la

where A" = )", iy M since if j 7 io, then the highest weights of the Jordan-
Holder factors of
(®La))® e 0i)))ls
i#j

lie in the same alcove as the highest weight of L(1°) except exactly at embedding
Jj. Thus, it suffices to show that the composition

L©° +0)lc = L(O)l6 = L) ® (gr; Q1(A;)) ® L(pwy)la
— L") ® (gr; Q1())l6 (4.17)

is nonzero.

The G-module gr, O, (A?O) is the direct sum of three irreducible modules in
alcoves A, C, and D (respectively B, E, and F) if A?O isin alcove B (respectively
A).Let w;, w,, and w; be the elements of W, such that w;-A, w,-A, and ws- A are
the alcoves A, C, and D (respectively B, E, and F), respectively. Let wz € W, be
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the element such that B = Wy - A. The natural identification X *(T)\W /2 = {A,
B} where §£2 = Staby; (A) and the fact that 91.‘3) is in alcove A (respectively B) if
A?O is in alcove B (respectively A) shows that X*(T)y, w2 = X*(T)w,;$2 for
any j € {1, 2, 3}. Moreover, it is not difficult to check that

3
X5, w2 = | [ X*(D)i;.

j=1
This implies that there exist unique j € {1, 2, 3} and w € X*(T) such that
t—wg_,'o _)~)i() ITJB (wlt—wkﬁ,‘o wio wB)il = t—wwj ) (4‘ 18)

where W, € W, is the unique element such that w; ~A?0 € A or, equivalently, that
Wit WiyWp € §2. Then we have that

0 _ ~ _ ~ o~ ~ _ ~ o~ 0
9i0 T PO = Tol_oy Vig * Mipg = WjWil_e, ; Wi = fiy = W;W; - Ay

so that, by construction, w € X*(T) is the unique weight such that L(Ol.?} + pw)
is a Jordan—-Hoélder factor of gr, Q, (A?O). We now consider w as an element of
X*(T) in the ij)-embedding.

We now proceed casewise. If w, (respectively wy) is 0, then gr,(M|g)
(respectively gr, (M|g)) is irreducible, and so the map M| — Inj(Fp) is injective
(respectively the map Proj(F;) — M| is surjective) and the composition (4.15)
is nonzero.

Now assume that w, and wy are both nonzero. At most one of w, and wy can
be n; . By duality, we can and will assume that w, # n; . Then w, is either ¢} ;
or &5, . We assume that w, is € ; , the other case being symmetric. So if 4;, is in
alcove D (respectively F), then §;, is in alcove E or F (respectively C, D, or G)
by Proposition 4.2.9. We claim that if w, is & ; (respectively &5 ; or n; ), then
the w defined above is sg.io + (1,1, 1), (respectively O or 51,1'0)- Indeed, since
t_,Ww;-Ae{A B}by 4.18)and w; - A € {A, B,C, D, E, F} by definition,
w;, is in {0, &}, &5} + X°(T). From (4.18), we see that w = wy — w; (mod Apg).
These two facts determine w.

A morphism

L(6;) = L6 + pwg) — (gr, Q1(A;)) ® L(pw,)

must factor through L(Gi?J + po') ® L(pw;) for some w'. By construction, o’
must be w. We conclude that the map

L(O) = L") @ (gr, 01(+;)) ® L(pw;)
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factors through L(6° + pw) ® L(pw;,). It suffices to show that the composition

L%+ 9)lc = L(O)l6 = L(0") ® L(po) ® L(pw,)ls
= L") @ (gr; Q1(A))l6

is nonzero.

Let &) € L(w;) be such that A° + &, and 6° + | are in the same W-orbit
under the p-dot action. Similar to an earlier argument of the three simple Jordan—
Holder factors of L(A") ® (gr, O, (4;,)), only the restriction to G of one of the
form L(6° + ¢}) ® L(pw') for some o’ contains F; = F(0° + &4) as a Jordan—
Holder factor. By construction, o’ must be w. It now suffices to show that the
composition

L(©6° +ep)lg = L(O° + mwp)le = L(O)lg — L(6°) ® L(pw) ® L(pw;)ls

= L") ® L(rw,) ® L(pw)lc — LO" +€]) ® L(pw)|s
(4.19)

is nonzero. Moreover, the multiplicity [L(8° + ¢}) ® L(pw)|c : Fi] is one.

Assume now that wy is not &' io- Then using the assumption that [M | : F1] =1
so that &5 # 0, one can check that F; appears in L(6°) ® L(pw) ® L(pw,)|c
with multiplicity one, and we see that (4.19) is nonzero.

Finally, we assume that wy is &} io- Lete be gy — ¢} which is in L(mw) by the
composition (4.19). Note that ¢ # ¢, (mod X 9(T)). The weight F; appears with
multiplicity two in @, ¢/ (o) L (0°+1,) ® L(pw)|s and with multiplicity one in
each of L(6° +¢}) ® L(pw)|g and L(0° +¢ — (1, 1, 1);)) ® L(pw)|g. Assume
for the sake of contradiction that the composition (4.19) is zero. Then the image
of the composition of the first four maps of (4.19) is contained in L(#°+& —m (1,
1, 1);,) ® L(pw)|g. In particular, since ¢ # ¢ (mod X°(T)), the image of the
composition of the first three maps of (4.19) is not stable under the involution
action on L(6")®L (po)®L(pwy)lg = LE°+p(1, 1, 1) ®L(pw)®L(pay)lg
which permutes the last two tensor factors. Since F| appears with multiplicity
one in L(0)|g, this implies that the image of

L©®°+ p(1,1,1);) ® L(pwy — p(1, 1, 1);,)
— L©0"+ p(1,1,1);,) ® L(pw;) ® L(pw,),
which induces the second map of (4.19), is not stable under this involution action
(note the key role played by Lemma 4.2.11). However, the unique submodule of

L(pw,) ® L(pw,) isomorphic to L(pwy — p(1, 1, 1);,) is the submodule where
this involution acts by —1. This is a contradiction. O
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Proof of Proposition 4.2.10. We write A and 6 as A’ + pw, and 6° + puwy,
respectively, where A’ and 00 are p-restricted weights. Write w, as w; ;, + a)i

where w, ;, (respectively ;') is 0 away from (respectlvely at) embedding i,.
Similarly, write w, as Dp.iy + a)j," Then ), equals w, by assumption, and so
we set w0 = o = wp. Let M;, be the unique up to isomorphism nontrivial
extension of L(6;,) by L(%;,) and let M" be ®i#i0 L(A;) so that M is isomorphic
to M;, ® M". Then M| is isomorphic to

M, ® M®|g = M;, ® <®L(A?)) ® L(pa)|a
i1

=M, ® (@L(A?)) ® L")

i#ig

Let M’ be M;, ® (®17&10 L(AO)) ® L(mw™). By Lemma 4.2.2, we have that
soc(M')|g = soc(M'|g) = soc(M|g) = soc(M)|g so that

soc(M') = L(A;,) ® (@L(A?)) ® L(wa®).
i#ig

Similarly, we have that

cosoc(M') = L(6;,) ® <®L(A?)> ® L(rw™).
i#io

The socle and cosocle of M’ can be decomposed using Lemma 4.2.4. Fix a
direct sum decomposition cosoc(M') = €P; M ; into simple modules. Using
the known dimensions of Ext, groups between simple modules and the fact
that M’ is rigid of Loewy length 2, one sees that the minimal submodule
M’ of M’ whose projection to cosoc(M’) contains M| ; has length exactly 2.
Thus, the natural surjection @M — > M} = M’ is an isomorphism by length
considerations. More explicitly, if M; ; is isomorphic to LA’ + pw, i, + we™)
for some ¢ € L(w™), then Mj ; is isomorphic to L(0°+ pwy.;, +wme') for the
unique element w € W such that these weights are linked.

The alcoves of F; and F; differ only in embedding iy. Then by Lemma 4.2.6,
the corresponding elements of A}, under T, for any appropriate v must be the
same for all embeddings except for m(iy). By the above explicit description,
we conclude that F is in JH(M{leG) if and only if Fj is in JH(Méyj|G). So it
suffices to prove the proposition for M’ in place of M. This now follows from
Proposition 4.2.12. O
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Proof of Theorem 4.2.7(3). Let I" be the directed graph with vertices JH(U) =
JH(V,|c) so that there is a directed edge oy — o, for oy and o, € JH(V,|g) if
and Only if dgph(a((),l)a 0'1) > dgph(a((),l)a 0’2) and dgph(al’ (72) = 1. Note that the
first condition ensures that I" is acyclic.

We claim that I" is a subgraph of I'(U). Let o, and o, be in JH(U) with
dgpn(o1, 02) = 1. Let d; = dgpn(00,1), 0;) for j = 1 and 2 and suppose that
d, > d, sothatd, = d, + 1. Then by Lemma 4.2.8, dj}°(0;) is d; for j = 1 and
2. Moreover, by Theorem 4.2.7(2) and parity reasons, [grd, (V)lg : ox] = 8 for
j and k in {1, 2}. Using that every nontrivial extension which can occur in the
layers of V,, does occur (see Table 6), it is easy to check that there is a unique
length 2 subquotient M of Fil,, (V,,)/ Fil,,_1(V,) such that o, and o, appear in
JH(M |g) with multiplicity one. By Proposition 4.2.10, there is a subquotient of
M| which is a nonsplit extension of o; by 0,. For multiplicity reasons, this must
also be a subquotient of U. Hence, there is a directed edge from o, to o, in I"(U).

We now claim that if I” is a subgraph of a directed graph I’ such that

(1) I" and I'’ have the same vertices,
(2) I’ is acyclic, and
(3) o1 — 0, is a subgraph of I"” only if dgpn (07, 02) =1,

then I = I'. Since I'(U) satisfies these conditions ((3) follows from
Lemmas 4.2.5 and 4.2.6), this would complete the proof.

Assume that o; — 0, is a subgraph of I'". By (3) and the geometry of the
extension graph, we have that dgp,(0(0,1), 01) = dgpn(00,1), 02) £ 1, and, hence,
itis enough to prove that dgpn(00,1y, 01) = dgpn(d(0,1y, 02)+1. Suppose otherwise.
Then 0, — o is a subgraph of I" by definition and thus a subgraph of I"’. But
this contradicts (2). I

4.2.4. The embedding construction. We start with the following observation.

LEMMA 4.2.13. Let R be an n-generic Deligne—Lusztig representation. Then R
isn — 2-deep.

Proof. 1f we write R = R;(1 + n) with p being n-deep, it is hence enough to
prove that o,(, . is n — 2-deep for any obvious weight o, , in JH(R). This
follows from Proposition 2.3.4. O

From now onward, we assume that u is 6-deep in alcove B. (By Lemma 4.2.13,
the Deligne—Lusztig representation R & R, (u°? 4 7n') is therefore 4-deep.) We
write o® & F (n) = F(%tuo1,(0, 1)). Note from Proposition 2.3.5 that the
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unique element o € JH(R) satisfying dgpn (0, 0°P) =3 f (thatis, having maximal
graph distance from o P) is

det

= F(u™ +5m)) = F(Truoyy(s(), 0)).
To ease notation, we write A = U + s(n") (hence, o = F(X)).

LEMMA 4.2.14. Let n € Xl(T) be a weight such that © € B is 6-deep and

RY R, (u®? 4+ n'). Set oor & F(/,L) and let o = F(A) € JH(R) be the unique

constituent at maximal graph distance. We have

(nj(0®) : o]l =[Vulg : 0] =1[U : 0] = [gr;;(V.le) : 0] = 1.

Proof. The equations [V,|¢g : 0] =[U : 0] = [grBf(VM|G) : o] = 1 follow from
Theorem 4.2.7(2). The equation [Inj(c°?) : o] = 1 is proved similarly using
Theorem 4.2.1. [

PROPOSITION 4.2.15. Let u € X (T') be a weight such that i € B is 6-deep
and R < R, (u® + n'). Set o°P & F(u) and let o = F(A) € JH(R) be the
unique constituent at maximal graph distance. Let R® be an O-lattice in R with
irreducible cosocle isomorphic to o. There is an injection ( : R > U.

Note that the map ¢ is unique up to scalar as there is a unique up to scalar
nonzero morphism Proj(o) — U by Lemma 4.2.14.

Proof. Since 0 € JH(R'), there is a unique up to scalar nonzero map
R’ — Inj(o®). (4.20)
We first prove that the map (4.20) factors through the embedding
U < Tnj(o®) 4.21)

or, equivalently, that the composite of (4.20) with the natural pr0]ect10n
Inj(c°?) — coker(o) is zero. As formation of cosocle is right exact and R’

has irreducible cosocle isomorphic to o, the image of the composite map
R — coker(w) is either zero or has irreducible cosocle o. By Lemma 4.2.14,
we know that o is not a Jordan—Holder constituent of coker(e), and, therefore,
HomG(ﬁa, coker(o)) = 0. Now the image of this nonzero map contains o as
a Jordan—Holder factor. Since the minimal submodule of U containing o as
a Jordan—Holder factor has length 9/, which is the length of R, by Theorem
4.2.7(3) and Proposition 4.1.1, this map must be an injection. O
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THEOREM 4.2.16. With the hypotheses of Theorem 4.1.9, assume, moreover,
that o is a lowest alcove weight with Defg(c) = 0. Then Theorem 4.1.9(1)—(4)
hold.

Proof. By Remark 4.1.10, it suffices to prove Theorem 4.1.9(3). This follows
from Theorem 4.2.7(3) and Propositions 4.2.15 and 4.1.2. O

4.3. Proof of the structure theorem in the general case. The aim of this
section is to deduce Theorem 4.1.9 from the particular case in Theorem 4.2.16.
For this, we introduce a third notion of distance called the saturation distance (see
Definition 4.3.4). The first step is to show an inequality between the graph and
saturation distances (Corollary 4.3.8) and then proceed further in Section 4.3.2
to prove that under appropriate conditions on o € JH(R) (that is, when o is
maximally saturated), the notions of graph, saturation, and cosocle distances
(d74(«)) actually coincide (Proposition 4.3.16). The agreement of the three
distances is equivalent to Theorem 4.1.9, taking into account Lemma 4.3.12. In
Section 4.3.3, we show that all weights are maximally saturated, thus concluding
the proof of Theorem 4.1.9.

4.3.1. Notions of distances. In what follows, R is a 3-generic Deligne—Lusztig

representation. Recall that if o € JH(R), we write d7, as a shorthand for dz;. We
establish some properties of d7 ;. We deduce the following from Lemma 4.2.6.
COROLLARY 4.3.1. Assume that R is 6-deep and o € JH(R). Then dgpn (0,
0') < d%,(0") for all o’ € JH(R).

Proof. The assumption that R is 6-deep implies that all the elements in JH(R)
satisfy the hypotheses of Lemma 4.2.6. If x € JH(R) and k + 1 = d? ,(x),
then Extg; (' (R”), k') # 0. Hence, Ext(k’, k) # 0 for some k' € JH(R) with
d} (k") = k. Equivalently, dgpn(k, k) = 1 by Lemma 4.2.6. If d = d;,,(c"), we

conclude that there is a sequence of weights o; for 0 < i < d — 1 such that
0y = 0,04 =0 and dgpn(0;, 0;41) = 1 for all i. Hence, dypn(0, o) < d. O]

LEMMA 4.3.2. Let o, o, € JH(R). There is a unique minimal subrepresentation
0,(01) € R containing o, as a Jordan—Holder factor. Moreover, we have that

(1) cosoc(Q,(01)) = o1;

(2) Q,(01) is the image of any nonzero map R - R .
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Proof. Let Q, (o) be the image of any nonzero map R — R.1tis clear that
cosoc(Q, (01)) = 0. Suppose that M C R isa subrepresentation containing o
as a Jordan—Holder factor. As R’ is multiplicity free, R’ /M does not contain o,
as a Jordan—Holder factor, and, hence, the composition Q, (o) — R R /M
is 0 or, equivalently, Q, (oy) C M. ]

LEMMA 4.3.3. Let o and oy € JH(R) and let o, € JH(Q,(1)). If n = dlli (o),

then we have HomG(az, gr:'ad(Q(,(al))) # 0. Moreover, d] (o,) > d7 (01) +
d;;ld(O'Q).

Note that, a priori, the inequality may be strict so that what we call the cosocle

distance d; ,(«) from o to k is not a priori necessarily a metric.

Proof. Since formation of cosocle is right exact, we see that the map R -
0, (0y) is strictly compatible with the radical filtrations. This proves the first
claim.

Let .# = {Fil*(R")}; be the decreasing filtration defined by Fil‘(R") =
rad %) (R”) (that is, .% is the radical filtration of R shifted by d%,(o})).
Under the inclusion Q,(o0;) — R’, .Z induces a semisimple filtration on
0, (01), beginning at 0. So, with the radical filtration on the domain and .% on
the codomain, this inclusion is compatible with the filtrations. This immediately
gives d7,(02) — d?,(01) > dp(02) for any o, € JH(Q, (07)). ]

rad

We now introduce a third notion of distance on the set JH(R) and give a
comparison result with the graph distance (Corollary 4.3.8). To do this, we make
crucial use of a global input (Proposition 4.3.7). We also use these results to
deduce some basic results about 1,4 (ﬁa) (see, for example, Lemma 4.3.12).

DEFINITION 4.3.4. Letoy, o, € JH(R). Let R® be an O-lattice with irreducible
cosocle o, and fix a saturated inclusion of lattices R®> C R°'. The saturation
distance (with respect to R) between o and o,, noted by dy, (0, 02), is defined
to be the unique integer d such that p? R C R is a saturated inclusion.

REMARK 4.3.5. We indicate a justification for the existence of the integer d in
Definition 4.3.4. Given two O-lattices A; and A, in an E-vector space V, there
is a unique d € Z such that w?A, C A, is a saturated inclusion. If V, A;, and
A, are obtained from base change from an unramified subfield of E, then, in
fact, ? is a power of p up to units. Since R, R°', and R are defined over an
unramified extension of Q,, the integer d in Definition 4.3.4 exists.

The following lemma is clear.
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LEMMA 4.3.6. The saturation distance is a metric on JH(R).
The following proposition is the main global input.

PROPOSITION 4.3.77. Let R be a 13-generic Deligne—Lusztig representation. Let
o1, 05 € JH(R) be such that dgpn (01, 02) = 1. Then dg (01, 0p) = 1.

Proof. Let ts be the collection of tame inertial type such that o (7s) = R. We can
and do fix a collection pg of semisimple 10-generic Galois representation such

that if & & W(ps, ts), then £(w;) > 2 foralli € J and oy and 0, € W' (ps,
7s). (Note that the condition that R, hence ts, is 13-generic guarantees that
Ps 1s 10-generic by the argument of Proposition 3.4.5.) Fix a weak minimal

TNﬁv

patching functor M., for pg, which exists by Corollary 3.5.16. Recall RSm

from [LLHLM18, Definition 5.10].
Fori € {1, 2}, define the modules

—

M. (R & M oo(R"")@( o82) <®R%EED )

veS
M. (o) & M, (a,)® o) <®R:mfp>

Similarly, define R/ (ts) and ﬁ;o(ts). Then M (R%) is p-torsion-free and
maximally Cohen—Macaulay over R, (ts), and generically of rank one, and
similarly M/ _(o;) is maximally Cohen—Macaulay over E;O(TS).

We recall the setup of Lemma 3.6.10. The ring R’ (s) is formally smooth
over ® eSR‘”Xpl ;, where we write My € Y77 (F) for the unique Kisin

module corresponding to py as in Theorem 3.3.12. By letting N £ Doies 4 —

£(w?)), the latter ring is formally smooth over Ry e @;V:] Ollx;, y;il/(x;y; —
p) by [LLHLM18, §5.3.2] using that £(w}) > 1 for all i € J. Fix an
isomorphism Ryllti, ..., 0] — R (ts).Let S C Ryllty, ..., t]l be the subring
Zpl(xj, y)Noys ()5 1/ (xjy; — p))_,. If M’ is a maximal Cohen-Macaulay
R’ (ts)-module, it is a maximal Cohen—Macaulay S-module as well by [Gro65,
Corollaire 5.7.10] and using that the maximal ideal of R/ _(zs) is the only prime
above the maximal ideal of S. The maximality follows from the fact that R, _(ts)
is finite over S. It is convenient to work over S below since Spec S/ p .S is reduced.
For o € JH(R), Anng (M (0)) is p(0) R, (ts) by Proposition 3.6.1(2).
For o € W(pg, ts), let p(o) be (zj(a))?':1 + (w) where z;(0) € {x;, y;} for
each 1 < j < N. Let pg(o) C S be the preimage of p(o) R, (ts) forall o €
JH(R) so that ps(0) = (z;(0))_, + (p) and SuppgM, (o) = Spec (S/p3(0)).
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Forall 1 < j < N, assume, without loss of generality, that z;(07) = x; and let

Zj & zj(03). Then by Lemma 3.6.10, #({x;}; A{z;};) = 2. We assume, without

loss of generality, that z; = y, and z; = x; for j # 1. To simplify notation, let
R; = R fori = 1, 2. We fix a chain of saturated inclusion of lattices p*R; C

R, € R, with k > 1. Since R is residually multiplicity free, C & coker(R, +
pR; — R;) does not contain o, as a Jordan—Holder factor (as can be seen from
descent to an unramified coefficient ring). Thus,

SuppsM(C) C | )  SpecS/ps(o).

o€JH(R), 0 #0

The scheme-theoretic support of M (C) in Spec S is contained in Spec S/pS
and is thus generically reduced so that by the proof of Lemma 3.6.2, the scheme-
theoretic support of M. (C) in Spec S is a closed subscheme of

Spec(S/ N p5(0)>.
o€JH(R), 00,

Since x;y,---yy € pg(o) forall o € JH(R) with o # 03, X1y, - - - yy annihilates
M!_(C) or, equivalently,

X1y WML (R)) C ML (Ry) + pM_ (R)).
Symmetrically, we have
yiva- o WML (Ry) C ML (P*Ry) + pM.(R>).

Combining these, we have

X1y2 - Yniya - ywML (Ry)
Cyiyr - INML(R) + yiy2--- ynpML(R))
C ML (P"R) + pML(Ry) + y1y2 - - ynpML(R).

Simplifying and canceling p, we have
i WM (R) C P IM(R) + MU (Ry) + yiya - - yn MU (Ry).

Assume that k > 1. Then projecting via M (R;) — M;o(ﬁl) —- M (01), we
have the inclusion

Vs ML (01) C yiya - ywMl (o).

This is a contradiction since M. (o) is free over (a power series ring over)
Fllyi, ..., yn], being maximal Cohen—-Macaulay over it. O
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We deduce the following inequality.

COROLLARY 4.3.8. Assume that R is 13-generic and let oy, 0, € JH(R). Then
dgpn (o1, 02) 2 de (o1, 02).

Proof. The proof proceeds by induction on dgp, (01, 02), the case dgpn (01, 02) =
1 being covered by Proposition 4.3.7. Pick a weight « € JH(R) distinct from o,
and o, such that dgpn (01, k) + dgpn(k, 02) = dgpn(01, 02). Then we have

dgpn (01, 02) = dgpn(01, &) + dgpn (i, 02)
> dsal(alv K) + dsat(Ks O—2) 2 dsat(als O'2)' D

We conclude this section showing that, under appropriate genericity
conditions on the Deligne-Lusztig representation R, the graph I'.g(R’) is
predicted by the extension graph if its Loewy strata are predicted by the
extension graph (which is a weaker assumption, a priori).

LEMMA 4.3.9. Assume that R is 13—£eneric. Let 0,1, 0, € JH(R) be such that
dgpn(o1, 02) = 1. Let us fix o € JH(R) as well as two saturated inclusions of
lattices R C R° and R°" C R°. Then either R C R° or R® C R°2.

Proof. We have dgph(01, 02) = ds(01, 02) = 1 by Proposition 4.3.7. Hence,
there exists an integer k € Z such that

pk+1RG| g RU2 g kaGI

is a chain of saturated inclusions of lattices (see Remark 4.3.5). The first
inclusion implies that p**' R C R° so that k + 1 > 0. The second inclusion
implies that p~*R®> C R so that —k > 0. Hence, k = 0 or —1 and the result
follows. (|

LEMMA 4.3.10. Assume that R is 13-generic. Let o, 0y, 0, € JH(R) and fix
saturated inclusions R C R fori = 1,2. If d},(02) > d7,(01) and dgp (07,
0,) = 1, then R®> C R°".

Proof. By Lemma 4.3.9, either R”" C R°? or R C R°'. Suppose that the former
holds. Then Q,(01) C Q,(02), and thus d7 ,(oy) > d; (02) by Lemma 4.3.3.
This is a contradiction. ]

DEFINITION 4.3.11. Assume that R is 2-generic and let o € JH(R). We say
that the radical strata of R are predicted by the extension graph if dgpn (0, o) =
d° (o") forall o’ € JH(R).

https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2020.1

D. Le et al. 104

LEMMA 4.3.12. Assume that R is 13-generic and let o € JIi(E). If the radical
strata of R’ are predicted by the extension graph, then LR is predicted by
the extension graph with respect to o.

Proof. Leto; and 0;, be elements of J H(R) such that dgpn (o, 0;) =i and dgph (o,
0;41) = I + 1. As the radical strata of R’ are predicted by the extension graph,
we have dgpn (0, 0;) = d;,(0;) and dgpn (0, 0741) = dp i (0741).

If dgpn (03, 0i+1) = 1, then 0, € JH(Q,(0;)) by Lemma 4.3.10. By Lemma

4.3.3, we have
i+ 1=d,(0i41) = d0(0:) +d7y(0i1) =i +d7jy(0i1).

This implies that o, appears in the second layer of the radical filtration of
Q. (0;), whose cosocle is isomorphic to o; by Lemma 4.3.2(1). Then there is
an edge from o; t0 ;1 in Iy (Ea).

Conversely, if there is an edge from o; to 0;,; in Iy (ﬁg), then dgpn(0y, 0j41)
is 1 by Lemma 4.2.6. O

4.3.2. Distance equalities. In this subsection, we define when a weight o €

JH(R) is maximally saturated. Crucially using Lemma 4.2.6, we show that if o
is maximally saturated, then the graph, saturation, and cosocle distances from o
are equal, and, therefore, the structure Theorem 4.1.9 holds for R’. From now
on, we assume that the Deligne—Lusztig representation R is 13-generic.

From Proposition 2.3.5 and the definition of defect (Definition 2.8), it follows
that

max {dgph(a, K), K € JH(E)} = 3f — Defr(0). 4.22)

Furthermore, if Defz(c) = 0, then there is a unique o € JH(R) which has
maximal graph distance from o.

DEFINITION 4.3.13. Let 0 € JH(R). We say that the weight o is maximally
saturated in R if the following property holds:

If k € JH(R) verifies dgpn (0, k) =3 f—Defr(0), thendy (o, k) =3 f—Defr(0).
(4.23)

The following proposition motivates Definition 4.3.13.

PROPOSITION 4.3.14. A weight o € JHL?) is maximally saturated if and only
if dgpn (0, &) = dsu(0, ) for all « € JH(R).
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Proof. The ‘if” part is clear. Let k € JH(R) be any weight and write d & dgpn (0,

k) and D o 3f — Defg(o). There are weights ¢ = oy, oy, ..., op so that

k € {09,01,...,0p} C JH(R), dgn(0i, 0;14) = 1 forall 0 < i < D — 1 and
dgpn(o, op) = D. Itis then easy to see that dgpn(0y, 0;) = j—iif0<i < j < D.
We have the following chain of a priori inequalities

dsa(0, 0p) < dsat(0, k) + dsut (i, 0p)
< dgpn (0, k) + dgpn(k, 0p)
= dgpn (0, op)
= dsa(0, 0p),

using Corollary 4.3.8 where the last equality holds by assumption. We conclude
that the above inequalities are in fact equalities and that dg, (0, k) = dgpn (o,
K). ]

The following lemma will be the key in relating the notions of saturation and
cosocle distance.

LEMMA 4.3.15. Letd < ¢¢(R’) and let

Oy <= 0Og_1 <+ <= 0] (—O’odéfo’
be an extension path in Ead(ﬁ(’) (note that d; ,(0;) =i foralli € {0, ..., d}).
Foreachi € {0, ...,d}, let us fix a saturated inclusion R° C R°. Then we have

a chain of (saturated) inclusions
R C R%'" C ... C R°" C R™.

Proof. Since d7 (0;41) =i + 1 > i =dj (0;) for 0 < i < d — 1, the result

follows from Lemma 4.3.10. O

We can use Lemma 4.3.15 to show that all three notions of distance from o
agree in some particular situations.

PROPOSITION 4.3.16. If o € JH(R) is maximally saturated, then Frad(ﬁa) is
predicted by the extension graph with respect to .

Proof. Assume that o is maximally saturated. By Lemma 4.3.12, it suffices to
show that dgp (0, 0') = d,(c’) for all o’ € JH(R). Let 6’ € JH(R) and d =

rad

dgpn(o, o). We have that Homg(o”, gr (ﬁg)) # 0 for some k > d by Corollary
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4.3.1. Assume for the sake of contradiction that k > d. By the definition of the
radical filtration, we may, and do, fix an extension path of length k41 in I,y (EG):

0 =0y < 0p_y < -+ < 0] < 0y = 0.

Since dgpn(09, 0x) = d < k and dgn(op, 0;) < d?(o;) = i for all i by

Corollary 4.3.1, there exists an index i € {0, ..., k — 1} such that
(1) dgpn (09, 0;) =i and
(2) dgpn(00, 0i41) < i+ L.

Moreover, since the extension graph is bipartite, we have that dgy (09, 0i41) <
i — 1. By Lemma 4.3.15, there is a chain of saturated inclusions:

R CR" C..-CR" C R,

where, in particular, R® C R is saturated as well. As d,p, (09, 0i11) = dgu (00,
0,+1) by Proposition 4.3.14, we further have p'~!R® C R°+'. We conclude that
p~'R° C R° C R° and, hence, that dy, (09, 0;) < i — 1. This contradicts (1)
since dgpn (09, 0;) = dg (09, 07) by Proposition 4.3.14. L]

We now use Theorem 4.2.16 to prove that lower alcove weights of defect zero
are maximally saturated.

PROPOSITION 4.3.17. Let R be a 13-generic Deligne—Lusztig representation
and let o € JH(R) be a constituent with Defr(c) = 0. Assume that o = F (1)
where . € X(T) isin alcove A. Then o is maximally saturated in R.

Proof. By Theorem 4.2.16, we can and do fix an extension path in I,q (EG) with
. . def

starting point oy =0:0% = 03f < 0351 < -+ < 0] < 0p. By Lemma

4.3.15, we have a sequence of saturated inclusions:

RO’ 2 R(T] 2 . 2 R(I}f,l 2 R(yop’

where R°” C R is itself saturated. For each 0 < i < 3f — 1, let n; be dg (0,
o). It suffices to show that ny = dgpn(09, o) =3 f.
By Theorem 4.2.16, the reduction of the lattice in the dual Deligne—Lusztig

representation R* with cosocle ¢ is rigid and I” ((R*)U ) is predicted by the
extension graph with respect to o . Noting that the reduction of the dual of
a lattice is the dual of the reduction of a lattice and using Proposition 4.1.7,

op
we see that I“md(fa ) is predicted by the extension graph with respect to o °P.
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In particular, oy <= 01 < -+ <= 037_; < 03y = o is an extension path
in Frad(ﬁa), and, hence, from Lemma 4.3.15, we deduce a chain of (saturated)
inclusions

RGOP 2 pll;f,lRagf,l 2 - 2 pn]R(Tl 2 pn()R(T

where we necessarily have n;_; > n; for all i (as R%+' C R is saturated). In
particular, ny > 3 f. On the other hand, Corollary 4.3.8 implies that ny < 3 f so
thatny =3 f. O

4.3.3.  Induction on defect. In this subsection, we show inductively that all
weights are maximally saturated, starting from lower alcove weights as in
Proposition 4.3.17. We conclude the section with the proof of Theorem 4.1.9.
We first start with the defect zero case.

LEMMA 4.3.18. Let R be a 13-generic Deligne-Lusztig representation. If o €
JH(R) and Defg(c) = 0, then o is maximally saturated.

Proof. We claim thatif o & oy, o} € JH(R) such that Defg (0p) = 0, Defz (o) =

0, dgpn(00, 01) = 1, and oy is maximally saturated, then o, is maximally
saturated. The result then follows from Proposition 4.3.17 and an easy induction
argument.

By Proposition 4.3.16, the graph I}, (R") is predicted by the extension graph.

By duality (cf. the proof of Proposition 4.3.17), the graph Frad(ﬁanp) is also
predicted by the extension graph. Hence, we may and do choose two extension
paths, of starting point o, in the graph I'q(R™) having the form: o, <«
0y < <0y <0y < ogpand 0" < 0" <0, , < - <0 <0

where o/, o/ € JH(F’). As the graph I4 (Ea p) is predicted by the extension

graph, the extension paths above induce extensions paths in R by ‘reversing
the arrows and the endpoints’. Let us fix saturated inclusions of lattices R,
R% C R°, R®,R°" C R°”. Since ¢ and o are maximally saturated, we
deduce that p3/ =i R, p3/=iR° C R°", p3/~'R*', pR®" C R°” are saturated
inclusions as well.

By Lemma 4.3.15, we deduce the following chain of saturated inclusions:

p3-IR% C ... C pR- R%-1C...C R
c ISR \S
p3fR(71 gpnga Ra"p R°
< ) ., e v e
pY-IRVC... C pR™ R C...CR%
(4.24)
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We claim that the inclusions p/ R® C pR°" and pR®" C R°', obtained by
composing the saturated inclusions above, are saturated.

We first show that p3f R' C pR"lop is saturated. If not, then we obtain a
chain of saturated inclusion p*/~'R® C pR°" C R°”. We deduce that o is

a constituent in image anp (o?) and hence d°, (o) > d7; (o/") + dm1 (01) >

rad
dgpn (0P, a’) + dwh(chl ,o01) =2 3f + 1 by Corollary 4.3.1 and Lemma 4.3.3.
On the other hand, as the graph Fmd(R ) is predicted by the extension graph,
we have that dfad (01) = dgpn(c®, 01) = 3f — 1 contradiction.

The evident analogue of the previous argument shows that pR"l0 " C R s
saturated as well. Hence, dy, (01, 0,") =3 f. O

We now give the induction argument.

PROPOSITION 4.3.19. Let R be a 13-generic Deligne-Lusztig representation.
Then any constituent o € JH(R) is maximally saturated in R.

Proof. We induct on the defect & o Defr (o) for o € JH(R). The case § = 0
holds by Lemma 4.3.18. Suppose that § > 0. To ease notation, let d &3 f—=9
and pick a weight o, € JH(R) such that dgpn (o, 04) = d (in other words, o, €
JH(R) is at maximal graph distance from o); we will show that d = dg, (o, 0,).
Note that Defg(0,) < Defg(o). If Defgr(o,) < Defg(o), then o, is maximally
saturated (by induction on Defg(0y)), and, hence, dgpn (o, 04) = dg (0, 04) by
Proposition 4.3.14.

We now consider the case Defg(c,) = Defr(c). By a direct check on the
extension graph, we see that there exists o, € JH(R) with dgpn (04, 04-1) =1
and Defg(04-) = Defg (o) — 1. Note that dgy,(04—1, 0) = d — 1. By induction,
the weight o,_; is maximally saturated; hence, dg(04—1, k) = dgpn(0a—1, k) =

d’ (k) for all k € JH(R) by Propositions 4.3.14 and 4.3.16.

Let R°-!' C R?, R°® C R be saturated inclusions of lattices. By Lemma 4.3.9,
we are in one of the following situations:

(1) R C R C R

(2) R C R C R,

where the inclusions are all saturated.
Case (1). Taking k = o in the above, we have that dy, (o, 0,_1) =d — 1 and,
hence, obtain chains of saturated inclusions:

pdfl R° < R4~ c R°
Ul
R
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Assume for the sake of contradiction that d, (o, 0;) < d, that is, that we have a

factorization
p?'R° < R < R°.
C.
Ll
-
R
Then, we necessarily have that dy, (o, ;) = d — 1. We obtain a commutative
diagram:
pd—lRa( RodC RCd-1

| 1]

d—1 po —250d—1
(p R)®OIE‘—>R — ' R
#£0

where the lower arrows are all nonzero.

In particular, o is a constituent of Q,, ,(o,). By Corollary 4.3.1 and Lemma
4.3.3, we have d ' (o) = d74 " (04) + d74(0) = depn(04—1, 04) + dgpn(0a, 0) =
d + 1. On the other hand, as 0,_; is maximally saturated, d;%;'(c) =d — 1, a
contradiction.

Case (2). We now have a commutative diagram

Ro#1C—— R%C—— R°

Lol

where again the lower arrows are nonzero. Exactly as in the previous case, we
deduce that d’,(o,—1) > d7 (0,) + 1 > d + 1.

We therefore may, and do, fix an extension path in the radical filtration of R
041 =0, < 0|_| <+ <0 < 0y =0.

For notational convenience, we set k; & o,_;.As k > d+ 1, and as o,
is maximally saturated, we deduce as in the proof of Proposition 4.3.16, the
existence of an index i € {0, ..., k — 1} such that

(1) dgpn(ko, ki) = dsalko, ;) =i and
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(2) dgpn(ko, kiy1) = dsa(ko, kiy1) < i+ 1, and actually dgpn (ko Kig1) <@ — 1.

Fix a chain of saturated inclusions R“© € R C ... C R*. Item (2) implies
that R0 C R+ C p~i*!'R%_ The induced inclusion R C R¥+ C p~it!Rw
contradicts item (1). ]

Proof of Theorem 4.1.9. (5) follows from Propositions 4.3.14 and 4.3.19.
Items (1) and (2) follow from Propositions 4.3.16 and 4.3.19. Note that 7,4 (ﬁa)
is a subgraph of I (R"). Using Lemma 4.2.6 and the fact that I” (R”) is acyclic,
I'(R”) must in fact be I},q(R’). This implies (3). O

5. Breuil’s Conjectures

In this section, we deduce generalizations of Breuil’s conjectures on mod p
multiplicity one and lattices from the results in Sections 3—4. In Sections 5.1—
5.2, we prove a version of Breuil’s conjectures for abstract patching functors.
Finally, we deduce the main results in Section 5.3.

S.1. Cyclicity for patching functors. In this subsection, we show that
certain patched modules for tame types are locally free of rank one over the
corresponding local deformation space using several inductive steps. The base
case is Lemma 5.1.3. Each inductive step uses one of the two arguments in
[EGS15, Section 10]. It is here that the results of Section 3.6.3 enter.

Recall from Section 1.4 that S is a finite set so that for each v € S, F is a finite
unramified extension of Q, of degree f;. For each v, let py : G, — GL3(F) be
a 10-generic semisimple continuous Galois representation and let p s be (03)ses-
Recall the weak minimal patching functor setting of Section 3.5. Suppose that
Pslis =Ts(s,u) fors € Wand u € X*(T).

Let K be | |;.5 K. Suppose that M, is a weak minimal patching functor for
P (cf. Definition 3.5.1). For each v € S, let 77 be a 13-generic tame inertial type

for F;. Recall R%f‘%’lj from [LLHLM18, Definition 5.10]. We let ts be (t3)y so
that o (ts) is the K-module &), 5 o (1y). Let

def ~ o 175, Bi 0
R (ts) = Roo(fs)®(@,~,gsR?><®Rms,p; >
eS8

and
def -~ 5B
M. (V)= MOO(V)®@;€SR§)<® R;zf,pf>

eS8

for any subquotient V of a lattice in o (t5s).
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We assume that R, (ts) is nonzero. Then there exists W = (Wy)jes =
(W))ies € Adm”(n) such that 75 = ts5(s(w*)™', u + s(w*)~1(0)) with the
lowest alcove presentation (s(w*)~!, u + s(w*)~1(0) — n) by Theorem 3.3.12
and Proposition 3.4.1. Note that wy = w(py, t7). Then, as explained in
Section 3.6.1, Spfﬁl (ts) (respectively SpfR’ (ts)) is formally smooth over

Spf(@lejﬁe ) (respectively Spf(@lejRexm;}!) if ¢(w;) > 1 foralli e

J), where i = (v, i3). We con51der R «(Ts) (respectively R (Ts)) both as

1, V
Rexp
My, w w,

algebraand a ®363RD -algebra). It is easy to see that M (V) isacyclic R, (Ts)-
module if and only if M (V) is a cyclic Ry (Ts)- module Moreover, M / (V)
is always maximal Cohen—Macaulay over its support. It will often be more
convenient to prove that M. (V) is a cyclic R, (ts)-module, and we will switch
to M’ (V) without comment. If o € JH(o (7s)), then recall from Section 4.1.2
that o (t5)° is the unique O-lattice up to homothety in o (rs) with cosocle o.

a ®zejﬁe§j -algebra and a ®;_sR -algebra respectively 2 &e;

THEOREM 5.1.1. Let ts be a 13-generic tame type and o o F(\) € W (ps, Ts)
such that for alli € J,

A1y € X1(T) is in alcove C if (w]) < 1. 5.1

Then My, (0 (t5)?) is free of rank one as a Ry (ts)-module.

The proof of Theorem 5.1.1 proceeds by proving cases of increasing complexity.
We distinguish five steps in the argument.

LEMMA 5.1.2. Ifo € W'(ps), then M,(0) is a cyclic Ry (ts)-module.

Proof. The proof follows the methods of Diamond and Fujiwara [Dia97].
Note that the support of M, (o) is formally smooth as can be checked from
Theorem 3.5.2. Since M, (o) is maximal Cohen—Macaulay over its formally
smooth support by Definition 3.5.1(3), it is free over its support by the
Auslander—-Buchsbaum—Serre theorem and the Auslander—-Buchsbaum formula.
Since e(M(0)) = 1 by Theorem 3.5.2, the free rank is one. L]

If V is a w-torsion K-module satisfying the hypotheses of Lemma 3.6.2, we
write R, (V) to denote the quotient R../I (V). For the rest of this subsection, we
assume that the weight o satisfies the conditions of Theorem 5.1.1.

LEMMA 5.1.3. Assume that £(w;) > 1 foralli € J. Let o € W¥(ps, ts) and
let V be a nonzero quotient of 6 (ts)°. Then M, (V) is a cyclic R (ts)-module.
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Proof. If R, (ts) is formally smooth over O, then the result follows from
Lemma 5.1.2. Suppose otherwise. We use the notation of the proof of Lemma
4.3.7 with R = 0 (ts). Recall that for o € JH(0 (7)), ps(0) = (z;(0)_, + (p).
By Lemma 3.6.10, for o} and 0, € W’(pg, Ts), we have

#({z; (01} Alz;(02)};) = 2dgpm (01, 02). (5.2)

Let 0y € W'(ps, ts) be such that dgpn(o, 01) = 1. Furthermore, fix a

saturated inclusion o (15)?" < o (ts)°. Letting M & M. (0(zs)?) and M, &

M! (o(ts)°"), we have a map M; — M. By Proposition 4.3.7, 0 (15)? /o (t5)”
is p-torsion, with Jordan—Holder factors determined by Theorem 4.1.9. By the
proofs of Lemmas 3.6.2 and 4.3.7, the scheme-theoretic support of M /M, in

Spec S is
Spec <S/ N ps(a/)). (5.3)

o’€JH(o(ts)? /o (1s)°1)

The sets {z;(01)}; and {z;(c)}; differ at exactly one component, say j;. The
equation (5.2) determines pg(o”) for all o’ € JH(o (ts)) from which one checks
that z;, (o) is in pg(o”) for any o’ € JH(0 (15)? /o (t5)”"). By (5.3), we see that
coker(M, — M) is killed by z; (o). Similarly, we have that coker(pM —
M,) is annihilated by z; (01). Hence, we have inclusions z; (c)M C M, and
zj(01)M; C pM. Combining these, we have that pM = z; (0)z; (0)M C
zj,(01)M; C pM. We conclude that the above inclusions are equalities.

Applying the above argument for all o, € W’(pg, Ts) at distance one from
o, we have that M. (o) = M. (o(ts)?)/(w, {z;(0)};). The left-hand side,
and hence the right-hand side, is cyclic by Lemma 5.1.2. We conclude that
M! (o (ts)?) is cyclic by Nakayama’s lemma. Since M. (V) is a nonzero
quotient of M/ (o (ts)?), it too is cyclic. ]

As in Section 2.3, let o, & F(Tr,(sw,a)) (where (sw,a) € Ay, x A).
Then W’ (0g) = {0(0.a) : (@, a) € r(X)}. Similarly, for w € Adm" (1), we have
a bijection

(@*)7(2) = JH(o ()
(a)’ a) e G(w,a)y
where 75 = 7(s(w*)~!, u — s(@*)~'(0)). In what follows, o € W'(os, Ts) isa
Serre weight satisfying (5.1) and V is a nonzero quotient of o (ts)?. We assume

that for each i € 7, there exists a subset Xy ; C (zﬁ;‘)‘l(ﬂo) such that

[[2v: = H©V) (5.4)
ieJ
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(w,a) = 0w = F(&r,(sw, a))

is a bijection. All representations we consider below satisfy this assumption.

In the following lemmas, we use a gluing procedure to show that M., (V)
is cyclic in cases where the set W’(pg, Ts) is of increasing complexity. In
Figures 3—7, we give a pictorial realization of the gluing procedure employed
in the proofs of Lemma 5.1.4-5.1.7, respectively.

LEMMA 5.1.4. Suppose that for each i € J, either £(w}) > 1 or Xy; C {(,
1), (0,0), (1,0), (&2,0)} for some w € {0, €, &}. Then M, (V) is a cyclic
R (t5)-module.

Proof. Note that by condition (5.1), one has (w, 1) € Xy ; whenever £(w;) < 1.
In this case, we assume, without loss of generality, that (w, 0) € Xy ; (because
the quotient of a cyclic module is cyclic). Let fv,i be the image of Xy ; in A,
under the natural projection. We proceed by induction on

n=#ieJ W) <land#Xy,; =3}

If n = 0, then a casewise check shows that there exists W’ € Adm(n) such that
foralli € J,¢(w)) > land Xy, C 1. For example, if Xy ; C {(0, 1), (0,
0), (&1, 0)}, then one takes W, = Bat;. Let t5 be ts(s(w)™", u + s(@")~'(0))
where w’ € W is the image of w'. Then M, (V) is a cyclic R (75)-module by
Lemma 5.1.3. Hence, M, (V) is a cyclic Ry -module, and, thus, it is a cyclic
R, (ts)-module as well.

Suppose now that n > 0 so that there is an i’ € J such that #fvi, =3
and E(w;ﬁ) < 1. By Theorem 4.1.9 and Propositions 4.1.1 and 4.1.2, there
are quotients V' and V? of V satisfying (5.4) with the following additional
properties:

(1) Xy =Ty U Xy,

(2) (@,0) € Xy1; N Xyay,

(3) #X 1, #X 2 =2, and

4) Xyi; =Xy, foralli #i"and j =1, 2.

For example, if Xy ; = {(0, 1), (0, 0), (¢1, 0), (&2, 0)}, then one takes X'y ;; =
{(0, 1), (0, 0), (g1, 0)} and X2 ; = {(0, 1), (0, 0), (&2, 0)} (cf. Figure 3).

Let V? be the quotient of V! and V? satisfying (5.4) such that Xys; = Xy1; N
Xy2,; for all i. By the inductive hypothesis, M/ (V'), M/ (V?), and M/ (V?) are
cyclic. Let I; be AnnRéo(,S)Méo(Vf) for j = 1,2, 3. By (1), we have an injection
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V < V!@® V2. In fact, this injection lands in V! x s V2. Comparing lengths, we
see that the injection V < V! x5 V2 is in fact an isomorphism, which, using
the exactness of M, (see Definition 3.5.1), gives the first isomorphism below:

M;O(V) = Méo(Vl) XML, (V3) Méo(Vz)
= R (ts)/ 11 X g esy/1; Ro(T8)/ I
= R (ts)/1i X g es)/ti+1) Ro(Ts)/ I
=R, (ts)/(LiN D).

The second isomorphism follows from Lemma 3.6.2. The third isomorphism
follows from the fact that I; 4+ I, = I; by Theorem 3.6.4, Table 3, and Lemmas
3.6.12 and 3.6.16(3.19). We deduce in particular that M (V) is cyclic. ]

We remind the reader that our parametrization of Serre weights o, 4 is
‘centered at pg’. Thus, 0. € W'(ps) exactly when (w,a) € r(X), and
O(w.a) € JH(0 (15)) exactly when (w, a) € (w*)~'(X).

LEMMA 5.1.5. Suppose that for all i € J, either £(w}) > 1 or
Zyi (@) (Zo\ {(v1,0), (2, 1), (v3, 0)}),

where (vi, vy, v3) is (&) — €2, €1, &1 + &), (&2 — €1, &2, & + &), o7 (&) — &, 0,
&y — &1). Then M (V) is a cyclic Ry (ts)-module.

Proof. We note that #( X'y ; Nr(Xy)) < Sforalli € J. We proceed by induction
onn =4#ieJ:# v, Nr(Xy)) = 5}. There is a unique w; € Adm(2, 1, 0)
such that

(@) (Zo \ {1, 0), (0, 1), (3, 0)) = (@)™ (Zo) N (@)™ (Zp).  (5.5)

One can check that if #((w;)""(Zo \ {(v1,0), (v, 1), (13, 0)}) N r (X)) < 4,
then one of £(w;) and £(w)) is strictly greater than one. If we change the type
s so that w; is replaced by W/, but w} are unchanged for i" # i, there is still a
surjection o (t5)° — V by (5.5) and Theorem 4.1.9. We can therefore assume,
without loss of generality, that for each 7, either £(w;) > 1 or #((ﬁ;“)‘1 (Zo\ {(vy,
0), (v, 1), (v3, )} Nr(Xp)) =5.

Suppose that n = 0. If £(w?) < 1 for some i € J, then #((w;) "' (Zo \ {(v1,
0), (v, 1), (v3,0)}) N r(Xp)) = 5 by assumption. On the other hand, X'y ; N
r(Xy) < 5, which implies that Xy ; N r(Xy) C {(w, 1), (0,0), (g1, 0), (&2, 0)}
where w = 0, &, or &, by considerations of submodule structure. Hence, there is
a quotient V' of V such that V' is of the form in Lemma 5.1.4 and the induced
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map My, (V) — M., (V') is an isomorphism by exactness of M., and Theorem
3.5.2. We are then done by Lemma 5.1.4.

Suppose now that n > 0. Suppose that #( Xy » N r (X)) = 5 for some i’ € J.
This, in particular, implies that #(X ;) = 6, by consideration of submodule
structure given in Theorem 4.1.9. Then V has a unique quotient V! such that
Ty =Xy, ifi #i'and Xy, = Dy \ {(0}) 7" (vs, 1)} where vy = 0, &1, or &,
and vy # v, (cf. Figure 4 for an example in the particular case where w; = 1,).
Then M, (V") is cyclic by the induction hypothesis. There is also a submodule
V2 C V such that Zy2; = Xy, if i # i’ and #Xy2, = #(Zy2p N r(Xy)) =2
(cf. Figure 4; note also that (wﬁ)‘l(m, 1) € X2 since soc V2 C soc V). One
can check that M, (V?) is cyclic by the inductive hypothesis. Then letting M" =
ker(Mqo (V) — My (V')) and M’ = M, (V?), [EGS15, Lemma 10.1.13] implies
that M, (V) is cyclic. L]

LEMMA 5.1.6. Suppose that for all i € [J, either £(w;) > 1 or Xy,; C
@) (X \ {(v,0)}) where v is & — 3,8 — &1, or & + &. Then My (V)
is a cyclic Ry (ts)-module.

In the setting of Lemma 5.1.6, note that when £(w;) < 1, the condition Xy ; C
(15;*)‘1(20 A\, 0D, v e{e —e, e —e1, 6 + &) isequivalent to #Xy ; < 9.
Proof. We proceed by induction on
n=*#ieJ @) <land Ty; ¢ @) (o \ {(v1,0), (v, 1), (v3,0)}) for

Vi, V2, v3) = (61 — &2, &1, &1 + &2), (62 — €1, &2, &1 + &2),

and (&; — &7, 0, &2 — €1)}.

The case n = 0 is covered by Lemma 5.1.5. Suppose that n > 0 and that i’ € J
with £(w}) < 1 and

Sy & (@) (Zo\ {(v1,0), (1, 1), (v3,0)})

for (vi, va, v3) € {(61—&2, €1, 61+ 82), (e2—€1, 82, 811+62), (61—62,0,8—¢)}.
Assume, without loss of generality, that Xy ; = (@0}) ™' (Zp \ {(v,0)}), as the
quotient of a cyclic module is again cyclic. We can further assume, without loss
of generality, that v = &, 4 &, (which implies that if 0 = 0,4, then (@, a;) =
(w})71(0, 1)). Then there are quotients V' and V2 of V such that

D) Xyy=Xy i UXyy,
2) XYyi; =Xy, fori #i"and j =1, 2,
3) Xy C (@;",)’1(20 \{(e1 — &,0), (&1, 1), (61 + &, 0)}), and
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(4) 2‘/2’,‘/ - (wl*/)_l(xo \ {(82 — €&, 0)7 (82’ 1)5 (8] + &2, 0)})

(cf. Figure 5 for an example when w; = ). We now argue by induction as in the
proof of Lemma 5.1.4 using Theorem 3.6.4 and Lemmas 3.6.14, 3.6.16(3.17),
and 3.6.16(3.18). Note that the analogue of Lemma 3.6.16 for the shapes 8 and
y hold symmetrically (see Remark 3.6.5). O

LEMMA 5.1.7. With V as described before Lemma 5.1.4, M, (V) is a cyclic
R (ts)-module.

Proof. We proceed by induction on
n=#{ieJ L(w)<land#Xy, =9}.

(In the definition of n, note that the condition #Xy ; = 9 can be replaced by ‘for
allv e {e;—&y,80—¢1, &1+ ), onehas Xy ; & (wf)‘l(Eo\{(v, 0)})’.) The case
n = 0is covered by Lemma 5.1.6. Suppose that n > 0. Let i’ € J be such that
L(w}) < 1and #Xy,;» = 9 (equivalently, £(w}) < 1 and Xy, = (W}) "' (Z))).
Then V has a quotient V! such that Zy1; = Xy, ifi # i’ and Xyi, = Ty \
{(w;ﬁ)’l(v, 0)} where v = &, — &;, &, — &1, or €, + &, (cf. Figure 7 for an example
when W} = y*1,). If the map M (V) — M (V") is an isomorphism, we are
done. Otherwise, there is a submodule V2 of V such that Yy, =Xy ifi £,
#Xy2 = #(Zv2y Nr(Z)) =2, and (@3) "' (v,0) € Zy2; C r(Z). Then one
argues as in the proof of Lemma 5.1.5. O

Proof of Theorem 5.1.1. Lemma 5.1.7 implies that M, (o (ts)°) is a cyclic
R..(t)-module. Nakayama’s lemma implies that M, (o (ts)?) is a cyclic
R (ts)-module. By Theorem 3.5.2, M, (c), and thus M. (o (ts)?), is nonzero.
By Theorem 3.5.3, R, (ts) is irreducible and reduced so that Definition 3.5.1(3)
implies that M, (o (ts)?) is a faithful R, (ts)-module. Since a faithful cyclic
module is free of rank one, we are done. OJ

Finally, we show that the hypothesis of Theorem 5.1.1 is actually necessary.

PROPOSITION 5.1.8. Let ts be a 13-generic tame type and o f F(L) e Wi(ps,
Ts). Assume that for some i € J,

Ar-14y € X1 (T) is in alcove Cy and (W) < 1. (5.6)

Then M, (0 (ts5)?) is not free as an R.(ts)-module.

Proof. As we will not make use of this, we only give a sketch of proof. Unlike
the rest of this section, we will parametrize the weights by centering around
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75 so that s = ©(s, u) and o, 4 means o, 4 & F(%r,(sw, a)). In particular,
W'(ps, ts) consists of 0, 4 such that (w, a) € Zg-.

We write 6 = 0(,.4), 50 (w, a) € X. For each i satistying (5.6), we have a; = 0.
If moreover (w;, a;) € Xi™, we set (0!, a}) = (w;, 1), otherwise we set (w, a;) to
be one of the two elements in X that are adjacent to (w;, a;). For i not satisfying
(5.6), we set (v}, aj) = (w;, a;). Thus, we obtain a weight 6’ = 0, . Which
satisfies the hypothesis of Theorem 5.1.1.

We now fix a saturated inclusion 1 : o (t5)° < o (75)?, and let C denote the
cokernel. Since M. (0(ts)’) = Ru(ts), M (1) identifies Mo (o (t5)?) with
an ideal 7/(C) of R, (trs). Thus, we need to show that 7(C) is not a principal
ideal, and to do so, it suffices to show that the image of 7 (C) in R..(ts) is not
principal.

Let V denote the cokernel of 1 mod @ . Using Theorem 4.1.9, we see that V is
multiplicity free, and JH(V)NW?(pg) consists of 0, in (v, ¢) € g AT Zve,
where

e if i does not satisfy (5.6), Ly ; = X3

e if i satisfies (5.6) and (w;, a;) € E(‘)““, yei = {(w;, 0), (1, 1), (2, 1)} where
{wi, w1, a2} = {0, &1, &2}; and

e if i satisfies (5.6) and (w;, a;) ¢ E(i)“", Xye; = {(a),-, 0), (o, 1)} where w;’ is
such that {w;, 0}, ®} = {e2 — €1, 0, &2}, {&1 — &2, 0, &1}, or {&1 + &2, €1, &2}.

Lemma 3.6.2 shows that My (V) = R (ts)/I(V), where I(V) is the
intersection, over k € JH(V)NW?(p ), of the ideals p(k) defined in Proposition
3.6.1. Note that the image of /(C) in Roo(ts) is I(V)Ru(ts). Thus, we need
to show I(V)Ry(ts) or, equivalently, I(V)E;o(fs) is not principal. Recall

—expl,V

that there is a formally smooth map @ie 7R 5 — f;o(rs). We claim

. def S Hexpl.V
that the ideal I(V) comes from I = ), (ﬂ(Vi,Ci)GEI;;«\Evf,i c(U[,C[)RﬁWfFH).

To check the claim, let Fgg e @ie JE%T:;. We first check that
ﬁ%ﬂ; /I has the expected cycle. To do this, we check using Table 3 that

—expl,V —expl,V . —expl,V
Rﬁ;,f)m_l_i/m(v,',c,')el'm?\z‘vr_,- C(Vivci)Rﬁg,ﬁ/F_|_i 18 ﬁlterEd by Rﬁ?,ﬁfﬁ_]_i/c(‘)j,c‘j)

—expl,V

for (v;,c;) € T \ Zve; and that (), .\ 50 Conen Ram, 5, is filtered

1,V .
by E%’MWH/C(UM/) for (vj,c;) € Xy.;. Thus, we can filter the quotient
—expl,V . ~ Ry .
R%[t = /1 with factors of the form ®;¢ Jﬁ%pmwi /p;, where the p;, are minimal

. 1V . . . .
primes of fe%;mi (note that taking completion is an exact operation). As I" (im(z
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(mod @w))) decomposes as a product over 7, an inductive argument using

Theorem 3.6.4 and the above filtration on E%i’zv /1 shows that the cycle of

E%i; /I is given by the components of E%i’; labeled by the Serre weights

corresponding to I"(im(z (mod z))). In order to prove the claim, we are left to
show that 7 is a radical ideal. To see this, we make the following observation: If
R, S are two reduced local Noetherian rings over a perfect field k and J, L are
radical ideals of R, S, then J ®; L is a radical ideal of R ®, S. This is because
(R® S)/(J ® L) embeds into ((R/J) ® S) x (R ® (S/L)) (as can be seen
by choosing bases of J, L as k-vector spaces and extending them to bases of
R, S), and the latter ring is reduced. Finally, we note that in the situation above,
the property of being a radical ideal is preserved by completion so that J®, L is
also radical in R®, S. The claim is proven.

By Nakayama’s lemma, the size of a minimal set of generators of [ is given
by the dimension over F of

I ®®i6jﬁe£],v~ ]F = < m C(V’.'c’.) ®ﬁﬂl"v F)

Ny, ; Dy, 1 i
i i NwLe)ETp\ Ty, s
1

Hence, it suffices to show that for i satisfying (5.6),

Clv: ) Q—explv F
ﬂ(vi,c‘i)ezmi*\zvf.i i) R

m;ﬁ/ﬁ,l,i

has dimension greater than one, which can be checked from Table 3. O

5.2. Gauges for patching functors. In this subsection, we compute the
image of maps between patched modules for lattices in Deligne-Lusztig
representations. This can be viewed as a calculation of lattice gauges in families.
The main ingredient for this section is Theorem 5.1.1, after which algebro-
geometric arguments using the projection formula and the Cohen—Macaulay
property prove Theorem 5.2.3. We learned these arguments from M. Emerton.
We continue to use the weak minimal patching functor setting of Section 3.5.
Let S, 05, Re, X, and M, be as in Section 5.1. Let ts be (t3)yes, Where

7y is a 13-generic tame type. Let X (Ts) & Spec R (ts). It is a normal and
Cohen—Macaulay scheme by (the proof of) Theorem 3.5.3. Let Z C X (ts) be
the locus of points lying on two irreducible components of the special fiber of
X (7s). Note that the codimension of Z C X (ts) is two. Let

. def
JiU=Xo(ts)\ Z = Xo(15)
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be the natural open immersion. Note that j and U come from pulling back
the open immersion j, : Uy — Spf(Q,.sR;’) via the formally smooth map
Xoo(ts) = Spf(Q;.sRy), where Uy is defined in an analogous way as U.

LEMMA 5.2.1. The scheme U is regular.

Proof. The irreducible components of the special fiber of X, (rs) are formally
smooth over F; hence, the special fiber U of U is regular by the last part of
Theorem 3.5.3. The dimension of the tangent space of U at a characteristic
p point is at most one more than the dimension of the tangent space of U at
that point. By p-flatness, the Krull dimension of U is one more than the Krull
dimension of U, and so U is regular at characteristic p points. Since the generic
fiber of U, which is isomorphic to the generic fiber of X, (ts), is regular, U is
regular. O

We now use the notation j* and j, which take quasicoherent sheaves on
X (7s) to those on U and vice versa, respectively.

LEMMA 5.2.2. Let 0, k € JH(o(ts)) and let t : o(t5) — o(15)° be a
saturated injection. For any 0 = Ry 05 € W'(pg), let m(9) be the multiplicity
with which 6 appears in the cokernel of 1. Then the induced injection j*M (1) :
J Mo (0 (15)) — j*Moo(0(Ts)?) has image

i'(CTT »O" Mo s)).

0eW? (Ds)
where p(6) = Y zos P(6).

Proof. Note that j*(My (0 (ts)€)) and j*(My (0 (ts)?)) are locally free (of rank
one) since they are Cohen—Macaulay of full support over the regular scheme U
(see Definition 3.5.1). Then the image of j*M (1) is J ®o, j* (M (0 (ts)?)),
where J is the ideal sheaf of the Cartier divisor corresponding to the cokernel of

J*Moo(1). It is easily seen that J = j*<n9ew?(ﬁs) p(O)"O R, (1’3)). Finally, we
have that

(T PO Re(zs)) @0, (Mo (z))

0eW ()

=7 ( [1 »O"Re(z9)) )" (Mo ()

0eW’ (Bs)
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=i ( T1 »@" Mt

0eW’(ps)

where the isomorphism follows from the fact that j*(My (o (15)?)) is locally
free. O

Let o be as in Theorem 5.1.1 so that M, (o (ts)?) is cyclic.

THEOREM 5.2.3. With the notation of Lemma 5.2.2, suppose further that o
is as in Theorem 5.1.1. Then the induced injection My, (1) : My (0 (T5)*) —
M, (0 (1)) has image

Joi*( TT PO Re(8) ) Mol (z5)).

0eW’(Bs)

Proof. If M is a Cohen—-Macaulay sheaf on X.,(ts), then j,j* M = M since
the codimension of Z is two (cf. [HK04, Proposition 3.5]). Hence, the image of
M. (1) is

joi*(TT »@©" Mo zo)n)

0eW’(Bs)

by Lemma 5.2.2. Since M, (0 (ts)?) is free over R, (ts), we have that
Ji (T PO @ Mo (@s)n)
9eW? (Bs)

=" ( TT 2O Reu(xs)) Muclor (zs)). m

9eW’(5s)

REMARK 5.2.4. As j comes from pulling back j, via Xo(ts) —
Spf(Q)s.sRy’) and p(0) are ideals of Spf(R);.sRy’), we see that the ideal

5" (TT 9@ Re9) = iois( ] »O QR Rulrs)

0eW’(ps) 0eW’(ps) ves

comes from an ideal in ®zcs RUD.
5.3. Global applications. In this subsection, we deduce generalizations of
conjectures of Dembélé and Breuil on mod p multiplicity one and lattices,

respectively (see [Breld, Conjectures B.1 and 1.2]). Theorem 5.3.4 follows
immediately from Theorem 5.1.1. While Theorem 5.3.5 also follows from
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Theorem 5.2.3, it is crucial that the image of the map between two patched
modules given in Theorem 5.2.3 is described by an ideal. This is far from formal
and relies crucially on Theorem 5.1.1.

We use the setup in [LLHLM18, Section 7.1]. Let F/Q be a CM field with
maximal totally real subfield F* # Q and let X (respectively X,) be the set of
places of F* (respectively of F) lying above p. Let G,r+ be a reductive group
which is an outer form for GL3, which is quasisplit at all finite places of F*, and
which splits over F. Suppose that G+ is definite, that is, that G(F,") = U;(R)
for all v|oo. Recall from [EGH13, Section 7.1] that G admits a reductive model
G defined over Op+[1/N], for some N € N which is prime to p, together with
an isomorphism

v Gorm - GL3,0,11/m (5.7)
which specializes to 1, : G(Op+) = G(OF,) = GL3(Oy,) for all places w €
X, with w|p+ = v.

LetU = U?U, < G(A(Fof”’)) x G(OF+,,) be a compact open subgroup. If W
is a finite O-module endowed with a continuous action of U, we write S(U, W)
to denote the space of algebraic automorphic forms with coefficients in W:

{f: GENGAF) — W] f(gu)
=u"'f(g) Vg eGAF), uecl}.

def

SU, W)

We define

def .. > def .. y s
SWr,w) = lg)nS(U”Up, W) and SU’, W)= l(LnS(U’,W/w )

U, K
where in the first limit, the subgroups U, < G(Op+ ,) run over the compact open
neighborhoods of 1 € G(Op+ ;).

For U as above, let Py be the set of finite places w in F whose restriction
& w|p+ is a place that splits in F and at which U is unramified. Let P C Py, be
a subset of finite complement. Then the universal Hecke algebra Tp = O[T",
w € P, 0 <i < n]on P acts naturally on S(U, W). Let7 : Gr — GL;(FF) be
a continuous Galois representation. We let m € Tp be the maximal ideal which
is the kernel of the system of Hecke eigenvalues o : Tp — I associated with 7,
that is, o satisfies

3 .
det (1 — 7" (Frob,)X) = > (1)) Nr,o(w) O@(T) X

J=0

for all w as above. Then we say that 7 is automorphic if S(U, W),, is nonzero
for some U and W.
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For technical reasons, we choose a place v; of F* as in [CEG+16, Section 2.3].
We now fix U?” < G(ATY") to be the subgroup with:
(1) (UP), = G(Opy) for all finite places v of F* which split in F and do not
belong to X U {v};

(2) (U?),, is the preimage of the upper triangular matrices under the map
G(Ops) = Gky) = GLs(ky,);

(3) (U?), is hyperspecial maximal compact in G(F,) if v is inert in F.

Let 7 be an automorphic Galois representation. Let X, denote the set of finite
places of F* which are the restriction of the finite places of F away from p
where 7 ramifies. For each v € X, we let 77 be the minimally ramified type
in the sense of [CHT08, Definition 2.4.14] corresponding to F|GF; and o (1)
be the GL;(OF,)-representation over E associated with it (cf. the beginning of

Section 5.3.1). We write o (t,) = o (ty) o ty, which is a G(O+)-representation
independent of the choice of ¥|v. For each v € X, fix a O-lattice o (t,)° in
o (t,) and let WEJ be ®v620+o(ru)°.

We let TV denote the abstract Hecke algebra over O generated by the formal
variables T/, where w runs over the finite places of F such that w|r, is split
in Fand w|p+ ¢ 55 U 5 U{vy}, and by T for j = 1,2,3. Fora G(AL,")-
module V over O, T""" acts naturally on SWwry,, w), S(U?, W), and g(U",
W) where W = Wfo* ® V (cf. [CEG+16, Section 2.3]), and we let m € T be
the maximal ideal as before. We will now assume that S(U, W), is nonzero for
some choice of V above. In fact, one can show, by the proof of Proposition 6.0.2,
that this is a consequence of the hypothesis that 7 is automorphic.

In the remainder of this section, we let 7 : G — GL;(FF) be an automorphic
Galois representation that satisfies the Taylor—Wiles conditions in the sense of
[LLHLM18, Definition 7.3]. We assume furthermore that

(i) the extension F/F™* is unramified at all finite places;

(i1) (split ramification) if 7 : G — GL;3(IF) is ramified at a place w of F, then
v = w|p+ splits as ww<;

(iii) p is unramified in F* and all places in F* above p split in F; and

(iv) 7lg,, is semisimple for allw € X,.

https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2020.1

Serre weights and Breuil’s lattice conjecture in dimension three 123

For each v € X7, we choose a place v|v of F and let S be the set {v]v € X}

Let py be 7lg,. and ps be (py)ves. We set K &f [[es GL3(OF,). Let M., be
the weak minimal patching functor for 7 in the sense of [LLHLM18, Definition
7.11] constructed in [LLHLM18, Proposition 7.15]. As in Section 3.5, we let
M., be M, o [[;.s v, Which is a weak minimal patching functor for ps by
Proposition 3.5.14.

Along with the construction of A7Ioo (cf. [CEG+16, Section 2.8], [LelS8,
Section 4.2], and [LLHLMI18, Section 7.3]), one has a ring homomorphism

_ 0 univ univ
R = QyesRilx1, ..., ] — TUFQ(OFW)(WEJ)W where TUﬁ'g(on)(WEJ)

is the image of T"" in
Endo (S(U?G(Or+,), Ws)).
We also write m for the pullback in R, of the maximal ideal of

T;‘/H;VQ(OFM,)(W):;)m‘ Then if WE; is a smooth, finite-dimensional G(Op+ ,)-
representation over I, one has

(Moo (W) /m)" = SWUPG(Op+ ), Wz @ W) [m] (5.8)

where - denotes Pontrjagin duals (cf. [LLel8, Theorem 4.1.5]).

5.3.1.  Automorphy lifting. Recall from Proposition 2.2.6 that if 7 € S and 7y
is a 1-generic tame inertial type for I, we defined a GL;(Op,)-representation
o (ty) over E corresponding to 7y by results toward inertial local Langlands. We
again let o (7s5) be KRy s 0 (7).

THEOREM 5.3.1. Letr : Gr — GL3(E) be an absolutely irreducible Galois
representation such that

(1) for all places w € X, 7|y, is semisimple and 10-generic;

(2) r is unramified almost everywhere and satisfies r* = r¥e=2;

(3) forall places vV € S, the representation rlgy, is potentially crystalline, with
parallel Hodge—Tate weights (2, 1, 0) and with tame inertial type 5 (see
[LLHLM18, Definition 2.1]);

(4) 7 satisfies the Taylor-Wiles conditions as above and 7 has split
ramification; and

(5) ¥ =7, (m) for a regular algebriac conjugate self dual cuspidal (RACSDC)
representation 7w of GL;(A ) with trivial infinitesimal character such that
ves O (T9) is a K-type for Qs s 5.
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Then r is automorphic in the sense of [LLHLM18, Section 7.2].

Proof. Given Theorems 5.3.3 and 3.5.3, the proof of [LLHIL.LM18, Theorem 7.4]
goes through unchanged. 0

REMARK 5.3.2. Compared to [LLHLMI18, Theorem 7.4], we relaxed the
hypothesis that p splits completely to p being unramified. However, we also
assumed that 7 is semisimple at all places above p. The reason is that we only
established the connectedness of the generic fiber of R7 when p is semisimple
(though we do know it for non-semisimple p in the case that all shapes have
length > 2). In work in progress, we will establish a counterpart of [LLHLM18,
Theorem 7.4] for non-semisimple representations. This will allow us to remove
the semisimplicity hypothesis in a manner similar to [LLHLM18, Theorem 7.4].

5.3.2. The Serre weight conjecture. Let ¥ : Gr — GL3(F) be as in the
beginning of Section 5.3. Recall that for each v € X7, we chose a place Vv
of F and set S to be the set {v|v € X 7}. Furthermore, we let p;; be 7|, and ps
be (py)ves. Recall that K is the product [ [;_g GL3(OF,). Let W (r) be the set of
irreducible K -representations o over IF such that

S(Uﬂg((’)m,), Wi ® <0V o HL;)) #£0.
eS8 m

We have the following version of the weight part of Serre’s conjecture.

THEOREM 5.3.3. Let7 : G — GL3(IF) be a continuous Galois representation,

satisfying the Taylor—Wiles conditions. Assume that py f Tl is semisimple and
10-generic for all v € S, that 7 is automorphic, and that T has split ramification.
Then W () o []s.stv = W (ps).

Proof. We have that WBM(p¢) = W (r)o] [, tw by (5.8). The result now follows
from Theorem 3.5.2. ]

5.3.3.  Mod p multiplicity one. We continue using the setup from the beginning
of Section 5.3. We have the following mod p multiplicity one result.

THEOREM 5.3.4. Let ts and o € W' (pg, Ts) be as in the statement of Theorem
5.1.1. Then

S<Upg(OF+,p)’ (E(Ts)g o [1 ta) Qo Wxg)[m]

4
veX,
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is one-dimensional over F.

Proof. By (5.8),

My (@ (15)7)/m = Mo, <5(fs)" o [] l’ﬁ)/m

I
veX,

=~ (S(Uf’g((om,), (E(rg)“ o [] z;) ®0 WEJ>[m]) .

vex,)

By Theorem 5.1.1, the dimension of M, (c(ts)?)/m is one. ]

5.3.4. Lattices in cohomology. Let r : Gr — GL3(E) be an automorphic
Galois representation as in Theorem 5.3.1. We say that r is minimally ramified
if rlch is minimally ramified in the sense of [CHT08, Definition 2.4.14] for all
v € X;. Following the notation of [LLLHLM18, Section 7.1], let A be the kernel
of the system of Hecke eigenvalues o : T""Y — () associated with r, that is, &
satisfies

3 .
det (1 — ¥ (Frob,)X) = > (1)) N () D () X

j=0

for all w as above. We now set W & Wy as in Section 5.3.3. By Theorem
5.3.1, S(U?, W)[A] is nonzero. Since r is minimally ramified, » corresponds to a
prime ideal of R, as in [HLM17, Theorem 5.2.1]. By an abuse of notation, we
call this ideal A. Note that we have that M,,/1 = E(U P, W)4/ by (the proof of)
[CEG+16, Corollary 2.11].

THEOREM 5.3.5. Let r : Gr — GL3(E) be as in Theorem 5.3.1. Assume
furthermore that r is minimally ramified. Let {t3}ycs be a 13-generic tame type.
The lattice o (v)° £ o (r) N SWU?, W)[A] C o () NSWU?, WA ®0 E = o (1)
depends only on {r|g,_}ves-

Proof. Letpgbe (FlGp, Jves- Fix 0 € JH(o (ts)) as in Theorem 5.1.1, a saturated
inclusion o (15)° C o(ts)?, and saturated inclusions o (t5)* C o (ts)° for all
k € JH(o (15)). Let y (k) € O sothat y (k)0 (t5)" C o (ts) is saturated. Then
0(15)" = Y amersy ¥ &) 'o(zs)" for some y (k) € O by [EGS15, Lemma
4.1.2]. It suffices to show that for each ¥ € JH(o (1s)), the ideal (y (x)) C O
depends only on pg.
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Observe that the image of the inclusion
O = Homy, (0 (1s)”, SU?, W)[A]) — Homy, (o (75)", SWU?, WA = 0,
is given by the ideal (y («)). By Schikhov duality, the natural inclusion
O = Homy, (U, W)[AD, (0(r5)7)%)
— Homy, (S(U”, W)[AD, (0(15))) = O

is also given by the ideal (y («)). By another application of Schikhov duality, the
natural inclusion

O = Homy, (S(U?, W[AD, (o(15)))*
— Homy, (S, WMD), (o(z5)"))* = O

is also given by the ideal (y (x)). Since §(U P, W)[A]¢ is canonically isomorphic
to the torsion-free part of S(U”, W)4/A, the ideal (y (x)) gives the inclusion

Homy, (Moo/1, (0 (t5))")* — Homy, (Moo/2, (0 (x5)7)Y)".

Again, note that Homy, (M /A, (o (t5)°)%)4 is isomorphic to (the p-torsion-free
part of)
Homy, (M, (0 (t5)7)")* /A = Mo (0 (15)") /A,

and similarly for «. So the image of
O = M(0(15)) /A —> My(o(15)?)/A = O (5.9

is given by the ideal (y (x)).
On the other hand, the image of (5.9) is given by

(17 ( T »O"Rezo))(Mucloz))/)
9eW (Bs)

by Theorem 5.2.3. Then (y (k)) is generated by elements in the ideal

0 (CTT »O"Ru(z))

0eW? (Bs)

modulo the ideal A. By Remark 5.2.4, the above ideal comes from @FGSR?;
hence, the ideal generated by its generators modulo A depends only on {r |GF; }oes.
O
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REMARK 5.3.6. In the hypotheses of Theorem 5.3.5, assume further that w (o5,
7y); has length at least 2 for all v € S and i € Z/f;. Then the lattice o (t)° can
be described explicitly as in [LLel8, Theorem 14].

In the following figures, we give a pictorial realization of the gluing procedure
appearing in the proofs of Lemmas 5.1.4-5.1.7. Recall that W} = w(pg, Ts).

e N

T(&1,0) 0,0 J0,0) J0,0) T (£2,0)

gon gon gon

Figure 3. Comparison of X'y ;» in Lemma 5.1.4.

From left to right with arrows pointing down, we have Xy ;,, Xys ;/, and Xy2 ;.
The edges correspond to adjacent pairs.

7on \ e \
T(£1,0) J0.,0) T (£,.0) T (e2-£1,0) T (&0 T0.0) T(£,,0) T (£7-£1.,0) T(e,,0)
T(e,1) T(e2,1)

Figure 4. Comparison of Xy ; and X, , in Lemma 5.1.5 when w7_; = id.

Assume (vy, vy, v3) = (€] — &2, &1, & + &) and w}t_; = id. Then v, = &,. From
left to right with arrows pointing down, we have Xy ;,, X1 -, and X2 ;» (a Weyl
segment). In red are the elements in r (X)).

/ e T \
T (ale)-£2),0) (T(n(g\).a)y T (a(£2),0) T (ale)),0) %ﬂ'm’(a:;).l)y T (a(e2-£1),0)
T(a(er).1) T (a(e),1)

Figure 5. Comparison of Xy; ; in Lemma 5.1.6 when w}r_; = «.

In the notation of Lemma 5.1.6 consider the case where v = &+ &, and w}r_; =
a. On the left, we have Xy, where we write the elements in (X)) in red.
Similarly on the right for Xy ;.
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/ T o0 oo \
T(y*(£1-£2).0) m}»u;‘y.(ny T (y*(£2),0) T (y*(1),0) % ¥+ (£2),0) T (y*(e2-£1).0)
T(y*(e)1) T (y*(£2),1)

Figure 6. Comparison of Xy, ; in Lemma 5.1.6 when w}z_; = y*

In the notation of Lemma 5.1.6, consider the case where v = ¢, +¢&, and wjt_; =
yT. On the left, we have X2, where we write the elements in r(X,) in red.
Similarly on the right for Xy ;.

T

T(y*(0),1)

_—

T(y*(e1-£2),0) Ty (21).0) Ty (0,00 T(y*(£2).0) T(y*(e2-£1),0)
oo T tot T
\
Fortorsend T
Figure 7. Comparison of Xy, ; in Lemma 5.1.7 when w}r_; = y+.

In the notation of Lemma 5.1.7, consider the case where v = &, +¢, and w}r_; =
y*. On the left, we have Xy ; (respectively Xy, removing the dotted lower
part), where we write the elements in r(X,) in red. On the right, we have one of
the possible choices for Xy ;.

6. Addendum to [LLHLM18]

(1) In Theorem 1.1, the statement that ‘its special fiber is as predicted by
the geometric Breuil-Mézard conjecture’ means the following: under the
assumptions of Theorem 1.1, the special fiber of R%Z 1O s reduced and
the number of irreducible components is less or equal to #(W7(ﬁ”) N
JH(E(I))), with equality if p is semisimple. This can be checked directly
using Theorem 6.14, Tables 3, 7, 8, Propositionsg 8.5, 8.6, and 8.12, and
the results of Section 8.2.2.

(2) In Proposition 3.4, the codomain of Ti,, should be replaced by
{0, 70) 1| 0 €Repa (Gr) i p mod e = TH@D] .

(3) After Equation (3.7), we remark that if (01,, pa, 84) € D’ then we have

a canonical isomorphism 91, @, F =S 0.
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(4) After Definition 4.15, the symbol Y%Z]’T(R) denotes the category of pairs

(Mg, jr) where My € YOMNT(R) and jg : Mr Qg F = M is an
isomorphism in ¥'%"}7(IF). A similar comment applies to Y2:"(R).

(5) Proof of Theorem 4.17: the ring R is p-flat and reduced by [Call8, Lemma
2.6].

(6) The formula in Lemma 5.2 still converges in %Mat(R[l /plllull) for R a
complete local Noetherian flat (J-algebra R. While it is possible to show
that it lies in O}°, for the computations and the arguments in this paper, we
only need that its formation is compatible with base change.

(7) In Corollary 5.13, Ty, ..., T should be replaced by T, ..., Ty. Similar
comment applies to the displayed equation before Theorem 6.14.

(8) In Section 5.3.2, ‘c;; = 0 modulo @’ should read ‘c;; and ¢;3 = 0 modulo
the maximal ideal’.

(9) In Section 5.3.3, line —6 and —4, the ¢}, in the displayed equations must
be replaced by c3.

(10) Definition 7.1 should also define automorphic of weight V, level U, and
coefficients W as follows.

DEFINITION 6.0.1. Let ¥ : Gr — GL3(F) be a continuous Galois
representation. Let V be a Serre weight for G, U be a compact open
subgroup of G(AZ"") x G(Op+ ,) which is unramified at places v|p, and
W be an O-module with a U-action for which the factor G(OF+ ,) acts
trivially. We say that 7 is automorphic of weight V, level U, and coefficients
W if there exists a cofinite subset P C Py such that

SWU,VeWm#0,

where m is the kernel of the system of Hecke eigenvalues o : Tp — F
associated with 7, and o satisfies the equality

3
det (1 — F*(Frob,)X) = > (= 1)/ (Npq(w)) a1 x
j=0
for all w € P. We say that 7 is automorphic of weight V (or that V is a
Serre weight of 7) if 7 is automorphic of weight V, level U, and coefficients

W for some subgroup U and coefficients W as above. We write W (r) for
the set of all Serre weights of 7. We say that 7 is automorphic if W (r) # 0.
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(11) In Definition 7.11(2), ‘automorphic of weight V’ should be replaced with
‘automorphic of weight V, level U, and coefficients W’ where U is a fixed
compact open subgroup of G(A7"") x G(Op+ ,) which is unramified at
places v|p and W is a fixed O-module with a U-action on which the factor
G(Op+,,) acts trivially. This definition of patching functor depends on the
implicit choices of U and W.

(12) The definition of e(M), given before Proposition 7.14, is incorrect. The
correct definition of e(M) is the following: given a finitely generated R.-
module M with scheme-theoretic support Spec A of dimension at most
d, define e(M) to be d! times the coefficient of the degree d-term of the
Hilbert polynomial of M (considered as an A-module).

(13) In the paragraph following the proof of Proposition 7.14, the definition of
Yy should exclude primes dividing p.

(14) In the proof of Proposition 7.15, ‘automorphic of weight V’ should be
replaced with ‘automorphic of weight V, level U, and coefficients W,
where U =[], U, and U, is

vioco
e G(0O,) for v which split in F except for vy,
e the preimage of the upper triangular matrices under the map

G(O,) = Gky) — Gl (ky)

if v =vq,or

e a maximal hyperspecial maximal compact open subgroup of G(F,) if v
is inert in F,

and W is an O-lattice in ®ue20+ o (ty) o 3.

, def

(15) In the proof of Proposition 7.16, the tame inertial type t’ should read: ¢/ =
—((+D+pb+1) —((e=D)+pa) —(a+p(c=1)
W, b w, @b w, .

(16) The proof of Theorem 7.8 also requires the following proposition, which
is a level-lowering result based on techniques in [Tay08]. The proof of
Theorem 7.4, which was omitted, uses the same techniques.

PROPOSITION 6.0.2. Let ¥ : Gr — GLs(IF) be a continuous Galois
representation with split ramification outside p, which is automorphic and
satisfies the Taylor-Wiles conditions. If ¥ is automorphic of a reachable
weight, then it is automorphic of a reachable weight and level U and
coefficients W, where U = [, U, and U, is
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e G(O,) for v which split in F except for vy,

e the preimage of the upper triangular matrices under the map
G(0,) = G(k,) — GLs(ky)

ifv=nuvy,or
e a maximal hyperspecial maximal compact open subgroup of G(F,) if v

isinertin F,

and W is an O-lattice in ®v€20+ o(13) o (3.

Proof. If ¥ is automorphic of a reachable weight V, then S(U,V ® W),
is nonzero for some level U and coefficients W. Let V be ), V, where
V, = Vi o 1. Choose tame types t, such that

e p, is admissible with respect to t,;

e {(w(p,, T,)) = 3;and

e V; € JH(o (1,)).

Letting o be an O-lattice in ), 0(7,) o 1z, we have that S(U,0 @ W)y
is nonzero. By [EGH13, Lemma 7.1.6 and Theorem 7.2.1], ¥ ®f F, is
isomorphic to the reduction of r, : G — GL,(Q,) for some 7 as in
[EGH13, Theorem 7.2.1]. Let 7 be the regular, algebraic, (conjugate)

self dual, cuspidal automorphic representation of GL, (A ) obtained from
7 through base change. Choose a totally real extension L™ of F* such that

4|[L* - Ql;

L*/F* is Galois and solvable;

o LY +Fis linearly disjoint from fkm({p) over F;

L/L* is everywhere unramified;

p is unramified in L*;

vy splits completely in L;

if 7r; is the base change of 7 to L and w is a place of L lying above U
forv e EJ , then 7, ,, has Iwahori fixed vectors and z, |, is trivial.

One can define analogues of R“““’ and Rumv from [Geell, Section 5] as
follows. Let S be the union of {vl} and X s . Let S be the union of {v:} and
{v:v e XF} Let S, be the set of places in L™ lying above places in S, and
let SL be the set of places in L lying above places in S. Let >0 .p be the set
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of places in L lying over a place in 2+ Z]L o the set of places in L lylng
over a place in ZJ*, and ZJL 1 be the set of places in L lying over v;. Let ZJL
be the union of X; , and ZJL,O Ifv e EL,,,, let vy be 5, |1, - Ifve EL,O, let
R be the lifting ring for 7| ., parametrizing lifts whose characteristic
polynomial is (X — 1)°. We let R*™ be the universal deformation ring
corresponding to the deformation problem

(F/F*.8.3, 05,7, € 280p (RG) U (RT ™) cx)

and we let R¥™ be the universal deformation ring corresponding to the
deformation problem

<L/L+7 SLa §La OE7 7IGLa E_ZSL/L+7 {Rﬁlzl\}glegbl U {R'ﬁD’m}fﬂef[‘) .

The proof of [Geell, Theorem 5.1.4] shows that Rﬂ“i" is finite over
Op. Indeed, R™ is finite over RY™ and R¥™ is finite over O since
(R&™V)red is isomorphic to an appropriate Hecke algebra by the proof of
[Guell, Theorem 3. 4] One replaces Fontaine—Laffaille deformation rings
with RP7 for ¥ € X ,p» Which is geometrically integral by [LLHLM18,
Section 5.3].

That R™ is finite over O implies that there is a conjugate self-dual
lift r : Gp — GL3(@p) of ¥ which is minimally ramified outside p
and potentially crystalline of type ((0, 1,2), 7,) at v for each v € X .
Moreover, we have that the restriction r|g, , which corresponds to a point
of Spec R™Y, is automorphic. Solvable base change then implies that r
is automorphic. Local-global compatibility implies that S(U, o0 ® W), is
nonzero for U and W as in the statement of the proposition. Then S(U,
V' ® W) is nonzero for some reachable V' € JH(o). O]

This would then show that M..(§),. o o (t,)°) is nonzero in the third
paragraph (one cannot directly cite Definition 7.11(2) because of the
change above).

(17) In Section 8.1, after the proof of Lemma 8.2, the (O-algebra RZP ’; has
relative dimension 15 over O.

(18) In Corollary 8.4, there should be the further relation cjpc33 = 0.

(19) The final sentence of Corollary 8.4 should be replaced by the claim that
the ring R /w is a quotient of R[[c —[cilx;, 1<i<3,1<j<
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9]. This comment applies also to Proposition 8.11. These changes justify
the dimension hypothesis in Lemma 8.8, which is used in the proof of
Proposition 8.6.

(20) In the proof of Proposition 8.11, we remark that ¢33 = cy3¢3; (c§1)".
(21) In the caption of Table 4, the coefficients are in .
(22) In the caption of Table 5, the coefficients are in R.

(23) The entry (1, 3) of Table 6 should read ‘Leading term of the monodromy
condition’.

(24) The missing entries in the second column of Table 6 can be read off from
Table 5 and the missing entry in the third column of Table 6 can be read
off from Proposition 8.3.

(25) In Table 6, the leading term of the monodromy condition for aBay, the
second ¢}, should be removed. Moreover, in the caption, the as(/’il(i) for
i =1, 2, 3 should be bold. "
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