THE EXPONENTS OF STRONGLY
CONNECTED GRAPHS

EDWARD A. BENDER AND THOMAS W. TUCKER

1. Introduction. A directed graph G is a set of vertices V and a subset of
V' X V called the edges of G. A path in G of length k&,

[vlv U2y v ooy Upy vk+1]1

is such that (v, v;41) is an edge of G for 1 < ¢ < k. A directed graph G is
strongly connected if there is a path from every vertex of G to every other vertex.
A circuit is a path whose two end vertices are equal. An elementary circuit has nc
other equal vertices. See (1) for a fuller discussion.

Let G be a finite, strongly connected, directed graph (fscdg). The kth power
G* of G is the directed graph with the same vertices as G and edges of the form
(%, 7), where G has a path of length k from i to j. It is easily shown (6) that we
can define the period p(G) and exponent v(G) as follows:

(i) p is the least positive integer such that for all sufficiently large ¢,

) G'=G"™,

(ii) v is the least positive integer such that (1) holds whenever ¢ = .

The exponent set T (n, p) is the set of all exponents of all #-vertex fscdgs with
period p.

There is some information on I'(xn, p) in the literature. Heap and Lynn (4)
have shown:

L R (HED RS

where [ ] denotes the greatest integer function. Wielandt (9) observed that
3) max I'(n, 1) = (n — 1) (n — 2) + =.

Dulmage and Mendelsohn (3) showed the existence of gaps in T'(n, 1) for
n = 4: if n is even and

4) n—4dn+6<x< (n—1)2

or # is odd and

B) M—4dn4+6<nt—3n+2 or 2 —-3In+4<x< (n—1)2

then x ¢ I'(n,1). They also showed that any other integer x satisfying
n—22=x=(m—1)24+1isin I'(n, 1).
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We will investigate I'(#, p) in detail. A simple algorithm will be given for
determining T'(zn, 1) for large enough #. It has been used to find I'(%, 1) for
35 = n = 100 (in less than one minute!) on an IBM 7094. Inequality (2) will
be replaced by a generalization of (3). Gaps will be established in T' (%, p) for
all sufficiently large #. In fact, if

B <x < Limplies x ¢ I‘(B—ﬂ : 1> :

then
pk =y < plimplies y ¢ T'(n, p).

2. Computing exponents. Let G be an fscdg with elementary circuit
lengths p., 1 £ o < e. It is known (6) that

(6) p(G) = ged (pa).
If [; and [/, are the lengths of two paths from z to j in G, we have
=1, (mod p(G))
since there is a path from j to 7 of length /3 and
Lh+1l;=0=1+I; (mod p(G)).

The reach from ¢ to j, written %;, is the least non-negative integer such that
there is a path from ¢ to j of length

hi+1p foralll = 0.

(We allow paths of length 0 from ¢ to 2.) The following theorem is found in (3)
for p = 1 and implicitly in (4).

TueorEM 2.1. If G is an fscdg, then
(7) v(G) = max hy;— p(G) + 1,

1, JEV(G)

where V(G) is the set of vertices of G.

Proof. Let by, = max h;;. There is no path of length #4;; — p(G) from & to [.
Hence, v(G) = max k;; — p 4 1. On the other hand, let there be a path of
length / from ¢ to j and let ¢t = h;; — p + 1 satisfy ¢ =1 (mod p). Then
hi; = 1=t (mod p). Hence, ¢t = h;;. Thus, there is a path of length ¢ from
1 to j, hence, v(G) < maxh;; — p + 1.

Let 7;; be the length of the shortest path from z to j which contains a point of
a circuit of every circuit length occurring in G (r;; may be 0). We say that (z; 7)
has the unique path property (upp) if, whenever I > r;; is the length of a path
from < to j,

(8) l = 7'1;]' + Zkapay ka g O-
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The Frobenius function F(ly, I, . . ., I;) is the greatest multiple of gcd (/) which
is mot expressible in the form

2 kola, ke 2 0.
By a lemma of Schur (2), the function is not infinite.
For p = 1 in the following theorem, see (3).

THEOREM 2.2. Let G be an fscdg with elementary circuit lengths po, 1 < a < e.
If 1,5 € V(G), then

9) hiy S ris+ Fpy, ..., pe) + 2(G),

with equality if (i;7) has the upp and either no p, = p(G) or no path from i to j
has length r; — p(G).

Proof. There is a path of length [ from 7 to j for any [ of the form (8). The
inequality follows from (6) and the definition of F. Let (;j) have the upp. If
some P, = p, then ry; + F =r;; — p. If no p, = p, then F > 0 and by the
definitions of F and 74, there is no path of length »;; + F from i to j.

It can be shown (6) that G? is the union of p disjoint fscdgs Gy, . . ., G,. The
edges of G connect elements of V(G,;) to elements of V(Gi1), the subscript
being understood modulo p. It follows that the elementary circuits of G; have
lengths po/p, 1 £ a =¢c. By (6) we have p(G;) = 1. The relationship
between v(G) and v(G;) is more complicated.

THEOREM 2.3. Let G be an fscdg with p = p(G) > 1 and let S be a non-empty
subset of {1,2,...,p}. Then

(10) pmax y(Gy) —p+1=7(G) épr?g;w(Gs)-lr?— 151,

1=isp

where |S| is the cardinality of S and G° is the union of the disjoint fscdgs
Gy, ..., Gy

Proof. We establish the left-hand inequality first. Let v(Gy) = max v(G,).
By applying (7) to Gy, it follows that there are 4, j € V(G;) with k;; = v(Gy),
where the reach is in Gy. The corresponding reach in G is py(Gy). Applying (7)
to G proves the left-hand side of (10). Now let 7, j € V(G). It suffices to show
that

hi; £ pmaxy(G,) +2p — S| — 1
SES

and then apply (7). Starting at ¢ on any path we reach some k& ¢ V(G,) for
some s € S, and this path has length at most p — [S|. Working backwards
from j, we see that there is a path of length at most p — 1 from some ! ¢ V(G;)
to j. For every ¢ = v(G;) there is a path from %k to / of length ¢ in G, since
p(Gs) = 1. Combining these three paths (taking the one from & to [ in G gives
it length pt) yields the desired result.
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COROLLARY 2.4. maxXi<;<, v(G;) — mini<i<, v(G;) = 1.
Proof. Let S = {s}, where v(G;) = min v(G,).
The following theorem is proved in (3) for p = 1.

THEOREM 2.5. If G is an fscdg with p = p(G) and with s equal fo the length
of the shortest circuit of G, then

(1) YG) £ n+ S(L’—j] — 2) :

Proof. We assume the case p = 1; see (3, Theorem 1). Let

5 = {¢ VGl < L’-ﬂ} s = {’ V@Il = Bf]}

—

If S— 5 @, let S = S~ in (10). By applying the case p = 1 to G;, where ¢ € S,
we have:

7(G) = p([j—)] —1 +j;<[§] - 3)) to—IST<nt s([?:} - 2>‘

If S = 0; then
[Slzp—\n—1p Py

Apply (10) with .S = S°

In the next section it will be shown that the bound in (11) is sharp whenever
[n/p] and s/p are relatively prime.

3. Some elements of I'(n, p). The following observation is quite useful.

THEOREM 3.1. I'(n, p) C T'(n + 1, p).

Proof. Let G be a given n-vertex fscdg. We shall construct an (# 4 1)-vertex
fscdg G' with p(G’) = p(G) and v(G') = v(G). Let V(G) = {1,2,...,#n} and
V(G ={1,2,...,n+ 1}. Let (4,j) be an edge of G’ if and only if after
replacing any (#z 4+ 1)’s by #’s we obtain an edge of G; see Figure I. It is
easily seen that p(G’) = p(G) and that the reach from ¢ to j in G’ is the same as
the corresponding reach in G ((# + 1)’s replaced by #'s). By (7) we have
v(G") = 7 (G).

LEmMA 3.2. Let m > s > 0 and let | satisfy s —m £ 1= s — 1. Define
p = ged(m, s) and n = max(m, m + 1). Then
(12) (m/p — 1)s + (m —s) + 1€ T(n,p).

Proof. We explicitly construct a graph G (m, s, ). Let V(G)
see Figure II.

I
=
N
=
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' n+1
O >
O >
n

no loop at n

o — n+1
> n

aloop atn
FIGURE 1. The graph G’

G(7,4, —2) G5, 4,2)
FiGure 1lI. G(m, s, )

Case 1.1 £ 0. Then n = m. Let the edges of G(m, s, ) be

(5,1 + 1), 1
(s+k—1,k), 1

where we agree to identify 1 and n + 1.

1 < n,
E=s1-—1,

I\ TIA
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Case 11. 1 > 0. Let the edges of G(m, s, 1) be
(4,74 1), 121 <m,
(m, 1),
(s —1lL,m+1),
m+bm+k+1) 1=<kE=L
It is easily seen that (s — [ + 1;m) has the upp and 7;; < rs_141,, for all

vertices %, j. By Theorems 2.1 and 2.2 and the well-known (2) formula
F(m,s) = ms/p — m — s, we have:

vy(G(m, s, 1)) =rp1m + F(m,s) + 1

=2m—(s—l+1)—|—%£—m—s+1

:(7—;1—1>s—l—(m-—8)+l-

By taking m = p[n/p] and I = n — m in (12), we see that (11) is sharp
when [#/p] and s/p are relatively prime. In particular, (2) may be replaced by
the following generalization of (3).

TaeoreM 3.3. If n = 2p, then

(13) max I'(z, p) = p([ﬂ - 1><[ﬂ - 2> + n.

Proof. Since n = 2p, we have s = p([n/p] — 1) in (11).

Let g(n, p) be the least positive integer not in I' (%, p); that is, the start of
the first gap. Results like the following have been obtained by Dulmage,
Mendelsohn, and Norman (5).

THEOREM 3.4. g(n, p) = pl(n 4+ 2p + 1)/2p]* — 2p.

Proof. By Theorem 3.1 and (12) with m = p(k — 1) and s = p(k — 2)
and —p <1 = p(k — 3) — 1 we have for & = 3:

)xeTPpRk—4)—1,p) forplk—2)2=x=pk?—3k+2)— 1.
If 2 > 3iseven,letm = p(k + 1), s = p(k — 3). By Theorem 3.1 and (12),
(i) x€T@P@k—2)—1,p) forpk®—3k) sx=spkk—1)°-1,
(') x € T(p(2k —4) —1,p) forp(k? —3k) <x < p(k* — 2k — 1) — 1.
If £ = 3is odd, we take m = pk and s = p(k — 2) to obtain
(i) x€T(PRk—3)—1,p) forp(k2—3k+2)<x=<pk—1)2—1,
Gii') x € T(p(2k —4) —1,p) for p(k2 — 3k +2) <« < p(k® — 2k) — 1.

Apply Theorem 3.1 using (i)—(iii") as follows:
(i):3=k=1+41,
(ii), (iii): 3 < k = ], depending on the parity of &,
(ii"), (iii"): & = I + 1, depending on the parity of &.

https://doi.org/10.4153/CJM-1969-088-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1969-088-3

STRONGLY CONNECTED GRAPHS 775

This yields:
(iv) x€ET(Pp@RI—2)—1,p) forp<x=p@l2—2).

With m = s = p in Case II of the proof of Lemma 3.2 and (s — I + 1;m)
replaced by (m -+ 1;m), the range of x in (iv) can be extended down to 1.

We have:
g2l —2) —1,p) z p(I? — 2).
Let
- [ﬁﬂﬂ}
= 5

and use the fact that g is monotonic.

Theorem 3.4 and (13) show that g(n, p) > max I'(n, p)/4 forn = 3p. When
n is large, much more is true.

THEOREM 3.5. For fixed p,

2

(14) 2(n, p) N%Nmax T'(n, p).

Proof. By Theorems 3.1, 3.3, and 3.4, it suffices to show that for every ¢ > 0
and sufficiently large k:

fplk—22=x=pk—1)?2 thenx € T'(p(k—1)A 4+ €),p).

Assume that 0 < § < 1, we shall choose it later. Let & be so large that there
are at least two primes between 2y + 1 and 2(1 4+ )y + 1 whenever
y = (2k — 1)!/2 (this is possible by the prime number theorem). For x as
above, let y = (k2 — x/p)1’2. One of the two guaranteed primes is prime to
2k + 1 since (2y + 1)2 > 2k + 1. Call it 2§ + 1. Let

m=pk+ji+1), s=plk-—7.
Then

gcd(%,i) = gcd(k +]+ 1,% _])
=gedk+j+1+k—jk+j+1—(k—37)
=gcd(2k+ 1,2+ 1)
=1,

(’;’ - 1>s = p(E* — i) = x,

p(E* — %) = pk — p(1 + 6)2<k2 - ’—C>

P
— 6<k2—9—c>
> x — 36p »

=>x— 126p(k — 1).
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Hence, we may choose 0 =<1 < 125p(k — 1) in (12) so that we have
x € T'(n, p). Now

Choose & so large and § so small that

and

n=m-+1

<pk4+j+1) 4+ 120p(k — 1)
<plk+1+8E— 112+ 125k — 1)).

€=

8

E—1

+

(k—1)

p(k —j) = 126p(k — 1).

7z + 126

4. The gaps of I'(n, p). The gaps in I'(n, 1) above (n — 2)? were already
mentioned in (4) and (5). When # = 8, this result is a special case of the
following theorem.

THEOREM 4.1. If x > 4n(n + 1), then x € T'(n, 1) if and only if
x=(m—1)s+m

for some integers m, s, I such that

ged(m, s) = 1,
s—1=1l=s—m,

n
n

s+1

=
=

m +

m>s >0,

A

Proof. The sufficiency follows from Theorem 3.1 and (12). We shall prove
the necessity in this section.
Combining this result with (14), we see that a relatively easy method exists
for determining T'(#n, 1) for sufficiently large #. The values of g(n, 1) given in
Table I indicate that » = 35 may be ‘‘sufficiently large”.

TABLE I
Values of g(n, 1)

0 1 2 3 4 5 6 7 8 9
20 231 232 233? 284 285? 349 350? 453 454 472
30 473 474? 585 586 5872 686 687 774 914 915
40 916 917 1099 1175 1235 1317 1359 1424 1425 1535
50 1691 1692 1718 1867 1947 1994 1995 1996 2131 2316
60 2317 2318 2319 2665 2697 2933 2934 2035 2936 3262
70 3321 3322 3323 3625 3626 3802 3803 4011 4055 4269
80 4656 4779 4803 4804 4805 4817 4818 5058 5059 5060
90 5061 5062 5793 5794 5795 6202 6594 6595 6596 6599
100 7073

At present, no comparable result is known for T'(n, p) with p > 1. However,
the existence of numerous gaps in I'(z, ) can be established.
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TaeorREM 4.2. If x ¢ T([n/p],1) for k < x < I, then
(15) y & T(n,p) forpk =y = pl
if in addition k — 1 ¢ T'([n/p] — 1, 1), then
(16) y & T(np) forplk—1)+w+1=y=pl,
where w = n — p[n/pl.
Proof. Let v(G) =y € T'(n, p) and y < pl. By (10) we have
vG) El+ (p—1)/p

for all 7. Since v(G;) is an integer, v(G;) = I. We now use the given gap data.

Let
5 = {¢ VGl < [g—]} S = {i: VGl = [g]}

If S— 5 @, let S = S~ in (10). Then
v(G) SpE+p— ST =pR +1) -1,
where B’ < kin (15) and ¥’ < & — 1in (16). If S— = @, let S = S° We have:

v(G) = pk' +p — |S'|
gp(k—1)+p—(p—n+p[§])
spk—1)+w

Study of some special cases has shown thaty = plin (15) is not best possible
(hence, a similar conclusion holds for the left half of (10)). Itis not known what
is best possible, however ¥y < pl + p — 1 seems likely when (4) and (5) are
used for I'([n/p], 1).

We devote the remainder of this paper to developing the machinery needed
for proving Theorem 4.1.

THEOREM 4.3. Let 0 < py < ... < p, be given with e = 3. Then

b
Flpi, ..., pe) < Seed (1) Do

Proof. If gcd(p.) = d, we have
F(Plr LR 1pe) = dF(pl/dr oo rpe/d)'
It suffices to consider d = 1. If p, = 2p;, then (2)

F(plv sy Pe) é Plpe - Pl - Pe = %Pe(?e - 3)-
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Suppose that there exists a, possibly reordered, subsequence of p., say
gsy 1 £ B = k, such that
k=3,
dg > dpy1, where dg = ged(ds—y, ¢g) and dy = qu,
d]c = 1.
Then (2)
F(Ph"wpe) = F(qlv“-,qlc)
S k
=4 7 I — 2 G
p=1 dpyr =1
The maximum occurs when all dg/dsy; are minimal except one. Let
Q =maxgs (B#1).
Since dg,1 is a proper divisor of dg,

Fouprs oy (B 1) - g

=t \dgs1

go((k—3)+2%i—z>—q1

A

Q-q—l —q1 sincek = 3and ¢; = 2°°
2

IIA

2(pe — 1)(p. — 2) since Q # qu.
Suppose that three p.’s, say @, ¢ — d, @ — 2d, are relatively prime and form an
arithmetic progression. Then (7)

Flp1,...,pe) = F(a,a — d,a — 2d)
=3@e—-—2d-2)4+1)(a—2d)+{d—1)(a—2d ~-1) — 1
s3@—2d)(a—2)—d
<ia-2-1
< 3(pe — 2)%

In the above situation we have shown that
F < 3pe(pe — 2).
This will be called Case I in the proof of the corollary. Case I1 is the situation in
which ¢ > b > a are three p,’s which are pairwise prime, not in an arithmetic
progression, and satisfy 2a > ¢. Define ¢* by
c*c = a (mod b), |c*| < b
(possible since b > 2 and ¢* is prime to b).
Assume that

Mz a[icb—*;] +c(|c*] = 1) = M,
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We will show that M is a non-negative linear combination of @, b, and ¢ so that
F(a,b,c) < My. Let \ and u be integers with \a + ub = M. It suffices to
construct integers x, ¥, and w with

*) ya — wbh = 0, xb — yc = —)\, we — xa = —u,
since M = (xb — yc 4+ Na + (wec — xa + p)b + (ya — wb)c. Let € and 7 be
defined by

¢ 7= e (mod b), 0=e=|c* -1, )\—[—%—I]éné)\.

e

Let x, v, and w satisfy

bx+>\:'>bx+n wzligz]

4 4

bx = —y (mod ¢), y = l:

Clearly, the first two inequalities in (*) hold. We have:

a(bx—:_—ﬁ> = cc*(éﬁc—t—n) (mod b) = ¢*y = e

Hence
w> alc™ (bx + 1)) — ¢ _ abx + an — ce .
= b be
Thus,
wc_xagabx-l-anb—ce—abx
o)
> = —ad = | = *| _
=3 <a)\ al:lc*l C(lC \ 1)
1
;g(ak—M)= - u.

We now bound M. The case |[¢*| = 1 yields ¢ = Z=¢ (mod b), which, together
with 2a¢ > ¢ > b > a, shows that a, b, and ¢ form an arithmetic progression. This
is in Case I. The case |¢*| = 3(c — 2) yields b = ¢ — 1 and ¢ = =1 (mod ).
This cannot occur. Hence, we have:

Fé%C’Z+C(x_1)—1 with2 = x = 3(c — 3).

This yields

F < max (%ab +c—1, fﬁb?) + 3e(c — 5) — 1)

< %pe(Pe - 1)-
COROLLARY 4.4, If G is an n-vertex fscdg with n = 7 and p(G) = 1 and at
least three distinct elementary circuit lengths, then

(17) v(G) £ in(n + 1).
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Proof. If the shortest circuit has length at most 3#, the result follows from
(11). Let I > %n be the length of the shortest circuit. Let d be the length of the
shortest path fromstoj. Ifd =2 n — [, thenr;; = d. If d < n — [, we may add
an elementary circuit to the path giving7;; £d + 7 < 2rn — 1. By (9) and (7).

v(G) £ 2n — 1+ F(py, ..., po),

where p, (1 = a = e) are the lengths of the elementary circuits of G. In Case I

of the proof of the theorem,
yG) <2n —in+in(n —2) < in(n+1).

In Case II of the proof of the theorem, we may take a = I to obtain:

v(G) §2n+max<gxé+c(x— 1) —a— 1>,
where
2=<x=1(c—3), a<b<c=mn, a + ¢ # 2b.
This yields (17).

THEOREM 4.5. Let G be an n-vertex fscdg with exactly two distinct elementary
circust lengths m and s. Assume that m > s and that gcd(m,s) = 1 and
n < m(s — 1). Let an elementary m-circuit be

[x0, X1, « « .y X = X0].
For some 1 < © < m, there is no s-circuit containing (x;—1, ;).
Proof. Assume the converse, that for every 1 < 7 < m we have:
[x4—1, s = Viige ooy Ysi = xi—l]-

Not all the y;; (1 <j =< sand 1 =17 = m) are distinct since n < m(s — 1).
There are two cases both of which lead to contradictions. We begin byv

establishing:
**) if x, # x,, x,—1, then there is no circuit of the form
g o ooy (7))o ooy Xuy Xugty « + -, (%), ..., %,] of length s.

To prove this by contradiction we consider

[xvr vy Xy = Viuy oo oy Vsu = Xu—1 = Vlu—1y o oy Vs,041 = xv]v

where the first ellipsis corresponds to the first in (**) and the others stand for
the obvious ¥’s. Assuming # < v, this circuit has length

s—@@—uw)+ G—1)m+u—9v)=(—1)m— (v—u—1)s

which is impossible since v > % + 1 and gcd (2, s) = 1. We now consider the
cases mentioned earlier.
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Case I: For some %, j, I we have x; = y;; and 1 < j < 5. Consider the two
circuits
{xi = yli,~'°yyji = xly--°yxi]) [xl =yji’~-'yysi = xi—ly"'yxl]-

Their lengths add to m + s. Hence, one has length s and we may apply (**)
to it.

Case 11: Case I does not hold.

We have y;; = y;; with j, & > 1 and 7 # [. By symmetry, ¢ = [ — 1 may be
excluded. Let y,; = yai be the firstof y2; ..., v,; which equals some y;;, £ > 1.
Lety,; = ys be thelast. Wehavea < z. lfa < £, thenf — a@ = 2 — asince no
circuits through x; or x; can be shorter than s. If @ > £, the circuit

[yaiv vy Vi = Yety oo oy Va1 = yai]
has length (z —a) — (( — ). In any case, (z —a) — (§ — a) is a non-
negative linear combination of m and s. By (**), the elemeniary circuit
[0 =910 Yai = Yatr oo Vs1 = X1y oo vy X
has length m. If I &£ ¢ — 1, the same reasoning applies to
(***) [xz =V e Vet = Veiy oo o3 Vsi = X1y - 0 yxz]-

Combining we obtain:

m+m=(a+s—a)+ E+s—2z +m
Thus,
(z—a)— (—a) =25 —m,

which is not a non-negative combination of s and m. Hence, I = 7 — 1. But
then, replacing (***) by the elementary circuit

[xz=yu,-..,ysz=yzi,.--,ysi=xl]

m+{?=(a+(s—a)+1)+(£+(8—z)—1)~

vields

Then
(G —a) — (g—a)=2s—m—{’f<o,
a contradiction.

We now prove Theorem 4.1. When # < 8 we may use (4) and (5). Let G be a
graph which gives x € I'(n, 1) in the statement of the theorem. By (17), G has
two distinct elementary circuit lengths, say m > s. By (11) we have 2s = #.
Hence, s + m > n. Let x,_; and x,; be the vertices mentioned in Theorem 4.53.
Then (x;; x;_1) has the upp. By (7) and Theorem 2.2,

¥yG) zm—=1)+ ms—m—s)+1=(m—1)s.
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Let # and v be any vertices. We will show that

tun=n—5—1+ m.
Then by (9) and (7)

yG)=Enm—s—1+4+m)+ (ms—m—s)+1
=(m—1s+ (m—s)+1,

wheren = m 4+ land 0 =/ = n — m < s; completing the proof. Let d be the
distance from % tov. If d = n — s, then the corresponding path intersects every
circuit and we have

tw=4d=n=n—s5—1+m.

If d < n — 5, we may add an elementary circuit to the path to obtain a path
with at least s = » — s distinct vertices. Hence, it intersects every circuit.
Thus,

Tw = (m—s—1) +m.
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