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Abstract

We prove the boundedness of a smooth bilinear Rubio de Francia operator associated with an
arbitrary collection of squares (with sides parallel to the axes) in the frequency plane

( f, g) 7→
(∑
ω∈Ω

∣∣∣∣∫
R2

f̂ (ξ)ĝ(η)Φω(ξ, η)e2π i x(ξ+η) dξ dη
∣∣∣∣r)1/r

,

provided r > 2. More exactly, we show that the above operator maps L p
× Lq

→ L s whenever
p, q, s ′ are in the ‘local Lr ′ ’ range, that is,

1
p
+

1
q
+

1
s ′
= 1, 0 6

1
p
,

1
q
<

1
r ′
, and

1
s ′
<

1
r ′
.

Note that we allow for negative values of s ′, which correspond to quasi-Banach spaces L s .

2010 Mathematics Subject Classification: 16W10 (primary); 16D50 (secondary)

1. Introduction

The classical Littlewood–Paley theory states that the L p norm of a function is
equivalent to the L p norm of the square function associated with (smooth) Fourier
projection onto the dyadic intervals [2 j , 2 j+1

]:

‖ f ‖p 6 cp

∥∥∥∥(∑
j

| f ∗ ψ j |
2

)1/2∥∥∥∥
p

6 C p‖ f ‖p, (1)

for any 1 < p <∞.
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C. Benea and F. Bernicot 2

For an arbitrary sequence of disjoint intervals, we can only recover the
RHS inequality of (1) for 2 6 p < ∞, and consequently only the LHS for
1 < p 6 2. Rubio de Francia proved in [9] that for any arbitrary collection of
mutually disjoint intervals [ak, bk], the operator

RF( f )(x) =
(∑

k

∣∣∣∣ ∫
R

f̂ (ξ)1[ak ,bk ](ξ)e
2π iξ x dξ

∣∣∣∣2)1/2

, (2)

maps L p into L p boundedly, for any p > 2. We can regard this as a Littlewood–
Paley inequality associated to disjoint, arbitrary Fourier projections.

In higher dimensions, a similar result was proved by Journé in [12]: given
an arbitrary collection of mutually disjoint rectangles {R}R∈R in Rn with sides
parallel to the axes, the operator

F 7→
(∑

R∈R

∣∣∣∣ ∫
Rn

F̂(ξ1, . . . , ξn)1R(ξ1, . . . , ξn)e2π i(ξ1,...,ξn)·(x1,...,xn) dξ1 . . . dξn

∣∣∣∣2)1/2

(3)
maps L p(Rn)→ L p(Rn) boundedly, for any p > 2.

A similar generic orthogonality principle for bilinear operators does not exist,
except for some particular situations. More exactly, consider a family of bilinear
operators Tk associated with multipliers mk :

Tk( f, g)(x) =
∫
R2

f̂ (ξ)ĝ(η)mk(ξ, η)e2π i x(ξ+η) dξ dη.

Assume that the mk have mutually disjoint supports in the frequency plane, and
the operators Tk are uniformly bounded within some range. What extra conditions
should the mk satisfy in order to obtain∥∥∥∥(∑

k

∣∣Tk( f, g)
∣∣2)1/2∥∥∥∥

s

. ‖ f ‖p‖g‖q, (4)

for some triple (p, q, s) satisfying

1
p
+

1
q
=

1
s

?

Below we present a few examples from the existing literature of such square
functions associated to bilinear operators Tk .

The natural bilinear version of (3) is the following operator:

Tsharp( f, g)(x) :=
(∑
ω∈Ω

∣∣∣∣ ∫
R2

f̂ (ξ)ĝ(η)1ω(ξ, η)e2π i x(ξ+η) dξ dη
∣∣∣∣2)1/2

, (5)
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A bilinear Rubio de Francia inequality for arbitrary squares 3

whereΩ is an arbitrary collection of mutually disjoint squares, with sides parallel
to the axes. We restrict our attention to squares in order to make sure that Tsharp

defined above is a one-parameter operator. It is not known if this operator is
bounded, and unfortunately we do not yet have a way to address this question.

A first example of a ‘bilinear Littlewood–Paley square function’ was introduced
by Lacey in [13]: if Φ̂ is a smooth bump function supported on the interval [0, 1],
then

( f, g) 7→
(∑

k∈Z

∣∣∣∣ ∫
R2

f̂ (ξ)ĝ(η)Φ̂(ξ − η − k)e2π i x(ξ+η) dξ dη
∣∣∣∣2)1/2

(6)

is a bounded operator from L p
×Lq into L2, whenever p, q > 2 and 1/p+1/q = 1

2 .
This work predates [14], where Lacey and Thiele prove the boundedness of the
bilinear Hilbert transform (BHT), which is defined as:

BHT( f, g)(x) =
∫
R2

f̂ (ξ)ĝ(η) sgn(ξ − η)e2π i x(ξ+η) dξ dη. (7)

The multiplier of the BHT operator is singular along the line ξ = η, and for this
reason its analysis is quite complicated.

For the operator in (6), the multipliers are given by mk(ξ, η) := Φ̂(ξ − η − k),
are smooth, and are disjoint translations of the same multiplier Φ̂(ξ − η). Later
on, it was showed in [15] and [4] that this operator is bounded from L p

×Lq to L s ,
for any p, q > 2. The proof outside the local L2 range (that is, for s > 2) relies on
the boundedness of the maximal truncation for the BHT, which is a rather deep
result.

A nonsmooth bilinear Littlewood–Paley square function for disjoint, arbitrary
intervals was introduced in [2]:

LP( f, g)(x) =
(∑

k

∣∣∣∣ ∫
R2

f̂ (ξ)ĝ(η)1[ak ,bk ](ξ − η)e
2π i x(ξ+η) dξ dη

∣∣2)1/2

. (8)

Here the family of multipliers is given by mk(ξ, η) = 1[ak ,bk ](ξ − η). So far, the
only boundedness results that are known (inside the local L2 range) correspond to
intervals {[ak, bk]}k of equal lengths, and the proof hints at vector valued quantities
for BHT. Even if the sharp cutoffs 1[ak ,bk ] are replaced by smooth functions Φ̂k

which are adapted to the intervals [ak, bk], the validity of a general result for
arbitrary intervals is still unclear.

A sufficient condition for the boundedness of the square function
(∑

k |Tk |
2
)1/2

inside the local L2 range is a ‘splitting’ property of the operators Tk , in the sense
that

Tk( f, g) = Tk

(
f ∗ 1̌Ak , g ∗ 1̌Bk

)
, (9)
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where {Ak}k and {Bk}k are both collections of mutually disjoint intervals. This
idea appears in [10], [8] and [7]. In [10], the authors are in fact expressing the
bilinear disc multiplier as a sum of operators Tk , each of which satisfies (9). In
order to deduce the boundedness of

∑
k Tk from the boundedness of the square

function, one needs an extra orthogonality assumption:

〈Tk( f, g), h〉 =
〈
Tk

(
f ∗ 1̌Ak , g ∗ 1̌Bk

)
, h ∗ 1̌Ck

〉
,

where {Ak}k, {Bk}k and {Ck}k are collections of mutually disjoint intervals.
The operators in (8) and in (5) do not have such a splitting property and hence

their analysis is much more complicated. Moreover, in both cases, the multipliers
mk have infinite supports.

On the other hand, there are examples in [1] of operators satisfying

Tk( f, g) = T
(

f ∗ 1̌Ak , g ∗ 1̌Bk

)
,

and hence (9), and for which one can prove∥∥∥∥(∑
k

|Tk( f, g)|r
)1/r∥∥∥∥

s

. ‖ f ‖p‖g‖q, (10)

for any 1 6 r <∞, within a range larger than the local L2 range. The operator T
can be for instance a paraproduct or the BHT. The proof relies on vector valued
extensions for the operator T , and on a generalized version RFr of Rubio de
Francia’s square function.

We recall that the boundedness of RF, together with the Carleson–Hunt
theorem (from [5], [11]) imply through interpolation the boundedness of the
operator

RFr ( f )(x) =
(∑

k

∣∣∣∣ ∫ f̂ (ξ)1Ik (ξ)e
2π iξ x dξ

∣∣∣∣r)1/r

. (11)

THEOREM 1.1 (de Francia, [9]). For any family of disjoint intervals, and any
r > 2, RFr is a bounded operator from L p into L p whenever p > r ′:

‖RFr ( f )‖p . ‖ f ‖p.

If r = 2, RF : L p
→ L p for any p > 2.

The result is false for r < 2, or for p outside the range mentioned in Theorem
1.1. A counterexample can be constructed even for intervals of equal length.
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A bilinear Rubio de Francia inequality for arbitrary squares 5

Although carrying out a Fourier analysis for a linear operator associated with an
arbitrary collection of intervals (or rectangles) in frequency is a known procedure,
an analogue in the bilinear setting was not sufficiently examined. Indeed, all
the previously studied bilinear operators rely on a specific geometry (a line or
a particular collection of lines). In the present paper, we study the following
operator:

Tr ( f, g) =
(∑
ω∈Ω

∣∣∣∣ ∫
R2

f̂ (ξ)ĝ(η)Φω(ξ, η)e2π i x(ξ+η) dξ dη
∣∣∣∣r)1/r

, (12)

where {ω}ω∈Ω is an arbitrary collection of disjoint squares with sides parallel to
the axes, and Φω are smooth bump functions adapted to ω. We hope this will lead
to a better understanding of the operator LP from (8), which is associated to an
arbitrary collection of frequency strips.

We will prove the following result:

THEOREM 1.2. For any r > 2, the operator Tr maps L p
× Lq into L s boundedly,

for any

r ′ < p, q 6∞,
r ′

2
< s < r, and

1
p
+

1
q
=

1
s
.

That is,∥∥∥∥(∑
ω∈Ω

∣∣∣∣ ∫
R2

f̂ (ξ)ĝ(η)Φω(ξ, η)e2π i x(ξ+η) dξ dη
∣∣∣∣r)1/r∥∥∥∥

s

.
∥∥ f
∥∥

p ·
∥∥g
∥∥

q . (13)

The arbitrary geometry on the frequency side (see Figure 1), and hence of the
time–frequency tiles, differentiates the operator Tr from the classical operators
from time–frequency analysis. The prominent examples of bilinear operators are
associated to multipliers that are singular at a point (the classical Marcinkiewicz–
Mikhlin–Hörmander multipliers from [6]), along a line (the bilinear Hilbert
transform [14]), or more generally along curves [10, 16].

A few observations are in order:

(a) If the projections of the squares onto the ξ and respectively η axes are
mutually disjoint, then the boundedness of Tr in the local Lr ′ range is implied
by an application of RFr . This is similar to the principle in (9).

(b) We note that s can be less than 1, so the target space L s can be a quasi-Banach
space.

(c) If r = ∞, then Tr : L p
× Lq

→ L s for any 1 < p, q <∞, and 1
2 < s <∞.

Here we only use the fast decay of the Φω. As r → ∞, we recover the
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Figure 1. An arbitrary collection of squares.

expected range
1 < p, q <∞, 1

2 < s <∞.

(d) The condition r ′ < p, q appearing in Theorem 1.2 is necessary for the
statement to be true in its generality. This becomes evident if one considers
a particular configuration of squares of the same size, that are aligned along
the strip 0 6 ξ 6 1, or 0 6 η 6 1.

(e) There are no obvious L p estimates for the operator Tr , not even when r = 2.
This comes in contrast with the linear case, where L2 estimates for RF and
its multi-dimensional generalizations from (3) are immediate.

(f) Theorem 1.2 admits a multi-dimensional generalization, where Ω is an
arbitrary collection of cubes in R2n . The proof is identical to the one-
dimensional case.

Up to now, it is not clear if s < r is also a necessary condition, but it is an
assumption that we need in our proof. Another requirement we cannot avoid
is that 2 < r , leaving completely undecided the case of the square function,
corresponding to r = 2. A further question that remains open is whether the
smooth cutoffs Φω can be replaced by nonsmooth cutoffs: is

T shar p
r ( f, g) (x) :=

(∑
ω∈Ω

∣∣∣∣ ∫
R2

f̂ (ξ)ĝ(η)1ω(ξ, η)e2π i x(ξ+η) dξ dη
∣∣∣∣r)1/r

, (14)

a bounded operator from L p
× Lq into L s? The only ‘easy’ case is r = ∞, for

which the operator is bounded from L p
× Lq

→ L s for any 1 < p, q < ∞,
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A bilinear Rubio de Francia inequality for arbitrary squares 7

and 1
2 < s < ∞. In spite of the similarity with the smooth operator T∞, and

in spite of being bounded within the same range, the nonsmooth case exhibits
additional difficulties: in order to prove the boundedness of T shar p

∞
, one needs to

invoke the Carleson–Hunt theorem.
In the proof of Theorem 1.2, we will be using Banach-valued restricted weak

type interpolation, similar to the presentations in [20] and [1]. The Banach space
associated to our operator Tr is `r indexed by the collectionΩ of disjoint squares.
Its dual is the space `r ′ indexed also by Ω . Theorem 1.2 reduces to proving
restricted weak type estimates for the trilinear form Λ associated to a model
operator for Tr :

PROPOSITION 1.3. Let F,G and H be measurable subsets of R, of finite
measure, with |H | = 1. Then one can construct a major subset H ′ ⊆ H,
|H ′| > |H |/2, so that ∣∣Λ( f, g, h)

∣∣ . |F |1/p
|G|1/q |H |1/s

′

, (15)

whenever the functions f, g, h = {hω}ω∈Ω satisfy

| f | 6 1F , |g| 6 1G,

(∑
ω

|hω|r
′

)1/r ′

6 1H ′, (16)

and the exponents p, q, s satisfy

r ′ < p, q <∞,
r ′

2
< s < r, and

1
p
+

1
q
=

1
s
.

The paper is organized in the following way: in Section 2 we describe the
discretization of the operator Tr , and introduce the new column and row structures
of tiles. Related to these notions, we define new sizes and energies in Section 3,
which will be used in Section 4 in order to establish a generic estimate for
the trilinear form. Some refinements of the energy estimates are performed in
Section 5, and the proof of Theorem 1.2 is presented in Section 6. Finally,
in Section 7, we present an application to generalized Bochner–Riesz bilinear
multiplier for rough domains.

2. The model operator and the organization of the time–frequency tiles

We start with a few definitions:

DEFINITION 2.1. A time–frequency tile is a rectangle P = I×ω of area 1, where
I and ω are dyadic intervals.

A tri-tile is a tuple s = (Is × ω1, Is × ω2, Is × ω3), where each si = Is × ωi is
a tile.
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DEFINITION 2.2. For a fixed interval I , we denote

χ̃I (x) :=
(

1+
dist(x, I )
|I |

)−10

. (17)

We say that a function φ is adapted to I if

|φ(k)(x)| 6 Ck,M
1
|I |k

χ̃M
I (x),

for sufficiently many derivatives, and M > 0 a large number.
Given a tile P = IP × ωP , we say that φ is a wave packet associated to P if φ

is adapted to IP , φ̂ is adapted to ωP , and φ̂ is supported inside 11
10ωP .

A first simplification of the operator Tr consists in assuming that the squares
ω ∈ Ω are dyadic. This reduction is possible because the smooth cutoff Φω,
supported on ω = ω1 × ω2 can be replaced by a smooth cutoff supported on
ω̃1 × ω̃2, where |ωi | ∼ |ω̃i | and the intervals ω̃i are either dyadic intervals or
shifted dyadic intervals (they are shifted a third of a unit to the left or to the right).
The function Φ̂ω is replaced by its double Fourier series on ω̃1 × ω̃2:

Φ̂ω(ξ, η) =
∑
l,k

cl,k φ̂ω,1,l,k(ξ)φ̂ω,2,l,k(η),

where φ̂ω,i,l,k is smooth, supported on 11
10 ω̃i , ≡ 1 on ω̃i . Since we will be working

with the trilinear form associated to the operator Tr , we write

Φ̂ω(ξ, η)=
∑
l,k

cl,k φ̂ω,1,l,k(ξ)φ̂ω,2,l,k(η)=
∑
l,k

cl,k φ̂ω,1,l,k(ξ)φ̂ω,2,l,k(η)φ̂ω,3,l,k(ξ+η),

where φ̂ω,3,l,k(η) is smooth, supported on 11
10 ω̃3, ≡ 1 on ω̃3. Here ω̃3 is a (shifted)

dyadic interval containing ω̃1 + ω̃2, and so that |ω̃3| ∼ ω̃1 + ω̃2.
The fast decay of the Fourier coefficients (implied by the smoothness of Φ̂ω)

ensures that the boundedness of the general case can be deduced from the
boundedness of the dyadic case. Working with dyadic intervals simplifies the
time–frequency analysis of the operator, merely because any two dyadic intervals
are either disjoint or one of them is contained inside the other one.

In this way, we obtain a model operator of Tr associated to a finite collection S
of tri-tiles of the form

s = (Is × ω1, Is × ω2, Is × ω3). (18)

Here ω = ω1×ω2 ∈Ω is a square contained in the collectionΩ , and ω3 ∼ ω1+ω2.
In this case, if s is of the form (18), we use the notation ωs = ω, and ωs j = ω j ,
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A bilinear Rubio de Francia inequality for arbitrary squares 9

for 1 6 j 6 3. For any subcollection S′ of tiles, we define

Ω(S′) := {ω ∈ Ω : ∃s ∈ S′ such that ω = ω1 × ω2}.

Note that a frequency square ω could correspond to several tri-tiles: given
ω ∈ Ω(S′), there are possibly several tiles s, s ′ ∈ S so that ωs = ωs′ .

Then the model operator for Tr is given by

( f, g) 7→
(∑
ω∈Ω

∣∣∣∣ ∑
s∈S
ωs=ω

|Is |
−1/2
〈 f, φs1〉〈g, φs2〉φs3(x)

∣∣∣∣r)1/r

, (19)

where the functions φs j are wave packets associated to the tiles s ∈ S. The trilinear
form, obtained by dualization with a function h = {hω}ω∈Ω , is given by

ΛS ( f, g, h) :=
∑
s∈S

|Is |
−1/2
〈 f, φs1〉〈g, φs2〉〈hs, φs3〉, (20)

where hs = hω whenever ωs = ω.

2.1. Columns and column estimate. For the model operator of Tr , the
geometry of the tiles is unconventional, and the tree-structures from [14] or [18],
are replaced here by columns and rows. In this situation, there is no relation
between the length of a tile in the column and the distance to the ‘top’ frequency.
We have the following definitions:

DEFINITION 2.3. A column with top t is a subcollection C ⊆ S with the property
that for all s ∈ C,

Is ⊆ It and ωt1 ⊆ ωs1 .

We denote the top tile of the column C as tC := IC × ωC . Since the tiles are
overlapping in the ξ direction, they are going to be disjoint in the η direction: for
all s ∈ C, the intervals ωs2 are mutually disjoint.

Similarly, a row with top t is a subcollection R ⊆ S with the property that for
all s ∈ R,

Is ⊆ It and ωt2 ⊆ ωs2 .

We denote the top as tR := IR×ωR. This time, the intervals {ωs1}s∈R are mutually
disjoint.

DEFINITION 2.4. We say that the columns C1, . . . , CN are mutually disjoint if
they are disjoint sets of tri-tiles (that is, Ci ∩ C j = ∅ for all i 6= j), and

{IC j × ωC j ,1}16 j6N
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represents a collection of mutually disjoint tiles: ICi × ωCi ,1 ∩ IC j × ωC j ,1 = ∅ for
all i 6= j . Mutually disjoint rows are defined in a similar manner, but this time

{IR j × ωR j ,2}16 j6N

form a collection of mutually disjoint tiles.

The columns and rows are configurations suitable for the time–frequency
analysis of ΛS: if we restrict our attention to columns, we get a nice estimate in
Proposition 2.5, and similarly for rows. These estimates give rise to new ‘sizes’,
which will be introduced in Section 3.

PROPOSITION 2.5. Let C be a column with top t. Then we have the following
estimate:

∣∣ΛC( f, g, h)
∣∣ . sup

s∈C

|〈 f, φs1〉|

|Is |
1/2
·

(
sup
s∈C

|〈g, φs2〉|

|Is |
1/2

)(r−2)/r

·

(
1
|It |

∑
s∈C

|〈g, φs2〉|
2

)1/r

·

(
1
|It |

∫
R

∑
ω∈Ω(C)

∣∣M (
hω · χ̃M

It

)∣∣r ′ · 1It dx
)1/r ′

· |It |. (21)

Here M > 0 can be as large as we wish and the implicit constant will depend
on M.

Proof. First, note that we have (following Hölder’s inequality), for every α > 0,

|ΛC( f, g, h)| =
∣∣∣∣∑

s∈C

|Is |
−1/2
〈 f, φs1〉〈g, φs2〉〈hs, φs3〉

∣∣∣∣
. sup

s∈C

|〈 f, φs1〉|

|Is |
1/2
·

(∑
s∈C

(
|Is |

|It |

)−αr

|〈g, φs2〉|
r

)1/r

·

(∑
s∈C

(
|Is |

|It |

)αr ′

|〈hs, φs3〉|
r ′
)1/r ′

,

and in what follows we will focus on the second and third terms. For g, since
r > 2, we have
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A bilinear Rubio de Francia inequality for arbitrary squares 11(∑
s∈C

(
|Is |

|It |

)−αr

|〈g, φs2〉|
r

)1/r

=

(∑
s∈C

|〈g, φs2〉|
r−2

|Is |
(r−2)/2

· |Is |
(r−2)/2

·

(
|Is |

|It |

)−αr

|〈g, φs2〉|
2

)1/r

.

(
sup
s∈C

|〈g, φs2〉|

|Is |
1/2

)(r−2)/r

·

(∑
s∈C

|〈g, φs2〉|
2

)1/r

· |It |
α,

provided αr = (r − 2)/2, which is equivalent to α = 1/2 − 1/r > 0. The last
term will be slightly more technical:∑

s∈C

(
|Is |

|It |

)αr ′

|〈hs, φs3〉|
r ′

=

∑
l>0

∑
|ω|−1=2−l |It |

∑
s∈C
ωs=ω

(
|Is |

|It |

)αr ′
|〈hω, φs3〉|

r ′

|Is |
r ′/2

·
|Is |

r ′/2

|It |
r ′/2
· |It |

r ′/2

= |It |
r ′/2
∑
l>0

2−lr ′(α+1/2)
∑

|ω|−1=2−l |It |

∑
s∈C
ωs=ω

(
|〈hω, φs3〉|

|Is |
1/2

)r ′

.

Now we observe that

|〈hω, φs3〉|

|Is |
1/2

. inf
y∈Is

∣∣M (
hω · χ̃M

Is

)
(y)
∣∣ . inf

y∈Is

∣∣M (
hω · χ̃M

It

)
(y)
∣∣ , (22)

since the bump functions φs3 are L2-normalized and adapted to Is . This implies
that∑
s∈C

(
|Is |

|It |

)αr ′

|〈hs, φs3〉|
r ′

. |It |
r ′/2
∑
l>0

2−lr ′(α+1/2)
∑

|ω|−1=2−l |It |

∑
s∈C
ωs=ω

1
|Is |

∫
R

∣∣M (
hω · χ̃M

It

)
(y)
∣∣r ′ · 1Is dx

. |It |
r ′/2
∑
l>0

2−lr ′(α+1/2−1/r ′)
∑

|ω|−1=2−l |It |

∑
s∈C
ωs=ω

1
|It |

∫
R

∣∣M (
hω · χ̃M

It

)
(y)
∣∣r ′ · 1Is dx

. |It |
r ′/2
·

1
|It |

∫
R

∑
ω∈Ω(C)

∣∣M (
hω · χ̃M

It

)
(y)
∣∣r ′ · 1It dx .

Above, the definition of α yields α + 1/2 = 1/r ′.
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Carefully adding all these estimates together, we get that∣∣∣∣∑
s∈C

|Is |
−1/2
〈 f, φs1〉〈g, φs2〉〈hs, φs3〉

∣∣∣∣
. sup

s∈C

|〈 f, φs1〉|

|Is |
1/2
·

(
sup
s∈C

|〈g, φs2〉|

|Is |
1/2

)(r−2)/r

·

(∑
s∈C

|〈g, φs2〉|
2

)1/r

· |It |
1/2−1/r

· |It |
1/2−1/r ′

(∫
R

∑
ω∈Ω(C)

∣∣M (
hω · χ̃M

It

)
(y)
∣∣r ′ · 1It dx

)1/r ′

,

which is precisely (21).

Similarly, we have estimates for a row R:

PROPOSITION 2.6. If R ⊆ S is a row of top t, then,

∣∣ΛR( f, g, h)
∣∣ . (

sup
s∈R

|〈 f, φs1〉|

|Is |
1/2

)(r−2)/r

·

(
1
|It |

∑
s∈R

|〈 f, φs1〉|
2

)1/r

· sup
s∈R

|〈g, φs2〉|

|Is |
1/2

·

(
1
|It |

∫
R

∑
ω∈Ω(R)

∣∣M (
hω · χ̃M

It

)∣∣r ′ · 1It dx

)1/r ′

· |It |. (23)

PROPOSITION 2.7. If C ⊆ S is a column, then

1
|IC|

∑
s∈C

|〈g, φs2〉|
2 .

1
|IC|

∫
R
|g(x)|2 · χ̃ 10

IC dx . (24)

Proof. This follows easily from orthogonality arguments, and the fast decay of
the bump functions.

3. Sizes and energies

Motivated by the estimates in Propositions 2.5 and 2.6, we define sizes with
respect to a collection S of tiles, in the following way:

DEFINITION 3.1. For f ∈ L1
loc(R) and S a collection of tiles, we set

sizeS( f ) := sup
s∈S

|〈 f, φs1〉|

|Is |
1/2

. (25)
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Similarly for g ∈ L1
loc(R),

sizeS(g) := sup
s∈S

|〈g, φs2〉|

|Is |
1/2

. (26)

DEFINITION 3.2. For a sequence h = {hω}ω∈Ω of L1
loc(`

r ′(Ω)), the size is defined
as

sizeS(h) := sup
T ⊆S

T column or row
with top t

(
1
|It |

∫
R

∑
ω∈Ω(T )

∣∣M (
hω · χ̃M

It

)∣∣r ′ · 1It dx

)1/r ′

. (27)

Correspondingly, the energies with respect to a collection S are constructed as
follows:

DEFINITION 3.3. For f ∈ L1
loc(R), we define

energyS( f ) := sup
n∈Z

2n

(∑
C∈C

|IC|
)1/2

, (28)

where C ranges over all collections of mutually disjoint columns C ⊆ S (see
Definition 2.4), so that

|〈 f, φs1〉|

|Is |
1/2

6 2n+1 for all s ∈ C

and whose tops satisfy

|〈 f, φtC,1〉|

|IC|1/2
> 2n for all C ∈ C.

Also, we have for g ∈ L1
loc(R)

energyS(g) := sup
n∈Z

2n

(∑
R∈R

|IR|
)1/2

, (29)

where R ranges over all collections of mutually disjoint rows R ⊆ S with the
property that

|〈g, φs2〉|

|Is |
1/2

6 2n+1 for all s ∈ R,

and whose tops satisfy

|〈g, φtR,2〉|

|IR|1/2
> 2n for all R ∈ R.
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DEFINITION 3.4. Given a sequence of functions h = {hω}ω∈Ω , and a collection
of tiles S, we set

energyS(h) := sup
n∈Z

2n

(
sup
T ∈T
|IT |

)1/r ′

, (30)

where T ranges over all collections of mutually disjoint rows and mutually disjoint
columns (with top t = IT × ωT ) satisfying(

1
|IT |

∫
R

∑
ω∈Ω(T )

∣∣M (
hω · χ̃M

IT

)∣∣r ′ · 1IT dx

)1/r ′

> 2n. (31)

In fact, T will be the union of a collection C of mutually disjoint columns and a
collection R of mutually disjoint rows, with every column or row satisfying (31).

We will need to bound these quantities, but this procedure is rather standard.

PROPOSITION 3.5. For any locally integrable function f and any collection of
tiles S

sizeS( f ) . sup
s∈S

1
|Is |

∫
R
| f (x)| · χ̃M

Is
(x) dx, (32)

for M > 0 arbitrarily large, with the implicit constant depending on M. A similar
estimate holds for sizeS(g).

In Proposition 3.5, we only make use of the fast decay of the wave packets φs j .
However, for the energy, it is of utmost importance that the top tiles {IC×ωC,1}C∈C
are mutually disjoint tiles, whenever C represents a collection of mutually disjoint
columns.

PROPOSITION 3.6. For every functions f, g ∈ L2(R) we have

energyS( f ) . ‖ f ‖2 and energyS(g) . ‖g‖2.

Proof. This is very similar to [20, Lemma 5.1], but we present the details for
completeness. Assume that n and C are energy maximizers in Definition 3.3. For
the top intervals we have

2n 6

∣∣〈 f, φtC,1〉
∣∣

|IC|1/2
6 2n+1 for all C ∈ C.

Following the definition, we have(
energyS( f )

)2
= 22n

∑
C∈C

|IC| 6
∑
C∈C

∣∣〈 f, φtC,1〉
∣∣2 6 ‖ f ‖2 ·

∥∥∥∥∑
C∈C

〈 f, φtC,1〉φtC,1

∥∥∥∥
2

,
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and it will be enough to prove
∥∥∑

C∈C〈 f, φtC,1〉φtC,1

∥∥
2 6 (22n ∑

C∈C |IC|)
1/2. To

this end, we compute:∥∥∥∥∑
C∈C

〈 f, φtC,1〉φtC,1

∥∥∥∥2

2

=

∑
C,C′∈C

〈 f, φtC,1〉〈 f, φtC′,1〉〈φtC,1, φtC′,1〉.

The only way 〈φtC,1, φtC′,1〉 6= 0 is if ωC,1 ∩ ωC′,1 6= ∅. By symmetry, we can
estimate∥∥∥∥∑

C∈C

〈 f, φtC,1〉φtC,1

∥∥∥∥2

2

.
∑

C,C′∈C
ωC,1⊆ωC′,1

∣∣〈 f, φtC,1〉〈 f, φtC′,1〉〈φtC,1, φtC′,1〉
∣∣

.
∑
C∈C

∑
C′∈C

ωC,1⊆ωC′,1

∣∣〈 f, φtC,1〉
∣∣ · ∣∣〈 f, φtC′,1〉

∣∣ · ∣∣〈φtC,1, φtC′,1〉
∣∣

.
∑
C∈C

∑
C′∈C

ωC,1⊆ωC′,1

2n+1
|IC|1/2 · 2n+1

|IC′ |1/2
∣∣〈φtC,1, φtC′,1〉

∣∣.
The last inequality is a consequence of the energy definition, since any tri-tile in
C has the property that

∣∣〈 f, φs,1〉
∣∣ 6 2n+1

|Is |
1/2. We employ again the fast decay

of the wave packets: since ωC,1 ⊆ ωC′,1, we have |IC′ | 6 |IC| and

∣∣〈φtC,1, φtC′,1〉
∣∣ . (

|IC′ |
|IC|

)1/2 (
1+

dist(IC, IC′)
|Ic|

)−100

.

Hence, we have∥∥∥∥∑
C∈C

〈 f, φtC,1〉φtC,1

∥∥∥∥2

2

.
∑
C∈C

22n
∑
C′∈C

ωC,1⊆ωC′,1

∫
IC′

(
1+

dist(x, IC)
|Ic|

)−100

dx

.
∑
C∈C

22n
∫
R

(
1+

dist(x, IC)
|Ic|

)−100

dx .
∑
C∈C

22n
|IC|.

Whenever we have a subcollection {C ′ ∈ C : ωC,1 ⊆ ωC′,1}, the spatial intervals
IC′ are mutually disjoint. This is implied by the pairwise disjointness of the tiles
{IC × ωC,1}. The last inequality completes the energy estimate.

We note that the disjointness of the tiles {IC × ωC,1}C∈C is not sufficient for
concluding ∑

C∈C

∣∣〈 f, φtC,1〉
∣∣2 . ‖ f ‖2

2. (33)
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In fact, a counterexample is presented in [20]. However, besides the mutually
disjointness of the tiles in the above collection, we also use the condition on the
tops of the columns:

2n 6

∣∣〈 f, φtC,1〉
∣∣

|IC|1/2
6 2n+1,

in order to deduce
∥∥∑

C∈C〈 f, φtC,1〉φtC,1

∥∥
2 6 (22n ∑

C∈C |IC|)
1/2, which in turn

implies inequality (33).

Now we present the energy and size estimates for the third function:

PROPOSITION 3.7. For any sequence of functions h = {hω}ω∈Ω , we have

sizeS(h) . sup
t∈S

(
1
|It |

∫
R

∣∣∣∣(∑
ω∈Ω

|hω(x)|r
′

)1/r ′

· χ̃M
It
(x)
∣∣∣∣r ′ dx

)1/r ′

, (34)

where M > 0 can be chosen to be arbitrarily large, and with the implicit constant
depending on M.

Proof. We will prove that, for any interval It , we have

1
|It |

∫
R

∑
ω∈Ω

∣∣M (
hω · χ̃M

It

)∣∣r ′ · 1It dx .
1
|It |

∫
R

∣∣∣∣(∑
ω∈Ω

|hω(x)|r
′

)1/r ′

· χ̃M
It
(x)
∣∣∣∣r ′ dx .

(35)
This will immediately imply (34). However, in the definition of sizeS(h), we
prefer to have the characteristic function 1It (x) appearing, as it makes the energy
estimate in Proposition 3.8 simpler.

In order to prove (35), we note that∫
R

∑
ω∈Ω

|M
(
hω · χ̃M

It

)
|
r ′
· 1It dx 6

∑
ω∈Ω

∥∥M (
hω · χ̃M

It

) ∥∥r ′

r ′

.
∑
ω∈Ω

∥∥hω · χ̃M
It

∥∥r ′

r ′ =

∫
R

(∑
ω∈Ω

|hω(x)|r
′

)
· χ̃Mr ′

It
dx .

Here we use the Lr ′
7→ Lr ′ boundedness of the maximal function, so we must

have r < ∞ and r ′ > 1. The case r = ∞ is much easier to deal with, and it has
already been presented in Section 1.

PROPOSITION 3.8. For any collection of tiles S and h ∈ Lr ′(`r ′(Ω)), we have

energyS (h) .

∥∥∥∥∥
(∑
ω∈Ω

|hω|r
′

)1/r ′
∥∥∥∥∥

r ′

.
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Proof. Let n and T be maximizers in (30), and for simplicity assume that T is a
collection of mutually disjoint columns. Then we have(

energyS(h)
)r ′

.
∑
T ∈T

∫
R

∑
ω∈Ω(T )

∣∣M (
hω · χ̃M

IT

)
(x)
∣∣r ′ · 1IT (x) dx

=

∫
R

∑
ω∈Ω

|M (hω) (x)|
r ′
·

( ∑
T , ω∈Ω(T )

1IT (x)
)

dx .

Here we used the inequality M( f ·χ̃I ) .M( f ). We employ now the disjointness
of the columns: if ω ∈ Ω(T1) and ω ∈ Ω(T2), then the tops must be disjoint in
space and hence ∑

T , ω∈Ω(T )

1IT (x) 6 1 for a.e x .

We have (
energyS(h)

)r ′
.
∫
R

∑
ω∈Ω

|M (hω) (x)|
r ′ dx =

∑
ω∈Ω

∥∥M (hω)
∥∥r ′

r ′

.
∑
ω∈Ω

∥∥hω
∥∥r ′

r ′ =

∥∥∥∥∥
(∑
ω∈Ω

|hω|r
′

)1/r ′
∥∥∥∥∥

r ′

r ′

,

after making use of the Lr ′-boundedness of the maximal operator.

3.1. Decomposition lemmas and summation of columns/rows. Throughout
this section, we fix the collection of tiles S and we will use the notation

S1 := sizeS( f ), E1 := energyS( f ), S2 := sizeS(g), E2 := energyS(g),
S3 := sizeS(h), E3 := energyS(h)

for the ‘global’ sizes and energies. Using stopping times, we can partition S into
smaller subcollections, on each of which we have better control on the ‘local’
sizes end energies.

LEMMA 3.9. Let S′ ⊆ S be a subcollection of S and assume that sizeS′( f ) 6
2−n0 E1. Then one can partition S′ = S′′ ∪ S′′′, where

sizeS′′( f ) 6 2−n0−1 E1 (36)

and S′′′ can be written as a union of mutually disjoint columns (in the sense of
Definition 2.4) S′′′ =

⋃
C∈C C, the tops of which satisfy∑

C∈C

|IC| . 22n0 . (37)

https://doi.org/10.1017/fms.2016.21 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2016.21


C. Benea and F. Bernicot 18

Proof. We begin the decomposition algorithm by looking for tiles s ∈ S′ which
satisfy

|〈 f, φs1〉|

|Is |
1/2

> 2−n0−1 E1. (38)

If there are no such tiles, then sizeS′ 6 2−n0−1 E1 and we set S′′ = S′, S′′′ = ∅.
Otherwise, start with S′′′ = ∅. Among the tiles in S′ satisfying (38), choose s

which has the largest spacial interval Is (and hence the smallest frequency interval
ω1), and so that both Is and ωs1 are situated leftmost. Then construct the column

C1 := {t ∈ S′ : It ⊆ Is, and ωs1 ⊆ ωt1}.

Now set S′′′ := S′′′ ∪ C1, S′ = S′ \ S′′′, and restart the algorithm.
At the end, we will have a collection of columns C1, . . . , CN which constitute

S′′′, and S′′, in which none of the tiles satisfies (38). The columns are disjoint
by construction, so we are left with proving the inequality (37), which follows
directly from the energy definition. For the columns C1, . . . , CN , we know that
their tops s1, . . . , sN satisfy

|〈 f, φs j ,1〉|

|Is |
1/2

> 2−n0−1 E1 for all 1 6 j 6 N .

Hence (E12−n0−1)2
∑

j |Is j | 6 (energyS′( f ))2 6 (energyS( f ))2 = E2
1 .

A very similar result holds for g, with columns being replaced by rows:

LEMMA 3.10. Let S′ ⊆ S be a subcollection of S and assume that sizeS′(g) 6
2−n0 E2. Then one can partition S′ = S′′ ∪ S′′′, where

sizeS′′(g) 6 2−n0−1 E2 (39)

and S′′′ can be written as a union of mutually disjoint rows S′′′ =
⋃

R∈R R, the
tops of which satisfy ∑

R∈R

|IR| . 22n0 . (40)

We have seen already that the size of h depends both on columns and rows.
This behavior will also be displayed in the decomposition lemma for h:

LEMMA 3.11. Let S′ ⊆ S be a subcollection of S and assume that sizeS′(h) 6
2−n0 E3. Then one can partition S′ = S′′ ∪ S′′′, where

sizeS′′(h) 6 2−n0−1 E3 (41)
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and S′′′ can be written as the union of C, a collection of mutually disjoint columns,
and R, a collection of mutually disjoint rows: S′′′ =

⋃
C∈C C∪

⋃
R∈R R. Moreover,

we have ∑
C∈C

|IC| . 2r ′n0 and
∑
R∈R

|IR| . 2r ′n0 . (42)

Proof. The proof will be similar to that of Lemma 3.9. We initialize S′′ = S′′′ =
∅, and we begin by looking for ‘extremizers’ for sizeS′(h). That is, we look for
columns C ⊆ S′ satisfying(

1
|IC|

∫
R

∑
ω∈Ω(C)

∣∣M (
hω · χ̃M

IC

) ∣∣r ′ · 1IC dx
)1/r ′

> 2−n0−1 E3. (43)

If there are no such columns, we search for rows R ⊆ S′ which satisfy(
1
|IR|

∫
R

∑
ω∈Ω(R)

∣∣M (
hω · χ̃M

IR

) ∣∣r ′ · 1IR dx
)1/r ′

> 2−n0−1 E3. (44)

When there are no more columns or rows satisfying (43) or (44), set S′′ = S, which
will have sizeS′′(h) 6 2−n0−1.

Instead, if we have columns satisfying (43), we select the ones which are
maximal with respect to inclusion, have the largest spatial top interval Is , and
among these, we choose the one whose frequency interval ωs,1 and spatial interval
Is are leftmost. Ultimately, we want to obtain a collection C of disjoint columns.
Let C1 be such a column, and denote s1 its top. Note that a tile t satisfying
ωt,1 ⊂ ωs1,1 and Is1 ⊂ It cannot be the top of a column satisfying (43), for it
should have been selected first.

Then we set S′′′ = S′′′ ∪ C1 and S′ := S′ \ C1, and repeat the algorithm.
That is, we search for columns in the updated S′ satisfying (43), obtaining
eventually a collection C = C1 ∪ · · · ∪ CN of mutually disjoint columns, with
disjoint tops, satisfying (43). Following that, we repeat the same procedure,
obtaining a collection R = R1 ∪ · · · ∪ RÑ of rows satisfying (44). We will have
S′′′ =

⋃
C∈C C ∪

⋃
R∈R R. Also, S′′ consists of the tiles in S′ \ S′′′, and will have

the property that sizeS′′(h) 6 2−n0−1.
Then (42) follows from Definition 3.4, similarly to the proof in Lemma 3.9.

Simultaneously applying the decomposition results above, and reiterating until
all tiles in S are exhausted, we obtain a splitting of S into collections of columns
and rows.
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PROPOSITION 3.12. One can write S as S =
⋃

n∈Z S1
n ∪ S2

n , where each S1
n is a

union of disjoint columns, and each S2
n is a union of disjoint rows, for which we

have:

(a) for i ∈ {1, 2} then sizeSi
n
( f ) 6 min(2−n E1, S1);

(b) for i ∈ {1, 2} then sizeSi
n
(g) 6 min(2−n E2, S2);

(c) for i ∈ {1, 2} then sizeSi
n
(h) 6 min(2−2n/r ′E3, S3); and

(d)
∑

C∈S1
n
|IC| . 22n and

∑
R∈S2

n
|IR| . 22n .

Moreover, S1
n is nonempty if and only if one of the following holds:

2−n−1 E1 6 sizeS1
n
( f ) 6 min

(
2−n E1, S1

)
,

or
2−2(n−1)/r ′E3 6 sizeS1

n
(h) 6 min

(
2−(2n)/r ′E3, S3

)
.

Similarly, S2
n is nonempty if and only if

2−n−1 E2 6 sizeS2
n
(g) 6 min

(
2−n E2, S2

)
,

or
2−2(n−1)/r ′E3 6 sizeS2

n
(h) 6 min

(
2−(2n)/r ′E3, S3

)
.

4. Generic estimate for the trilinear form ΛS( f, g, h)

Using Proposition 3.12, we obtain a way of estimating the trilinear form
ΛS( f, g, h) by using the sizes and energies. We recall that α was defined as
α = 1/2− 1/r .

PROPOSITION 4.1. If F,G, H ′ and f, g, h = {hω}ω are as in (16), then∣∣ΛS( f, g, h)
∣∣ .(sup

s∈S

1
|Is |

∫
R

1G · χ̃
100
Is

dx
)1/r

· S4αθ1
1 E1−4αθ1

1 S4αθ2
2 E2α−4αθ2

2 Sr ′/2·4αθ3
3 E1−r ′/2·4αθ3

3

+

(
sup
s∈S

1
|Is |

∫
R

1F · χ̃
100
Is

dx
)1/r

· S4αβ1
1 E2α−4αβ1

1 S4αβ2
2 E1−4αβ2

2 Sr ′/2·4αβ3
3 E1−r ′/2·4αβ3

3 , (45)

whenever the variables θ j , β j satisfy θ1 + θ2 + θ3 = 1, β1 + β2 + β3 = 1 and

0 6 θ1, β2 6 min
(

1,
1

4α

)
, 0 6 θ2, β1 6

1
2
, 0 < θ3, β3 6 1. (46)

https://doi.org/10.1017/fms.2016.21 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2016.21


A bilinear Rubio de Francia inequality for arbitrary squares 21

Proof. From Proposition 3.12, we have

ΛS( f, g, h) =
∑
n∈Z

(∑
C∈S1

n

ΛC( f, g, h)+
∑
R∈S2

n

ΛR( f, g, h)
)
,

and from Proposition 2.5, for any C ∈ S1
n ,∣∣ΛC( f, g, h)

∣∣ . (
sup
s∈S

1
|Is |

∫
R

1G · χ̃
100
Is

dx
)1/r

· sizeS1
n
( f ) ·

(
sizeS1

n
(g)
)2α
· sizeS1

n
(h) · |IC|. (47)

Here we used the fact that along a column C, the frequency intervals {ωs2}s∈C are
disjoint, and orthogonality implies that(

1
|IC|

∑
s∈C

|〈g, φs2〉|
2

)1/r

.

(
1
|IC|
‖g · χ̃ 100

Ic
‖

2
2

)1/r

.

(
sup
s∈S

1
|Is |

∫
R

1G · χ̃
100
Is

dx
)1/r

.

It will be enough to estimate∑
n∈Z

∑
C∈S1

n

sizeS1
n
( f ) ·

(
sizeS1

n
(g)
)2α
· sizeS1

n
(h) · |IC| (I)

and correspondingly,∑
n∈Z

∑
R∈S2

n

(
sizeS2

n
( f )

)2α sizeS2
n
(2) · sizeS2

n
(h) · |IR|. (II)

For (I), Proposition 3.12 yields

(I) .
∑
n∈Z

min
(
2−n E1, S1

)
·
(
min

(
2−n E2, S2

))2α
·min

(
2−2n/r ′E3, S3

)
· 22n

=

∑
n∈Z

E1 E2α
2 E3 min

(
2−n,

S1

E1

)
·

(
min

(
2−n,

S2

E2

))2α

·min
(

2−2n/r ′,
S3

E3

)
· 22n.

From Proposition 3.12, we know that the collections S1
n are nonempty as long as

2−n 6 max

(
S1

E1
,

(
S3

E3

)r ′/2
)
.

Since the expression above displays no symmetries in the sizes for f, g, and h,
one needs to analyze separately all the possibilities:

S1

E1
6

S2

E2
6

(
S3

E3

)r ′/2

,
S2

E2
6

S1

E1
6

(
S3

E3

)r ′/2

, etc . . . .
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We will illustrate only the first case, the others being routine repetitions. So
assume that

S1

E1
6

S2

E2
6

(
S3

E3

)r ′/2

. (48)

We split (I) into several subsums according to 2−n , but each of them will still be
denoted by (I) for simplicity.

(i) The case where

2−n 6
S1

E1
6

S2

E2
6

(
S3

E3

)r ′/2

.

Then

(I) . E1 E2α
2 E3

∑
n

2−n2−2αn2−2n/r ′22n . E1 E2α
2 E3

∑
n

2−n(1+2α+2/r ′−2).

With the observation that 1+ 2α+ 2/r ′− 2 = 4α, and under the assumption that

2−n 6 min

(
S1

E1
,

S2

E2
,

(
S3

E3

)r ′/2
)
,

we have

(I) . E1 E2α
2 E3

(
S1

E1

)4αθ1

·

(
S2

E2

)4αθ2

·

(
S3

E3

)r ′/2·4αθ3

,

where 0 6 θ1, θ2, θ3 6 1, and θ1 + θ2 + θ3 = 1. This further implies the desired
expression from (45).

(ii) If
S1

E1
6 2−n 6

S2

E2
6

(
S3

E3

)r ′/2

,

then

(I) . E1 E2α
2 E3

S1

E1

∑
n

2−n(1−4/r),

and we have to consider two possibilities: 1− 4/r > 0 and 1− 4/r < 0.

(a) If 1− 4/r > 0, then

(I) . E1 E2α
2 E3

S1

E1

(
S2

E2

)1−4/r

. E1 E2α
2 E3 ·

(
S1

E1

)4αθ1

·

(
S1

E1

)1−4αθ1

·

(
S2

E2

)1−4/r

.

https://doi.org/10.1017/fms.2016.21 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2016.21


A bilinear Rubio de Francia inequality for arbitrary squares 23

As long as 1− 4αθ1 > 0, we obtain

(I) . E1 E2α
2 E3 ·

(
S1

E1

)4αθ1
(

S2

E2

)1−4/r+1−4αθ1

= E1 E2α
2 E3 ·

(
S1

E1

)4αθ1
(

S2

E2

)4α−4αθ1

.

This implies the estimate (45), since 4α−4αθ1 = 4αθ2+4αθ3, with θ1, θ2, θ3

positive and adding up to 1.

(b) On the other hand, if 1− 4/r < 0, then

∑
n

2−n(1−4/r) .

(
S1

E1

)1−4/r

and

(I) . E1 E2α
2 E3 ·

(
S1

E1

)2−4/r

= E1 E2α
2 E3 ·

(
S1

E1

)4α

.

This immediately implies (45).

(c) If 1−4/r = 0, a similar estimate is obtained by an easy interpolation between
(a) and (b).

(iii) The last case we present here is

S1

E1
6

S2

E2
6 2−n 6

(
S3

E3

)r ′/2

.

In this situation,

(I) . E1 E2α
2 E3

S1

E1

(
S2

E2

)2α∑
n

2−n(2/r ′−2)

The exponent 2/r ′ − 2 is negative; in fact 2/r ′ − 2 = −2/r , hence

∑
n

2−n(2/r ′−2) .

(
S2

E2

)−2/r

.

It follows that
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(I) . E1 E2α
2 E3 ·

(
S1

E1

)4αθ1
(

S1

E1

)1−4αθ1
(

S2

E2

)4αθ2
(

S2

E2

)2α−4αθ2−2/r

. E1 E2α
2 E3 ·

(
S1

E1

)4αθ1
(

S2

E2

)4αθ2
(

S2

E2

)1−4αθ1+2α−4αθ2−2/r

= E1 E2α
2 E3 ·

(
S1

E1

)4αθ1
(

S2

E2

)4αθ2
(

S2

E2

)4α−4αθ1−4αθ2

.

From the last identity we get the conclusion. Here again we need the assumption
1− 4αθ1 > 0.

This completes the proof of the estimate for (I) in the case where (48) holds.
The rest of the cases for estimating (I), as well as the estimates for (II) reduce to

similar computations, and for that reason we do not present the details here.

5. Localization of sizes and energies

If we apply Proposition 4.1 directly, the range that we obtain for Tr is restricted
by the conditions

r ′ < p 6 r, r ′ < q 6 r. (49)

To obtain a larger range, we will need to use local variants of the previous
Propositions 3.6 and 3.8.

Let I0 be a fixed dyadic interval. We denote S(I0) the subcollection of tiles with
spatial interval contained inside I0:

S(I0) := {s ∈ S : Is ⊆ I0}. (50)

We have the following improvements for the energies on S(I0):

PROPOSITION 5.1 (Modification of Proposition 3.6).

energyS(I0)
( f ) . ‖ f · χ̃I0‖2, energyS(I0)

(g) . ‖g · χ̃I0‖2.

REMARK 5.2. In fact, what we have is that whenever I0 and supp f are separated,
the energy decays faster. This can be made precise in the following way:

if
dist (I0, supp f )

|I0|
∼ 2k, then energyS(I0)

( f ) . 2−k M
‖ f ‖2.

As a consequence, the energies E j in the estimate (45) from Proposition 4.1
can be replaced by ‖ f · χ̃I0‖2, provided the tiles are all localized inside I0.
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PROPOSITION 5.3 (Modification of Proposition 3.8). Similarly,

energyS(I0)
(h) .

∥∥∥∥(∑
ω∈Ω

|hω|r
′

)1/r ′

· χ̃M
I0

∥∥∥∥
r ′
.

Proof. All the tiles in S(I0) are so that Is ⊆ I0; so in particular, if {T }T ∈T is a
collection of disjoint columns or rows which is a maximizer for energyS(I0)

(h),
then χ̃IT 6 χ̃I0 for all T ∈ T. The desired estimate follows easily from the
observation that(

energyS(I0)
(h)
)r ′

.
∑
T ∈T

∫
R

∑
ω∈Ω(T )

∣∣M (
hω · χ̃M

I0

)
(x)
∣∣r ′ · 1IT dx .

A reasoning similar to that in Proposition 3.8 yields that

energyS(I0)
(h) .

(∑
ω∈Ω

‖M
(
hω · χ̃M

I0

)
‖

r ′
r ′

)1/r ′

.

∥∥∥∥∥
(∑
ω∈Ω

|hω|r
′

)1/r ′

· χ̃M
I0

∥∥∥∥∥
r ′

.

6. Proof of Theorem 1.2

Proof of Theorem 1.2. Now we are ready to provide a proof for our main result.
To start with, we will partition the collection S :=

⋃
d>0 Sd , and for each of these

subcollections we will show an inequality similar to (15) of Proposition 1.3:∣∣ΛSd ( f, g, h)
∣∣ . 2−10d

· |F |ν1 · |G|ν2 · |H |ν3, (51)

where ν1 + ν2 + ν3 = 1, and (ν1, ν2, ν3) is in a small neighborhood of (1/p, 1/q,
1/s ′).

Given measurable sets F,G, H with |H | = 1, we define the exceptional set as

E := {x :M (1F) (x) > C |F |} ∪ {x :M (1G) (x) > C |G|}. (52)

For a constant C large enough, we have |E | � 1, so H ′ := H \ E is going to be a
major subset of H . Let f, g, {hω}ω∈Ω be so that

| f (x)| 6 1F(x), |g(x)| 6 1G(x),
(∑

ω

|hω|r
′

)1/r ′

6 1H ′ for a.e. x .

Then the subcollections Sd which constitute the partition S :=
⋃

d>0 Sd , are
defined by

Sd :=

{
s ∈ S : 2d 6 1+

dist(Is, E c)

|Is |
6 2d+1

}
.
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In order to keep things simple, we temporarily suppress the d-dependency in the
notation Sd .

Next, we will use Proposition 4.1, applied to some subcollections Sn1,n2,n3(I0)⊆

S(I0) for suitable intervals I0. The proof will become rather technical, so we
will try to present the main ideas before going forward with the details. As
mentioned before, applying Proposition 4.1 to S or even Sd will yield a range of
boundedness for Tr which is not optimal. A similar situation appears in the case of
the BHT operator defined in (7). Using sizes and energies, one can only obtain the
L p
× Lq

→ L s boundedness of BHT for p, q, s satisfying∣∣∣∣ 1
p
−

1
q

∣∣∣∣ < 1
2
, and

2
3
< s < 2.

One gets a larger range for BHT by interpolating between the adjoint operators,
and using the symmetries of the trilinear form. The procedure is described in [19],
or [17].

The trilinear form associated to Tr however, lacks symmetry in f, g, and h.
Instead, we will use local estimates that in turn will allow us to represent the
energy as an average over certain intervals. The selection of the intervals is done
through three stopping times, with respect to f , g, and h. The idea of using local
estimates in order to convert the energies into averages originates from [1].

We will obtain I
n1
1 , I

n2
2 , I

n3
3 , three collections of dyadic intervals indexed after

the set of natural numbers. If I0 ∈ I
n1
1 , then

2−n1−1 6
1
|I0|

∫
R

1F · χ̃I0 dx 6 2−n1 .

Moreover, for every interval I0 ∈ I
n1
1 , we will have a corresponding collection

S1
n1
(I0) ⊆ S, which will be constructed in the stopping time. For every J ⊆ I0,

and any subcollection S′ ⊆ S1
n1
(I0), we have

max
(

sizeS′(J )( f ),
‖1F · χ̃J‖1

|J |

)
6 2−n1 . (53)

Similarly, In2
2 and I

n3
3 generate partitions of S:

S :=
⋃
n2

⋃
I0∈I

n2
2

S2
n2
(I0) =

⋃
n3

⋃
I0∈I

n3
2

S3
n3
(I0) ,

with the only difference that for the sizes associated with h, we have

2−n3−1 6
1
|I0|

∫
R

1H ′ · χ̃
Mr ′
I0

dx 6 2−n3,
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and

max
(

s̃izeS′(J ) (h) ,
‖1H ′ · χ̃

M
J ‖r ′

|J |1/r ′

)
6 2−n3/r ′ .

Now we describe the selection algorithm for In3
3 and S3

n3
(I0), the construction

of In1
1 ,S1

n1
(I0) and I

n2
2 ,S2

n2
(I0) being similar.

Step: Selection algorithm for h. For the stopping time, we will use a new
version of size of h. First, given a collection S of tiles, we denote

I+ (S) := {I dyadic interval : ∃s ∈ S so that Is ⊆ I }. (54)

Then define

s̃izeS(h) := sup
I∈I+(S)

(
1
|I |

∫
R

1H ′ · χ̃
Mr ′
I dx

)1/r ′

.

While this might appear unnatural, the reason why we are defining this new size
is so that we can compare sizeS(I0)(h), s̃izeS(I0)(h) and ‖1H ′ · χ̃

M
I0
‖r ′/|I0|

1/r ′ . Then,
using localization results, we can convert the energy into a size as well.

For n3 > 1, assume that we have constructed the collection I
n3−1
3 already, and

for every I0 ∈ I
n3−1
3 , also the collection of tiles S3

n3−1(I0). Then S̄n3 is the collection
of available tiles, which has the property that

s̃izeS̄n3
(h)r

′

6 2−n3 .

We will construct the similar sets I
n3
3 , and S3

n3
(I0). First, look for intervals

I ∈ I+(S̄n3) with the property that

2−n3−1 6
1
|I |

∫
R

1H ′ · χ̃
Mr ′
I dx 6 2−n3 . (55)

If there are no such intervals in I+(S̄n3), set In3
3 = ∅, and S̄n3+1 := S̄n3 ; continue

the procedure with n3 replaced by n3 + 1.
Otherwise, pick such an interval I0 ∈ I

+(S̄n3) satisfying (55), which is maximal
with respect to inclusion. It will contain some s ∈ S̄n3 . Now define

S3
n3
(I0) := {s ∈ S̄n3 : Is ⊆ I0},

and set S̄n3 := S̄n3 \ S3
n3
(I0). We continue the search for maximal dyadic intervals

satisfying (55), and which are contained in I+(S3
n3
(I0)).

In this way, given n3 > 0, and I0 ∈ I
n3
3 , we have, for any t ∈ S3

n3
(I0)

1
|It |

∫
R

1H ′ · χ̃
Mr ′
It

dx 6 2−n3,
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for otherwise the tile t would have been chosen in some Sm3
3 for some m3 < n3.

For similar reasons, if I0 ∈ I
n3
3 , J ⊆ I0, and there exists at least one t ∈ S3

n3
(I0)

with It ⊆ J , then
1
|J |

∫
R

1H ′ · χ̃
Mr ′
J dx 6 2−n3 .

This is due to the stopping time algorithm. If there are no more intervals
I ∈ I+(S3

n3
) satisfying (55), we restart the algorithm with n3 replaced by n3 + 1.

Since the collection S of tiles is finite, the procedure will end after a finite number
of steps.

Step: Estimates for the trilinear form. We denote In1,n2,n3 := I
n1
1 ∩ I

n2
2 ∩ I

n3
3 .

This will also be a collection of dyadic intervals, and if I0 ∈ In1,n2,n3 , then
I0 = I1 ∩ I2 ∩ I3, with I j ∈ I

n j
j . Set Sn1,n2,n3(I0) := S1

n1
(I1)∩ S2

n2
(I2)∩ S3

n3
(I3). We

will apply the estimates of Proposition 4.1 to the collection Sn1,n2,n3(I0). Assume
I0 is a fixed interval, and n1, n2, n3 are so that

2−n1 . 2d
|F |, 2−n2 . 2d

|G|, 2−n3 . 2−Md
|H |.

From Proposition 4.1, we can estimate the trilinear form ΛSn1,n2,n3 (I0) by a product
of sizes and energies. We have:

|ΛSn1,n2,n3 (I0)( f, g, h)| . 2−n2/r
· 2−n1·4αθ1 ·

(
2−n1

)(1−4αθ1)/2
· |I0|

(1−4αθ1/2)

· 2−n2·4αθ2 ·
(
2−n2

)(2α−4αθ2)/2

· |I0|
(2α−4αθ2)/2 ·

(
2−n3

)2αθ3
·
(
2−n3

)1/r ′−2αθ3
· |I0|

1/r ′−2αθ3

+ 2−n1/r 2−n1·4αβ1 ·
(
2−n1

)(2α−4αβ1)/2

· |I0|
(2α−4αβ1)/22−n2·4αβ2 ·

(
2−n2

)(1−4αβ2)/2

· |I0|
(1−4αβ2)/2 ·

(
2−n3

)2αβ3
·
(
2−n3

)1/r ′−2αβ3
· |I0|

1/r ′−2αβ3 .

Eventually, after setting θ j = β j , the expression above can be rewritten as

|ΛSn1,n2,n3 (I0)( f, g, h)| . 2−n1(1/2+2αθ1) · 2−n2(1/2+2αθ2)2−n3·1/r ′
· |I0|. (56)

Recall that In1
1 is nonempty only as long as 2−n1 . min(1, 2d

|F |). Similarly, for
I

n2
2 and I

n3
3 to be nonempty, we need to have

2−n2 . min
(
1, 2d
|G|
)
, and 2−n3 . min

(
1, 2−Md

|H |
)

respectively. (57)

With this observation, (56) becomes

|ΛSn1,n2,n3 (I0)( f, g, h)| . 2−n1ν1 · 2−n2ν2 2−n3·1/r ′
· |I0|,

as soon as 0 6 ν1 6
1
2 + 2αθ1, 0 6 ν2 6

1
2 + 2αθ2.
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Following, we sum over intervals I0 ∈ I
n1
1 ∩ I

n2
2 ∩ I

n3
2 . We have the estimates∑

I0∈I
n1,n2,n3

|I0| .
∑
I∈I

n j
j

|I | . min {2n1 |F |, 2n2 |G|, 2n3 |H |} , (58)

which in turn imply (by taking the geometric average)∑
I0∈I

n1,n2,n3

|I0| . (2n1 |F |)γ1 · (2n2 |G|)γ2 · (2n3 |H |)γ3 ,

where 0 6 γ j 6 1, and γ1+ γ2+ γ3 = 1. The inequalities in (58) follow from the
fact that, for a fixed n j , the intervals I ∈ I

n j
j are disjoint (they were chosen to be

maximal), and moreover⋃
I∈I

n1
1

I ⊆ {M (1F) > 2−n1},
⋃

I∈I
n2
2

I ⊆ {M (1G) > 2−n2},⋃
I∈I

n3
3

I ⊆ {M (1H ′) > 2−n3}.

In this way, we obtain∣∣ΛSn1,n2,n3 (I0)( f, g, h)
∣∣ . 2−n1(ν1−γ1)2−n2(ν2−γ2) · 2−n3(1/r ′−γ3) · |F |γ1 · |G|γ2 · |H ′|γ3 .

At this point, we are left with summing these expressions in n1, n2, n3. The
conditions in (57) will yield that

|ΛSd ( f, g, h)| .
(
2d
|F |
)ν1−γ1

·
(
2d
|G|
)ν2−γ2

·
(
2−Md
|H |

)1/r ′−γ3
· |F |γ1 · |G|γ2 · |H ′|γ3,

provided that, for some γ1, γ2, γ3, we have

ν1 − γ1 > 0, ν2 − γ2 > 0,
1
r ′
− γ3.

This last condition becomes equivalent to ν1 + ν2 + 1/r ′ > 1. In this case, we
obtain for M suitable large

|ΛSd ( f, g, h)| . 2−10d
|F |ν1 · |G|ν2, (59)

which implies that ΛS is of generalized restricted type (ν1, ν2, ν3) for any
admissible triple ν1, ν2, ν3 which satisfies ν1 + ν2 + ν3 = 1 and

0 < ν1 <
1
2
+ 2αθ1 6

1
r ′
, 0 < ν2 <

1
2
+ 2αθ2 6

1
r ′
, −1 < ν3 <

1
r ′
.
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Interpolation theory then yields the strong type estimates: Tr maps L p
×Lq into

L s for any r ′ < p, q <∞, r ′/2 < s < r .
We note that the same reasoning allows us to obtain similar estimates, if

f ∈ L2
∩ L∞, or g ∈ L2

∩ L∞. Usually the cases f ∈ L∞ or g ∈ L∞ are obtained
through duality arguments, and we illustrate this in the subsequent remark. What
is interesting is that, by transforming the energy into an average (which is possible
because of the stopping time), we can prove generalized restricted type estimates
for the bilinear form obtained by fixing g ∈ L2

∩ L∞. More exactly, we can show
that for such a fixed function g, and for sets of finite measure F and H , with
|H | = 1, one can find a major subset H ′ ⊆ H (which will not depend on g) so
that, for any | f | 6 1F and any

(∑
ω∈Ω |hω|

r ′
)1/r ′

6 1H ′ ,

ΛS( f, g, h) . ‖g‖∞|F |ν1, (60)

whenever 1/r < ν1 < 1/r ′. Interpolation theory implies that

‖Tr ( f, g)‖p . ‖ f ‖p · ‖g‖∞ for any r ′ < p < r.

REMARK 6.1. An alternative way of obtaining the same range for Tr is by
examining the adjoint operators T ∗,1r and T ∗,2r . These are defined so that

ΛS( f, g, h) := 〈Tr ( f, g), h〉 = 〈T ∗,1r (h, g), f 〉 = 〈T ∗,2r ( f, h), g〉. (61)

Using Proposition 4.1, and the usual decomposition S =
⋃

d>0 Sd , where

Sd :=

{
s ∈ S : 1+

dist(E c, Is)

|Is |
∼ 2d

}
,

we can prove the following:

(i) Tr : L p
× Lq

→ L s(`r ), for any p, q, s satisfying

1
r
<

1
p
<

1
r ′
, and

1
r
<

1
q
<

1
r ′
.

(ii) T ∗,1r : L s′(`r ′)× Lq
→ L p′ , for any p, q, s satisfying

1
r
<

1
q
<

1
r ′
, and 0 <

1
s ′
<

1
r ′
.

(iii) T ∗,2r : L p
× L s′(`r ′)→ Lq ′ , for any p, q, s satisfying

1
r
<

1
p
<

1
r ′
, and 0 <

1
s ′
<

1
r ′
.
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In this way, we obtain that the trilinear form is of generalized restricted type
(ν1, ν2, ν3) for any triple contained inside the region {x + y + z = 1,−2/r ′ 6 x,
y, z 6 1/r ′}.

In particular, this implies that Tr : L p
× Lq

→ L s for any p, q, s satisfying

1
p
+

1
q
=

1
s
, r ′ < p, q 6∞, and

r ′

2
< s < r.

7. An application to generalized Bochner–Riesz bilinear multiplier for
rough domains

Consider O a bounded open subset of R2d , whose boundary has Hausdorff
dimension 2d − 1. We can ask the following question:

Question. What is the best nonincreasing function φ : [0, diam(O)] → [0,∞)
such that every bilinear symbol m supported on O and satisfying∣∣∂αξ,ηm(ξ, η)∣∣ . d

(
(ξ, η),Oc

)−|α|
φ
(
d((ξ, η),Oc)

)
for all (ξ, η) ∈ O, (62)

and for sufficiently many multi-indices α, gives rise to a bilinear Fourier multiplier
bounded from L p

× Lq to L s? Here the triple (p, q, s) satisfies the usual Hölder
scaling condition.

For some specific situations, we have some definite (sometimes almost optimal)
answer (the disc and more generally the ball [3], the unit cubes and any polygons
. . . )

PROPOSITION 7.1. Consider O an arbitrary bounded open subset, whose
boundary has Hausdorff dimension 2d − 1. Let r > 2 and (p, q, s) a triple as in
Theorem 1.2. If φ is given by

φ(t) = t (2d−1)/r ′(1+ log(t))−(1/r ′+ε) (63)

for some ε > 0, then any bilinear symbol m satisfying (62) gives rise to a bilinear
Fourier multiplier bounded from L p

× Lq to L s .

Proof. Let Ω be a Whitney covering of O. For every integer n such that
2−n 6 diam(O) denote Ωn the subcollection of square ω ∈ Ω with
2−n 6 d(ω,Oc) < 2−n+1.

Consider (χω)ω∈Ω a smooth partition of the unity, associated with the Whitney
covering, so that (in terms of bilinear symbols)

m =
∑

n

∑
ω∈Ωn

mχω.
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By assumption, the symbol mχω satisfies∣∣∂αξ,ηmχωn

∣∣ . 2n|α|2−n((d−1)/r ′)n−(1/r ′+ε).

So let us renormalize them and consider for ω ∈ Ωn

χω := 2n((d−1)/r ′)n(1+ε)mχω.

The operator Tm (which is the bilinear Fourier multiplier associated with the
symbol m) becomes

Tm =
∑

n

2−n((d−1)/r ′)n−(1+ε)
∑
ω∈Ωn

Tχω ,

and then we conclude by Minkowski’s inequality that

∣∣Tm( f, g)
∣∣ 6 (∑

ω∈Ω

∣∣Tχω( f, g)
∣∣r)1/r(∑

n

2−n(2d−1)n−1−r ′ε(]Ωn)

)1/r ′

.

Since O is supposed to have a boundary of Hausdorff dimension (2d − 1) we
deduce that (]Ωn) . 2n(2d−1), which implies

∣∣Tm( f, g)
∣∣ 6 (∑

ω∈Ω

∣∣Tχω( f, g)
∣∣r)1/r

.

The `r -functional fits into the case studied in Theorem 1.2, and hence we can infer
the boundedness of Tm .

REMARK 7.2.

(a) An easy observation is that φ(t) = t (2d−1)/r ′(1 + log(t))−(1+ε) is sufficient.
Indeed, we can work at a fixed scale: for every n,(∑

ω∈Ωn

∣∣Tχω( f, g)
∣∣r)1/r

is (easily) uniformly (with respect to n) bounded since here we work with
only one scale (it is indeed simpler than [4]). We can then sum these estimates
since the extra term (1 + log(t))−(1+ε) gives a n−1−ε decay which allows us
to sum with respect to n.

Hence in this situation (dealing with an arbitrary subset O which may be very
rough), we manage to slightly weaken the condition on φ(·) (by decreasing
the order of vanishing of the symbol at the boundary) in (62).
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(b) If p, q > 2 then the previous reasoning still holds with

φ(t) = t (2d−1)/2(1+ log(t))−(1+ε)

which is weaker than the condition (63) in Proposition 7.1. So the
improvement is only interesting outside the local L2 range, when one
of p or q is less than 2.
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